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Abstract
Physics-informed Neural Networks (PINNs) have
recently achieved remarkable progress in solving
Partial Differential Equations (PDEs) in various
fields by minimizing a weighted sum of PDE loss
and boundary loss. However, there are several
critical challenges in the training of PINNs, in-
cluding the lack of theoretical frameworks and
the imbalance between PDE loss and boundary
loss. In this paper, we present an analysis of
second-order non-homogeneous PDEs, which are
classified into three categories and applicable to
various common problems. We also characterize
the connections between the training loss and ac-
tual error, guaranteeing convergence under mild
conditions. The theoretical analysis inspires us
to further propose MultiAdam, a scale-invariant
optimizer that leverages gradient momentum to
parameter-wisely balance the loss terms. Exten-
sive experiment results on multiple problems from
different physical domains demonstrate that our
MultiAdam solver can improve the predictive ac-
curacy by 1-2 orders of magnitude compared with
strong baselines.

1. Introduction
Partial Differential Equations (PDEs) are important topics
in applied mathematics, with a wide range of applications
in various fields. The traditional approach to solving PDEs
involves utilizing numerical techniques, such as the finite
difference methods (Grossmann et al., 2007) and finite el-
ement methods (Bathe, 2006). Nevertheless, numerical
methods may generate unrealistic predictions for specific
scientific problems, and it is hard for these methods to han-
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dle PDEs in high dimensions (Zhu et al., 2019). Therefore,
it has attracted an increasing amount of attention to combine
machine learning techniques for solving PDEs. Physics-
informed Neural Network (PINN) (Raissi et al., 2019) is
one of the representative approaches that approximate solu-
tions by training neural networks to minimize a weighted
sum of PDE loss and boundary loss — the former is in-
duced from differential equations while the latter is induced
from boundary and initial conditions. PINN has shown
its effectiveness in various sophisticated cases, which has
been applied in various fields including fluids mechanics
(Raissi et al., 2020; Sun et al., 2020), and bio-engineering
(Sahli Costabal et al., 2020; Kissas et al., 2020).

However, the vanilla PINN still suffers from some chal-
lenges during training (Hao et al., 2022). One main chal-
lenge is the gap between PINN’s loss function and the actual
performance, which is often characterized by an absolute
error. In practical scenarios, certain loss terms, such as
the PDE loss, might surpass others (e.g., boundary loss) by
several orders of magnitude, consequently dominating the
training process. This scenario can lead to situations where
a reduced training objective—defined as a weighted sum of
losses—does not necessarily yield a better approximation
of the true solution (Peng et al., 2020). Our observations
suggest that a key factor contributing to this challenge lies
in the improper scaling of the PDE’s domain. The scale of
the domain can significantly affect PDE losses, especially
when the PDE is not invariant to scaling—an occurrence
that is quite common (see Theorem 4.1). Specificaly, the
scaling leads to two concrete issues:

1. Due to the imbalance between PDE loss and boundary
loss, the conventional optimizers like SGD and Adam
might not sufficiently train the PINN model, motivating
the development of more effective solvers.

2. Given the observed discrepancy between the PINN’s
loss function and its actual performance, it becomes
crucial to reevaluate the well-posedness of the opti-
mization objective.

To address the first issue, much work has focused on ad-
justing the relative importance of different loss terms by
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reweighting. Some works (Wight & Zhao, 2020; Elhamod
et al., 2022) use manual hyper-parameters to adjust the
weights. However, these non-adaptive methods depend on
empirical conclusions, which can lead to sub-optimal results.
More research works focus on adaptively balancing PINN
losses. For example, (Wang et al., 2021) designed a learning
rate annealing algorithm using statistics of back-propagated
gradients. (Wang et al., 2022b) proposed another method
to adjust weights from the perspective of Neural Tangent
Kernel (NTK). In (Bai et al., 2022), the loss function is mod-
ified using the Least Squares Weighted Residual (LSWR)
method. Nevertheless, these methodologies primarily con-
centrate on modifying loss functions, implying that they
consider the effect on parameters as a whole. As such, they
might overlook the impact of domain scaling on individual
parameters of the model.

In this paper, we aim to address the above issues to effec-
tively train PINNs. Specificially, we first present a theo-
retical error analysis of loss functions for different types
of PDEs under mild conditions. This analysis provides a
connection between the loss function and the actual per-
formance of the model by bounding the L∞ error with its
PDE loss and boundary loss. This new error boundary not
only ensures convergence towards the ground truth under
a sufficiently low loss but also serves as an optimization
objective as its minimization enables the neural network to
approach the true solution more effectively. (Wang et al.,
2022a)’s work supports that L∞ loss is a better choice that
L2 loss.

Building on the upper-bound error, we propose a scale-
invariant optimizer, MultiAdam. MultiAdam leverages the
observation that the second momentum of Adam acts as
an excellent indicator of the gradient scale. We categorize
losses of different scales into separate groups, maintaining
the second momentum individually for each group. This
momentum is subsequently utilized to re-scale the gradi-
ents, aligning them to a nearly identical scale. Extensive
experiments demonstrate that the MultiAdam optimizer is
robust against unbalanced losses and is effective in various
complex PDEs across different domain scales. Moreover,
MultiAdam exhibits remarkable stability and a high conver-
gence rate under these conditions.

The rest of the paper is organized as follows. In section
2, we briefly review existing variants of PINNs, especially
reweighting techniques. In section 3, we go over the original
PINN model and Adam optimizer. Section 4 introduces the
effect of domain scaling on PINN losses using an example
of 2D Poisson’s equation, followed by an introduction to our
new optimizer MultiAdam. Then we provide a theoretical
analysis on error bounds for PINNs and show the connec-
tion between the existing problem and MultiAdam. Section
5 presents numerical experiments and evaluates MultiAdam

using a range of representative benchmark examples. Fi-
nally, Section 6 encapsulates our findings and contributions.

2. Related Work
Physics-informed Neural Networks (PINNs) (Raissi et al.,
2019) are capable of learning to represent the nonlinear rela-
tionship in dynamic systems and providing fast predictions
(Karniadakis et al., 2021). However, theoretical analysis for
PINNs is typically insufficient. For some special equations
such as Kolmogorov equations and Navier-Stokes equations,
the total error can be estimated with regard to the train-
ing loss and network settings (De Ryck & Mishra, 2022;
De Ryck et al., 2022). A more general result is attained
on second-order elliptic equations, where the convergence
of PINNs is proved (Shin et al., 2020) and the L∞ error
bound is given (Peng et al., 2020) under mild constraints.
Yet it still remains unclear for many other PDE problems.
Also, analyzing the convergence and accuracy of PINNs
is of tremendous challenge, especially for systems with
multi-scale characteristics (Li & Feng, 2022). PINNs are
commonly optimized by Adam (Kingma & Ba, 2014) and
L-BFGS (Liu & Nocedal, 1989). However, they often reach
ill situations when the scale and convergence rate of loss
terms vary significantly (Hao et al., 2022).

