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ABSTRACT

Model-Agnostic Meta-Learning (MAML) is one of the most successful meta-
learning algorithms. It has a bi-level optimization structure, where the outer-loop
process learns the shared initialization and the inner-loop process optimizes the
task-specific weights. Although MAML relies on the standard gradient descent
in the inner-loop, recent works have shown that it can be beneficial to control the
inner-loop’s gradient descent with a meta-learned preconditioner. The existing
preconditioners, however, cannot adapt in a task-specific and path-dependent way
at the same time. Also, most of them do not consider the geometry of the loss
surface. In this work, we propose Geometry-Aware Meta-Learning (GAML) that
can overcome the limitations. GAML can efficiently meta-learn a preconditioner
that is dependent on the task-specific parameters and its preconditioner can be
shown to be a Riemannian metric that defines the geometry of the loss surface.
Therefore, we can perform a fully-adaptive and geometry-aware optimization in the
inner-loop. Experiment results show that GAML outperforms the state-of-the-art
MAML family and PGD-MAML family for a variety of few-shot learning tasks.

1 INTRODUCTION

Human can quickly learn new concepts with only a small number of samples by exploiting the past
experience. On the contrary, modern deep neural networks still require a large number of labeled
samples and a large computational resource to learn a new concept. Meta-learning, or learning to
learn, addresses this issue by extracting prior-knowledge known as meta-knowledge from a variety of
tasks and by improving the generalization capability over the new tasks(Andrychowicz et al., 2016;
Vinyals et al., 2016; Munkhdalai & Yu, 2017; Snell et al., 2017; Nichol & Schulman, 2018; Zintgraf
et al., 2019; Rajeswaran et al., 2019; Achille et al., 2019). Among the meta-learning algorithms, the
category of optimization-based meta-learning (Finn et al., 2017; 2018; Raghu et al., 2019; Baik et al.,
2021; Ding et al., 2022) has been gaining popularity due to its flexible applicability over diverse fields
including robotics (Song et al., 2020; Wen et al., 2021), medical image analysis (Maicas et al., 2018;
Singh et al., 2021), language modeling (Mi et al., 2019; Liu et al., 2020), and object detection (Wu
et al., 2020; Perez-Rua et al., 2020). In particular, Model-Agnostic Meta-Learning (MAML) is one of
the most popular optimization-based algorithms.

Many of the recent works have improved MAML by adopting a Preconditioned Gradient De-
scent (PGD) as the inner-loop optimization (Li et al., 2017; Lee & Choi, 2018; Park & Oliva,
2019; Simon et al., 2020; Rajasegaran et al., 2020; Zhao et al., 2020; Von Oswald et al., 2021). We
will address the PGD-based MAML algorithms as PGD-MAML family. PGD is different from the
ordinary gradient descent because it performs a preconditioning on the gradient using a precondi-
tioning matrix P, also called a preconditioner. A PGD-MAML algorithm meta-learns not only the
initialization parameter θ0 of the network but also the meta-parameter ϕ of the preconditioner P.
For the inner-loop optimization, P is kept static in most of the previous works (Figure 1(b)) (Li
et al., 2017; Lee & Choi, 2018; Park & Oliva, 2019; Zhao et al., 2020; Von Oswald et al., 2021).
Some of the previous works considered adapting the preconditioner P with the inner-step k (Fig-
ure 1(c)) (Rajasegaran et al., 2020) and some others with the individual task (Figure 1(d)) (Simon
et al., 2020). None of the existing works, however, successfully came up with a PGD that can perform
a full adaptation as shown in Figure 1(e).
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(a) MAML (b) Non-adaptive P(ϕ) (c) Adaptive P(k;ϕ) (d) Adaptive P(Dtr
τ ;ϕ) (e) Adaptive P(θτ,k;ϕ)

Figure 1: Diagrams of MAML and PGD-MAML family. For the inner-loop adaptation in each
diagram, the dotted lines of the same color indicate that they use a common preconditioning matrix
(preconditioner). (a) MAML adaptation: no preconditioner is used (i.e., P = I). (b) P(ϕ): a constant
preconditioner is used in the inner-loop where the preconditioner’s meta-parameter ϕ is meta-learned.
(c) P(k;ϕ): a constant preconditioner is used for each inner-step k. Preconditioner for each step
is meta-learned, but P(k, ϕ) is not task-specific. (d) P(Dtr

τ ;ϕ): a constant preconditioner is used
for each task. Preconditioner for each task is meta-learned, but P(Dtr

τ ;ϕ) is not dependent on k.
(e) GAML adapts P(θτ,k;ϕ): a fully adaptive preconditioner is used where it is task-specific and
path-dependent. Instead of saying ‘dependent on k’, we specifically say it is path-dependent because
the exact dependency is on the task-specific parameter set θτ,k that is much more informative than k.

In this study, we propose a new PGD method named Geometry Aware Meta-Learning (GAML). It is
a fully adaptive preconditioner that is aware of the geometry of the loss surface. To be precise, GAML
satisfies the following two desirable properties. First, GAML’s preconditioner PGAML is a fully
adaptive preconditioner that can adapt to the individual task (task-specific) and to the optimization-
path (path-dependent). The full adaptation is made possible by having the preconditioner depend on
the task-specific parameter θτ,k. The extended level of adaptation implies that it might be possible
to achieve a high-performance over a broad range of applications. Second, we prove that PGAML is
a Riemannian metric (Amari, 1967; 1996; 1998; Amari & Douglas, 1998; Kakade, 2001). When
a parameter space has a certain underlying structure, the ordinary gradient of a function does not
represent its steepest direction (Amari, 1998). A preconditioning can be viewed as changing the
geometry of the parameter space (Himmelblau et al., 2018). When the preconditioning matrix is a
Riemannian metric, it defines a corresponding geometry of the underlying structure and enables an
efficient steepest descent. Among the existing PGD-MAML works, Lee & Choi (2018) show that
their algorithm implements a constant positive definite metric as in Figure 1(b). While this is often
understood as a Riemannian metric, the algorithm is not a strict preconditioner because it performs a
modification in the network structure by inserting linear layers. A preconditioner is defined as a matrix
that is used for filtering the gradient only, and it should not affect the feedforward calculation itself. In
contrast to the algorithm, GAML is a strict preconditioner and thus it is completely model-agnostic.

