
Effective Meta-Regularization by Kernelized
Proximal Regularization

Weisen Jiang1, 2, James T. Kwok2, Yu Zhang1, 3 ∗

1 Department of Computer Science and Engineering, Southern University of Science and Technology
2 Department of Computer Science and Engineering, Hong Kong University of Science and Technology

3 Peng Cheng Laboratory
{wjiangar, jamesk}@cse.ust.hk, yu.zhang.ust@gmail.com

Abstract

We study the problem of meta-learning, which has proved to be advantageous to
accelerate learning new tasks with a few samples. The recent approaches based on
deep kernels achieve the state-of-the-art performance. However, the regularizers in
their base learners are not learnable. In this paper, we propose an algorithm called
MetaProx to learn a proximal regularizer for the base learner. We theoretically
establish the convergence of MetaProx. Experimental results confirm the advantage
of the proposed algorithm.

1 Introduction

Humans, by leveraging prior knowledge and experience, can easily learn new tasks from a handful
of examples. In contrast, deep networks are data-hungry, and a large number of training samples
are required to avoid overfitting. To reduce the labor-intensive and time-consuming process of data
labeling, meta-learning (or learning to learn) [3, 37] aims to exact meta-knowledge from seen tasks to
accelerate learning on unseen tasks. Recently, meta-learning has been receiving increasing attention
due to its diverse successful applications in few-shot learning [41, 12, 39, 35], hyperparameter
optimization [14], neural architecture search [24, 44], and reinforcement learning [29].

Many meta-learning algorithms operate on two levels. A base learner learns task-specific models in
the inner loop, and a meta-learner learns the meta-parameter in the outer loop. A popular class of
algorithms is based on meta-initialization [12, 25, 11, 38], such as the well-known MAML [12]. It
learns a model initialization such that a good model for an unseen task can be learned from limited
samples by a few gradient updates. However, computing the meta-gradient requires back-propagating
through the entire inner optimization path, which is infeasible for large models and/or there are many
gradient steps. During testing, it is common for MAML’s base learner to perform many gradient steps
to seek a more accurate solution [12]. However, for regression using a linear base learner and square
loss, we will show that though the meta-learner can converge to the optimal meta-initialization, the
base learner may overfit the training data at meta-testing.

Another class of meta-learning algorithms is based on meta-regularization [28, 43, 7, 8, 9], in which
the base learner learns the task-specific model by minimizing the loss with a proximal regularizer
(a biased regularizer from the meta-parameter). Denevi et al. [7] uses a linear model with efficient
closed-form solution for the base learner. However, extending to nonlinear base learners requires
computing the meta-gradient using matrix inversion, which can be infeasible for deep networks [28].

To introduce nonlinearity to the base learner, a recent approach is to make use of the kernel trick.
For example, R2D2 [4] and MetaOptNet [22] use deep kernels [42] in meta-learning for few-shot
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classification. Specifically, the deep network is learned in the meta-learner, while a base kernel is
used in the base learner. Though they achieve state-of-the-art performance, their base learners use a
Tikhonov regularizer rather than a learnable proximal regularizer as in meta-regularization methods.

As learning a meta-regularization has been shown to be effective in linear models for regression [7]
and classification [8], in this paper we propose a kernel-based algorithm to meta-learn a proximal
regularizer for a nonlinear base learner. After kernel extension, the learnable function in the proximal
regularizer is a function in the reproducing kernel Hilbert space (RKHS) induced by the base kernel.
The proposed algorithm is guaranteed to converge to a critical point of the meta-loss and its global
convergence is also established. Experiments on various benchmark regression and classification
datasets demonstrate the superiority of the proposed algorithm over the state-of-the-arts.
Notations. Vectors are denoted by lowercase boldface, and matrices by uppercase boldface. For a
vector x, ‖x‖ =

√∑
i x

2
i and diag(x) constructs a diagonal matrix with x on the diagonal. ‖ · ‖H is

the norm on the Hilbert spaceH. N (0, σ2) is the univariate normal distribution with mean zero and
variance σ2. N (m,Σ) is the multivariate normal distribution with mean m and covariance matrix Σ.

2 Related Work
In meta-learning, a collection T of tasks are used to learn a meta-parameter θ and base learner’s
parameters {w1, . . . ,w|T |}. Each task τ is sampled from a given distribution p(τ), and has a
support set Sτ = {(xi, yi) : i = 1, . . . , ns} and a query set Qτ = {(xi, yi) : i = 1, . . . , nq},
where x ∈ Rd are the features and y the labels. Let f(·; w) be a model parameterized by w and
L(D; w) ≡

∑
(x,y)∈D `(f(x; w), y) be the supervised loss on data set D, where `(·, ·) is a loss

function that is assumed to be convex w.r.t. the first argument. In each meta-training iteration, a
batch B of tasks are randomly sampled from T . The base learner takes a task τ from B and the
meta-parameter θ to build the model f(·; wτ ). After all tasks in the batch are processed by the base
learner, the meta-learner minimizes the loss

∑
τ∈B L(Qτ ; wτ ) w.r.t. θ, and the iteration repeats.