Reweighting techniques for PINNs To correct the imbal-
ance, a standard approach is the introduction of weights in
the loss functions (McClenny & Braga-Neto, 2020). Cur-
rently, several adaptive reweighting methods have been pro-
posed. (Wang et al., 2021) designed a learning rate anneal-
ing algorithm using statistics of back-propagated gradients
to mitigate the pathology. Neural Tangent Kernel also pro-
vides a novel perspective to adaptively adjust the weights
(Wang et al., 2022b). In (Bai et al., 2022), the loss function
is modified using the LSWR method to alleviate the biased
training issue.

Multitask learning methods The PINN optimization can
be regarded as a multitask learning problem since each
equation and boundary condition is an individual objective.
Therefore, it is also worthwhile to learn from multitask
learning (MTL). GradNorm (Chen et al., 2018) and PCGrad
(Yu et al., 2020) are two promising approaches along this
line. GradNorm tunes gradient magnitudes based on the
average gradient norm and the relative training rate of each
task, while PCGrad projects the conflicting gradients onto
the normal plane.

3. Preliminaries
3.1. Physics-Informed Neural Networks

The main objective for Physics-Informed Neural Networks
(PINNs) is to solve a physical system using known phys-
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ical laws and available data. Assume the system can be
described by the following PDEs:

f(x;
∂u

∂x1
, · · · , ∂u

∂xd
;
∂2u

∂2x2
1

,
∂2u

∂x1∂x2
, · · · ;λ) = 0

B(u, x) = 0,∀x ∈ ∂Ω

(1)

where f is the differential equation, u is the solution to
that equation, Ω is the domain and ∂Ω is the boundary of
it. Moreover, λ is an additional parameter and B is the
boundary condition.

To solve the physical system, PINNs use neural networks to
approximate the solution of PDEs. In order to train a neural
network meeting all the constraints in Eq. (1), PINNs trans-
form the equations into loss functions defined as follows:

Lf (θ, λ;Tf ) =
1

|Tf |
∑
x∈Tf

∥f(x, ∂ûθ

∂x1
, · · · ; ∂

2ûθ

∂x2
1

, · · · ;λ)∥22

Lb(θ, λ;Tb) =
1

|Tb|
∑
x∈Tb

∥B(ûθ, x)∥22

(2)

where Lf is the residual loss for the PDE, and Lb is the
loss for boundary condition. uθ is the prediction by neural
network with parameter θ and Tf , Tb are sampling points.

The overall training objective of PINN is then defined as a
weighted sum of the two losses:

L(θ, λ;T ) = wfLf (θ, λ;Tf ) + wbLb(θ, λ;Tb) (3)

where wf , wb are the non-negative weights for different
losses. To effectively train a PINN, we have to optimize the
two loss terms at the same time and make every loss as low
as possible. Therefore, it is natural to treat it as a multitask
learning problem.

3.2. Adam Optimizer

The Adaptive Momentum Estimation (Adam), as proposed
by (Kingma & Ba, 2014), is a commonly adopted optimiza-
tion method for PINNs. It maintains the moving average of
the squared gradient, known as the second momentum, to
adjust the learning rate for each parameter. The specifics of
this algorithm can be seen in Algorithm 1. Despite Adam’s
robust capability to minimize a single loss function for neu-
ral networks, it may struggle with handling multiple opti-
mization objectives. Consequently, the network may fail
to converge if the weights in Eq. (3) are not appropriately
configured. A detailed discussion on this matter will be
provided in Section 4.1.

Algorithm 1 Adam
Require: learning rate γ, betas β1, β2, max epoch M , ob-

jective function f(θ)
1: for all t = 1 to M do
2: gt ← ∇θf(θt−1)
3: mt ← β1mt−1 + (1− β1)gt
4: vt ← β2vt−1 + (1− β2)g

2
t

5: m̂t ← mt/(1− βt
1)

6: v̂t ← vt/(1− βt
2)

7: θt ← θt−1 − γm̂t,i/(
√
v̂t,i + ε)

8: end for
9: return θt

4. Method
We now present our method in detail, starting with an analy-
sis of the imbalance between the terms in the loss objective.

4.1. The effect of domain scaling on loss balancing

We first observe that the PDE loss and boundary loss may
be several orders of magnitude away in real cases, leading
to a failure to approach the correct solution by the standard
Adam optimizer. One of the main reasons for the issue is the
improper scaling of the domain. Most PDEs are not scaling
invariant, which causes the change in domain to rescale
PDE loss. The influence is characterized by the following
theorem:

Theorem 4.1 (Effect of scaling for homogeneous PDEs,
Proof in Appendix B.1). Suppose Ω is the domain of a
homogeneous PDE of k order and L2 loss is used for PINNs.
Then, if we narrow the domain by t times, the boundary loss
will stay fixed while the PDE loss will be multiplied by t2k.

We illustrate this with an example of Poisson’s equation
in a complex domain. The reference solution is depicted
in Figure 1, with the detailed setup available in Appendix
A. In this case, we condense the original domain, which
spans an 8× 8 square, by a factor of 8, resulting in a 1× 1
square. As shown in Figure 2, when training on the 8× 8
domain, the PDE loss and boundary loss do not significantly
differ. However, when training on the 1 × 1 domain, the
PDE loss is nearly 84 times larger than the boundary loss.
This substantial discrepancy poses considerable challenges
in training PINNs, as demonstrated in Figure 1.

This example further exposes the gap between the loss func-
tion that PINN optimizes and its actual performance. In
Figure 3, we train PINN on the 1 × 1 domain using two
different settings—one incorporating manual reweighting of
loss while the other not. In the absence of manual reweight-
ing, PINN fails to approach the ground truth. Yet, its loss
is lower than that of the reweighted scenario for the first
10000 epochs, during which its L2 relative error in relation
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to the ground truth is significantly higher compared to the
reweighted scenario. This suggests that the loss optimized
in PINN does not reliably represent the actual performance
in this case.

4.2. Error Analysis

Considering the observed inconsistency between total loss
and actual performance, we find it crucial to revisit the
well-posedness of our objective function, i.e., we question
whether optimization based on the loss indeed leads to im-
proved solutions. We offer a theoretical examination of the
relationship between loss and error. Given that the majority
of PDEs employed across various disciplines do not exceed
second order, and that linear ones are relatively prevalent
and simpler to analyze, our study primarily concentrates on
elliptic, parabolic, and select hyperbolic equations. These
represent the majority of second-order linear PDEs (Strauss,
2007). Based on the error bounds, we establish links be-
tween the losses in PINNs and the absolute error of the
PINN output.

Specifically, we provide error bounds for three types of
PDEs separately in the following theorems. Thanks to The-
orem 2.1 and Corollary 2.2 in (Peng et al., 2020), we can
directly obtain the proof of Error bounds of PINNs on ellip-
tic PDEs as follows:

Theorem 4.2 (Error bounds of PINNs on elliptic PDEs).
Suppose Ω ⊂ Rd is a bounded domain, L is an elliptic
operator and ũ ∈ C0(Ω) ∩ C2(Ω) is a solution to the
following PDE:

L[u](x) = f(x), ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω
(4)

If the output uθ of the PINN with parameter θ satisfies:

uθ ∈ C0(Ω) ∩ C2(Ω)

sup
x∈∂Ω

|uθ − ũ| < δ1

sup
x∈Ω
|L[uθ]− f | < δ2,

(5)

then the absolute error over Ω is upper-bounded:

sup
x∈Ω
|uθ − ũ| ≤ δ1 + Cδ2. (6)

Here, C is a constant depending only the operator L and
the domain Ω. If diamΩ = d, then C is proportional to
ed − 1 when diamΩ changed.