To come up with a fully adaptive preconditioner that is a Riemannian metric, we utilize SVD (Singular
Value Decomposition) operation in our design. While the SVD operation does not incur a large
computational burden for the benchmark architectures, it can become a burden for large-scale
architectures. To resolve this potential problem, we propose a low-computation strategy that can be
connected to a theoretical approximation of GAML.

To demonstrate the effectiveness of GAML, we empirically evaluate our algorithm on popular
few-shot learning tasks; few-shot regression, few-shot classification, and few-shot cross-domain
classification. The results show that GAML outperforms the state-of-the-art MAML family and the
state-of-the-art PGD-MAML family. For example, GAML outperforms MAML by 6.97% and 5.90%
in 5-way 1-shot settings over the mini-ImageNet and tiered-ImageNet datasets, respectively.

The main contributions of our work can be summarized as follows:
• We propose a new preconditioned gradient descent method called GAML. It can learn a fully

adaptive preconditioner that is aware of the loss geometry in inner-loop optimization.
• We prove that GAML’s preconditioner has two desirable properties: (1) It depends on task-

specific parameter θτ,k. (2) It is a Riemannian metric that is model-agnostic.
• For large-scale architectures, we derive an approximated GAML method that can retain most of

the performance benefits while the computational burden is kept similar to MAML’s.
• In popular few-shot learning tasks, GAML outperforms the state-of-the-art MAML family and

PGD-MAML family.
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2 BACKGROUND

2.1 MODEL-AGNOSTIC META-LEARNING (MAML)

The goal of MAML (Finn et al., 2017) is to find the best initialization that the model can quickly
adapt from, such that the model can perform well for a new task. MAML consists of two levels
of main optimization processes: inner-loop optimization and outer-loop optimization. Consider the
model fθ(·) with parameter θ. For a task τ = {Dtr

τ , Dval
τ } sampled from the task distribution p(T ),

the inner-loop optimization is defined as:

θτ,K = θτ,0 − α

K−1∑
k=0

∇θτ,kLin
τ (θτ,k;D

tr
τ ) s.t θτ,0 = θ, (1)

where θτ,k is task-specific parameters for task τ , α is the learning rate of inner-loop optimization,
Lin
τ is the inner-loop’s loss function, and K is the number of gradient descent steps. With Dval

τi in
each task, we can define outer-loop optimization as:

θ ← θ − β∇θEτ

[
Lout
τ (θτ,K ;Dval

τ )
]
, (2)

where β is the learning rate for outer-loop optimization, and Lout
τ is the outer-loop’s loss function.

2.2 UNFOLDING: RESHAPING A TENSOR INTO A MATRIX

In our work, the concept of unfolding is used to transform the gradient tensor of convolutional kernels
into a matrix form. Tensor unfolding, also known as matricization or flattening, is the process of
reshaping the elements of an N -dimensional tensor X ∈ RI1×···×IN into a matrix (Kolda & Bader,
2009). The mode-n unfolding of an N -dimensional tensor X ∈ RI1×···×IN is defined as:

X −−−−−−−−−→
mode-n unfolding

X[n] ∈ RIn×IM , where IM =
∏
k ̸=n

Ik (3)

For example, the weight tensor of a convolutional layer is represented as a 4-D tensor (W ∈
RCout×Cin×kh×kw ) where it is composed of kernels and it can be unfolded into a matrix as one of
the following four forms: (1) W[1] ∈ RCout×(Cinkhkw), (2) W[2] ∈ RCin×(Coutkhkw), (3) W[3] ∈
Rkh×(CoutCinkw), (4) W[4] ∈ Rkw×(CoutCinkh). Following the previous works (Wen et al., 2017; Li
& Shi, 2018; Xu et al., 2019) where mode-1 unfolding was adopted, we also apply mode-1 unfolding
in our algorithm.

2.3 PRECONDITIONED GRADIENT DESCENT (PGD)

Preconditioned Gradient Descent (PGD) is a method that minimizes the empirical risk through a
gradient update with a preconditioner that modifies the geometry of the loss surface. Given model
parameters θ and task τ = {Dtr

τ , Dval
τ }, we can define the preconditioned gradient update with a

preconditioner P as the following:

θτ,k+1 = θτ,k − αP∇θτ,kLτ (θτ,k;D
tr
τ ), k = 0, 1, · · · and θτ,0 = θ, (4)

where Lτ (θτ,k;D
tr
τ ) is the empirical loss for task τ and parameters θτ,k. Setting P = I recovers

Eq. (4) of the basic gradient descent (GD). Choice of P for exploiting the second-order information
includes the inverse Fisher information matrix F−1 which leads to the natural gradient descent
(NGD) (Amari, 1998); the inverse Hessian H−1 which corresponds to the Newton’s method (LeCun
et al., 2012); and the diagonal matrix estimation with the past gradients which results in the adaptive
gradient methods (Duchi et al., 2011; Kingma & Ba, 2014). These preconditioners regulate the
geometry of the loss surface, often reducing the effect of pathological curvature and speeding up the
optimization (Amari et al., 2020).

3 METHODOLOGY

In this section, we propose a new preconditioned gradient descent method called GAML for a
flexible and effective geometry-aware adaptation in the MAML framework. In Section 3.1, we will
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introduce GAML process in the inner-loop optimization and describe how to meta-train GAML with
an outer-loop optimization. In Section 3.2, we will prove that GAML has two desirable properties: (1)
a preconditioner induced by GAML depends on task-specific parameters; and (2) it is a Riemannian
metric. In Section 3.3, we will provide a theoretically grounded method for approximating GAML
such that computational efficiency can be maintained ever for large-scale architectures.

