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ABSTRACT

Graph neural networks (GNNs) have become a core paradigm for learning on re-
lational data. In materials science, equivariant GNNs (EGNNs) have emerged as a
compelling backbone for crystalline-structure prediction, owing to their ability to
respect Euclidean symmetries and periodic boundary conditions. Despite strong
empirical performance, their expressive power in periodic, symmetry-constrained
settings remains poorly understood. This work characterizes the intrinsic com-
putational and expressive limits of EGNNs for crystalline-structure prediction
through a circuit-complexity lens. We analyze the computations carried out by
EGNN layers acting on node features, atomic coordinates, and lattice matrices,
and prove that, under polynomial precision, embedding width d = O(n) for
n nodes, O(1) layers, and O(1)-depth, O(n)-width MLP instantiations of the
message/update/readout maps, these models admit a simulation by a uniform
TC0 threshold-circuit family of polynomial size (with an explicit constant-depth
bound). Situating EGNNs within TC0 provides a concrete ceiling on the deci-
sion and prediction problems solvable by such architectures under realistic re-
source constraints and clarifies which architectural modifications (e.g., increased
depth, richer geometric primitives, or wider layers) are required to transcend this
regime. The analysis complements Weisfeiler-Lehman style results that do not
directly transfer to periodic crystals, and offers a complexity-theoretic foundation
for symmetry-aware graph learning on crystalline systems.

1 INTRODUCTION

Graphs are a natural language for relational data, capturing entities and their interactions in domains
ranging from molecules and materials (Merchant et al., 2023) to social (Sankar et al., 2021) and
recommendation networks (Ying et al., 2018). Graph neural networks (GNNs) have consequently
become a standard tool for learning on such data: the message-passing paradigm aggregates infor-
mation over local neighborhoods to produce expressive node and graph representations that power
tasks such as node/edge prediction and graph classification. This message-passing template (i.e.,
graph convolution followed by nonlinear updates) underlies many successful architectures and ap-
plications (Jumper et al., 2021; Brehmer et al., 2023).

Recently, equivariant graph neural networks (EGNNs) (Satorras et al., 2021) have emerged as a
promising direction for modeling crystalline structures in materials science. By respecting Eu-
clidean symmetries and periodic boundary conditions, EGNNs encode physically meaningful in-
ductive biases, enabling accurate predictions of structures, energies, and related materials proper-
ties directly from atomic coordinates and lattice parameters (Schmidt et al., 2022; Merchant et al.,
2023). In practice, E(3)/E(n)-equivariant message passing and related architectures achieve strong
performance while avoiding some of the computational burdens of higher-order spherical-harmonics
pipelines (Thomas et al., 2018; Liao & Smidt, 2022), and they have been adapted to periodic crys-
tals (Jiao et al., 2023; AI4Science et al., 2023). Moreover, EGNN-style backbones are now widely
used within crystalline generative models, including diffusion/flow-based approaches that model
positions, lattices, and atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023).

Despite this progress, fundamental questions about expressive power remain. In particular, we ask:
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What are the intrinsic computational and expressive limits of EGNNs for
crystalline-structure prediction?

Prior theory for (non-equivariant) message-passing GNNs analyzes expressiveness through the lens
of the Weisfeiler–Lehman (WL) hierarchy (Xu et al., 2018; Morris et al., 2019; 2020), establishing
that standard GNNs are at most as powerful as 1-WL and exploring routes beyond via higher-order
or subgraph-based designs (Morris et al., 2019; Maron et al., 2019; Cotta et al., 2021; Qian et al.,
2022); other lines study neural models via circuit-complexity bounds. However, WL-style results
focus on discrete graph isomorphism and typically abstract away continuous coordinates and sym-
metry constraints, while most existing circuit-complexity analyses target different architectures (e.g.,
Transformers (Li et al., 2024b; Chen et al., 2025a)). These differences make such results ill-suited to
crystalline settings, where periodic lattices, continuous 3D coordinates, and E(n)-equivariance are
first-class modeling constraints. This motivates a tailored treatment of EGNNs for crystals.