And we further provide the Error bounds of PINNs on
Parabolic PDEs and Hyperbolic PDEs in Theorem 4.3
and 4.4, respectively. The detailed proof is included in
the Appendix.

Theorem 4.3 (Error bounds of PINNs on Parabolic PDEs,
proof in Appendix B.2). Suppose Ω ⊂ Rd

x×Rt is a bounded
domain, L is an parabolic operator and ũ ∈ C0(Ω)∩C2(Ω)
is a solution to the PDE in equation 4. If the output uθ of
the PINN with parameter θ satisfies:

uθ ∈ C0(Ω) ∩ C2(Ω)

sup
x∈∂Ω

|uθ − ũ| < δ1

sup
x∈Ω
|L[uθ]− f | < δ2,

(7)

then the absolute error over Ω is upper-bounded:

sup
x∈Ω
|uθ − ũ| ≤ C1(δ1 + Cδ2), (8)

where C,C1 are constants depending only on Ω and L. If
diamΩ = d, then C is proportional to eαd−1 when diamΩ
changed.

Theorem 4.4 (Error Bounds for PINNs on Hyperbolic PDEs,
proof in Appendix B.3). Suppose Ω ⊂ Rx × R+

t is an
admissible domain (defined in Appendix B.3) and L is an
hyperbolic operator satisfies the requirements in Appendix
B.3. If the PINN with parameter θ satisfies that:

uθ ∈ C1(Ω) ∩ C2(Ω)

sup
x∈∂Ω

|uθ − ũ| < δ1

sup
x∈Ω
|L[uθ]− f | < δ2

(9)

Then, we have:

sup
x∈Ω
|uθ − ũ| ≤ δ1 + Cδ2

where C is constant depending only on Ω and L. If
diamΩ = d, then C is proportional to eαd−1 when diamΩ
changed.

We finally provide how to control the absolute error using
PINNs’ L2 loss as

Theorem 4.5 (Control Absolute Error using PINNs’ L2

Loss, proof in Appendix B.4). Suppose the second-order
PDE operator L and the PINN with parameter θ satisfy
that:

sup
x∈Ω
|uθ−ũ| ≤ C1( sup

x∈∂Ω
|uθ−ũ|+C sup

x∈Ω
|L[uθ]−f |) (10)

where C,C1 are constants. Then, the error can be bounded
by L2 loss of the PINN:

∥uθ − ũ∥L∞ ≤ C2(
√
Lb + C

√
Lf ) (11)

where C2 is constant depend on C1 and selection of sam-
pling points and base functions (used in proof). The detailed
definition is in Appendix B.4.
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Figure 1. The left image presents the reference solution for the case. The central image depicts the training result of the baseline PINN on
an 8× 8 domain, while the right image showcases the same on a 1× 1 domain. It is evident that the model encounters difficulties in
fitting the boundary condition when trained on the 1× 1 domain.
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Figure 2. The loss curve of PINNs when solving Poisson equation
on the 8× 8 domain and the 1× 1 domain using Adam optimizer
(manually reweighted on 1× 1 case). Lf , Lb are defined in equa-
tion (2). While the losses are almost the same on 8× 8 case, they
differ by several orders of magnitude on the 1× 1 case.

Theorem 4.5 delineates the relationship between the loss of
PINNs and the actual error. Although the unweighted sum
of losses does not directly reflect the performance of PINNs,
the introduction of appropriate weights to the losses can
ensure a more accurate correspondence to error. This un-
derlines the necessity of reweighting techniques for PINNs.
Broadly, the more precise the estimate of C, the narrower
the gap between the optimization objective and the actual
error.

The theorem also illuminates the role of domain scaling. For
all three types of PDEs, scaling the domain influences the
constants C, changing proportionally to eαd−1, where d =
diamΩ serves as an indicator of scale. This modification in
C subsequently affects the optimal weight of the two losses.
Therefore, it is imperative for the model to account for the
scale of the domain to properly adjust the loss weights.

Motivated by this understanding, we propose our Multi-
Adam optimizer. It maintains the second momentum of
gradients for each group of losses, which is then used to
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Figure 3. The left figure shows the sum of unweighted loss Lf +
Lb during training. The right figure shows the L2 relative error
between PINN’s prediction and the ground truth. While the loss is
lower in the unreweighted case, the prediction is worse off.

adjust the scale of the update, effectively reweighting all
loss terms. We found that gradient-based estimation can
approximate the factor C, leading to enhanced accuracy.

4.3. Algorithm

Inspired by the analysis above, we introduce MultiAdam,
a novel optimizer designed to better estimate the relative
importance of losses.

Our motivation stems from two key observations. First,
the Adam optimizer maintains estimates of both the first
and second momentum, and these momentums tend to be
relatively stable. Second, the second momentum effectively
reflects the inherent difference between the scale of PDE
loss and boundary loss. Utilizing the second momentum
as weights allows the PDE loss and boundary loss to be
normalized to a comparable scale.

The crux of MultiAdam lies in partitioning the PINN loss
into several groups. Specifically, we segregate each PDE
loss into a separate group, while all boundary losses are
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grouped together. We maintain the first and second momen-
tum independently for each group, determining the update
for every group in a manner akin to Adam. Lastly, we av-
erage the updates for each group and apply this as the final
update to the network parameters.

The specific algorithm is outlined in Algorithm 2. We rec-
ommend the hyper-parameter settings as γ = 0.001, β1 =
0.99, β2 = 0.99. The rationale behind these choices can be
found in Appendix D.

Algorithm 2 MultiAdam
Require: learning rate γ, betas β1, β2, max epoch M , ob-

jective functions f1(θ), f2(θ), · · · , fn(θ)
1: for all t = 1 to M do
2: for all i = 1 to n do
3: gt,i ← ∇θfi(θt−1)
4: mt,i ← β1mt−1,i + (1− β1)gt,i
5: vt,i ← β2vt−1,i + (1− β2)g

2
t,i

6: m̂t,i ← mt,i/(1− βt
1)

7: v̂t,i ← vt,i/(1− βt
2)

8: end for
9: θt ← θt−1 − γ

n

∑n
i=1 m̂t,i/(

√
v̂t,i + ε)

10: end for
11: return θt

The reason why we divide every PDE into separate groups
is that different PDE has a different intrinsic scaling factor,
leading to an imbalance within the same group. Conversely,
all Dirichlet boundary losses are grouped together, as they
are calculated by measuring the L2 error on sampling points,
which remains invariant to the scaling of the domain.

5. Experiments
In this section, we deploy our proposed MultiAdam opti-
mizer on various benchmarks to evaluate its convergence
and accuracy. Initially, we consider Poisson’s equation,
a two-dimensional second-order linear PDE. This serves
to examine MultiAdam’s efficacy in mitigating the imbal-
ance of weights and achieving convergence. We also com-
pare its weight estimation to the theoretically suggested
weight, demonstrating its consistency across diverse domain
scales. Subsequently, we apply this method to solve the
non-linear elliptic-type Helmholtz equation, underscoring
the efficiency of MultiAdam. Lastly, we assess the perfor-
mance of our method against other techniques in solving
time-dependent PDEs, such as the Burgers’ equation. An
ablation study on the selection of hyper-parameters is pre-
sented, which is relegated to Appendix D.

