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Abstract
Measuring human feedback via randomized ex-
perimentation is a cornerstone of data-driven
decision-making. The methodology used to es-
timate user preferences from their online be-
haviours is critically dependent on user identifiers.
However, in today’s digital landscape, consumers
frequently interact with content across multiple
devices, which are often recorded with different
identifiers for the same consumer. The inability
to match different device identities across con-
sumers poses significant challenges for accurately
estimating human preferences and other causal
effects. Moreover, without strong assumptions
about the device-user graph, the causal effects
might not be identifiable. In this paper, we pro-
pose HIFIVE, a variational method to solve the
problem of estimating global average treatment
effects (GATE) from a fragmented view of expo-
sures and outcomes. Experiments show that our
estimator is superior to standard estimators, with
a lower bias and greater robustness to network
uncertainty.

1. Introduction
Using human feedback to align AI systems with the user’s
goals and preferences is an important problem, especially
as these models are becoming widely used in critical areas
including health [107] and education [109]. A commonly
used workflow for obtaining human feedback involves pre-
senting users with multiple versions of content (produced
by a language model) and obtaining their preferences. For
example, we have variations for the task, “a marketer would
like to target a segment of customers, and uses generative AI
to create images for the campaign”. A principled method of
learning about which outputs are preferred by users is to use
randomized control trials, also known as A/B tests [8]. In a
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basic version of this procedure, two variants of a system or
their outputs (e.g., versions of LLM generated completions),
denoted as variant A and variant B, (sometimes also called
control and treatment) are compared by randomly assigning
them to the end-users and evaluating the metrics of concern
on the two groups. For online businesses, A/B testing is
crucial for evaluating users’ preferences and experiences
with the product [67, 2, 105].

The digital technologies that enable A/B testing are criti-
cally dependent on identifiers, such as cookies or mobile
device IDs, traditionally used by websites and apps to track
users’ browsing behavior and provide personalized content
and ads [83, 67]. However, this assumption about the avail-
ability of identifiers has become more and more tenuous.
Users have become increasingly reliant on multiple devices.
At the same time, the use of third-party identifiers is be-
ing curbed, due to privacy concerns, by both governmental
and non-governmental entities, through legislation such as
the GDPR [29] and through the deprecation of third-party
cookies and mobile advertising identifiers. This means that
a customer’s effective persona that can be observed online
is broken into multiple units – a phenomenon known as
‘identity fragmentation’ [20, 52].

Lack of identifiable information across devices creates a
fundamental issue in A/B testing, as the users’ exposure
to treatment is not controllable. Consider the case of a
business exploring whether a new model produces content
that is preferred by its users. Under the standard A/B testing
protocol, a random subset of users will be shown the new
content B, and their feedback recorded. By comparing the
results for these users against the set of users who received
content A, one can estimate the relative preferences of users
for output B over A. For a user who visits using different
devices, for instance a smartphone and a tablet, the unique
identifier (say IDFA) allows the server to consistently show
the user only content B. However, without identifiers, one
cannot be certain of whether the current device should be
in the treatment group or the control group. This happens
because, while the treatment is administered at device level,
the outcomes are dependent on user-level treatments. Thus,
the outcome as observed for a device can potentially be
affected by the treatment on other devices. This constitutes
a violation of the stable unit treatment – SUTVA assumption
[69] – which causal inference from A/B tests relies upon.
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This phenomenon of treatments to a unit affecting outcomes
for other units has been studied in causal literature [38, 46]
under the name of interference. It is also known as spillover,
due to treatment exposure ‘spilling over’ from one unit to
another. However, most methods involving spillover assume
strong restrictions on the structure of spillover [57, 48]. The
deprecation of identifiers introduces a new scenario, re-
quiring the estimation of treatment effects on an uncertain
network structure. This problem setting involves new as-
sumptions compared to prior work. Notably, in addition
to the assumption that unit/device level outcomes are af-
fected by treatments at other units/devices with the same
user and not by those of other users, an assumption can rea-
sonably be made concerning the partial information about
the device-user pairings, represented by the ‘device graph’.
Often, some information about the device graph can be ob-
tained, for instance, from devices with login information,
from geolocation based on IP addresses or from an identity
linking model [87, 71].

Contribution In this work, we explore the problem of esti-
mating the global average treatment effect (GATE) under
identity fragmentation under the assumption that interfer-
ence comes only from devices that share the same user and
that, for each user, a superset of their devices is known. We
formalize this problem as treatment effect estimation with
uncertain network interference, where the interference graph
is based on the ‘device neighbourhood’, i.e., the set of de-
vices which share a user. Unlike other works on interference,
we do not assume any of the following: a) fully known net-
work structure, b) linear outcomes or c) repeated measure-
ments/multiple trials. We propose a variational inference-
based model called HIFIVE (Human Interest-estimate un-
der Fragmented Identities via Variational Estimation) to
estimate the GATE and show that the proposed model is
identifiable in this setting. Through extensive experiments
on both simulated and real data we show that our method is
superior to other interference-aware methods while making
weaker assumptions.

2. Related Work
Network Interference Network interference is a well
studied topic in causal inference literature [10, 16, 18, 32,
92, 81]. Common approaches include assumptions about
the interference neighbourhood [9, 94] or linear interfer-
ence model [25, 88]. A limitation of these approaches is
that they require complete knowledge of the network struc-
ture, while we consider an incomplete knowledge of the
network. Recently, some methods based on multiple mea-
surements have been proposed to address the issue of inter-
ference [83, 21, 112] without any further knowledge about
its structure. However, such methods assume stationarity,
i.e., the outcomes do not vary between the trials. This sim-

plifies GATE estimation by implicitly providing access to
both the factual and counterfactual outcome. However, such
a model is unrealistic for our motivating use case of contin-
uous optimization. Furthermore, in more general settings,
conducting multiple trials can be difficult, if not impossible
[82]. Thus, we aim to develop a method which can work
with only a single trial and/or observational data from an
existing test.

We summarize some common approaches, and how our
method differs from them in Table 1. To the best of our
knowledge, our method is the only one that can handle:
a) non-linearity in outcomes; b) works with un-structured
graphs; c) without exact knowledge of the graph edges and
d) without multiple trials and e) without side information. A
more detailed survey of the relevant interference literature
is in the Appendix.

Table 1: Literature Summary. We list a few important works,
criteria relevant to our work, and whether the criteria are
satisfied ✓ or not ×. Our method is the only method which
satisfies all criteria.