In this paper, we investigate the fundamental expressive limits of EGNNs in crystalline-structure pre-
diction (Kaba & Ravanbakhsh, 2022; Jiao et al., 2023; Miller et al., 2024). Rather than comparing
against WL tests, we follow a circuit-complexity route (Chiang, 2024; Liu, 2025): we characterize
the computations performed by EGNN layers acting on node features, atomic coordinates, and lat-
tice matrices, and we quantify the resources required to simulate these computations with uniform
threshold circuits. Placing EGNNs within a concrete circuit class yields immediate implications for
the families of decision or prediction problems such models can (and provably cannot) solve under
realistic architectural and precision constraints. This perspective complements WL-style analyses
and is naturally aligned with architectures, such as EGNNs, that couple graph structure with contin-
uous, symmetry-aware geometric features.

Our contributions are summarized as follows:

• Formalizing EGNNs’ structure. We formalize the definition of EGNNs (Definition 3.10).

• Circuit-complexity upper bound for EGNNs. Under polynomial precision, embedding
width d = O(n), O(1) layers, and O(n)-width O(1)-depth MLP instantiations of the
message/update/readout maps, we prove that the EGNN class in Definition 3.10 can be
simulated by a uniform TC0 circuit family (Theorem 5).

Roadmap. In Section 2, we review the relevant works. In Section 3, we show the basic concepts
and notations. In Section 4, we analyze the circuit complexity of components. In Section 5, we
present our main results. Finally, in Section 6, we conclude our work.

2 RELATED WORK

CSP and DNG in Materials Discovery Early methods for CSP and DNG approached materials
discovery by generating a large pool of candidate structures and then screening them with high-
throughput quantum mechanical calculations (Kohn & Sham, 1965) to estimate stability. Candidates
were typically constructed through simple substitution rules (Wang et al., 2021) or explored with
genetic algorithms (Glass et al., 2006; Pickard & Needs, 2011). Later, machine learning models
were introduced to accelerate this process by predicting energies directly (Schmidt et al., 2022;
Merchant et al., 2023).

To avoid brute-force search, generative approaches have been proposed to directly design materials
(Court et al., 2020; Yang et al., 2021; Nouira et al., 2018). Among them, diffusion models have
gained particular attention, initially focusing on atomic positions while predicting the lattice with
a variational autoencoder (Xie et al., 2021), and more recently modeling positions, lattices, and
atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023). Other recent advances
incorporate symmetry information such as space groups (AI4Science et al., 2023; Jiao et al., 2024;
Cao et al., 2024), leverage large language models (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver
et al., 2024), or employ normalizing flows (Wirnsberger et al., 2022).

Flow Matching for Crystalline Structures Flow Matching (Lipman et al., 2023; Tong et al., 2023b;
Dao et al., 2023) has recently established itself as a powerful paradigm for generative modeling,
showing remarkable progress across multiple areas. The initial motivation came from address-
ing the heavy computational cost of Continuous Normalizing Flows (CNFs) (Chen et al., 2018),
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as earlier methods often relied on inefficient simulation strategies (Rozen et al., 2021; Ben-Hamu
et al., 2022). This challenge inspired a new class of Flow Matching techniques (Albergo & Vanden-
Eijnden, 2022; Tong et al., 2023a; Heitz et al., 2023), which learn continuous flows directly without
resorting to simulation, thereby achieving much better flexibility. Thanks to its straightforward for-
mulation and strong empirical performance, Flow Matching has been widely adopted in large-scale
generation tasks. For instance, (Davtyan et al., 2023) proposes a latent flow matching approach
for video prediction that achieves strong results with far less computation. (Zhang et al., 2025a)
applies consistency flow matching to robotic manipulation, enabling efficient and fast policy gener-
ation. (Jing et al., 2024) develops a flow-based generative model for protein structures that improves
conformational diversity and flexibility while retaining high accuracy. (Luo et al., 2024) introduces
CrystalFlow, a flow-based model for efficient crystal structure generation. Overall, Flow Match-
ing has proven to be an efficient tool for generative modeling across diverse modalities. Notably,
EGNN-style backbones have become a de facto choice for crystalline structure generative modeling:
diffusion- and flow-based pipelines pair symmetry-aware message passing with periodic boundary
handling to jointly model positions, lattices, and compositions (Jiao et al., 2023; Yang et al., 2023;
Zeni et al., 2023; Luo et al., 2024). In these systems, the equivariant message-passing core supplies
an inductive bias that improves sample validity and stability while reducing reliance on higher-order
tensor features (Satorras et al., 2021; AI4Science et al., 2023; Jiao et al., 2024).