We compare our method with a few strong baselines: 1) The
Adam optimizer utilized by the original PINNs (Raissi et al.,
2019) 2) The learning rate annealing (LRA) algorithm for
PINNs (Wang et al., 2021) and 3) The adaptive weighting

Table 1. Mean absolute error and relative L2 error of different
optimization methods on Poisson’s equation. PCGrad runs into
NaN due to numerical instability.

Methods Poisson-8 Poisson-1
Absolute Relative Absolute Relative

Adam 7.49E-03 2.63% 2.98E-01 70.78%
LRA 1.06E-02 4.67% 6.48E-02 16.88%
NTK 6.58E-03 1.94% 2.21E-02 6.11%
GradNorm 8.74E-03 2.34% 2.94E-01 69.10%
PCGrad N/A N/A 3.40E-01 77.84%
MultiAdam 1.10E-02 2.94% 1.44E-02 4.49%

from the NTK perspective (Wang et al., 2022b). Since
PINNs involve the interplay of multiple loss terms from
PDE and boundary conditions , some multi-task learning
methods may be applied to PINNs. Here, we choose two
well-known methods, i.e., 4) GradNorm (Chen et al., 2018)
and 5) PCGrad (Yu et al., 2020), to compare with.

5.1. Poisson’s equation

Poisson’s equation is a useful elliptic partial differential
equation in theoretical physics for calculating electric or
gravitational fields (Wikipedia, 2023b), taking the form:

∆u = f (12)

In order to show the scale-invariant ability of MultiAdam,
we consider two Poisson’s systems, Poisson-8 and Poisson-
1, which are actually examples presented in Section 4.1.
The Poisson-8 case is as Equation 18 in Appendix A , while
the Poisson-1 case just resizes the domain from [−4, 4]2 to
[−0.5, 0.5]2.

As shown in Table 1, MultiAdam is nearly invariant to the
domain scaling and maintains an accurate estimate. For
Poisson-8, NTK has the highest precision. However, in
the Poisson-1 case, things have changed. Most of the op-
timizers, other than MultiAdam and NTK, fail to find the
solution. MultiAdam performs the best while a significant
downgrade (4.17%) is observed on NTK. Overall, Multi-
Adam can easily handle the domain-scaling effect and keep
good performance on both tests while others cannot.

5.1.1. COMPARISON OF WEIGHT ESTIMATION

To give a deeper understanding on why MultiAdam outper-
forms other methods when domain is changed, we compare
the weights given by different reweighting algorithms with
a theoretically suggested weight as summarized in the fol-
lowing theorem.

Theorem 5.1 (Error bound of Poisson’s equation, Proof in
Appendix B.5). Let Ω be the domain described in section
5.1, and G : Ω×Ω→ R be the Green function of Poisson’s
equation. Denote ûθ as the PINN output and ũ the reference
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solution, then we have:

∥ûθ − ũ∥L1 ≤ C1

√
Lf + C2

√
Lb, (13)

where Lf , Lb are losses of PINN and C1, C2 are constants
by the Green function G(x, ξ) as follows:

C1 =

∫
Ω

√
|Ω|
∫
Ω

G2(x, ξ)dξdx

C2 =

∫
Ω

√
|∂Ω|

∫
∂Ω

(∇ξG(x, ξ) · n)2dx.

(14)

According to the above theorem, the best strategy to mini-
mize ∥v∥L1 is to minimize

√
C2

1Lf+
√

C2
2Lb. This implies

the assignment of weight C2
1 to the PDE loss and C2

2 to the
boundary loss.

Then we run MultiAdam for multiple times and record the
norm of second momentum for the PDE loss group and
boundary loss group separately. Since we use second mo-
mentum to rescale the gradients, its norm reflects how we
scale the gradient as a whole. Therefore, in the following
comparison, the norm of second momentum is used as our
estimated weight for different losses.

For comparison purposes, we also incorporate two other
reweighting techniques, LRA and NTK. By normalizing the
weight on the boundary loss to 1, we can directly compare
the normalized weight on the PDE loss and discern how the
algorithms balance between different losses. We run the
different methods three times, with the results displayed in
Figure 4.
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Figure 4. The comparison of normalized weight for PDE loss be-
tween MultiAdam, LRA, NTK and theoretical suggestion during
training. The domain Ω lies in [−0.5, 0.5]2. The estimation given
by MultiAdam is closest to the theoretical suggestion.

We observe that the weight assigned by MultiAdam closely
aligns with the theoretical prediction. This implies that

MultiAdam accurately discerns the relative importance of
different tasks, enabling it to balance the gradients of various
groups and approximate the ground truth closely. It’s worth
noting that the slightly higher PDE weight, compared to the
theoretical estimation, is attributed to the difficulty PINNs
face in optimizing the PDE loss.

More crucially, MultiAdam successfully mirrors the growth
trend of PDE weight under differnt scales. As depicted in
Figure 5, MultiAdam exhibits superior estimation in most
scales compared to other methods. These results provide a
support for MultiAdam’s ability to handle problems under
different scales.

0.25 0.5 1 8 16 32
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10 4

10 2

100

102 MultiAdam
LRA
NTK
Theory

PD
E 

w
ei

gh
t

  2  4 

Domain scale

Figure 5. The comparison of normalized weight for PDE loss be-
tween MultiAdam, LRA, NTK and theoretical suggestion under
different domain scales. When domain scale is x, we indicates that
the domain Ω lies in [−x/2, x/2]2

.

5.1.2. GRADIENT PATHOLOGY

To further investigate the pathology of imbalanced gradients,
we study the distribution of the gradients regarding the PDE
residual and the boundary loss. The results are shown in
Figure 6. We can see that MultiAdam can mitigate the
gradient-vanishing problem in PINNs and effectively update
parameters. The PDE gradients of the original PINNs are
heavily concentrated around zero and barely can parameters
be optimized, leading to stagnation. This observation is
inline with (Wang et al., 2021)’s work. By contrast, the PDE
gradients of MultiAdam PINNs are more spread, thus more
parameters can attain useful information, accelerating the
overall optimization.

5.2. Helmholtz equation

The Helmholtz equation is a non-linear elliptic differential
system representing a time-independent form of the wave
equation. It appears in various fields of physics, includ-
ing electromagnetic radiation, seismology, and acoustics

7
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Figure 6. The distribution of the back-propagated gradients over
different loss groups (PDE, boundary) at epoch 4000.

Table 2. Mean absolute error and relative L2 error of different
optimization methods on Helmholtz equation.