General
Graph

Uncertain
Edges

Non-
Linear

Outcome

Single
Trial

[38, 53] × ✓ ✓ ✓
[113, 112] ✓ × × ✓
[21, 83] ✓ ✓ ✓ ×
[4, 72] ✓ × ✓ ✓
[92, 25, 88] ✓ × × ✓
HIFIVE ✓ ✓ ✓ ✓

Estimation with Noisy Data Many methods and heuris-
tics have been proposed for estimation of treatment ef-
fect [17, 73, 58, 54] with measurement noise in data. Yi
et al. [110] provides an overview of recent literature on the
bias introduced by measurement error on causal estimation.
Many works have focused on qualitative analysis by encod-
ing assumptions of the error mechanism into a causal graph
[37, 80], outcome [86], confounders [63, 55] and mediators
[95]. Methods based on knowledge of the error model are
also common [34, 85, 30]. Existing proposals for estimating
causal effects under noise rely upon additional information
such as repeated measurements [83, 21, 79], instrumental
variables [118, 91] or a gold standard sample of measure-
ments [82]. While few works have also tried to study causal
inference with measurement errors and no side informa-
tion [55, 64], these works focus on noisy measurements of
unknown confounders or covariates, whereas our focus is
on uncertain network interference. Finally, some works
have considered partial identification of treatment effects
[116, 108, 115, 111, 33] and sensitivity analysis [39, 98, 24].
.
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True neighbors (unknown)
Superset of neighbors (e.g., by IP etc)

(a) (b) (c)

User/Shared Unit

Figure 1: A bipartite graph (left) presents the connections between the set of users and devices. Treatments Zi applied
on a device expose the user of the device to the corresponding experience or algorithm etc. The outcomes depend on the
total exposure to the treatment, hence the outcome at device i depends on the treatment at other device j, which induces an
interference graph (Middle). Under link uncertainty the interference graph has potentially extra (dashed) edges (Right).

3. Notation
We are given a population of n devices. Let Z be the treat-
ment assignment vector of the entire population and let Z
denote the treatments’ space, e.g., for binary treatments
Z = {0, 1}n. We use the Neyman potential outcome frame-
work [56, 68], and denote by Yi(z) the potential outcome
for each z ∈ Z . We can only make observations at device
level, and denote these observations as Yi for device i.
Additionally we may have access to covariates Xi at the
devices. Note that the devices might have a common user, as
presented in Figure 1. We assume that the outcome is deter-
mined by the user action, and hence the potential outcome at
a device i need not depend only on its own treatment assign-
ment but also other treatments allocated to the user’s devices.
This is a violation of the SUTVA assumption [23, 38] and
is commonly called interference or spillover.

The user-device graph induces a dependence between de-
vice level outcomes. This dependence can be represented in
an induced device-device graph (Figure 1, middle), where
each node represents a device and the presence of an edge
indicates a common user of the two devices. The underlying
graph is given by its adjacency matrix A ∈ Rn×n, with
Aij = 1 only if an edge exists between devices i and j,
and by convention Aii = 1. Let Ni(A) = {j : Aij = 1}
be the set of neighbours of device i in the device-device
graph. Since we assume the underlying graph is fixed, we
will use Ni(A) and Ni interchangeably. We assume that
the outcomes depend on the treatments received by a user
(i.e., SUTVA holds at the user level). Thus the interference
is limited to a node’s neighbours in the device-device graph.
Formally this is equivalent to classic network neighbour-
hood interference assumption [38, 88], formally stated next,
on the induced device-device graph.

Network Interference

∀z, z′ s.t. zi = z′i and zj = z′j ∀j ∈ Ni :

Yi(z) = Yi(z
′). (A0)

We will consider randomized Bernoulli designs i.e., each
device i gets allotted the treatment zi = 1 independently
with probability pi ∈ (0, 1). This is natural and easy to im-
plement, and satisfies standard randomization and positivity
assumption in causal inference.

The desired causal effect is the mean difference between
the outcomes when z = 1⃗ i.e., zi = 1∀i and when z =
0⃗ i.e., zi = 0∀i. Under the aforementioned notations, this
causal effect is given by:

τ (⃗1, 0⃗) =
1

n

n∑
i=1

Yi(⃗1)−
1

n

n∑
i=1

Yi(⃗0) (1)

If the true graph A is known, under certain assumptions
one can estimate the above treatment effect [38, 35]. How-
ever, in our problem setting, knowledge of the true graph
would imply knowing which devices belong to the same
user. As such we cannot assume that A is known. Instead
we assume access to a modelM which provides informa-
tion on A. Specifically, we assume that the modelM can
be queried for any device i to get predicted (or assumed)
neighbours of a device (see Figure 1, right). We will denote
this neighbourhood by M(i). Our method is agnostic to
howM was formed, and so in this work we considerM as
given. Often time, some information can be obtained by us-
ing meta-information such as IP, geo-locations or from users
who have given permission for device linking. This provides
a significant practical advantage over the prior methods that
necessitate knowledge of the exact neighbourhood.
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Our primary focus revolves around estimating the Global
Average Treatment Effect (GATE) under the previously out-
lined scenario, where there exists a degree of uncertainty
concerning the network structure. As such we want an ap-
proach which is agnostic to howM is obtained and robust
to variations in it. Furthermore we would like to impose
only constraints onM(i) that are easy to satisfy. Before we
delve further into the method we provide a brief explanation
of commonly-used estimators and why they are not suitable
for our problem setting.

Inverse Propensity/Horvitz-Thompson Estimate If the
graph is known and when all treatment decisions are iid
Bernoulli variables with probability p, one can use the clas-
sic Horvitz Thompson estimator as follows:

τHT =
1

n

∑
i

Yi

(∏
j∈Ni

zj∏
j∈Ni

p
−
∏

j∈Ni
(1− zj)∏

j∈Ni
(1− p)

)

=
1

n

∑
i

Yi

∏
j∈Ni

zj
p
−
∏
j∈Ni

(1− zj)
(1− p)


This inverse propensity estimator (and its derivatives) do
not require any further assumption other than randomization
and positivity. However, this estimator ignores any units for
which all neighbours are not in control or treatment groups.
If the number of neighbours is large, then this estimate may
not be meaningful, as there may not exist units for which all
the neighbours are in control or treatment groups. This is
particularly troublesome for our application, as uncertainty
in the graph means accounting for more possible units which
interfere with a given unit, and including such units adds to
the estimation issue of HT-estimators.

SUTVA Estimate The SUTVA estimate (or the DM esti-
mate) is given by

τ̂SUTVA = Ȳ 1 − Ȳ 0 =

∑
YiI[Zi = 1]∑
I[Zi = 1]

−
∑
YiI[Zi = 0]∑
I[Zi = 0]

where Ȳ 0/1 are the average of observed outcomes for units
where Zi = 0/1 respectively. This estimator, while simple
and practical, requires the SUTVA assumption, and hence
can be misleading in our scenario.