Geometric Deep Learning. Geometric deep learning, particularly geometrically equivariant Graph
Neural Networks (GNNs) that ensure E(3) symmetry, has achieved notable success in chemistry, bi-
ology, and physics (Jumper et al., 2021; Bronstein et al., 2021; Brehmer et al., 2023; Merchant et al.,
2023; Qiu et al., 2023; Zhang et al., 2025b). In particular, equivariant GNNs have demonstrated su-
perior performance in modeling 3D structures (Chanussot et al., 2021; Tran et al., 2023). Existing
geometric deep learning approaches can be broadly categorized into four types: (1) Invariant meth-
ods, which extract features stable under transformations, such as pairwise distances and torsion
angles (Schütt et al., 2018; Gasteiger et al., 2020; 2021); (2) Spherical harmonics-based models,
which leverage irreducible representations to process data equivariantly (Thomas et al., 2018; Liao
& Smidt, 2022); (3) Branch-encoding methods, encoding coordinates and node features separately
and interacting through coordinate norms (Jing et al., 2020; Satorras et al., 2021); (4) Frame averag-
ing frameworks, which model coordinates in multiple PCA-derived frames and achieve equivariance
by averaging the representations (Puny et al., 2021; Duval et al., 2023).

While these architectures have pushed the boundaries of modeling geometric data in 3D structures,
and advanced equivariant and invariant neural architectures in learning geometric data in chem-
istry, biology, and physics domains, the fundamental limitations of such architectures in crystalline
structures still remain less explored. In this paper, we reveal the fundamental expressive capability
limitation of equivariant GNNs via the lens of circuit complexity.

Circuit Complexity and Machine Learning. Circuit complexity is a fundamental notion in the-
oretical computer science, providing a hierarchy of Boolean circuits with different gate types and
computational resources (Vollmer, 1999; Arora & Barak, 2009). This framework has recently been
widely used to analyze the expressiveness of machine learning models: a model that can be sim-
ulated by a weaker circuit class may fail on tasks requiring stronger classes. A central line of
work applies circuit complexity to understand Transformer expressivity. Early studies analyzed
two simplified theoretical models of Transformers: SoftMax-Attention Transformers (SMATs) and
Average-Head Attention Transformers (AHATs) (Liu et al., 2023; Merrill et al., 2022; Merrill &
Sabharwal, 2023). Subsequent results have extended these analyses to richer Transformer variants,
including those with Chain-of-Thought (CoT) reasoning (Feng et al., 2023; Li et al., 2024b; Mer-
rill & Sabharwal, 2024), looped architectures (Giannou et al., 2023; Luca & Fountoulakis, 2024;
Saunshi et al., 2025), and Rotary Position Embeddings (RoPE) (Chen et al., 2025a; Yang et al.,
2025; Chen et al., 2025b). Beyond Transformers, circuit complexity has also been applied to other
architectures such as state space models (SSMs) (Chen et al., 2025c), Hopfield networks (Li et al.,
2024a), diffusion models (Cao et al., 2025; Chen et al., 2025d; Ke et al., 2025), and graph neural
networks (GNNs) (Grohe, 2023; Cui et al., 2024; Li et al., 2025). In this work, we study the circuit
complexity bounds of equivariant GNNs on crystalline structures, providing the first analysis of this
kind.
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3 PRELIMINARY

We begin by introducing some basics of crystal representations in Section 3.1, and then introduce
the background knowledge of equivariant graph neural networks (EGNNs) in Section 3.2. Next, we
present the basics in circuit complexity in Section 3.3.