During meta-testing, given an unseen task τ ′ ∼ p(τ), a model f(·; wτ ′) is similarly learned from Sτ ′
and θ. Finally, its performance is evaluated on Qτ ′ .

Popular meta-learning algorithms usually construct the task-specific model by: (i) meta-
initialization [12, 25, 11, 38], (ii) meta-regularization [7, 8, 9, 28, 43], or (iii) metric learn-
ing [35, 4, 22, 27]. A representative meta-learning algorithm based on meta-initialization is
MAML [12]. Its base learner learns wτ by gradient descent from a learnable initialization. Comput-
ing the meta-gradient ∇θL(Qτ ; wτ ) needs to back-propagate through the inner optimization path
and involves second-order derivatives. This can be expensive for large models and/or when there are
many gradient steps.

For meta-learning algorithms based on meta-regularization, the base learner learns wτ by minimizing
a proximal regularized loss

L(Sτ ; w) +
λ

2
‖w − θ‖2, (1)

where λ > 0 is the regularization parameter. The meta-gradient can be computed directly from the
learned wτ , without back-propagating through the inner optimization trajectory [28]. Though more
efficient, this still takes O(n3θ) time [28], where nθ is the number of parameters in θ.

Metric learning methods have been widely studied in few-shot learning [39, 35, 4, 22, 27]. The
meta-learner maps raw samples to an embedding space via a a deep network, then feeds the em-
beddings to the base learner to train a simple task model. Typical models include non-parametric
prototype classifier (ProtoNet [35]), linear models like ridge regression (R2D2 [4]), SVM classifier
(MetaOptNet-SVM [22]), and softmax classifier (ANIL [27]). In particular, the base learners in
R2D2 [4], MetaOptNet [22] and DKT [26] seek solutions in the dual space, which achieve state-of-
the-art performance. However, their base learners use a Tikhonov regularizer, which is not learnable
as in meta-regularization approaches.

3 Meta-Regularization by Kernelized Proximal Regularization

3.1 Meta-Initialization versus Meta-Regularization

In this section, we consider a simple regression setting with linear model and square loss. Each
task τ is a linear regressor with parameter w∗τ ∈ Rd. We assume that each input x is sampled
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Algorithm 1 MAML [12].
Require: step size γ and ηt, batch size b;
1: for t = 1, 2, 3, . . . do
2: sample a batch Bt of tasks from p(τ);
3: base learner:
4: for τ ∈ Bt do
5: w(gd)

τ = ψt − γX>τ (Xτψt − yτ );
6: gτ = 1

2

∑
(x,y)∈Qτ ∇ψt(x

>w(gd)
τ − y)2;

7: end for
8: meta-learner: ψt+1 = ψt − ηt

b

∑
τ∈Bt gτ ;

9: end for

Algorithm 2 CommonMean [7].
Require: hyperparameter λ, step size ηt, batch size b;
1: for t = 1, 2, 3, . . . do
2: sample a batch Bt of tasks from p(τ);
3: base learner:
4: for τ ∈ Bt do
5: w

(prox)
τ = minw

1
2
‖Xτw−yτ‖2+ λ

2
‖w−θt‖2;

6: gτ = 1
2

∑
(x,y)∈Qτ ∇θt(x

>w
(prox)
τ − y)2;

7: end for
8: meta-learner: θt+1 = θt − ηt

b

∑
τ∈Bt gτ ;

9: end for

from N (0, σ2
xI), and the output y is obtained as x>w∗τ + ξ, where ξ ∼ N (0, σ2

ξ ) is the random
noise. We compare two representative meta-learning algorithms: (i) MAML [12], which is based on
meta-initialization and performs one gradient descent step in the inner loop of the bilevel optimization
problem; and (ii) learning around a common mean (denoted CommonMean) [7], which is based on
meta-regularization. It learns the model parameters for task τ by minimizing the loss with a proximal
regularizer around the meta-parameter θ:

w(prox)
τ =argmin

w

∑
(xi,yi)∈Sτ

1

2
(w>xi−yi)2+

λ

2
‖w−θ‖2 = (λI+X>τ Xτ )−1(λθ+X>τ yτ ), (2)

where Xτ = [x>1 ; . . . ; x>ns ] is the sample matrix from Sτ , and yτ = [y1; . . . ; yns ] is the corre-
sponding label vector. Algorithms 1 and 2 show MAML and CommonMean, respectively, for this
problem.

Recently, Balcan et al. [2] study the convex online meta-learning setting and show that both approaches
achieve the same average task regret. Here, we consider the offline setting. First, the following
Proposition shows that both MAML and CommonMean converge to the same meta-parameter. All
proofs are in the appendix.

Proposition 1. Let ηt = 1/t. Assume that γ < 1/σ2
x. Both ψt in MAML (with one inner gradient

step) and θt in CommonMean converge to w̄ = Eτw∗τ .