4. HIFIVE
4.1. Model and Assumptions

Randomized experiments with interference (even with
neighbourhood interference) can be difficult to analyze since
the number of potential outcome functions grows exponen-
tially: 2Ni for unit i; unlike the SUTVA case where one has

only two outcomes. For meaningful inference, one often
invokes an exposure mapping framework [38, 2, 4, 14]. Un-
der this approach, one uses exposure variables ei which are
specific parametric functions mapping the discrete combina-
torial space {0, 1}Ni → Rd. One posits that the outcome Yi
depends on the treatment z only via the exposure variable ei
i.e. Yi = Yi(ei(z)). A common example is an exposure rep-
resented as the (weighted) proportion of neighbouring units
that have received treatment [25, 92]. Alternatively, it could
involve the count of neighbouring units that have undergone
treatment [94]. We too consider an exposure model, but
unlike most earlier works we allow for non-linearities in the
model (A1). We will also assume that for each node i, the
assumed neighboursM(i) are a superset of its true neigh-
bours (A2). We shall call the nodes in the setM(i) −Ni

as extraneous, where ‘−’ denotes set difference.

Exposure Assumptions

Exposure Model: Yi(z, xi) =
= E[Yi|Z = z, Xi = xi] + ϵ

= c0(xi) + c1(xi)zi + g(wT
i

∑
j∈Ni

ϕ(zj , Xi)) + ϵ

(A1)

Neighbourhood Superset: M(i) ⊇ Ni (A2)

Here ϵ is mean zero noise, and xi are the covariates at unit i.
We will sometimes denote

∑
ϕ(z,X) as just the exposure

ei. Since ϕ in 4.1 depends on the individual covariates, this
assumption supports unit-level observed heterogeneity. We
can also include the covariates xj of the neighbouring units
as well in ϕ but we supress this for simplicity.
Remark 1. Note that unlike most exposure models, we allow
ϕ to be a vector function instead of scalar. Due to using the
vector ϕ, (A1) can support all set functions of neighbour-
hood treatments [13, 75, 44]. This subsumes other common
assumptions such as those used in [92, 25, 65]. Finally we
also note that (A1) subsumes (A0). Hence, we will not refer
to (A0) separately.
Remark 2. A2 can seem to be a strong assumption. However,
in many applications, particularly those on social graphs,
it is not difficult to satisfy this assumption. As a simple
example, consider all devices which share a geographic lo-
cation or IP, with a given device i. This is very likely to be a
superset of all devices that share a user with i. Furthermore,
in practice, device-linking methods are used to link with
fragmented identities based on confidence scores i.e. they
have a probabilistic version of the adjacency matrix [87].
Such a method can usually be adapted to obtain a super-
set of neighbours with high probability (by including even
low-confidence nodes as neighbours).

In addition to the assumptions (A1) and (A2), we will also

4



On Online Experimentation without Device Identifiers

posit standard assumptions of network ignorability, pos-
itivity and consistency from causal literature [62]. All
assumptions are formally stated in Appendix B.1. Since we
are primarily considering a experimentation scenario, there
do not exist any confounders. Moreover, positivity is easily
ensured by choosing a good randomization scheme. Hence
the assumptions (A3) to (A5) are naturally satisfied.

Standard Causal Assumptions

Network Ignorability: Y (z) ⊥⊥ Z ∀z (A3)
Positivity: P (z|X) > 0 ∀z (A4)
Consistency: Yi = Yi(z) if Z = z (A5)

4.2. Model Training

We propose using a latent variable model to infer the treat-
ment effect. The dependence between various variables is
depicted in Figure 2. We denote by E the true exposure
which is the key latent variable of the model. Ẽ is the expo-
sure as implied byM, which is our uncertain representation
of the underlying device graph. The key difference between
this and a standard exposure-based causal model, is that
in the latter the true exposure E is observed, whereas in
our model it is unobserved. Instead of E we observe the
noise-corrupted value Ẽ.
Remark 3. Note that the true exposure E depends on the
actual neighbourhood Ni, while the observed exposure Ẽ
depends on the assumed neighbourhoodsM(i).

The joint distribution p(Ẽ, E, Y |X,Z) factorizes as
pθ(Y |E,X)p(Ẽ|E)p(E|Z). We parameterize the outcome
distribution P (Y |E,X) via a GLM (Generalized Linear
Model) which expresses the mean E[Y |Z = z,X = x] in
terms of a neural network, i.e., we use a neural network for
each of the functions c0, c1, g, w in (A1). For p(Ẽ|E) we
use a Gaussian model. Since the per-node allocations are
independent, if |M(i)| ≫ Ni, by law of large numbers this
is a reasonable approximation for the error. Finally p(Z|X)
is just the allocation mechanism which is known to us as the
experimenter (or can be estimated for observational data).

Technically, the latent variable E in this setting is a discrete
variable, as Z is a binary assignment of treatments at indi-
vidual devices. However, since the space is combinatorially
large, we instead propose solving a continuous relaxation
of the problem. We treat the latent variable as a continuous
vector and use a variational method [42, 43] for estimation.

To use variational inference one needs to specify a pos-
terior qϕ for the latent variable. For this we use a Gaus-
sian variational approximation with both mean and vari-
ance parameterized. Specifically we use a q of the form
N(e|µq(ẽ, x, y;ϕ), σq(ẽ, x, y;ϕ)). As our objective func-
tion, we use the K-sample importance weighted ELBO

E

X

Y Ẽ

Z

Figure 2: Graphical model depicting relationships between
different variables for our model. Observed variables Ẽ
(noisy exposure), Y (effect/outcome), X (covariates), and
Z (treatment allocation) are shaded to distinguish them from
the hidden variable E (true treatment).

LK [15], which is a lower bound for the conditional log-
likelihood pθ(x, y|z):

LK =

N∑
i=1

E

log 1

K

K∑
j=1

wi,j

 ≤ log pθ (2)

where wi,j = pθ(ẽ
∗
i , zi,j , xi, yi)/qϕ(ei,j |ẽi, xi, yi) are im-

portance weights, and the expectation is respect to qϕ. To
reduce training variance we use the DReG estimator [93].
We also incorporated additional regularization on the neural
network weights, and annealed the posterior q to match the
prior p(E|Z) for more stable training. Once the parameters
θ have been learnt, τ can be estimated with the fitted out-
come model pθ(Y |E,X). More details on the estimation
are included in Appendix B.4.
Remark 4. While the probability distribution can be arbi-
trarily parameterized with neural networks, all the networks
used in our experiments are MLPs with one hidden layer
and leaky ReLU activation. One can also use more powerful
flow-based posteriors, instead of a Gaussian model.
Remark 5. Under GATE, we only consider Z = 0⃗/⃗1, and
hence the latent exposure vector at test/prediction time is
exactly known irrespectively of the exact graph.