3.1 REPRESENTATION OF CRYSTAL STRUCTURES

The unit cell representation describes the basis vectors of the unit cell, and all the atoms in a unit
cell.
Definition 3.1 (Unit cell representation of a crystal structure, implicit in page 3 of (Jiao et al., 2023)).
LetA := [a1, a2, . . . , an] ∈ Rh×n denote the list of description vectors for each atom in the unit cell.
Let X := [x1, x2, . . . , xn] ∈ R3×n denote the list of Cartesian coordinates of each atom in the unit
cell. Let L := [l1, l2, l3] ∈ R3×3 denote the lattice matrix, where l1, l2, l3 are linearly independent.
The unit cell representation of a crystal structure can be defined as a triplet C := (A,X,L).

The atom set representation describes a set containing an infinite number of atoms in the periodic
crystal structure.
Definition 3.2 (Atom set representation of a crystal structure, implicit in page 3 of (Jiao et al.,
2023)). Let C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1, where
A := [a1, a2, . . . , an] ∈ Rh×n, X := [x1, x2, . . . , xn] ∈ R3×n, and L := [l1, l2, l3] ∈ R3×3. The
atom set representation of C is defined as follows:

S(C) := {(a, x) : a = ai, x = xi + Lk, ∀i ∈ [n],∀k ∈ Z3},

where k is a length-3 column integer vector.
Definition 3.3 (Fractional coordinate matrix, implicit in page 3 of (Jiao et al., 2023)). Let
C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1, where A :=
[a1, a2, . . . , an] ∈ Rh×n, X := [x1, x2, . . . , xn] ∈ R3×n, and L := [l1, l2, l3] ∈ R3×3. We say
that F := [f1, f2, . . . , fn] ∈ [0, 1)3×n is a fractional coordinate matrix for C if and only if for all
i ∈ [n], we have:

xi = Lfi.

Definition 3.4 (Fractional unit cell representation of a crystal structure, implicit in page 3 of (Jiao
et al., 2023)). Let C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1.
Let F be a fractional coordinate matrix as Definition 3.3. The fractional unit cell representation of
C is a triplet Cfrac := (A,F, L).
Fact 3.5 (Equivalence of unit cell representations, informal version of Fact A.1). For any fractional
unit cell representation Cfrac := (A,F, L) as Definition 3.4, there exists a unique corresponding
non-fractional unit cell representation C := (A,X,L) as definition 3.1.

Therefore, since both unit cell representations are equivalent, we only use the fractional unit cell
representation in this paper. For notation simplicity, we may abuse the notation C to denote Cfrac in
the following parts of this paper.
Definition 3.6 (Fractional atom set representation of a crystal structure, implicit in page 3 of (Miller
et al., 2024)). Let Cfrac := (A,F, L) be a fractional unit cell representation of a crystal structure
as Definition 3.4, where A := [a1, a2, . . . , an] ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and
L := [l1, l2, l3] ∈ R3×3. The atom set representation of C is defined as follows:

Sfrac(C) := {(a, f) : a = ai, f = fi + k, ∀i ∈ [n],∀k ∈ Z3},

where k is a length-3 column integer vector.