Methods Helmholtz-1 Helmholtz-0.2
Absolute Relative Absolute Relative

Adam 8.50E-02 22.46% 3.45E-01 93.46%
LRA 4.00E-03 1.11% 1.65E-01 45.87%
NTK 8.32E-02 21.76% 5.05E-01 >100%
GradNorm 6.15E-02 16.06% 3.97E-01 >100%
PCGrad 1.79E-02 4.80% 8.67E-02 22.92%
MultiAdam 1.56E-03 0.43% 3.23E-03 0.87%

(Wikipedia, 2023a). The Helmholtz equation is a good
testbed to demonstrate the ability to cope with highly non-
linear problems. Specifically, the equation takes the follow-
ing form:

uxx + uyy + k2u− f = 0, ∀x ∈ Ω

u(x) = 0, ∀x ∈ ∂Ω

Ω = [− b

2
,
b

2
]2,

(15)

where k is a parameter. The initial-boundary value problem
has exact solution u(x, y) = sin(aix) sin(a2x) when

f(x, y) = (k2−a21π2−a22π2) sin(a1πx) sin(a2πy). (16)

We consider two cases, (k = 1, a1 = a2 = 1, b = 1) and
(k = 1, a1 = a2 = 10, b = 0.2), denoted as Helmholtz-1
and Helmholtz-0.2 respectively. Figure 9 in Appendix C.3
presents the reference solution.

From the perspective of both absolute error and relative
error in Table 2, MultiAdam achieves the highest accuracy
among these techniques . It improves the relative L2 error
by roughly two orders of magnitude. After resizing the
domain, MultiAdam does not suffer while the competitors
do, which again demonstrates the robustness of our method
against re-scaling.
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Figure 7. L2 loss curves in the Helmholtz-1 case trained with
Adam, MultiAdam or PCGrad.

5.2.1. RATE OF CONVERGENCE

We choose three representative algorithms, namely Adam,
MultiAdam and PCGrad, to compare their convergence
speeds from the perspective of L2 loss curves. As shown
in Figure 7, it is interesting to see that MultiAdam moves
slow in the beginning phase (e.g., < 5000 epochs), while
can quickly converge to better solutions. The reason for this
phenomenon is that MultiAdam is estimating the momen-
tum of the PDE and boundary objectives and once it obtains
a good estimate, the super-fast convergence rate is observed.
In contrast, the other methods converge slowly with much
more unstable phenomenons. These results demonstrate the
high efficiency and stability of MultiAdam.

5.3. Burgers’ equation

The Burgers’ equation is a fundamental PDE that describes
the evolution of a velocity field in one spatial dimension,
represented as follows:

ut + uux − νuxx = 0, ∀x ∈ [−1, 1], t ∈ [0, 1]

u(0, x) = − sin(πx)

u(t,−1) = u(t, 1) = 0,

(17)

where ν = 0.01
π . It can display parabolic or hyperbolic

behaviors depending on the relative importance of the forces
present.

Table 3 show the results. We can see that our method
has 2.92% lower error than the baseline PINNs, yet NTK
reweighting is even lower in this case. Comparing with
NTK reweighting, MultiAdam is more stable, as illustrated
in Figure 8, where we present the curves of relative L2 error
when using Adam, MultiAdam, and NTK methods. We

8
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Table 3. Mean absolute error and relative L2 error of different
optimization methods on Burgers’ equation.

Methods Burgers-1
Absolute Relative

Adam 1.61E-02 5.87%
LRA 8.23E-03 2.71%
NTK 3.47E-03 1.24%
GradNorm 4.81E-03 1.51%
PCGrad 6.18E-02 15.96%
MultiAdam 5.45E-03 2.95%

can see that for MultiAdam the error stays at a relatively
low position since the middle of training, while Adam’s
error periodically rises up to as large as 30%. The spike
phenomenon is not so eminent for NTK reweighting, but it
is still remarkably worse than MultiAdam’s.
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Figure 8. The maximum error across five runs during the last 8000
iterations of training on the Burgers’ equation.

6. Conclusion
This study primarily aimed to develop a scale-invariant
approach for training Physics-Informed Neural Networks
(PINNs). We highlighted the impact of domain scaling on
PDE loss terms, which significantly contributes to unbal-
anced losses, and discussed its negative effect on PINN
training. To address this issue, we introduced MultiAdam,
a parameter-wise scale-invariant optimizer specifically de-
signed for training PINNs. Our numerical experiments
demonstrated that this optimizer is capable of handling a
variety of cases across different scales, offering a relatively
stable training process. At the same time, we provided a
theoretical analysis of the error bounds of PINNs, which
characterize the relationship between the PINN loss terms
and the actual performance.
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A. Details of the sample case of Poisson’s equation
Its PDE and boundary conditions are as follow:

∆u(x) = 0,∀x ∈ Ω

u(x) = 1,∀x ∈ B1

u(x) = 0,∀x ∈ B2

(18)

Ω = [−4, 4]2 \ {x|(x1 ± 2)2 + (x2 ± 2)2 < 1}
B1 = {x|x1 ∈ {−4, 4}} ∪ {x|x2 ∈ {−4, 4}}
B2 = {x|(x1 ± 2)2 + (x2 ± 2)2 = 1}

(19)

B. Details and Proofs of Theorems
B.1. Proof of Theorem 4.1

Proof. Assume the operator of the PDE is L, which is a homogeneous PDE operator of k order. We can decompose the
homogeneous k order operator to:

L =
∑

l1+l2+···+ln=k

ηl1,··· ,ln∂
l1
x1
∂l2
x2
· · · ∂ln

xn (20)

where ∂xi is the partial differential operator in xi direction, ηl1,··· ,ln ∈ R is coefficient for the term.

Then, we use û to represent the output of PINN and û′(x) = û(tx) for the output of PINN when we narrow the domain by t
times. We first investigate the effect of scaling on the derivatives of û′. When we apply the term ∂l1

x1
∂l2
x2
· · · ∂ln

xn
on û′(x),

we can obtain:

∂l1
x1
∂l2
x2
· · · ∂ln

xn
û′(x) = ∂l1

x1
∂l2
x2
· · · ∂ln−1

xn
∂xn(û(tx))

= ∂l1
x1
∂l2
x2
· · · ∂ln−1

xn
((∂xn û)(tx) · ∂xn(tx))

= ∂l1
x1
∂l2
x2
· · · ∂ln−1

xn
((∂xn

û)(tx) · t)
= t · ∂l1

x1
∂l2
x2
· · · ∂ln−1

xn
(∂xn

û)(tx)

= · · ·
= tln · ∂l1

x1
∂l2
x2
· · · ∂ln−1

xn−1
(∂ln

xn
û)(tx)

= · · ·
= tl1+···+ln(∂l1

x1
∂l2
x2
· · · ∂ln

xn
û)(tx)

(21)

Therefore:

Lû′(x) =
∑

l1+···+ln=k

ηl1,··· ,ln∂
l1
x1
∂l2
x2
· · · ∂ln

xn
û′(x)

=
∑

l1+···+ln=k

ηl1,··· ,lnt
l1+···+ln(∂l1

x1
∂l2
x2
· · · ∂ln

xn
û)(tx)

= tk(Lû)(tx)

(22)

Now, we can see the effect of domain scaling on PDE loss as well as boundary loss. The L2 loss before scaling is:

11
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Lf =
1

|Tf |
∑
x∈Tf

∥Lû(x)∥22

Lb =
1

|Tb|
∑
x∈Tb

∥û(x)−B(x)∥22
(23)

Where B(x) is the boundary condition.