4.3. Identifiability

A key concern in causal inference is the identifiability of the
desired estimand, as otherwise there is no justification for
the estimated value to correspond to the ground truth. Next,
we discuss the identifiability of the treatment effect in the
aforementioned scenario. We demonstrate the identifiability
of our model, and state it as Proposition 4.1. The proof,
included in the appendix, uses a result in Schennach and
Hu [74]. Identifiability of the proposed probabilistic model
was not previously known, and our result constitutes a new
contribution to the field. We summarize the crux of the
argument below, while deferring the details to Appendix B.
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Proposition 4.1. Under certain technical conditions 1 on
the function g, the conditional mean function E[Y |Z =
z,X = x] = µY (x, z) in our model is identifiable.

When the graph A is exactly known, then under Assump-
tions (A1) to (A5) the problem of treatment effect estimation
becomes a model fitting problem. Specifically, since the
graph A is known, one can compute the exposures ei, and
then one can conduct a propensity weighted regression of
the observed outcomes Yi on the exposures ei and covariates
Xi to estimate the population-level mean potential outcomes
functions, denoted as µY . Once we estimate the mean po-
tential outcomes, we can obtain the treatment effect τ by
plugging in these estimates into Equation 1.

However, since in our problem the graph is unknown, obtain-
ing ei is not possible. To address this obstacle, we reframe
the inference problem in our scenario as a latent variable re-
gression problem. Observe that the exposure ei under the as-
sumed graphM is given by ei(M) =

∑
j∈M(i) ϕ(zj , Xi).

Due to (A2), ei(M) can be decomposed as ei(Ni) + ∆ei,
where ∆ei is an independent error term. Thus, ei(M) act
as noisy estimates of ei(Ni).

Note that we have converted the problem of estimating the
counterfactual functions to a problem of noisy regression
with errors in covariates. While in general the broader
family of noisy regression is unidentifiable, models of the
proposed form:

Y = g(E) + ∆Y ; Ẽ = E +∆E ∆E ⊥⊥ E

can be shown to be identifiable from only the joint observa-
tions of Y, Ẽ [74].

Remark 6. This result does not apply when M(i) ⊂ Ni

because then the error term ∆ϵi = ϵi(M) − ϵi(Ni) is no
longer independent of the true exposure ϵi(Ni). In that case,
our approach becomes equivalent to regression with endoge-
nous covariate error, which requires additional information
[106, 118].

5. Experiments
Before we describe the experiments and their results, we
mention a few key research questions, and how our experi-
ments are considered to answer each one of them.

RQ1 How does HIFIVE behave when all assumptions are
satisfied?

RQ2 Is HIFIVE robust to violating Assumption (A1)?

RQ3 How sensitive are the results w.r.t Assumption (A2) ?

RQ4 Does HIFIVE work on real observational data?
1The primary restriction is that g should not be of the form

g(z) = a+ b ln(exp(cz) + d)

Experimental Section Research Question
Section 5.1 Experimental Validity/RQ1
Section 5.2 Robustness/RQ2
Section 5.3 Uncertainity/RQ3
Section 5.4 Observational Data/RQ4

5.1. Synthetic Graphs

In this section, we first experimentally demonstrate the va-
lidity of HIFIVE by experimenting with synthetic data ob-
tained from a model which satisfies our assumptions exactly.
We experiment with Erdős-Rényi graphs to compare the
performance of our estimator with other estimators. We
simulate 100 different random graphs and run repeated ex-
periments on each graph with random treatment assign-
ments. Approximate neighbourhoods (M(i)) are obtained
by randomly adding nodes to node i’s true neighbourhood
Ni. The covariates X are sampled from a multivariate nor-
mal distribution. Note that these are unit covariates and
have no other connection to the graph or neighbourhoods.
The potential outcomes Yi(z) are obtained by applying a
function g on the exposure and adding a mean zero noise.
The exposure are computed using the procedure in Cortez
et al. [21]. We experiment with both a linear and non-linear
(sigmoid-scaled linear) setting. For each experiment, we
varied the treatment probability p, the size of the graphs n
to assess the efficacy of estimation across different ranges
of parameters and the strength of interference r. Similar to
Cortez et al. [21] we measure the strength of interference r
as the ratio of norms of the self or direct influence and the
indirect influence (more details in Appendix C.2).

We gauge the effectiveness of HIFIVE by benchmarking
it against commonly employed estimators such as polyno-
mial regression (Poly), ReFeX [36], PERC/DWR [117] and
the difference-in-means (DM) estimators (τ̂SUTVA). Except
for the DM model, all other models need exact neighbour-
hoods, and so we use them in an oracle setting, i.e., they
have access to the true graph. Due to incorporating large
neighbourhoods, Horwitz-Thompson estimators failed to
yield non-meaningful results in these trials.

The results are presented in Figure 3. From the figure it
is clear that our model produces unbiased estimates in this
case. On the other hand, all other methods produce highly
biased estimates. Note that in Figure 3a, when r = 0, there
is no interference, and hence most estimators are unbiased.
However, when interference increases these methods clearly
show strong bias. Furthermore, even if the oracle graph is
known, heterogeneity can cause bias in vanilla polynomial
regression [59]. Secondly, for a given interference strength,
our method shows consistency in the form of decreasing
variance with increasing number of nodes. Finally, the
variance of our method reduces as the treatment probability
p increases to 0.5.
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(a) Direct/indirect effects: r
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Figure 3: Plots visualizing the performance of various GATE estimators under Bernoulli design on Erdős-Rényi networks
for both linear and quadratic sigmoidal outcomes models. The lines represent the empirical relative bias, i.e., τ̂−τ

τ of the
estimators across different settings, with the shaded width corresponding to the experimental standard error.

5.2. AirBnB Model

Next, we conduct experiments with a framework designed
for the AirBnB vacation rentals domain [50]. The original
model is for rental listings and their bookings for a two-sided
marketplace. We adapt this framework for our purposes,
replacing customers with devices and listings with users.
The measured outcome Yi is 1 iff there is a click on device i.
A user watches ads on one or more devices and, if interested,
clicks on the ad but on only one device. This leads to
interference between outcomes on the devices as only one (if
any) receives a click. The simulation uses a type matching
model where the devices and person have a latent type, and
the probability of clicking is higher if the types match 2.
The treatment is considered to be a better algorithm which
increases the relevance of the ad. This is considered as
scaling the probability of click on the treated unit by the
parameter α. The underlying outcome model in this scenario
cannot be written as an exposure model. As such, this is a
good testbed for testing robustness of our model, since, like
in the real-world, exposure models are just approximations
to the unknown and complex actual interference function.
We use the protocol specified in Brennan et al. [14] .