3.1 GAML: GEOMETRY-AWARE META-LEARNING WITH A FULLY ADAPTIVE PRECONDITIONER

3.1.1 INNER-LOOP OPTIMIZATION

We consider an L-layer neural network fθ(·) with parameters θ = {W1, · · · ,Wl, · · · ,WL}. In the
standard MAML with task τ ∼ p(T ), each Wl is adapted with the gradient update as below:

Wl
τ,K ←Wl

τ,0 − α ·
K−1∑
k=0

Gl
τ,k s.t Wl

τ,0 = Wl, (5)

where Gl
τ,k = ∇Wl

τ,k
Lin
τ (θτ,k;D

tr
τ ) is the gradient with respect to Wl

τ,k.

In GAML, we first use the mode-1 unfolding to reshape the gradient tensor into a matrix form (see
Section 2.2). For a convolutional layer (i.e., Gl

τ,k ∈ RCout×Cin×k×k), we reshape the gradient tensor
as below:

Gl
τ,k −−−−−−−−−→mode-1 unfolding

{
Gl

τ,k ∈ RCout×Cink
2

if Cout ≤ Cink
2

Gl
τ,k ∈ RCink

2×Cout if Cink
2 < Cout,

(6)

where Gl
τ,k denotes (Gl

τ,k)[1] for the notational brevity. For a linear layer in a matrix form, there is
no need for an unfolding.

Second, we transform the singular values of the gradient matrix using meta parameters ϕ =
{M1, · · · ,Ml, · · · ,ML} = {Ml}Ll=1. We will use ϕ and {Ml}Ll=1 interchangeably. The meta
parameters {Ml}Ll=1 are diagonal matrices with positive elements, and they are applied to the
gradient matrix as below:

G̃l
τ,k = Ul

τ,k(M
l ·Σl

τ,k)V
l
τ,k

T
, (7)

where Gl
τ,k = Ul

τ,kΣ
l
τ,kV

l
τ,k

T is the singular value decomposition (SVD) of Gl
τ,k.

Finally, we reshape G̃l
τ,k back to its original gradient tensor form G̃

l

τ,k. The resulting preconditioned
gradient descent of GAML becomes the following:

Wl
τ,K ←Wl

τ,0 − α ·
K−1∑
k=0

G̃
l

τ,k s.t Wl
τ,0 = Wl, (8)

where G̃
l

τ,k is the preconditioned gradient based on the meta parameters ϕ.

3.1.2 OUTER-LOOP OPTIMIZATION

For meta-learning, GAML follows the typical MAML outer-loop process. Unlike MAML, however,
GAML meta-learns two meta parameter sets θ and ϕ as follows:

θ ← θ − β1∇θEτ

[
Lout
τ (θτ,K ;Dval

τ )
]
, (9)

ϕ← ϕ− β2∇ϕEτ

[
Lout
τ (θτ,K ;Dval

τ )
]
, (10)

where β1 and β2 are the learning rates for the outer-loop optimization. To minimize the influence
of the meta parameters ϕ = {Ml}Ll=1 at the beginning of training, we initialize Ml as an identity
matrix for all l. We use the ADAM optimizer for outer-loop optimization and simultaneously update
θ and ϕ. The training procedure is provided in Algorithm 1.
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Algorithm 1 Geometry-aware meta-learning (GAML)
Require: p(T ): distribution over tasks
Require: α, β1, β2: learning rates
1: Randomly initialize θ = {W1, · · · , WL} and initialize ϕ = {M1, · · · ,ML} as Ml = I
2: while not converged do
3: Sample a batch of tasks Ti ∼ p(T )
4: for all τ ∈ Ti do
5: for inner-loop step k = 0 to K − 1 do
6: for layer l = 1 to L do
7: Compute Gl

τ,k = ∇Wl
τ,k
Lin

τ (θτ,k;D
tr
τ ) using Dtr

τ

8: Reshape Gl
τ,k to Gl

τ,k via Eq. (6)
9: Transform Gl

τ,k to G̃l
τ,k using Ml via Eq. (7)

10: Reshape G̃l
τ,k back to the original form of gradient tensor as G̃

l

τ,k

11: Compute l-layer adapted weight: Wl
τ,k+1 = Wl

τ,k − α · G̃l

τ,k

12: end for
13: end for
14: Compute Lout

τ (θτ,K ;Dval
τ ) by evaluating Lout

τ w.r.t Dval
τ .

15: end for
16: Update the weights and meta parameters:
17: θ ← θ − β1∇θ

∑
τ∈T L

out
τ (θτ,K ;Dval

τ )

18: ϕ← ϕ− β2∇ϕ

∑
τ∈T L

out
τ (θτ,K ;Dval

τ )

19: end while

3.2 THE DESIRABLE PROPERTIES OF GAML

In this section, we prove that GAML’s preconditioner PGAML satisfy two desirable properties.

Theorem 1. Let G̃l
τ,k ∈ Rm×n be the ‘l-layer k-th inner-step gradient’ transformed by meta

parameter Ml for task τ . Then preconditioner PGAML induced by G̃l
τ,k is a Riemannian metric and

depends on the task-specific parameter θτ,k.

The proof of Theorem 1 is provided in Supplementary B. The two properties are explained below.

Property 1. Dependency on task-specific parameters: Theorem 1 formally shows that PGAML
depends on the task-specific parameters θτ,k. While the previous works considered a non-adaptive
preconditioner P(ϕ) (Li et al., 2017; Park & Oliva, 2019; Von Oswald et al., 2021; Lee & Choi,
2018; Zhao et al., 2020; Rajasegaran et al., 2020) and a partially adaptive preconditioner P(k;ϕ) (Ra-
jasegaran et al., 2020) or P(Dtr

τ ;ϕ) (Simon et al., 2020), GAML is the most advanced adaptive
preconditioner in that it is fully adaptive by being dependent on θτ,k. As shown in Figure 1, GAML
is the only preconditioner that is task-specific and path-dependent (i.e., dependent on the inner loop
optimization path).