The following Proposition shows that w̄ in Proposition 1 is also the best ψ (for MAML) or θ (for
CommonMean) with the smallest population risk for this meta-learning problem.

Proposition 2. Assume that γ < 1/σ2
x. We have w̄ = argminθ EτESτEQτ

∑
(x,y)∈Qτ(x

>w
(prox)
τ −

y)2 =argminψ EτESτEQτ
∑

(x,y)∈Qτ (x>w
(gd)
τ −y)2.

During meta-testing, we sample a task τ ′ ∼ p(τ) with parameter w∗τ ′ . Let Xτ ′ be the sample matrix
from Sτ ′ , and yτ ′ be the corresponding label vector. We assume that Xτ ′ is full rank and ns < d. To
simplify notations, we drop the subscript τ ′ in the following. Let the singular value decomposition of
X be UΣV> (where Σ = diag([ν1, . . . , νns ])), and V⊥ be V’s orthogonal complement.

As only forward passes are needed, it is common for the base learner in MAML to perform multiple
gradient steps [12]. With the convex loss and linear model here, the base learner can obtain a globally
optimal solution w(gd∞) directly (which is equivalent to taking infinite gradient steps). As is common
in few-shot learning, the number of support samples is much smaller than feature dimensionality.
Hence, w(gd∞) is not unique but depends on the learned initialization. Let w(gd∞) be written as
w(gd∞) = Va(gd∞) + V⊥b(gd∞). For gradient descent, its update direction X>(Xw − y) =
VΣU>(Xw − y) is always in the span of V and so b(gd∞) remains unchanged.

Let w∗ and θ be written as w∗ = Va∗ + V⊥b∗ and θ = Va0 + V⊥b0. Moreover, let ã = a0 − a∗

and b̃ = b0 − b∗.

Proposition 3 ([17]). Assume that γ < min1≤j≤ns 1/ν2j . We have Eξ‖w(gd∞)−w∗‖2 = ‖b(gd∞)−

b∗‖2 +
∑ns
j=1

(
σξ
νj

)2
, where the expectation is over the label noise vector ξ.
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For CommonMean, using the Woodbury matrix identity, w(prox) = θ+X>(λI+XX>)−1(y−Xθ) =
V(a0 + ΣU>(λI + XX>)−1(y − Xθ)) + V⊥b0 ≡ Va(prox) + V⊥b(prox), where b(prox) = b0.
Assume that w(gd∞) is initialized with θ. Since b(gd∞) remains unchanged, w(prox) and w(gd∞) only
differ in the components lying in the column space of V.

Proposition 4. Eξ‖w(prox) −w∗‖2 = ‖b̃‖2 +
∑ns
j=1

(
λãj
λ+ν2

j

)2
+
∑ns
j=1

(
σξ

(λ/νj)+νj

)2
, where the

expectation is over the label noise vector ξ.

As can be seen, when the labels are noise-free (σ2
ξ = 0), w(gd∞) performs better than w(prox).

However, when the labels are noisy, as ns < d, gradient descent always converges to zero training
error and overfits the noisy labels. On the other hand, the estimation error of w(prox) equals to that
of w(gd∞) when λ = 0. For λ > 0, it trades off between fitting the noisy labels (the last term in
Proposition 4) and introducing an estimation bias of a∗ (the second term in Proposition 4).

3.2 Proposed Algorithm

It is straightforward to use the dual formulation for the CommonMean algorithm. When the square
loss is used as `(·, ·), it is easy to see that the dual variable has the closed-form solution

ατ = (I + λ−1XτX
>
τ )−1(yτ −Xτθ). (3)

Compared with the primal formulation, we only need to invert a ns × ns matrix (instead of the d× d
matrix λI + X>τ Xτ ). In meta-learning, usually ns � d (e.g., ns = 5). From the dual solution ατ ,
the primal solution can be recovered as wτ = θ + λ−1X>τ ατ . Given a query example (x, y) ∈
Qτ , the model predicts ŷ = x>wτ = x>θ + λ−1x>X>τ ατ . The loss gradient is ∇θ`(ŷ, y) =
∇1`(ŷ, y)∇θ ŷ, where ∇1`(ŷ, y) denotes the gradient w.r.t. the first argument, and ∇θ ŷ = x +
λ−1(∇θατ )>Xτx,∇θατ = −(I + λ−1XτX

>
τ )−1Xτ . The complexity of computing ∇θ`(ŷ, y) is

thus very low (O(n3s + n2sd)).