For baselines, we use the SUTVA/DM estimator, an expo-
sure model with oracle graph, i.e., one where the exact graph

2Details in Appendix C.1

is known (labelled Exp), and a Horvitz-Thompson estimator
with oracle graph (labelled HT). The Exp model is same as
the one used in Brennan et al. [14], while the HT estimator
is the one described in Section 3. We also work with the
PERC/DWR [117] and ReFeX [36] estimators, which also
need oracle graphs. The results are presented in Figure 4.

Since the exposure model can only partly model the actual
outcomes, in this case, bias is not zero. On the other hand,
the Oracle HT estimator (which makes no exposure assump-
tions) gives unbiased though higher variance estimates. The
model is Oracle in using the exact interference graph. A
different model is the Oracle Exposure (Exp) model which
used the true graph to compute exposure using the model in
Brennan et al. [14]. However even that model will be biased
as the ground truth is not an exposure model. From the re-
sult it is also clear that HIFIVE works as well as the Oracle
Exposure model. Furthermore, even on the MSE metric our
model performs comparably to the Exp model. The results
show that HIFIVE works even when the outcomes do not
obey the assumed exposure mapping.

5.3. Effect of Network Uncertainty

Next we examine the impact of the neighbourhood accu-
racyM(i) in estimation. We experiment with Erdős-Rényi
graphs as well as with the AirBnB Model. For these exper-
iments, we fix a single graph, and compute the treatment

7
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Figure 4: Visualization of performance of different GATE estimators on the AirBnB model. The lines represent a) absolute
relative bias | τ̂−τ

τ | and b) relative RMSE of various algorithms as the indirect treatment effect α increases. † indicates that
the model has oracle access to true graph.
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Figure 5: Impact of neighbourhood sizes on the absolute relative bias i.e. | τ̂−τ
τ | for HIFIVE. Negative fraction of neighbours

indicate the case whenM(i) ⊂ Ni i.e. we missed pertinent neighbours. The bias is high when given small neighbourhoods,
as they miss pertinent edges. As the |M(i)| increase, the bias reduces, but the uncertainty widens.

effect estimate from HIFIVE as we change the assumed
neighbourhoodsM(i). In Figure 5a, we preset the relative
ratio between the estimated and true treatment effects as
varying proportions of edges are either added or omitted by
M(i). To maintain simplicity, we maintain uniformM(i)
sizes across all nodes, employing the average number of
missed or added edges as the metric along the x-axis. Fig-
ure 5b presents the same experiment within the context of
the AirBnB simulator. We observe a similar trend in both
experiments: whenM(i) ⊇ Ni holds true for all nodes i,
HIFIVE can offer an lower bias estimate of the treatment ef-
fect. Nonetheless, as the number of extraneous connections
withinM(i) grows, so does the uncertainty in estimation.
Conversely, ifM(i) neglects a pertinent node, it may intro-
duce greater bias into the estimation process. This manifests
within our results, where the model predictions initially ex-
hibit strong bias. However, as neighbourhood sizes expand,
bias diminishes while variance increases.

5.4. Application: Assessing Impact of Power Plant
Emissions Controls

Next, we demonstrate an application of HIFIVE on observa-
tional data. We focus on estimate the effect of adoption of
pollution reduction technologies at power-plants [59]. As
ambient pollution is heavily influenced by spatially adjacent
sources of pollution, adjusting for interference is important.
We work with a public dataset on power generation facilities
in USA used in Papadogeorgou et al. [59]. The outcomes
Yi correspond to measured pollutant levels, the devices cor-
respond to the power plants, with treatment Z = 1 corre-
sponding to adopting SCR/S-NCR technologies. To ensure
comparability of the neighbourhoods with earlier methods,
we used the clustering from [61] as the true neighbours, and
for each unit added the two nearest non-true neighbours.
The neighbourhood sizes range from 5 to 28, with median
size of 10. We use the DM, EXP [4], Poly and ReFeX es-
timators as baselines, of which the latter three need true

8
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Figure 6: GATE estimates on ambient pollutant levels of
adopting of SCR/SNCR technologies. The box plot depicts
the mean and the 95% confidence interval. Note that all
methods except ours use exact neighbourhoods.

neighbourhoods 3. As this is observational data, we do not
know the ground truth effect, and consider the EXP model
as a reference. Estimation of propensity scores is done fol-
lowing [61]. Figure 6 shows that HIFIVE provides similar
estimates as the the EXP and RefeX method, but does so
without having exact neighbourhood information.

6. Conclusion
Identity fragmentation is an increasingly relevant problem
in analysing human preferences from online A/B testing. In
this work, we develop a method to estimate human prefer-
ences without the knowledge of the online identities that
belong to the user. This is done under the practically far
more feasible requirement of identifying supersets of the
user’s identities. We propose a variational model to estimate
the counterfactual outcomes, and theoretically show the
identifiability of our model under this superset assumptions.
We also empirically establish the validity of our method
and conduct an analysis of the effect of violations of the
underlying assumptions. A limitation of our work is that the
variance of the estimate grows with the size of the neigh-
bourhoods, and so for practical applications one needs to
balance the risk of higher variance against potential bias.
Future research direction include incorporating temporal
data and longitudinal studies. ZmJkN
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A. Related Work
Network Interference Network interference is a well
studied topic in causal inference literature, with a variety of
methods proposed for the problem. Existing works in this
area incorporate various sets of assumptions to provide an
estimate of treatment effects. A common approach is the ex-
posure mapping framework which allows defines a degree of
”belonging” of a unit to either the treatment or control group
[4, 7, 51, 99]. Typically linearity with respect to neighbour-
ing treatments is also assumed [25, 49, 114, 102] but is not
neccessary [88]. A limitation of these approaches is that
they require complete knowledge of the network structure.
While our approach also relies on imposing an exposure-
based structure to the form of interference, however we work
with an incomplete knowledge of the network.