Property 2. Riemannian metric: Preconditioning can be interpreted as modifying the geometry of
the parameter space (Himmelblau et al., 2018). If the modified parameter space has a certain underly-
ing structure, the ordinary gradient of a function∇L does not represent its steepest direction (Amari,
1998). To define the steepest direction, we need a Riemannian metric G, which is a positive-definite
and smoothly-varying matrix (Amari, 1998). The metric defines the steepest descent direction by
−G−1∇L (Amari, 1998). If a preconditioning matrix is a Riemannian metric, it defines a geometry
of the underlying structure and enables an efficient steepest descent. To achieve this, we prove that
PGAML is a Riemannian metric in Theorem 1. Our metric consists of two factors, a unitary matrix of
the inner-loop gradient Uτ,k and a meta-parameter M. M allows us to reflect the shared geometry
information across the tasks. In addition, task-specific and path-dependent geometry information can
be reflected in the metric through Uτ,k.

3.3 APPROXIMATION OF GAML

Hu et al. (2022) emphasized that the use of a large architecture is an important factor for improving
the performance of meta-learning. Indeed, many of the recent works have achieved a state-of-the-art
performance with a large network (Reed et al., 2022; Hu et al., 2022; Melo, 2022; Nguyen & Grover,
2022; Doersch et al., 2020; Bommasani et al., 2021). In the case of GAML, it utilizes SVD operation
and its computation can increases in O(s3) where s is the scaling factor of the network size. This
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Table 1: Few-shot regression for the sinusoid regression benchmark with a 2-layer MLP backbone.
We report MSE± 95% confidence intervals(ci) for 600 tasks following the setup in (Finn et al., 2017).
† denotes PGD-MAML family.

Algorithm 5-shot 10-shot 20-shot

MAML (Finn et al., 2017) 1.13± 0.18 0.77± 0.11 0.48± 0.08
Meta-SGD† (Li et al., 2017) 0.90± 0.16 0.53± 0.09 0.31± 0.05
MT-Net† (Lee & Choi, 2018) 0.76± 0.09 0.49± 0.05 0.33± 0.04
ALFA (Baik et al., 2020a) 0.92± 0.19 0.62± 0.16 0.34± 0.07
L2F (Baik et al., 2020b) 0.71 ± N/A 0.37 ± N/A 0.16 ± N/A
PAMELA† (Rajasegaran et al., 2020) 0.54± 0.06 0.41± 0.04 0.17± 0.03
MeTAL (Baik et al., 2021) 0.74± 0.18 0.44± 0.11 0.21± 0.06

GAML† 0.16± 0.04 0.04± 0.01 0.01± 0.01

issue, however, can be significantly alleviated with an approximation strategy that completely avoids
the SVD operation. We provide a theorem for the approximation strategy below.

Theorem 2. Let G ∈ Rm×n be a gradient tensor reshaped into a matrix form. As n becomes large,
GAML’s preconditioned gradient matrix G̃ asymptotically becomes equivalent to MG, where M is
a diagonal matrix. Therefore, the following holds for a large n.

G̃ ∼= MG (11)

The proof can be found in Supplementary B and it shows that we can use the approximation
G̃l

τ,k = Ml ·Gl
τ,k instead of Eq. (7) when n is large. Note that we have chosen the larger dimension

of the gradient matrix as n when reshaping with Eq. (6). By removing the SVD operation, the
computational burden becomes about the same for the approximated GAML and MAML because
GAML has about the same number of parameters as MAML as will be shown in Table 5.

4 EXPERIMENTS

In this section, we show the superiority of GAML by comparing it with the state-of-the-art PGD-
MAML family and the MAML family. We evaluate GAML using the widely used benchmarks:
few-shot regression, few-shot classification, and cross-domain adaptation. Hyper-parameters setups
used in our experiments are provided in the Supplementary A.

4.1 FEW-SHOT REGRESSION

Datasets and experimental setup. The goal of few-shot regression is to fit an unknown target
function for the given K sample points from the function. For the evaluation of few-shot regression,
we use the sinusoid regression benchmark (Finn et al., 2017). In this benchmark, sinusoid is used as
the target function. Each task has a sinusoid y(x) = A sin(ωx+ b) as the target function, where the
parameter values are within the following range: amplitude A ∈ [0.1, 5.0], frequency ω ∈ [0.8, 1.2],
and phase b ∈ [0, π]. For each task, input data point x is sampled from [−5.0, 5.0]. In the experiment,
we use a simple Multi-Layer Perceptron (MLP) with 1-dimensional input/output and 40-dimensional
hidden layers (2 hidden layers), following the setting in Finn et al. (2017).

Results. We evaluate GAML and compare it with MAML and PGD-MAML family on a regression
task using the performance metric of Mean Squared Error (MSE). As shown in Table 1, GAML
consistently achieves the lowest MSE scores with the lowest confidence intervals in all three cases.
The MSE score decreases drastically as the number of shots is increased. The performance of GAML
is improved by 89% on 10-shot and 94% on 20-shot compared to the previous state-of-the-art
performance.

4.2 FEW-SHOT CLASSIFICATION

Datasets and experimental setup. For the few-shot classification, we evaluate two benchmarks: (1)
mini-ImageNet (Vinyals et al., 2016): This dataset has 100 classes and it is a subset of ImageNet (Deng
et al., 2009). We use the same split as in Ravi & Larochelle (2016), with 64, 16 and 20 classes for
train, validation and test. (2) Tiered-ImageNet (Ren et al., 2018): This is also a subset of ImageNet
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Table 2: 5-way few-shot classification accuracy (%) on mini-ImageNet with a Conv-4 backbone. We
report mean ± 95% confidence intervals(ci) for 600 tasks according to Finn et al. (2017). † denotes
PGD-MAML family. The full comparison with additional works can be found in Supplementary
Table C.2.