Now, if we narrow the domain by t times, the new loss function L′
f , L

′
b will be:

L′
f =

1

|Tf |
∑
x∈Tf

∥Lû′(x)∥22

=
1

|Tf |
∑
x∈Tf

∥tk · (Lû)(tx)∥22

= t2k
1

|Tf |
∑
x∈Tf

∥(Lû)(tx)∥22

= t2kLf

L′
b =

1

|Tb|
∑
x∈Tb

∥û′(x)−B′(x)∥22

=
1

|Tb|
∑
x∈Tb

∥u(tx)−B(tx)∥22

= Lb

(24)

Which leads to the conclusion of the theorem.

B.2. Proof of Theorem 4.3

In the following proof, we denote the parabolic operator as L. It can be formalized as:

L[u] =
∑

1≤i,j≤d

ai,j(x, t)
∂2u

∂xi∂xj
+
∑

1≤i≤d

bi(x, t)
∂u

∂xi
+ c(x)u− ∂u

∂t
(25)

Where ai,j , bi, c ∈ C(Ω) are the coefficient for the parabolic operator.

Firstly, we have to cite the following lemma:

Lemma B.1 (Maximum principle for Parabolic PDEs). Suppose Ω ⊂ Rd
x ×R+

t and L is a parabolic operator defined on Ω.
If L[u] ≥ 0, c ≤ 0,∀x ∈ Ω and u ∈ C2(Ω) ∩ C0(Ω) reaches maximum M ≥ 0 in the interior of Ω, then supx∈∂Ω u ≥M .

Proof. Thanks to the Theorem 7 in Chap.3 Sec.3 in (Protter & Weinberger, 2012), we can get the proof of the theorem.

Now we can start the proof for Theorem 4.3

Proof. We first assume that c ≤ 0 holds in Ω, and define h1 = uθ − ũ, h2 = L[uθ]− f . Due to the linearity of operator L,
we can see that L[h1] = h2

Since Ω is bounded, we assume that Ω lies in the slab 0 ≤ x1 ≤ d, and setL0[u] =
∑

ai,j(x, t)
∂2u

∂xi∂xj
+
∑

bi(x, t)
∂u
∂xi
− ∂u

∂t .

In addition, according to the definition of parabolic differential operators, the coefficient matrix A(x, t) = {ai,j(x, t)} is
positive definite. Thus, we can define λ(x, t) > 0 as the smallest eigenvalue of A(x, t).
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We define β = supΩ(|b|/λ) (well defined due to the maximum principle of continuous function in Ω). So for ∀α ≥ β + 1
we have:

L0e
αx1 = (α2a1,1 + αb1)e

αx1 ≥ λ(α2 − αβ)eαx1 ≥ λ (26)

Since a1,1 ≥ λ always holds for positive definite matrices. We denote h+
1 as the positive part of h1 and h−

2 for the negative
part of h2. Let

v = sup
∂Ω

h+
1 + (eαd − eαx1) sup

Ω

|h−
2 |
λ

(27)

Then v ≥ 0 always holds because x1 ≤ d and the two parts are always positive.

Thus,

Lv = L0v + cv ≤ L0v = − sup
Ω

|h−
2 |
λ
L0[e

αx1 ] ≤ −λ sup
Ω

|h−
2 |
λ

(28)

Therefore,

L(v − h1) ≤ −λ sup
Ω

|h−
2 |
λ
− L[h1] = −λ sup

Ω

|h−
2 |
λ
− h2 = −λ(sup

Ω

|h−
2 |
λ

+
h2

λ
) ≤ 0

By Lemma B.1, we can get that h1 ≤ v always holds in Ω. Thus, we have:

sup
Ω

h1 ≤ sup
Ω

v ≤ sup
∂Ω

h+
1 + (eαd − 1) sup

Ω

|h−
2 |
λ

Replacing h1, h2 by −h1,−h2, we obtain:

sup
Ω
|h1| ≤ sup

∂Ω
|h1|+ (eαd − 1) sup

Ω

|h2|
λ
≤ δ1 + (eαd − 1)

δ2
λ0

Then, we consider the situation that c > 0:

Since there exist η > 0 satisfies that c ≤ η always holds on Ω, then we define h̃1 = e−ηth1. Then (L − η)[h̃1] =
(Le−ηt)h1+e−ηt(Lh1)−ηe−ηth1 = e−ηt(Lh1) = e−ηth2. And the operator L−η =

∑
ai,jDi,j+

∑
biDi+c−η−Dt

satisfies c− η ≤ 0. Therefore, using the conclusion above we can get that:

sup
Ω
|h̃1| ≤ sup

∂Ω
|h̃1|+ (eαd − 1) sup

Ω

|e−λth2|
λ

Subsequently, if we assume that Ω lies in t0 ≤ t ≤ t0 + T , then we can get

sup
Ω
|h1| ≤eηT (sup

∂Ω
|h1|+ (eαd − 1) sup

Ω

|h2|
λ

)

≤eηT (δ1 + (eαd − 1)
δ2
λ0

)

(29)

By setting C1 = eηT , C = (eαd − 1)/λ0, we can get the proof of the theorem.

B.3. Details of Theorem 4.4

In the following proof, we denote the hyperbolic operator as L, which can be formalized as:

L[u] = a(x, t)
∂2u

∂2x
+ 2b(x, t)

∂2u

∂x∂t
+ c(x, t)

∂2u

∂2t
+ d(x, t)

∂u

∂x
+ e(x, t)

∂u

∂t
+ h(x, t)u (30)

Where a, b, c, d, e, h ∈ C(Ω) are coefficient functions for the equation.

We will first give definition to Admissible Domain and specify the conditions for the hyperbolic operator L in Theorem 4.4.
Using this assumptions, we will cite a lemma proved in (Protter & Weinberger, 2012) and finally use this lemma to prove
Theorem 4.4.
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B.3.1. DEFINITION OF ADMISSIBLE DOMAIN

Definition B.2. (characteristic curves):

The definition can also be found in (Protter & Weinberger, 2012)

For every point (x, t) ∈ Ω that satisfies c(x, t) ̸= 0, we have two characteristic curves, which are the solutions to the
following ordinary differential equation:

c(
dx
dt

)2 − 2b
dx
dt

+ a = 0

Solving for dx/dt, we have:
dx
dt

=
−b±

√
b2 − ac

−c
Thus, we can have two characteristics C+ and C−, corresponding to the two signs in front of the square root.

Definition B.3. (characteristic triangle):

The definition can also be found in (Protter & Weinberger, 2012)

We assume that c ≤ c0 < 0 and for every point C = (x, t) ∈ Ω, we construct two characteristic curves C+, C−. We denote
by A the point where C+ hits the x-axis and by B the point where C− curve hits it. Then the segment AB and two curves
AC and BC form a characteristic triangle ABC.

Definition B.4. (admissible domain):

The definition can also be found in (Protter & Weinberger, 2012)

A domain Ω ⊂ Rx × R+
t is called an admissible domain if it has the property that for every point C = (x, t) ∈ Ω, the

corresponding characteristic triangle ABC with AB on the x-axis is also in Ω.