Treatment effect estimation with unknown network inter-
ference has also been studied beginning with the seminal
work of Hudgens and Halloran [38]. The key insight behind
these works is that if the network can be broken into clusters,
then one can perform treatment effect estimation without
the full knowledge of the interference structure withing the
clusters. Other works such as Auerbach and Tabord-Meehan
[7], Bhattacharya et al. [12], Liu and Hudgens [53], Tch-
etgen Tchetgen and VanderWeele [90], VanderWeele et al.
[97] have extended this idea further. Often the bias of these
estimators depends on the the number of edges between the
clusters, which has led to optimization-based methods for
constructing clusters [25, 32]. However, this still requires
information about the clusters, and is not applicable if mul-
tiple clusters of the required type do not exist. On the other
hand, our method can handle general unstructured graphs.
Finally, there are methods, which under restrictive assump-
tions, use SUTVA based estimates for one-sided hypothesis
tests for treatment effect under interference [19, 6, 45].

Estimation without any side information: Recently, some
methods have been proposed based on multiple measure-
ments which can address the issue of interference[83, 21,
112] without any further knowledge. However, such meth-
ods assume stationarity i.e. the outcomes do not vary be-
tween the trials. This simplifies GATE estimation by provid-
ing access to both the factual and counterfactual outcome.
However, such a model is unrealistic for our motivating use
case of continuous optimization. Furthermore, in the more
general settings, conducting multiple trials can be difficult,
if not impossible, in itself [82]. As such, we aim to develop
a method which can work with only a single trial and/or
observational data from an existing test.

B. Estimation and Identifiability
Proposition B.1. If the neighbourhood proposed byM i.e.
M(i) always contains the true neighbourhood Ni, and is

sufficiently larger than Ni, then under the exposure assump-
tion we can treat ∆Z as approximately gaussian.

Proof. Under Equation (A2) we can rewrite the exposure
underM as:

ei(M) =
∑

j∈M(i)

ϕ(zj , Xi) =
∑

j∈M(i)∩Ni

ϕ(zj , Xi)

+
∑

j∈M(i)−Ni

ϕ(zj , Xi)

Now, since allocation of device level treatments are in-
dependent, Zi ⊥⊥ Zj , as well as its independent of Xi,
the individual exposure terms ϕ(Zj , Xi) ⊥⊥ Zi for any
i ∈ M(i) − Ni. If |M(i)| >> |Ni|ϕ(zj , Xi), then the
central limit theorem implies that the sum is approximately∑

j∈M(i)−Ni
ϕ(zj , Xi) as N(ϕ̄, |M(i) − Ni|V ar(ϕ)) ≈

N(ϕ̄, |M(i)|V ar(ϕ))

B.1. Assumptions

Assumptions

Model: Yi(z, xi) = E[Y |Z = z, Xi = xi] + ϵ

= c0(xi) + c1(xi)zi + g(wT
i

∑
j∈Ni

ϕ(zj , Xi)) + ϵ

(A2)

Neighbourhood Superset: M(i) ⊇ Ni (A3)
Network Ignorability: Y (z) ⊥⊥ Z ∀z (A4)
Positivity: P (z|X) > 0 ∀z (A5)
Consistency: Yi = Yi(z) if Z = z (A6)

B.2. Identifiability

Proposition B.2. Our model is identifiable if 1) ∀x, µY (x, z)
is continuously differentiable everywhere as a function of z,
and 2) ∀x, ∂zµY (x, z) ̸= 0

Before arguing the previous proposition, we first state The-
orem 1 from [74]. Our presentation of this result broadly
follows that of Pöllänen and Marttinen [64].

Theorem 1 from Schennach and Hu [74]: Let y, z, z∗, ∆z,
∆y be scalar real-valued random variables related through

y = g(z∗) + ∆y (3)
z = z∗ +∆z, (4)

and y, z are observed while all remaining variables are not
and satisfy the following conditions:

14



On Online Experimentation without Device Identifiers

Condition 1. The variables z∗, ∆z, ∆y, are mutually inde-
pendent, E[∆z] = 0, and E[∆y] = 0 (with E[|∆z|] < ∞
and E[|∆y|] <∞).

Condition 2. E[eiξ∆z] and E[eiγ∆y] do not vanish for any
ξ, γ ∈ R, where i =

√
−1.

Condition 3. (i) E[eiξz∗
] ̸= 0 for all ξ in a dense subset of

R and (ii) E[eiγg(z∗)] ̸= 0 for all γ in a dense subset of R
(which may be different than in (i)).

Condition 4. The distribution of z∗ admits a uniformly
bounded density fz∗(z∗) with respect to the Lebesgue mea-
sure that is supported on an interval (which may be infinite).

Condition 5. The regression function g(z∗) is continuously
differentiable over the interior of the support of z∗.

Condition 6. g′(z∗) ̸= 0 almost everywhere, and fz∗(z∗)
is continuous and nonvanishing
Theorem B.3. Let Condition 1-6 hold. Then the following
holds:

1. g(z∗) is not of the form

g(z∗) = a+ b ln(ecx
∗
+ d) (5)

for some constants a, b, c, d ∈ R. Then, fz∗(z∗) and
g(z∗) (over the support of fz∗(z∗)) and the distribu-
tions of ∆z and ∆y are identified.

2. If g(z∗) is of the form (5) then, neither fz∗(z∗) nor
g(z∗) in Model 1 are identified iff z∗ has a density of
the form

fz∗(z∗) = A exp(−BeCx∗
+CDx∗)(eCx∗

+E)−F ,
(6)

with c ∈ R, A,B,D,E, F ∈ R+

Next, we argue how Theorem B.3 implies Proposition B.2.
Consider the conditional versions of our, i.e. consider the
restricted version where the covariates X have been fixed.
It is clear from Proposition B.1 and Assumption A2 that
Equations (3) and (4) are satisfied for this model. Condi-
tion 1 of Theorem 1 also follows from Proposition B.1 and
Assumption A2.

Condition 2,3 are technical conditions satisfied by most dis-
tributions ( including Gaussian, Uniform and exponential
family distributions). Condition 4 is satisfied because Ẽ|E
is approximately normal. Furthermore it will also hold for a
variety of bounded continuous distributions. Condition 5,6
hold from the assumption on µY stated in the proposition.
With the conditions of Theorem B.3 satisfied, the condi-
tional mean function E[Y |Z.X = x] are identified based
on Theorem B.3 except for when µY (x, z

∗) might be of the
form a+ b ln(ecz

∗
+ d).

Since the conditional means µY (Z,X = x) is identifiable
for all x, the overall function µY (Z,X) is also identified.