Algorithm 5-way 1-shot 5-way 5-shot

MAML (Finn et al., 2017) 47.89± 1.20 64.59± 0.88
Meta-SGD† (Li et al., 2017) 50.47± 1.87 64.00± 0.90
LLAMA (Grant et al., 2018). 49.40± 1.83 N/A
T-net† (Lee & Choi, 2018) 50.86± 1.82 N/A
MT-net† (Lee & Choi, 2018) 51.70± 1.84 N/A
BMAML (Yoon et al., 2018) 53.80± 1.46 64.23± 0.69
iMAML-HF (Rajeswaran et al., 2019) 49.30± 1.88 N/A
WarpGrad† (Flennerhag et al., 2019) 52.30± 0.90 68.40± 0.60
MC† (Park & Oliva, 2019) 54.08± 0.88 67.99± 0.73
MH† (Zhao et al., 2020) 49.41± 0.96 67.16± 0.42
ALFA (Baik et al., 2020a) 50.58± 0.51 69.12± 0.47
ModGrad† (Simon et al., 2020) 53.20± 0.86 69.17± 0.69
PAMELA† (Rajasegaran et al., 2020) 53.50± 0.89 70.51± 0.67
SignMAML (Fan et al., 2021) 42.90± 1.50 60.70± 0.70
Sparse-MAML† (Von Oswald et al., 2021) 50.35± 0.39 67.03± 0.74
Sparse-ReLU-MAML† (Von Oswald et al., 2021) 50.39± 0.89 64.84± 0.46
Sparse-MAML+† (Von Oswald et al., 2021) 51.04± 0.59 67.03± 0.74
MeTAL (Baik et al., 2021) 52.63± 0.37 70.52± 0.29
Sharp-MAML (Abbas et al., 2022) 50.28 ± N/A 65.04 ± N/A
FBM (Yang et al., 2022) 50.62± 1.79 64.78± 0.35
CxGrad (Lee et al., 2022) 51.80± 0.46 69.82± 0.42
HyperMAML (Przewięźlikowski et al., 2022) 51.84± 0.57 66.29± 0.43
EEML (Li et al., 2022) 52.42± 1.75 68.40± 0.95

GAML (approx.)† 53.52± 0.88 70.75± 0.67
GAML† 54.86± 0.85 71.55± 0.61

Table 3: 5-way few-shot classification accuracy (%) on Tiered-ImageNet with a Conv-4 backbone. We
report mean ± 95% confidence intervals(ci) for 600 tasks according to Finn et al. (2017). † denotes
PGD-MAML family.

Algorithm 5-way 1-shot 5-way 5-shot

Meta-SGD† (Li et al., 2017) 50.92± 0.93 69.28± 0.80
MAML (Finn et al., 2017) 51.70± 1.80 70.30± 1.80
MT-net† (Lee & Choi, 2018) 51.95± 1.83 N/A
WarpGrad† (Flennerhag et al., 2019) 57.20± 0.90 74.10± 0.70
BOIL (Oh et al., 2020). 48.58± 0.27 69.37± 0.12
ALFA (Baik et al., 2020a) 53.16± 0.49 70.54± 0.46
L2F (Baik et al., 2020b) 54.40± 0.50 73.34± 0.44
ARML (Yao et al., 2020) 52.91± 1.83 N/A
PAMELA† (Rajasegaran et al., 2020) 54.81± 0.88 74.39± 0.71
Sparse-ReLU-MAML† (Von Oswald et al., 2021) 53.18± 0.52 69.06± 0.28
Sparse-MAML† (Von Oswald et al., 2021) 53.47± 0.53 68.83± 0.65
Sparse-MAML+† (Von Oswald et al., 2021) 53.91± 0.67 69.92± 0.21
MeTAL (Baik et al., 2021) 54.34± 0.31 70.40± 0.21
CxGrad (Lee et al., 2022) 55.55± 0.46 73.55± 0.41
ECML (Hiller et al., 2022) 47.34± 0.88 64.77± 0.75

GAML (approx.)† 56.86± 0.91 74.41± 0.72
GAML† 57.60± 0.93 74.90± 0.68

with 608 classes grouped into 34 high-level categories, divided into 20, 6 and 8 for train, validation,
and test. For all the experiments, our model follows the standard Conv-4 backbone used in (Vinyals
et al., 2016), comprising of 4 modules with 3× 3 convolutions with 128 filters followed by batch
normalization (Ioffe & Szegedy, 2015), ReLU non-linearity, and 2× 2 max-pooling. Following the
experimental protocol in (Finn et al., 2017), we use 15 samples per class in the query set to compute
the meta gradients. In meta training and meta testing, the inner-loop optimization is updated in five
steps and ten steps, respectively.

Results. Table 2 & 3 present the performance of GAML, state-of-the-art PGD-MAML family, and
state-of-the-art MAML-family on mini-ImageNet and Tiered-ImageNet under two typical settings:
5-way 1-shot and 5-way 5-shot. GAML outperforms all of the previous PGD-MAML and MAML
family. Compared to the state-of-the-art MAML family, GAML improves the performance with
a quite significant margin for both mini-ImageNet and Tiered-ImageNet. Compared to the state-
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Table 4: 5-way few-shot cross domain classification accuracy (%) with a Conv-4 backbone, meta
training on mini-ImageNet, and meta-testing on Tiered-ImageNet, CUB, or Cars. We report mean ±
95% confidence intervals(ci) for 600 tasks according to Finn et al. (2017). † denotes PGD-MAML
family.