B.3.2. CONDITIONS FOR THE HYPERBOLIC OPERATOR L IN THEOREM 4.4

The condition for the hyperbolic operator is:

c ≤ c0 < 0

K± ≥ 0

∂2a

∂2x
+ 2

∂2b

∂x∂t
+

∂2c

∂2t
− ∂d

∂x
− ∂e

∂t
+ h ≥ 0

(31)

where c0 is a negative constant. K± are:

K± =
∂

∂t
(
√

b2 − ac) +
b

c

∂

∂x
(
√
b2 − ac) +

1

c
(
∂b

∂x
+

∂c

∂t
− e)

√
b2 − ac

±
[
− 1

2c

∂

∂x
(b2 − ac) +

∂a

∂x
+

∂b

∂t
− d− b

c
(
∂b

∂x
+

∂c

∂t
− e)

] (32)

B.3.3. PROOF OF THEOREM 4.4

In order to proof the theorem, we first introduce a Lemma in (Protter & Weinberger, 2012):

Lemma B.5 (Maximum principle for Hyperbolic PDEs). Suppose Ω ⊂ Rx ×R+
t is an admissible domain and denote Γ0 =

Ω∩ {t = 0}. Assume the operator L satisfies the constraints in Equation (31). Then, if a function u ∈ C2(Ω)∩C1(Ω∪Γ0)
satisfies:

L[u] ≥ 0 ∀(x, t) ∈ Ω

u ≤ 0 ∀(x, t) ∈ Γ0

b
∂u

∂x
+ c

∂u

∂t
− (

∂b

∂x
+

∂c

∂t
− e)u ≥ 0 ∀(x, t) ∈ Γ0

(33)
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Then u ≤ 0 in Ω.

Moreover, if we replace u ≤ 0 in Γ0 by u ≤ M , where M ≥ 0 is a constant, and add two constraints that h ≤ 0 and
∂b
∂x + ∂c

∂t − e ≥ 0,∀(x, t) ∈ Γ0, then u ≤M in Ω.

Proof. Detailed proof can be found in Chap.4 Sec.3 in (Protter & Weinberger, 2012)

Now, we can start the proof of our theorem.

Proof. Firstly, we assume that uθ = ũ on the boundary Γ0.

We define h1 = uθ − ũ, h2 = L[uθ]− f . Due to the linearity of hyperbolic operator L, we can see that L[h1] = h2 and
h1 = 0 on Γ0.

Define v = (eαt − 1) supΩ |h−
2 |, Here, α = N+

√
N2−4c0

−2c0
> 0 where N = supΩ |e|

Therefore, by the definition of α, we have α2c+ αe ≤ α2c0 + αM + 1− 1 ≤ −1, so:

L(eαt) = (α2c+ αe)eαt ≤ −eαt

According to the assumption that h ≤ 0 and the definition of v:

(L+ h)(v) = (Leαt) sup
Ω
|h−

2 |+ hv ≤ −eαt sup
Ω
|h−

2 |

≤ − sup
Ω
|h−

2 |
(34)

Therefore,
(L+ h)(h1 − v) ≥ h2 + sup

Ω
|h−

2 | ≥ 0

At the same time, given that h1 = v = 0 on Γ0, we have:

−b∂(h1 − v)

∂x
− c

∂(h1 − v)

∂t
+ (bx + ct − e)(u− v)

= c
∂v

∂t
= cαeαt sup

Ω
|f−| ≤ 0

(35)

Thus, according to Theorem B.5, h1 ≤ v holds on Ω, so suph1 ≤ (eαT − 1) supΩ |h−
2 |, where T is the upper bound of

t-coordinate of the points in Ω.

By replacing h1, h2 with −h1,−h2, we have sup |h1| ≤ (eαT − 1)δ2.

Now, we consider uθ ̸= ũ on boundary Γ0

Let w be the solution to the following PDE:

L[w](x) = f(x), ∀x ∈ Ω

w(x) = uθ(x), ∀x ∈ ∂Ω
(36)

So h1 = uθ − w and h2 = L[uθ]− f satisfies the conditions above. so ∥uθ − w∥L∞ ≤ (eαT − 1)δ2

Also, h3 = ũ− w satisfies that L[h3] = 0 and h3 ≤ supΓ0
|uθ − ũ| < δ1, so by Theorem B.5, supΩ h3 ≤ δ1

Replacing h3 by −h3, we have ∥ũ− w∥L∞ ≤ δ1, so finally ∥uθ − ũ∥L∞ ≤ δ1 + (eαT − 1)δ2. Here, taking C = eαT − 1
is a possible value.
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B.4. Proof of Theorem 4.5

Proof. We first define the error in the domain: h1 = uθ − ũ, h2 = L[uθ]− f , and we assume the error can be approximated
by a set of base function {ϕi}. That is:

h1(x) = (1 + ε1(x))

n∑
i=1

λiϕi(x)

h2(x) = (1 + ε2(x))

n∑
i=1

ηiϕi(x)

(37)

Where λi, ηi are coefficients and ε1, ε2 are the relative errors in the approximation. A proper set of the base function can be
produced by FEM methods in Ω.

Then, according to the definition in Equation (2), we have:

Lb =
1

|Tb|
∑
x∈Tb

|h1(x)|2

=
1

|Tb|
∑
x∈Tb

(
(1 + ε1(x))

n∑
i=1

λiϕi(x)

)2

≥ 1

|Tb|
∑
x∈Tb

(

n∑
i=1

λiϕi(x))
2 · inf

x∈∂Ω
(1 + ε1(x))

2

≥
n∑

i=1

n∑
j=1

λiλj

(
1

|Tb|
∑
x∈Tb

ϕi(x)ϕj(x)

)
· (1− ∥ε1∥L∞)2

Lf =
1

|Tb|
∑
x∈Tb

|h2(x)|2

=
1

|Tf |
∑
x∈Tf

(
(1 + ε2(x))

n∑
i=1

ηiϕi(x)

)2

≥ 1

|Tf |
∑
x∈Tf

(

n∑
i=1

ηiϕi(x))
2 · inf

x∈Ω
(1 + ε2(x))

2

≥
n∑

i=1

n∑
j=1

ηiηj

 1

|Tf |
∑
x∈Tf

ϕi(x)ϕj(x)

 · (1− ∥ε2∥L∞)2

(38)

We denote ai,j =
1

|Tb|
∑

x∈Tb
ϕi(x)ϕj(x) and it can construct a matrix A = {ai,j}. The matrix is positive definite since it

is the metric matrix for the space V = span{ϕi} equipped with the inner product (f, g) = 1
|Tb|

∑
x∈Tb

f(x)g(x). Similarly,
when we define bi,j =

1
|Tf |

∑
x∈Tf

ϕi(x)ϕj(x), it also constructs a positive definite matrix B = {bi,j}.