The dual formulation also allows introduction of nonlinearity with the kernel trick. Based on deep
kernels [42], recent state-of-the-arts (R2D2 [4], MetaOptNet [22], and DKT [26]) propose to use
a base kernel in the base learner and update the deep network in the meta-learner. However, their
regularizers are not learnable. We consider to learn a proximal regularizer. An input x is mapped
to z = NN(x;φ) in an embedding space E via a deep network parameterized by φ. With the dual
formulation, θ in (2) allows extra flexibility over [22, 4, 7]. Specifically, θ becomes a function
fθ ∈ H, the reproducing kernel Hilbert space (RKHS) corresponding to a given kernel function K on
E × E . The base learner obtains a model fτ ∈ H by minimizing

min
f∈H

∑
(xi,yi)∈Sτ

`(f(zi), yi) +
λ

2
‖f − fθ‖2H , (4)

where ‖ · ‖H is the norm on H. By setting fθ = 0, this recovers the state-of-the-arts of MetaOpt-
Net [22], R2D2 [4], and DKT [26]. However, Proposition 4 suggests that a good fθ provides good
meta-knowledge by biasing the task model.

By the representer theorem [34], the solution of (4) is fτ = fθ +
∑

(xi,yi)∈Sτ ατ,iKzi , where
Kzi = K(zi, ·) ∈ H, and ατ = [ατ,1; . . . ;ατ,ns ] is obtained from the convex program

min
ατ

∑
(xi,yi)∈Sτ

`(fτ (zi), yi) +α>τ K(Zτ ,Zτ )ατ , (5)

where Zτ = [z>1 ; . . . ; z>ns ], and K(Zτ ,Zτ ) is the kernel matrix. Note that the hyperparameter λ in
(4) is absorbed into z as the network is learnable. With the square loss, the dual solution of (5) is
ατ = (I +K(Zτ ,Zτ ))−1(yτ − fθ(Zτ )), where fθ(Zτ ) = [fθ(z1); . . . ; fθ(zns)]. For general loss
functions, the dual problem has no closed-form solution, but this has only ns variables (which is
usually small) and can be solved efficiently.

After the base learner has obtained the dual solution ατ , the meta-learner updates fθ and network
parameter φ by one gradient descent step on the validation loss

∑
(x,y)∈Qτ `(ŷ, y), where ŷ ≡

fτ (z) = fθ(z) +K(Zτ , z)>ατ . Using the chain rule, ∇(θ,φ)`(ŷ, y) = ∇1`(ŷ, y)∇(θ,φ)ŷ. The first
component∇1`(ŷ, y) can be computed directly and the second component is

∇(θ,φ)ŷ = ∇(θ,φ)fθ(z) + (∇(θ,φ)K(Zτ , z))>ατ + (∇(θ,φ)ατ )>K(Zτ , z). (6)
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Both ∇(θ,φ)fθ(z) and ∇(θ,φ)K(Zτ , z) can be obtained by direct differentiation. By the chain
rule,∇(θ,φ)ατ = ∇pατ∇(θ,φ)p, where p = [fθ(z1); . . . ; fθ(zns);K(Zτ , z1); . . . ;K(Zτ , zns)] ∈
Rns+n2

s is the input to the dual problem. ∇(θ,φ)p can be directly computed. When the
square loss is used, ∇pατ = −(I + K(Zτ ,Zτ ))−1

[
I | I⊗α>τ

]
. For a general loss,

ατ is obtained by solving the convex program. Hence, ατ depends implicitly on p and
∇pατ can be obtained by implicit differentiation. Denote the dual objective in (5) by
g(p,α). By the implicit function theorem [32], ∇pατ = −

(
∇2
αg(p,ατ )

)−1 ∂2

∂p∂αg(p,ατ ),
where ∇2

αg(p,ατ ) =
∑

(xi,yi)∈Sτ ∇
2
1`(fτ (zi), yi)K(Zτ , zi)K(Zτ , zi)

> + K(Zτ ,Zτ ),
∂2

∂p∂αg(p,ατ ) =
[
K(Zτ ,Zτ )D | (K(Zτ ,Zτ )D)⊗α>τ + v> ⊗ I + I⊗α>τ

]
, D =

diag([∇2
1`(fτ (z1), y1); . . . ;∇2

1`(fτ (zns), yns)]), v = [∇1`(fτ (z1), y1); . . . ;∇1`(fτ (zns), yns)],
where ⊗ is the Kronecker product. The whole procedure, called MetaProx, is shown in Algorithm 3.
Let nφ and nθ be the numbers of parameters in φ and θ, respectively. Computing ∇(θ,φ)`(ŷ, y)

takes O(n3s + n2s(nθ + nφ)) time, which is linear in the number of meta-parameters. This is lower
than the other meta-learning algorithms (e.g., MAML [12] with single step takes O(n2φ) time,
iMAML [28]: O(n3φ), CommonMean [7]: O(d3)).

Algorithm 3 MetaProx.