Tiered-ImageNet CUB Cars

Algorithm 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 51.61± 0.20 65.76± 0.27 40.51± 0.08 53.09± 0.16 33.57± 0.14 44.56± 0.21
ANIL 52.82± 0.29 66.52± 0.28 41.12± 0.15 55.82± 0.21 34.77± 0.31 46.55± 0.29
BOIL 53.23± 0.41 69.37± 0.23 44.20± 0.15 60.92± 0.11 36.12± 0.29 50.64± 0.22
BMAML N/A N/A 33.52± 0.36 51.35± 0.16 N/A N/A
ALFA N/A N/A N/A 58.35± 0.25 N/A N/A
L2F N/A N/A N/A 60.89± 0.22 N/A N/A
MeTAL N/A N/A N/A 58.20± 0.24 N/A N/A
HyperMAML N/A N/A 36.52± 0.61 49.43± 0.14 N/A N/A
CxGrad N/A N/A N/A 63.92± 0.44 N/A N/A
Sparse-MAML† 53.47± 0.53 68.83± 0.65 41.37± 0.73 60.58± 1.10 35.90± 0.50 52.63± 0.56
Sparse-ReLU-MAML† 53.77± 0.94 68.12± 0.69 42.89± 0.45 57.53± 0.94 36.04± 0.55 49.95± 0.42
Sparse-MAML+† 53.91± 0.67 69.92± 0.21 43.43± 1.04 62.02± 0.78 37.14± 0.77 53.18± 0.44

GAML† 58.56± 0.93 72.82± 0.77 44.74± 0.75 64.88± 0.72 38.44± 0.77 55.04± 0.77

of-the-art PGD-MAML family, GAML shows that the 1- and 5-shot accuracy can be increased by
1.4 % and 1.5 % on mini-ImageNet, and by 0.7 % and 0.68 % on Tiered-ImageNet, respectively. We
also evaluated the approximated GAML that is introduced in Section 3.3. The results show that the
approximated version can perform comparably to the original GAML. Though the approximated
GAML shows slightly lower accuracies than the original GAML, it still performs superior to most of
the existing algorithms.

4.3 CROSS-DOMAIN FEW-SHOT CLASSIFICATION

The cross-domain few-hot classification introduced by Chen et al. (2019) addresses a more challenging
and practical few-shot classification scenario in which meta-train tasks and meta-test tasks are sampled
from different task distributions. These scenarios are designed to evaluate meta-level overfitting of
the meta-learning algorithms by creating a large domain gap between meta-trains and meta-tests. In
particular, the algorithm can be said to be meta-overfitting if the algorithm relies too much on the
prior knowledge of previously seen meta-train tasks instead of focusing on a few given examples to
learn a new task. This meta-level overfitting makes the learning system more likely to fail to adapt to
new tasks sampled from substantially different task distributions.

Datasets and experimental setup. To evaluate the level of meta-overfitting for GAML, we evaluate
a cross-domain few-shot classification experiment. Mini-ImageNet is used for meta-train task, and
Tiered-Imagenet (Ren et al., 2018), CUB-200-2011 (Wah et al., 2011), Cars (Bertinetto et al., 2018)
are used for meta-test task. CUB has 200 fine-grained classes and consists of a total of 11,788 images.
The CUB dataset is further divided into 100 meta-train classes, 50 meta-validation classes, and 50
meta-test classes. The Cars Krause et al. (2013) dataset consists of 16,185 images of 196 classes of
cars. It is split into 8,144 training images and 8,041 testing images, where each class has been split
roughly in 50-50. Classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla Model S or
2012 BMW M3 coupe. As with the few-shot classification experiment, we use the standard Conv-4
backbone and follow the same experimental protocol.

Results. Table 4 presents the cross-domain few-shot performance for GAML, MAML family,
and PGD-MAML family. GAML significantly outperforms the state-of-the-art algorithms on 5-way
1-shot and 5-way 5-shot cross-domain classification tasks. In particular, for the Tiered-ImageNet, the
performance was improved by 8.6% and 4.1% on 1-shot and 5-shot, respectively. Because GAML
can simultaneously consider the task’s individuality and optimization trajectory in the inner-loop
optimization, it can overcome meta-overfitting better than the existing methods.

5 DISCUSSION

Geometry-aware meta-learning: GAML employs a fully adaptive preconditioner such that the
individual tasks with a wide diversity can have a chance of being handled well. As explained before,
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GAML is the only PGD-MAML algorithm that corresponds to the full adaptation in Figure 1(e).
A possible downside of the fully adaptive scheme, however, is that it can actually make the inner-
loop optimization unreliable. To cope with this problem, it would make sense to constrain the
preconditioner in a certain way such that desirable learning behaviors can be guaranteed. Riemannian
metric is one of such possibilities where P is constrained to be a positive definite matrix. A choice of
positive definite P corresponds to a choice of underlying structure, or geometry, in the parameter
space (Amari, 1967; 1996; 1998). By meta-learning a positive definite P, we are basically learning a
knowledge on the geometry of the tasks such that the optimization path of the inner-loop can satisfy a
desirable property.

If the choice of positive definite matrix P is a constant as shown in Figure 1(b-d), its geometric
interpretation is also a constant in the parameter space. By pursuing a full adaptation as in Figure 1(e),
we can implement a more sophisticated geometry-aware algorithm (Amari, 1996). Then, our goal is to
design a preconditioner that is positive definite and also dependent on the task-specific parameter. In
GAML, we have chosen diagonal matrices (ϕ = {M1, · · · ,Ml, · · · ,ML}) as the meta parameters
and utilized SVD to allow Uτ,k (left-side unitary matrix of the gradient matrix Gτ,k; see Eq. (12)
in Supplementary B) to remain as a part of the preconditioning matrix. The dependency of P on
Uτ,k, which is dependent on the task τ and the optimization-path, is the key for making GAML
fully adaptive and geometry-aware. Our choice, however, is only one way of meeting the goal, and it
remains as a limitation of our work to explore other possibilities.

Table 5: Comparison of the number of parame-
ters for MAML, existing methods, and GAML.