Therefore:

Lb ≥ λTAλ · (1− ∥ε1∥L∞)2

Lf ≥ ηTBη · (1− ∥ε2∥L∞)2
(39)
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Moreover, we have:

sup
x∈∂Ω

|h1| ≤ sup
x∈∂Ω

n∑
i=1

(1 + ε1(x))|λiϕi(x)|

≤ (1 + ∥ε1∥L∞)

n∑
i=1

|λi| sup
x∈∂Ω

|ϕi(x)|

sup
Ω
|h2| ≤ sup

x∈Ω

n∑
i=1

(1 + ε2(x))|ηiϕi(x)|

≤ (1 + ∥ε2∥L∞)

n∑
i=1

|ηi| sup
x∈Ω
|ϕi(x)|

(40)

Now, we define (we assume the approximation error ∥ε1∥L∞ , ∥ε1∥L∞ are close to 0 ):

D1 = sup
∥λ∥=1

(1 + ∥ε1∥L∞)
∑n

i=1 |λi| supx∈∂Ω |ϕi(x)|
(1− ∥ε1∥L∞)

√
λTAλ

D2 = sup
∥η∥=1

(1 + ∥ε2∥L∞)
∑n

i=1 |ηi| supx∈Ω |ϕi(x)|
(1− ∥ε2∥L∞)

√
ηTBη

(41)

D1 is well posed since A,B are positive definite, thus the function is bounded in the compact domain ∥λ∥ = 1. The
well-posedness for D2 is similar.

Finally, by combining Equation (39), (40) and (41), we have:

sup
x∈∂Ω

|h1| ≤ D1

√
Lb

sup
x∈Ω
|h2| ≤ D2

√
Lf

(42)

Given the condition in the theorem 4.5, we have:

∥uθ − ũ∥L∞ ≤ C1( sup
x∈∂Ω

|uθ − ũ|+ C sup
x∈Ω
|L[uθ]− f |)

= C1( sup
x∈∂Ω

|h1|+ C sup
x∈Ω
|h2|)

≤ max{D1, C ·D2}C1(
√
Lb + C

√
Lf )

(43)

By setting C2 = max{D1, C ·D2}C1, we can get the proof of our theorem.

B.5. Proof of Theorem 5.1

Proof. First, let Ω ⊂ R2 and f ∈ C∞(Ω), g ∈ C∞(∂Ω). The Poisson’s Equation is:

−∆u = f, ∀x ∈ Ω

u = g,∀x ∈ ∂Ω
(44)

We denote the solution to the equation above as ũ.

Assume the PINN estimation is uθ and the error is v = u− uθ, we will have:

−∆v = f +∆uθ,∀x ∈ Ω

v = g − uθ,∀x ∈ ∂Ω
(45)
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and we can explicitly write the error with the help of Green function G(x, ξ) (See chapter 7.5 of (Herman, 2015) )

v(x) =

∫
Ω

(f(ξ) + ∆uθ(ξ))G(x, ξ)dξ −
∫
∂Ω

(g(ξ)− uθ(ξ))∇ξG(x, ξ) · ndσ (46)

where∇ξG(x, ξ) is the gradient of G(x, ξ) with respect to ξ and n is the normal vector of ∂Ω.

Then, we use Cauchy inequality:

∫
Ω

(f(ξ) + ∆uθ(ξ))G(x, ξ)dξ

≤

√∫
Ω

(f(ξ) + ∆uθ(ξ))2dξ

√∫
Ω

G2(x, ξ)dξ∫
∂Ω

(g(ξ)− uθ(ξ))∇ξG(x, ξ) · ndσ

≤

√∫
∂Ω

(g(ξ)− uθ(ξ))2dξ

√∫
∂Ω

(∇ξG(x, ξ) · n)2dσ

(47)

So, if we define our model’s L2 loss as follows:

Lf =
1

|Ω|

∫
Ω

(f(ξ) + ∆uθ(ξ))
2dξ

Lb =
1

|∂Ω|

∫
∂Ω

(g(ξ)− uθ(ξ))
2dξ

(48)

we can get the control of the error:

|v(x)| ≤
√

Lf · |Ω|

√∫
Ω

G2(x, ξ)dξ

+
√

Lb · |∂Ω|

√∫
∂Ω

(∇ξG(x, ξ) · n)2dσ

(49)

Finally, we can get the following conclusion:

∥v∥L1 ≤ C1

√
Lf + C2

√
Lb (50)

by defining C1 =
∫
Ω

√
|Ω|
∫
Ω
G2(x, ξ)dξdx, C2 =

∫
Ω

√
|∂Ω|

∫
∂Ω

(∇ξG(x, ξ) · n)2dx

C. Details of Experiments
We run the experiments based on DeepXDE 1.6.1 (Lu et al., 2021) with Pytorch 1.9 (Paszke et al., 2017) backend. We
use the default hyper-parameters for all the methods. The code will be released at https://github.com/i207M/
MultiAdam

We strictly control the non-experimental variables of tests to be the same. In all examples, we use a five-layer feed-forward
network of width 100 as the base model. The training dataset contains 10000 random points sampled from the domain and
1000 from boundaries.
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The accuracy of the methods is measured by mean absolute error (MAE) and relative L2 error, which is explained in
Appendix C.1. To reduce randomness, we repeat every setup 5 times with the Glorot normal initializer (Glorot & Bengio,
2010) and provide their average.

C.1. Measurement

The metrics we use are mean absolute error and relative L2 error as follows:

relative L2 error =

√∑N
i=1 |û(xi, ti)− u(xi, ti)|2√∑N

i=1 |u(xi, ti)|2
(51)

where u is the exact solution and û is the trained approximation. In cases that u cannot be analytically represented, we
utilize the finite element method to obtain high-precision numerical reference.

C.2. Poisson’s equation

We use tanh as the activation function and train the five-layer network for 15000 epochs.

C.3. Helmholtz equation

On training hyper-parameters, the activation function of the model is sin and the number of training epochs is 20000.
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Figure 9. The predicted solution versus the exact solution of Helmholtz Equation by training a five-layer neural network using MultiAdam
after 15000 iterations.

C.4. Burgers’ equation

Regarding network settings, tanh is set as the activation function and we iterate the optimization 20000 times.

D. Ablation study on β1, β2 hyper-parameters
Here we use examples to demonstrate our interesting findings on the performance impact of betas, often-ignored hyper-
parameters of the Adam optimizer. Adam’s β1, β2 are (0.9, 0.999) by default, which may not be optimal for MultiAdam.
We compared different settings of betas to illustrate the effect of first-order and second-order momentum estimation in our
method. Results are listed in Table 4.

We found that (0.99, 0.99) achieves the best convergence, which holds true among other PDE systems after substantial
experiments. We argue that the scale invariant ability is related to the equality of β1 and β2. The equality implies that the
optimizer tracks the same period of history of first-order and second-order gradient momentums, so by dividing one by
another the scaling factor is eliminated. Hence the Adam’s default (0.9, 0.999) works badly while (0.9, 0.9) is OK. We
also tested removing first-order or second-order momentum, which performed so poorly that even encountered numerical
instability. Therefore the momentum does help with optimization.
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Table 4. Mean absolute error and relative L2 error of different β1, β2 settings on Poisson’s equation. (0.9, 0) runs into NaN multiple
times.

β1, β2
Poisson-8 Poisson-1

Absolute Relative Absolute Relative
0.99,0.99 1.10E-02 2.94% 1.44E-02 4.49%
0.9,0.999 2.98E-02 8.44% 3.04E-01 70.19%
0.9,0.9 2.54E-02 7.78% 8.25E-02 21.09%
0.9,0 N/A N/A N/A N/A
0,0.9 8.76E-02 22.33% 2.92E-01 68.31%
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