Require: step size ηt, batch size b;
1: for t = 1, 2, · · · , T do
2: sample a batch Bt of tasks from T ;
3: base learner:
4: for τ ∈ Bt do
5: zi = NN(xi;φt) for each (xi, yi) ∈ Sτ ;
6: fτ (z;α) ≡ fθt(z) +K(Zτ , z)>α denote the task model w.r.t. dual variables;
7: ατ = argminα

∑
(xi,yi)∈Sτ `(fτ (zi;α), yi) +α>K(Zτ ,Zτ )α;

8: gτ =
∑

(x,y)∈Qτ ∇(θt,φt)`(ŷ, y), where ŷ = fτ (z;ατ ) and z = NN(x;φt);
9: end for

10: meta-learner: (θt+1,φt+1) = (θt,φt)− ηt
b

∑
τ∈Bt gτ ;

11: end for

Classification. We consider extension from regression to N -way classification. For task τ , the base
learner learns the model fτ = [f

(1)
τ ; . . . ; f

(N)
τ ] for the N classes by minimizing

min
f(1),...,f(N)∈H

∑
(xi,yi)∈Sτ

`(ŷi, yi) +
λ

2

∑N

c=1
‖f (c) − fθ(c)‖2H, (7)

where ŷi = [f (1)(zi); . . . ; f
(N)(zi)], and fθ(1) , . . . , fθ(N) ∈ H are functions learned by the meta-

learner. By the representer theorem [34], fτ = [fθ(1) +K(Zτ , ·)>α(1)
τ ; . . . ; fθ(N) +K(Zτ , ·)>α(N)

τ ],
where [α

(1)
τ ; · · · ;α

(N)
τ ] is obtained from the convex program minα(1),...,α(N)

∑
(xi,yi)∈Sτ `(ŷi, yi)+∑N

c=1α
(c)>K(Zτ ,Zτ )α(c). As [α

(1)
τ ; · · · ;α

(N)
τ ] ∈ RNns and both N,ns are typically very small

(e.g., N = 5, ns = 5 in 5-way 5-shot classification), this convex program can be solved efficiently.
The meta-learner then updates the network parameter φ and {fθ(1) , . . . , fθ(N)} by one gradient
descent step on the validation loss

∑
(xi,yi)∈Qτ `(ŷi, yi). Computing∇(θ(1),...,θ(N),φ)`(ŷ, y) takes

O((Nns)
3 + (Nns)

2(nφ +
∑N
c=1 nθ(c))) time, where nθ(c) is the size of θ(c). This is again linear

in the number of meta-parameters and thus very efficient.

3.3 Theoretical Analysis

Let Lmeta(θ,φ) = 1
|T |
∑
τ∈T

∑
(x,y)∈Qτ `(fθ(z;ατ ), y) be the empirical loss of

Eτ∼p(τ)
∑

(x,y)∈Qτ `(fθ(z;ατ ), y), where z = NN(x;φ). With the linear kernel and square
loss, the dual solution (3) is affine in the meta-parameter, and so is the primal solution
wτ = θ + λ−1X>τ ατ . Thus, the meta-loss Lmeta(θ,φ) is convex and convergence follows from
convex optimization [5, 7]. After introducing nonlinearity, the meta-loss is no longer convex. The
following introduces Lipschitz-smoothness assumptions, which have been commonly used in
stochastic non-convex optimization [15, 31] and meta-learning in non-convex settings [11, 43].
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Assumption 1 (Smoothness). (i) The deep network NN(x;φ) is Lipschitz-smooth, i.e.,
‖∇φNN(x;φ) − ∇φNN(x;φ′)‖ ≤ β1‖φ − φ′‖ with a Lipschitz constant β1 > 0; (ii) the
kernel K(z, z′) is Lipschitz-smooth w.r.t. (z, z′); (iii) fθ(z) is Lipschitz-smooth w.r.t. (θ, z);
(iv) ∇2

1`(ŷ, y) is Lipschitz w.r.t. ŷ, i.e., |∇2
1`(ŷ, y) − ∇2

1`(ŷ
′, y)| ≤ β2|ŷ − ŷ′| with a Lipschitz

constant β2; (v) Eτ∼T ‖∇(θ,φ)

∑
(x,y)∈Qτ `(fθ(z;ατ ), y) − ∇(θ,φ)Lmeta(θ,φ)‖2 = σ2

g, where
τ ∼ T denotes uniformly sample a task from T .

The following Lemma guarantees smoothness of the meta-loss.
Lemma 1. Lmeta(θ,φ) is Lipschitz-smooth w.r.t. (θ,φ) with a Lipschitz constant βmeta.
Theorem 1. Let the step size be ηt = min(1/

√
T , 1/2βmeta). Algorithm 3 satisfies

min1≤t≤T E‖∇(θt,φt)Lmeta(θt,φt)‖2 = O
(
σ2
g/
√
T
)
, where the expectation is taken over the random

training samples.

This rate is the same as MAML [11, 19] and Meta-MinibatchProx [43]. For MAML with J > 1
gradient steps, Ji et al. [19] assumes that the step size in the inner loop is of the order 1/J. This slows
down inner loop learning when J is large. On the other hand, MetaProx does not have this restriction,
as its meta-gradient depends only on the last iterate rather than all iterates along the trajectory.