B.3. Relation to Schennach and Hu [74]

Schennach and Hu [74] proposed estimating the function g
in Equation 3 through the following optimization.

argmax
g

max
f1,f2,f3

ln

∫
f1(y − g(z∗))f2(z − z∗)f3(z∗)dz∗

(7)

where f1, f2, f3 are restricted to be probability densities.
This method is effectively maximizing the log-likelihood of
the observed data under a latent variable framework. The
latent variable, denoted as z∗, is integrated out within the
objective which is a normalized density. Comparing this
equation with our Equation 2, it becomes apparent that these
methods are related. Specifically, the log-likelihood in Equa-
tion 2; can be obtained from Equation 7 by replacing z∗

with e and z by ẽ. The two key differences between our
objective and that of Schennach and Hu [74] is a) that our
likelihoods model conditioned on covariates X , and b) we
can use specifics form for the densities f2, f3 and c) instead
of directly maximizing likelihood we are maximizing the
ELBO. The first difference is natural as we are fitting condi-
tional models, unlike Schennach and Hu [74]. The choice of
specific densities is also an issue in our scenario. As the ex-
perimenter, we already know the data generating density f3
function, and by Proposition B.1, f2 is well approximated by
a Gaussian. This eliminates the need to learn these densities
for our problem. Finally, instead of computing the objec-
tive integral via MCMC and optimization, we are instead
learning using stochastic variational bayes method. Given
ideal conditions, such as fully flexible posteriors and exact
optimization, our proposed method converges towards the
same solution as that obtained by the method of Schennach
and Hu [74].

B.4. Estimation

Here we describe obtaining the estimate of treatment effect
τ̂ from the model learnt in Section 4.2. We note that the
variational posterior qϕ is providing us the estimate of the
latent exposuresE, while the model pθ(Y |E,X) is learning
the outcome models. Specifically, since pθ(Y |E,X) is a
GLM-style model parameterizing the mean µY (e, x) one
can directly obtain the counterfactual mean functions from
it. These estimated means can be then plugged in Equation
1 to obtain the treatment effect τ̂ .

Under A1, this computation is further simplified by noting
that output of c0 is independent of the treatment z. Fur-
thermore, we can see from A1 that the mean E[Y |E,X]
is direct sum of the output of the networks c0, c1, w when
provided the corresponding inputs. As such one can directly
obtain the treatment effect using the following equation:
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τ̂ =
1

n

n∑
i

µ̂Y (⃗1, xi)− µ̂Y (⃗0, xi)

=
1

n

n∑
i

[
c1(xi) + g(w(xi)

T ei(⃗1, xi))
]

Here c1, g, w etc are neural networks whose parameter was
estimated in learning pθ.

B.5. Statistical Inference

In general analytical formulas for non-linear models are dif-
ficult and use some form of approximation using estimating
equation or quasi-likelihood[1, 100]. An alternative is to
use bootstrap approaches [26]. We describe a method for
conducting inference in both these approaches here.

B.5.1. PARAMETRIC BOOTSTRAP

Algorithm 1 Parametric Bootstrap

1: Input: D = {{X,Y, Z}1:n, A}, Bootstraps B, Es-
timator A

2: θ̂, τ̂ ← A(D)
3: for b from 1 to B do
4: Z∗

1 , . . . , Z
∗
n ∼ Pθ̂(Zi|Xi)

5: Z = {Z∗
1 , . . . , Z

∗
n}

6: Y ∗
1 , . . . , Y

∗
n ∼ Pθ̂(Y |Xi,Z)

7: θ̂∗b, τ̂∗b ← A({{X,Y ∗, Z∗}1:n, A})
8: end for
9:

10: return τ̂,
(
τ̂∗1, . . . , τ̂∗B

)
Parametric bootstrap [96, 11] is a model based variation of
classical bootstrap [26, 27], wherein the distribution of an es-
timatorA is obtained by repeatedly appliyngA to simulated
datasets whose distribution mirrors that of the original data.
In the parametric bootstrap, the simulated datasets are gen-
erated based on Pθ̂, representing the parametric distribution
with the estimated parameter θ̂. We describe the algorithm
in Algorithm 1, where A is our overall procedure which fits
the variational model and return the model parameters and
the estimated treatment effect. Bootstrap methods, gener-
ally make fewer assumptions compared to purely asymptotic
approaches, provide practically tight bounds and works nat-
urally with variational inference based methods [104]. In
context of variational inference it is also related to posterior
predictive checks [70, 31].

The general idea of the approach is to a) consider the es-
timated parameters τ̂, θ̂ as the ground truth, b) generate
replicates from the generative distribution (in this case re-
assigning the treatments at nodes and sample outcomes from

the new treatments), c) run the estimatorA on the replicates
to obtain replicate estimates (τ̂∗), and d) then treat the pair
(τ̂∗, τ̂) analogously to (τ̂, τ) to approximate the distribution
of the latter. Mathematically, if ξ̂γ is the 1− γ quantile of
τ̂∗, then the intervals for τ can be obtained as [ξ̂1−α

2
, ξ̂α

2
]

[26] for the chosen confidence level α.

B.5.2. LINEARIZED MODEL

We propose to linearize the assumption (A1) model around
the estimated parameters, and consider fitting the outcomes
via a square loss 4, i.e. we fit

(Yi − µY (Z, Xi)−
∑

j∈M(i)

∂Zj
µY (Z, Xi))

2ψ(Ẽ, E,X)

where ψ includes the rest of the terms in the likelihood.
The variance of the estimate is then determined by the (un-
centered) covariance matrix for a linear regression problem
[89, 66]. Specifically the posterior variance for the predic-
tion Yi is upper bounded by

σ2
ϵ + [

∑
k

cik]
2(p(1− p))−1(

∑
j∈M(i)

Zj)
2

where cik are the coefficients of Zk in the regression. We
refer the readers to Theorem 3 in Qu et al. [66] for the
derivation. In our case, the regression is derived from locally
linearizing the E[Y |z, X], and so the coefficient are nothing
but the partial derivatives of the mean outcome function Yi
w.r.t Zk. For the value of these derivatives, we can use the
the current value of θ as the estimate. Next, for the variance
of the effect τ , we see that the estimator is just the mean of n
sample means of these Y ′

i s. If the max-degree of each node
is bounded, then by generalized CLT [3, 47], the estimator
is asymptotically normal with variance given by:

2σ2
ϵ

n
+

2

n

∑
i

[∑
k

cik]
2(p(1− p))−1(

∑
j∈M(i)

Zj)
2


. If the max degree of any node in the graph is δ, then above
sum can further be bounded by:

2σ2
ϵ

n
+

2

n

∑
i

[
[
∑
k

cik]
2(p(1− p))−1δ2

]

This variance can then be used to provide conservative in-
tervals for a Wald test [104]. Note however that this is only
under a linearized approximation and hence using the above
variance for confidence intervals are only approximately
valid. However from the results of Sussman and Airoldi

4consider only a single unit i currently
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[88], Cortez-Rodriguez et al. [22], this bound is minimax
optimal in its dependence on p, σ, δ. As such these can still
provide consistently conservative confidence intervals.