Algorithm # of params % increase

MAML 1.2109× 105

Meta-SGD 2.4218× 105 100.0%
MC 2.7106× 106 2140.4%
PAMELA 1.6239× 105 34.1%
MH 7.2196× 107 59586.7%
Sparse-MAML 2.4218× 105 100.0%

GAML 1.2131× 105 0.2%

Number of meta parameters: Recent MAML
family and PGD-MAML family require a large in-
crease in the number of meta-learning parameters
as shown in Table 5. One advantage of GAML is
that it requires only a very small increase in the
number of meta parameters when compared to the
baseline of MAML. This is made possible because
we transform a gradient tensor into a gradient ma-
trix, perform SVD of the matrix, and assign only a
small number of meta parameters that correspond
to the diagonal matrix of the gradient matrix. For
the Conv-4 network, GAML requires only 0.2% increase of the meta parameters. Even though the
increase in the number of meta parameters is ignorable, still SVD of the gradient matrix can incur a
large computational burden for very large networks. This is addressed by the approximated GAML.

Figure 2: GAML vs. Approximated GAML

GAML vs. Approximated GAML: We can em-
pirically show that the performance gap becomes
smaller as the size of the network becomes larger.
We trained Conv-4 network with 32, 64, 128, and
256 channels and the performance gaps are shown
in Figure 2. As expected, the performance gap be-
comes smaller as the network becomes larger. The
gap is only around 0.8% when the channel size is
256. We are also showing the average cosine simi-
larity between two randomly chosen row vectors of
the preconditioned gradient G̃’s, and the results are
in line with Theorem 2 and Lemma 1 (Lemma 1
can be found in the Supplementary material).

6 CONCLUSION

In this work, we have proposed GAML that is a PGD-MAML algorithm with a fully adaptive
preconditioner. By utilizing a SVD operation, the preconditioner of GAML becomes a Riemannian
metric as well. Thanks to the two desirable properties of being fully adaptive and being a Riemannian
metric, GAML can handle individual tasks with a wide diversity within the MAML framework.
GAML have achieved the state-of-the-art performances on a variety of few-shot learning tasks.
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Supplementary materials for the paper
“GAML: geometry-aware meta-learning via a fully adaptive

preconditioner”

A HYPER-PARAMETERS SETTING

In this section, we provide the details of hyper-parameters of GAML on various few-shot learning
tasks.

Hyper-parameter Sinusoid Mini-imagenet Tiered-imagenet Cross-domain

5 shot 10 shot 20 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
Bathc size 4 4 4 4 2 4 2 4 4
Total training iteration 70000 70000 70000 60000 60000 130000 200000 60000 60000
inner learning rate α 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
outer learning rate β1 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
outer learning rate β2 0.001 0.001 0.0001 0.003 0.0005 0.003 0.0001 0.003 0.0005
The number of training inner steps 5 5 5 5 5 5 5 5 5
The number of testing inner steps 10 10 10 10 10 10 10 10 10
Data augmentation None random flip random flip random flip

Table A.1: Hyper-parameters used for training GAML with standard 4-Conv and 2-layer MLP on
various few-shot learning experiments.

B PROOFS

This section presents the proofs of the theorem and lemma stated in Section 3.

Theorem 1. (Restated) Let G̃l
τ,k ∈ Rm×n be the ‘l-layer k-th inner-step gradient’ transformed by

meta parameter Ml for task τ . Then preconditioner PGAML induced by G̃l
τ,k is a Riemannian metric

and depends on the task-specific parameter θτ,k.

Proof. We can rewrite the G̃l
τ,k as follows:

G̃l
τ,k = Ul

τ,k(M
l ·Σl

τ,k)V
l
τ,k

T (12)

= (Ul
τ,kM

lUl
τ,k

T )Ul
τ,kΣ

l
τ,kV

l
τ,k

T (13)

= Dl
τ,kG

l
τ,k, (14)

where Dl
τ,k = Ul

τ,kM
lUl

τ,k
T . To induce preconditioner in the Eq. (12), we transform Eq. (12) as

the general gradient descent form (matrix-vector product):

vec(G̃l
τ,k) = blkdiag(Dl

τ,k, · · · ,Dl
τ,k︸ ︷︷ ︸

n times

) · vec(Gl
τ,k) (15)

= PGAML · vec(Gl
τ,k), (16)

where PGAML is a block diagonal matrix such that the main-diagonal blocks are Dl
τ,k’s. Since Dl

τ,k

is trivially symmetric positive definite, PGAML is symmetric positive definite. Therefore PGAML is a
Riemannian metric. Since the unitary matrix Ul

τ,k depends on the gradient G̃l
τ,k, it trivially depends

on the task-wise parameters θτ,k. Therefore PGAML depends on the task-wise parameters θτ,k since it
depends on the unitary matrix Ul

τ,k.

Lemma 1. If a random vectors x = (X1, · · · , Xn) ∈ Rn has an uniform distribution on the
(n− 1)-dimensional unit sphere, then

V(Xi) =
1

n
. (17)

14



Under review as a conference paper at ICLR 2023

Proof. Since X1, · · · , Xn follow an identical distribution, V(Xi) = V(Xj) holds for all i, j. Thus,

nV(Xi) =

n∑
i=1

V(Xi). (18)

Then, we compute the sum of variance as follows:
n∑

i=1

V(Xi) =

n∑
i=1

E(X2
i ) (by E(X) = 0) (19)

= E(
n∑

i=1

X2
i ) (20)

= E(||X||22) (21)
= 1. (22)

Using Equation 18 and 19, we have

V(Xi) =
1

n
. (23)

Lemma 2. If two independent random vectors x = (X1, · · · , Xn), y = (Y1, · · · , Yn) ∈ Rn follow
a uniform distribution on the (n− 1)-dimensional unit sphere, then

P (|⟨x,y⟩| > ϵ) ≤ 1

nϵ2
. (24)

Proof. Since we can rotate coordinate so that y = (1, 0, · · · , 0) ∈ Rn, we have

⟨x,y⟩ = X1. (25)

Following Equation 25, we show that its expectation is equal to:

E[⟨x,y⟩] = E[X1], (26)
= 0 (27)

and its variance is equal to:

V[⟨x,y⟩] = V[X1], (28)

=
1

n
(by Lemma 1). (29)

By applying Chebyshev’s inequality (Bienaymé, 1853) on ⟨x,y⟩, we have

P (|⟨x,y⟩| ≥ k√
n
) ≤ 1

k2
, (30)

for any real number k > 0. Let k√
n

be a ϵ. Then we rewrite the inEq. (30) as follows:

P (|⟨x,y⟩| ≥ ϵ) ≤ 1

nϵ2
. (31)

This result indicates that the two vectors x and y become asymptotically orthogonal as n increases.