Next, we study the global convergence of MetaProx. Prior work [13, 43] focus on the case where
Lmeta(θ,φ) is strongly convex in (θ,φ). This can be restrictive in deep learning. We instead only
require `(ŷ, y) to be strongly convex in ŷ. This assumption is easily met by commonly-used loss
functions such as the square loss and logistic loss with a compact domain. A recent work [40] studies
the global convergence of MAML in over-parameterized neural networks. Over-parameterization is
closely related to the assumption of uniform conditioning [18, 21, 23].
Assumption 2 (Uniform conditioning [23]). A multivariable function M(θ,φ) is µ-uniformly
conditioning if its tangent kernel [18] satisfies min(θ,φ) λmin(∇(θ,φ)M(θ,φ)∇>(θ,φ)M(θ,φ)) ≥
µ > 0, where λmin(·) is the smallest eigenvalue of the matrix argument.

Assume that the loss `(·, ·) is ρ-strongly convex w.r.t. the first argument and Assumption 1
holds. Let xτ,j be the jth query example of task τ , zτ,j be its embedding, and ŷτ,j =
fθ(zτ,j) + K(Zτ , zτ,j)

>ατ be its prediction, where ατ is the dual solution. Let M(θ,φ) =[
ŷτ1,1; . . . ; ŷτ1,nq ; . . . ; ŷτ|T |,1; . . . ; ŷτ|T |,nq

]
be an auxiliary function which maps the meta-parameter

to predictions on all query examples. The following Theorem shows that the proposed algorithm
converges to a global minimum of the empirical risk Lmeta(θ,φ) at the rate of O(σ2

g/
√
T ). The rate

is improved to exponential if the meta-learner adopts full gradient descent.
Theorem 2. Assume thatM(θ,φ) is uniform conditioning. (i) Let ηt = min(1/

√
T , 1/2βmeta). Algo-

rithm 3 satisfies min1≤t≤T ELmeta(θt,φt)−min(θ,φ) Lmeta(θ,φ) = O
(
σ2
g/
√
T
)
, where the expecta-

tion is taken over the random training samples. (ii) Let ηt = η < min(1/2βmeta, 4|T |/ρµ) and Bt = T .
Algorithm 3 satisfies Lmeta(θt,φt)−min(θ,φ) Lmeta(θ,φ) = O((1− ηρµ/4|T |)t).

4 Experiments

4.1 Few-shot Regression

Data sets. Experiments are performed on three data sets.

(i) Sine. This is the sinusoid regression problem in [12]. Samples x’s are uniformly sampled from
[−5, 5]. Each task τ learns a sine function y = aτ sin(x+ bτ ) + ξ, where aτ ∈ [0.1, 5], bτ ∈ [0, π],
and ξ ∼ N (0, σ2

ξ ) is the label noise. We consider both σ2
ξ = 0 (noise-free) and σ2

ξ = 1. In addition
to the 5-shot setting in [12], we also evaluate on the more challenging 2-shot setting. We randomly
generate a meta-training set of 8000 tasks, a meta-validation set of 1000 tasks for early stopping, and
a meta-testing set of 2000 tasks for performance evaluation.
(ii) Sale. This is a real-world dataset from [36], which contains weekly purchased quantities of 811
products over 52 weeks. For each product (task), a sample is to predict the sales quantity for the
current week from sales quantities in the previous 5 weeks. Thus, each product contains 47 samples.
We evaluate on the 5-shot and 1-shot settings. We randomly split the tasks into a meta-training set of
600 tasks, a meta-validation set of 100 tasks, and a meta-testing set of 111 tasks.
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(iii) QMUL, which is a multiview face dataset [16] from Queen Mary University of London. This
consists of grayscale face images of 37 people (32 for meta-training and 5 for meta-testing). We
follow the setting in [26] and evaluate the model on 10-shot regression. Each person has 133 facial
images covering a viewsphere of±90◦ in yaw and±30◦ in tilt at 10◦ increment. A task is a trajectory
taken from the discrete manifold for images from the same person. The regression goal is to predict
the tilt given an image. In the in-range setting, meta-training tasks are sampled from the entire
manifold. In the more challenging out-of-range setting, meta-training tasks are sampled from the
sub-manifold with yaw in [−90◦, 0◦]. In both settings, meta-testing tasks are sampled from the entire
manifold. We randomly sample 2400 tasks for meta-training, and 500 tasks for meta-testing. As
in [26], we do not use a meta-validation set since the dataset is small.

Network Architecture. For Sine and Sale, we use the network in [12], which is a small multilayer
perceptron with two hidden layers of size 40 and ReLU activation. For QMUL, we use the three-layer
convolutional neural network in [26]. The embeddings are always from the last hidden layer. We use
a simple linear kernel as base kernel, and fθ(z) = θ>z.

Implementation Details. We use the Adam optimizer [20] with a learning rate of 0.001. Each mini-
batch has 16 tasks. For Sine and Sale, the model (φ and fθ) is meta-trained for 40, 000 iterations. To
prevent overfitting on the meta-training set, we evaluate the meta-validation performance every 500
iterations, and stop training when the loss on the meta-validation set has no significant improvement
for 10 consecutive evaluations. For QMUL, we follow [26] and meta-train the model for 100 iterations.
We repeat each experiment 30 times. For performance evaluation, we use the average mean squared
error (MSE) on the meta-testing set.