C. Experimental Details
C.1. AirBnB Model

The model used in these experiments is a version of the
buyer and listing simulator developed by Li et al. [50]. The
original model is a simulator for rental listings and their
bookings for a two-sided marketplace scenario, with treat-
ments affecting which seller listings are applied to by a
buyer.

We adapt this simulator for our purposes, replacing cus-
tomers with devices and listings with users. Each device
and customer have a latent category, and the probability
of watching an ad is significantly higher if the user and
device category match. We assume that the user watches
all ads that it has decided to watch, and then with a certain
probability clicks on only of the ads it sees. Effectively,
there is no temporal component in the treatments. The ob-
served outcome (Yi) is 1 if device i successfully receives a
click on the ad. Since only one click is possible, the more
ads are watched by the user, the lesser is the click rate at
a single device, leading to interference. In our terminol-
ogy, the experimental units are devices and the interference
units are the users. The outcomes at an experimental unit
is influenced by other experimental units that are incident
on the the same interference unit. Consistent with prior
literature [50, 40, 14], we use a 20 latent type matching
model. To match consideration probabilities as mentioned
in Brennan et al. [14] the ad-watching probability under the
control assignment is 0.016 if the device and user share the
same type. Similarly, the click probability was set to match
acceptance probabilities mentioned in Brennan et al. [14].
The treatment tested is a recommendation algorithm, which
increases the probability that a user watches an ad on the
treated device.

C.2. Synthetic Graphs

The Erdos-Renyi (ER) model is commonly used for analyz-
ing interaction networks in various experimental settings,
particularly in the realm of social media [76] and epidemic
control [41, 101]. In social media platforms, where con-
nections form organically, ER graphs provide a reasonable
simulation of how friendships, followerships, or interactions
might evolve in an online community [28]. Additionally, in
the context of epidemic control, ER graphs are valuable for
studying disease spread [101].

We sample different random ER Graphs and run repeated
experiments on these graphs with randomized bernoulli
treatment assignment. For obtaining approximate neigh-

bourhoodsM(i) we compute another ER graph G′ but clip
the degree of the nodes to be between 10 and 100. Next
we add the edges from G′ to the original graph. The base-
lines include the POLY(Prop/Num) estimator is a polyno-
mial regression on the exposure as computed by the frac-
tion/number of treated nodes in the neighbourhood. The DM
estimator signifies the classic difference in mean/ SUTVA
estimator which is is simply the average outcomes on treated
vs un-treated units. The ER graphs are made with an ex-
pected neighbourhood of size 20. The outcome model is
similar to the potential outcomes model as in [21]:

Yi(z) = ci,∅+
∑
j∈Ni

c̃i,1zj+

β∑
ℓ=2

(∑
j∈Ni

c̃ij,2zj∑
j∈Ni

c̃ij,2

)ℓ

, (8)

where i ̸= j, c̃ij,2 = vi,2|Ni|/
∑

k:(k,j)∈E |Nk|. The coeffi-
cient ci,∅, c̃i,1, vi,2 are obtained as a linear function of the
covariates Xi. For the non-polynomial model β = σ, we

use the linear interference term
∑

j∈Ni
c̃ij,2zj∑

j∈Ni
c̃ij,2

and scale it

with a xσ(x) function where σ is the sigmoid function.

C.3. Power Plant Emission Experiments

Selective Catalytic Reduction (SCR) and Selective Non-
Catalytic Reduction (SNCR) are effective emission reduc-
tion technologies used in industrial settings, and their ef-
fectiveness in pollution has been supported in literature
[59]. As ambient pollution is heavily influences by spatio-
temporally adjacent sources of pollution, interference is a
key component in the study of air pollution. We employ the
identical dataset as Papadogeorgou et al. [59] to appraise the
effect of SCR/SNCR adoption on ambient NOx, ozone and
other gas levels. This openly accessible dataset encompasses
473 coal or gas-fired power generation facilities in USA. The
dataset provides covariate details encompassing power plant
characteristics, weather conditions, and demographic infor-
mation in the surrounding regions. Due to the knowledge of
geographical proximity, spatial-interference aware estima-
tion methods can be used to provide plausible estimates of
the treatment effect [60]. The POLY(Prop/Num) estimator
is a polynomial regression on the exposure as computed by
the fraction/number of treated nodes in the neighbourhood.
The EXP estimator is the augmented inverse propensity es-
timator used by Papadogeorgou et al. [60], using a spatial
exposure model. DM is the direct difference in mean esti-
mate. For the DM estimate, a unit is considered treated if the
nearest power-station adopted pollution reduction measures.
Since this is an observational dataset, we do not know the
propensities or the exact neighbourhood. To be consistent
with earlier literature [59, 60], oracle neighbourhoods of the
facilities are obtained according to Ward’s method [103].
The covariates consists of 13 variables information on power
plant characteristics, weather and demographic information
of the locality. Since this is an observational model, we do
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not have access to true probability of treatments. Following
standard practice, we estimate this from the data. Specifi-
cally, the propensity scores were obtain via a logistic model
with cluster specific random effects [59, 5].

D. Additional Experimental Results
D.1. Effect of Network Uncertainty

In Figure 7 , we plot the relative bias and rmse of our esti-
mator as the number of extraneous neighbours increase, for
different levels of the strength of interference r.
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Figure 7: Visualization of the impact of neighbourhood
sizes on GATE estimation. Negative fraction of neighbours
indicate the case when M(i) ⊂ Ni i.e. we missed per-
tinent neighbours. The bias tends to be high when gives
small neighbourhoods, as they miss pertinent edges. As
the neighbourhood sizes increase, the bias reduces, but the
uncertainty widens.

D.2. Experiments on other random graphs
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Figure 8: Plots visualizing the performance of various GATE estimators under Bernoulli design on Stochastic Block
networks for both linear and sigmoidal outcomes models. The lines represent the empirical relative bias i.e. τ̂−τ

τ of the
estimators across different settings, with the shaded width corresponding to the experimental standard error.
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(b) Population size: n
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(c) Treatment budget: p
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Figure 9: Plots visualizing the performance of various GATE estimators under Bernoulli design on Strogatz-Watts networks
for both linear and quadratic sigmoidal outcomes models. The lines represent the empirical relative bias i.e. τ̂−τ

τ of the
estimators across different settings, with the shaded width corresponding to the experimental standard error.
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