Theorem 2. (Restated) Let G ∈ Rm×n be a gradient tensor reshaped into a matrix form. As n
becomes large, GAML’s preconditioned gradient matrix G̃ asymptotically becomes equivalent to
MG, where M is a diagonal matrix. Therefore, the following holds for a large n.

G̃ ∼= MG. (32)
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Proof. Let g1, g2, · · · , gm are the row vectors of G. Then,

G =

∥g1∥ . . .
∥gm∥




g1

∥g1∥
...

gm

∥gm∥

 . (33)

In (Wiedemann et al., 2020; M Abdelmoniem et al., 2021), some prior works have taken the assump-
tion that the gradient tensor is sampled from an i.i.d. normal distribution. Following them, we assume
that the elements of G have an i.i.d. normal distribution. With the assumption, we have

gi
∥gi∥

⊥⊥ gj
∥gj∥

(∀i ̸= j). (34)

Since independent vectors gi

∥gi∥ ,
gj

∥gj∥ are located on the (n− 1)-dimensional unit sphere, the vectors
are asymptotically orthogonal as n increases by Lemma 1.

Now that we rewrite G as follows:

G = I

∥g1∥ . . .
∥gm∥




g1

∥g1∥
...

gm

∥gm∥

 . (35)

Since I is the unitary martrix and ( g1

∥g1∥ , · · · ,
gm

∥gm∥ )
T is approximated to semi-unitary matrices with

large n, the singular values of G are approximated to ∥g1∥, · · · , ∥gm∥.
In order to transform the singular values of G where n is large enough, we can simply multiply M to
G. Therefore,

G̃ ∼= MG. (36)

C ADDITIONAL COMPARISON RESULTS

More researches related to GAML are compared and summarized in Table C.2
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Table C.2: 5-way few-shot classification accuracy (%) on mini-ImageNet with a Conv-4 backbone.
We report mean ± 95% confidence intervals(ci) for 600 tasks according to Finn et al. (2017). †
denotes PGD-MAML family.

Algorithm 5-way 1-shot 5-way 5-shot

MAML (Finn et al., 2017) 47.89± 1.20 64.59± 0.88
Meta-SGD† (Li et al., 2017) 50.47± 1.87 64.00± 0.90
BMAML (Yoon et al., 2018) 53.80± 1.46 64.23± 0.69
ANIL (Raghu et al., 2019) 46.70± 0.40 61.50± 0.50
LLAMA (Grant et al., 2018). 49.40± 1.83 N/A
PLATIPUS (Finn et al., 2018) 50.13± 1.86 -
T-net† (Lee & Choi, 2018) 50.86± 1.82 N/A
MT-net† (Lee & Choi, 2018) 51.70± 1.84 N/A
MAML++ (Antoniou et al., 2018) 52.15± 0.26 68.32± 0.44
iMAML-HF (Rajeswaran et al., 2019) 49.30± 1.88 N/A
WarpGrad (Flennerhag et al., 2019) 52.30± 0.90 68.40± 0.60
MC1† (Park & Oliva, 2019) 53.74± 0.84 68.01± 0.73
MC2† (Park & Oliva, 2019) 54.08± 0.88 67.99± 0.73
MH-C† (Zhao et al., 2020) 48.64± 0.33 64.52± 0.51
MH† (Zhao et al., 2020) 49.41± 0.96 67.16± 0.42
BOIL (Oh et al., 2020) 49.61± 0.16 66.46± 0.37
ARML (Yao et al., 2020) 50.42± 1.79 64.12± 0.90
ALFA (Baik et al., 2020a) 50.58± 0.51 69.12± 0.47
L2F (Baik et al., 2020b) 52.10± 0.50 69.38± 0.46
ModGrad† (Simon et al., 2020) 53.20± 0.86 69.17± 0.69
PAMELA† (Rajasegaran et al., 2020) 53.50± 0.89 70.51± 0.67
SignMAML (Fan et al., 2021) 42.90± 1.50 60.70± 0.70
CTML (Peng & Pan, 2021) 50.47± 1.83 64.15± 0.90
MeTAL (Baik et al., 2021) 52.63± 0.37 70.52± 0.29
ECML (Hiller et al., 2022) 48.94± 0.80 65.26± 0.67
Sharp-MAML_up (Abbas et al., 2022) 49.56 ± N/A 63.06 ± N/A
Sharp-MAML_low (Abbas et al., 2022) 49.72 ± N/A 63.18 ± N/A
Sharp-MAML_both (Abbas et al., 2022) 50.28 ± N/A 65.04 ± N/A
FBM (Yang et al., 2022) 50.62± 1.79 64.78± 0.35
CxGrad (Lee et al., 2022) 51.80± 0.46 69.82± 0.42
HyperMAML (Przewięźlikowski et al., 2022) 51.84± 0.57 66.29± 0.43
EEML (Li et al., 2022) 52.42± 1.75 68.40± 0.95
MH-O† (Zhao et al., 2020) 52.50± 0.61 67.76± 0.34
Sparse-MAML† (Von Oswald et al., 2021) 50.35± 0.39 67.03± 0.74
Sparse-ReLU-MAML† (Von Oswald et al., 2021) 50.39± 0.89 64.84± 0.46
Sparse-MAML+† (Von Oswald et al., 2021) 51.04± 0.59 67.03± 0.74

GAML (approx.)† 53.52± 0.88 70.75± 0.67
GAML† 54.86± 0.85 71.55± 0.61
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