Baselines. On Sine and Sale, we compare MetaProx with CommonMean [7], MAML [12],
MetaOptNet-RR [22], Meta-MinibatchProx [43], and iMAML [28]. CommonMean is a linear
model, and MetaOptNet-RR is equivalent to MetaProx when fθ = 0. Following [12], we set the num-
ber of inner gradient steps for MAML to 1 during meta-training, and 20 during meta-validation and
meta-testing. Both Meta-MinibatchProx [43] and iMAML [28] are meta-regularization approaches.
For QMUL, we compare MetaProx with the baselines reported in [26] (namely, DKT [26], Feature
Transfer [10], and MAML). As further baselines, we also compare with Meta-MinibatchProx and
MetaOptNet-RR to evaluate the improvement of MetaProx due to the learnable fθ.

(b) 2-shot, σ2
ξ = 0. (c) 2-shot, σ2

ξ = 1. (d) 5-shot, σ2
ξ = 0. (e) 5-shot, σ2

ξ = 1.

Figure 1: Convergence curves for few-shot sinusoid regression. Best viewed in color.

Results on Sine. Figure 1 shows the convergence curves of MetaProx and the baselines. We do not
show the convergence of CommonMean, as it does not use a neural network backbone as the other
methods. As can be seen, MetaProx converges much faster and better than the non-kernel-based
methods (MAML, iMAML and Meta-MinibatchProx). In the 2-shot settings, MetaProx converges to
a loss smaller than that of MetaOptNet-RR.

Figure 2 shows the learned functions on 2 meta-testing tasks (τ1 with (a = 4.6, b = 3.2) and τ2
with (a = 3.7, b = 0.5)) in the 5-shot setting and more challenging 2-shot setting. As can be seen,
MetaProx always fits the target curve well. Though MAML, iMAML and Meta-MinibatchProx can
fit the support samples, it performs worse in regions far from the support samples. This is especially
noticeable in the 2-shot setting.

Table 1 shows the MSE on the meta-testing set. Obviously, CommonMean (a linear model) fails
in this nonlinear regression task. MetaProx and MetaOptNet-RR significantly outperform the other
baselines. MetaProx (with the learned fθ) performs better than MetaOptNet-RR, particularly when
the data is noisy.
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(a) task τ1, σ2
ξ = 0. (b) task τ1, σ2

ξ = 1. (c) task τ2, σ2
ξ = 0. (d) task τ2, σ2

ξ = 1.

(e) task τ1, σ2
ξ = 0. (f) task τ1, σ2

ξ = 1. (g) task τ2, σ2
ξ = 0. (h) task τ2, σ2

ξ = 1.

Figure 2: Sinusoid regression: Two meta-testing tasks τ1 and τ2 with different σξ’s in 2-shot ((a)
–(d)) and 5-shot ((e)–(h)) settings. Best viewed in color.

Table 1: Average MSE (with 95% confidence intervals) of few-shot regression on the Sine and Sale
datasets. (The confidence intervals in Sale experiments are ±0.001 for all methods)

Sine (2-shot) Sine (5-shot) Sale

noise-free noisy noise-free noisy 1-shot 5-shot

CommonMean [7] 4.58± 0.07 4.59± 0.07 4.29± 0.06 4.31± 0.06 0.090 0.074
MAML [12] 1.24± 0.12 1.91± 0.13 0.41± 0.03 1.15± 0.05 0.069 0.063
iMAML [28] 1.12± 0.11 1.84± 0.10 0.38± 0.02 1.02± 0.05 0.068 0.063

Meta-MinibatchProx [43] 1.15± 0.08 1.87± 0.09 0.37± 0.02 1.01± 0.03 0.081 0.064
MetaOptNet-RR [22] 0.18± 0.01 0.79± 0.01 0.01± 0.00 0.19± 0.01 0.088 0.068
MetaProx (proposed) 0.11± 0.01 0.43± 0.01 0.01± 0.00 0.13± 0.01 0.061 0.060

Table 2: Average MSE (with 95% confidence intervals) of few-shot regression on QMUL (10-shot).
Results of the first four methods are from [26].

method in-range out-of-range

Feature Transfer [10] 0.22± 0.03 0.18± 0.01
MAML [12] 0.21± 0.01 0.18± 0.02

DKT + RBF [26] 0.12± 0.04 0.14± 0.03
DKT + Spectral [26] 0.10± 0.02 0.11± 0.02

Meta-MinibatchProx [43] 0.171± 0.022 0.193± 0.025
MetaOptNet-RR [22] 0.021± 0.007 0.039± 0.009
MetaProx (proposed) 0.012± 0.003 0.020± 0.005

Results on Sale. As can be seen from Table 1, the linear model (CommonMean) performs poorly
as expected. MetaProx again outperforms the other baselines, particularly in the more challenging
1-shot setting.

Results on QMUL. Table 2 shows that MetaProx achieves the lowest MSE and the kernel methods
(DKT+RBF, DKT+Spectral, MetaOptNet-RR, and MetaProx) perform better than non-kernel-based
methods (Feature Transfer, MAML, and Meta-MinibatchProx). MetaProx with the learnable fθ
reduces the errors of MetaOptNet-RR by half.

4.2 Few-shot Classification

Datasets. We use the standard 5-way K-shot setting (K = 1 or 5) on the mini-ImageNet [39]
dataset, which consists of 100 randomly chosen classes from ILSVRC-2012 [33]. Each class contains
600 84× 84 images. We use the commonly-used split in [30]: the 100 classes are randomly split into
64 for meta-training, 16 for meta-validation, and 20 for meta-testing.

Network Architecture. For the network backbone, we use the Conv4 in [12, 39] and ResNet-
12 in [22]. As the cosine similarity is more effective than `2 distance in few-shot classifica-
tion [6], we adopt the cosine kernel K(z, z′) = cos(z, z′) as base kernel, where z is the em-
bedding of sample x extracted from the last hidden layer as in regression. For each c = 1, . . . , 5,
fθ(c) = [Kq(1) ; . . . ;Kq(5) ]>θ(c) is a weighted prototype classifier on the embedding space, where
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Table 3: Accuracies (with 95% confidence intervals) of 5-way few-shot classification on mini-
ImageNet using Conv4. † means that the result is obtained by rerunning the code with our setup
here. Other results from their original publications (Result on the 5-shot setting is not reported in
iMAML [28]).

method 1-shot 5-shot

MAML [12] 48.7± 1.8 63.1± 0.9
FOMAML [12] 48.1± 1.8 63.2± 0.9
REPTILE [25] 50.0± 0.3 66.0± 0.6
iMAML [28] 49.0± 1.8 −

Meta-MinibatchProx [43] 50.8± 0.9 67.4± 0.9
ANIL [27] 46.7± 0.4 61.5± 0.5
R2D2 [4] 49.5± 0.2 65.4± 0.3

ProtoNet [35] 49.4± 0.8 68.2± 0.7
MetaOptNet-SVM(lin)† [22] 49.8± 0.9 66.9± 0.7
MetaOptNet-SVM(cos)† [22] 50.1± 0.9 67.2± 0.6

MetaProx (proposed) 52.4± 1.0 68.8± 0.8

q(1), . . . ,q(5) are the class centroids computed from Sτ , and the weights {θ(1), . . . ,θ(5)} are meta-
parameters.

Baselines. We compare MetaProx with the state-of-the-arts: (i) meta-initialization: MAML [12]
and its variants FOMAML [12], and REPTILE [25]; (ii) meta-regularization: iMAML [28] and
Meta-MinibatchProx [43]; and (iii) metric learning: ANIL [27], R2D2 [4], ProtoNet [35], and
MetaOptNet [22] with SVM using the linear kernel and cosine kernel. .

Table 4: Accuracies (with 95% confidence intervals) of 5-way few-shot classification on mini-
ImageNet using ResNet-12. † means that the result is obtained by rerunning the code with our setup
here.

method 1-shot 5-shot

FOMAML† [12] 57.41± 0.71 72.12± 0.54
ANIL† [27] 59.66± 0.68 73.28± 0.49

ProtoNet [35] 59.25± 0.64 75.60± 0.48
MetaOptNet-SVM(lin)† [22] 62.31± 0.64 78.21± 0.42
MetaOptNet-SVM(cos)† [22] 62.75± 0.42 78.68± 0.24

MetaProx (proposed) 63.82± 0.23 79.12± 0.18

Implementation Details. The entire model is trained end-to-end. `(ŷ, y) is the cross-entropy loss.
The CVXPYLayers package [1] is used to solve the dual problem. We train the model for 80, 000
iterations, and each mini-batch has 4 tasks. We use the Adam optimizer [20] with an initial learning
rate of 0.001, which is then reduced by half every 2, 500 iterations. To prevent overfitting, we evaluate
the meta-validation performance every 500 iterations, and stop training when the meta-validation
accuracy has no significant improvement for 10 consecutive evaluations. We report the classification
accuracy averaged over 600 tasks randomly sampled from the meta-testing set.

Results. Tables 3 and 4 show the results for Conv4 and ResNet-12, respectively. As can be seen,
MetaProx is always the best. Compared with MetaOptNet-SVM, MetaProx is better due to the
learnable regularizer.

5 Conclusion

In this paper, we proposed MetaProx, an effective meta-regularization algorithm for meta-learning.
MetaProx combines deep kernel and meta-regularization. By reformulating the problem in the dual
space, a learnable proximal regularizer is introduced to the base learner. The meta-parameters in
the regularizer and network are updated by the meta-learner. We also established convergence of
MetaProx. Extensive experiments on standard datasets for regression and classification verify the
effectiveness of learning a proximal regularizer.
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