3.2 EQUIVARIANT GRAPH NEURAL NETWORK ARCHITECTURE

We first define a useful transformation that computes the distance feature between each two atoms.
Definition 3.7 (k-order Fourier transform of relative fractional coordinates). Let x ∈ (−1, 1)3 be
a length-3 column vector. Without loss of generality, we let k ∈ Z+ be a positive even number.
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Let the output of the k-order Fourier fractional coordinates be a matrix Y ∈ R3×k such that Y :=
ψFT,k(x). For all i ∈ [3], j ∈ [k], each element of Y is defined as:

Yi,j :=

{
sin(πjxi), j is even;

cos(πjxi), j is odd.

Then, we define a single layer for the Equivariant Graph Neural Network (EGNN) on the fractional
unit cell representation of crystals.
Definition 3.8 (Pairwise Message). Let C := (A,F, L) be a fractional unit cell representation as
Definition 3.4, where A ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and L ∈ R3×3. Let H :=
[h1, h2, . . . , hn] ∈ Rd×n be a hidden neural representation for all the atoms. Let ψFT,k be a k-
order Fourier transform of relative fractional coordinates as Definition 3.7. Let ϕmsg : Rd × Rd ×
R3×3 × R3×k → Rd be an arbitrary function. We define the message MSGi,j(F,L,H) ∈ Rd

between the i-th atom and the j-th atom for all i, j ∈ [n] as follows:

MSGi,j(F,L,H) := ϕmsg(hi, hj , L
⊤L,ψFT,k(fi − fj)).

Definition 3.9 (One EGNN layer). Let C := (A,F, L) be a fractional unit cell representation
as Definition 3.4, where A := [a1, a2, . . . , an] ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and
L := [l1, l2, l3] ∈ R3×3. Let H := [h1, h2, . . . , hn] ∈ Rd×n be a hidden neural representation for
all the atoms. Let ϕupd : Rd×Rd → Rd be an arbitrary function. Let MSG be the message function
defined as Definition 3.8. Let the output of the i-th EGNN layer EGNNi(A,F, L,H) be a matrix
Y = [y1, y2, . . . , yn] ∈ Rd×n, i.e., Y := EGNNi(F,L,H). For all i ∈ [n], each column of Y is
defined as:

yi := hi + ϕupd(hi,

n∑
j=1

MSGi,j(F,L,H)).

Definition 3.10 (EGNN). Let C := (A,F, L) be a fractional unit cell representation as Defini-
tion 3.4, where A ∈ Rh×n, F ∈ R3×n, and L ∈ R3×3. Let q be the number of EGNN lay-
ers. Let ϕin : Rh×n → Rd×n be an arbitrary function for the input transformation. The q-layer
EGNN : Rd×n × R3×n × R3×3 → Rd×n can be defined as follows:

EGNN(A,F, L) := EGNNq ◦ EGNNq−1 ◦ · · · ◦ EGNN1(ϕin(A), F, L).

Remark 3.11. While functions ϕmsg, ϕupd, and ϕin are usually implemented as simple MLPs in
practice, our theoretical result on equivariance and invariance works for any possible instantiation
of these functions.

3.3 CIRCUIT COMPLEXITY CLASS

In this section, we present Boolean circuits and key preliminaries for circuit complexity.
Definition 3.12 (Boolean Circuit, implicit in page 102 on (Arora & Barak, 2009)). Let n ∈ Z+. A
Boolean circuit is defined as a directed acyclic graph (DAG) that realizes a function Cn : {0, 1}n →
{0, 1}. The nodes of the graph are referred to as gates. Those with in-degree zero serve as input
nodes, corresponding to the n Boolean variables, while every other gate applies a Boolean function
to the output of its predecessors.

Since each circuit is limited to inputs of a fixed length, we rely on a sequence of circuits to handle
languages that include strings of any length.
Definition 3.13 (Circuit family recognizes languages, implicit in page 103 on (Arora & Barak,
2009)). Consider a language L ⊆ {0, 1}∗ and a family of Boolean circuits C = {Cn}n∈N, we say
that C recognizes L if every string x ∈ {0, 1}∗, C|x|(x) = 1 ⇐⇒ x ∈ L.

By restricting the size and depth of circuit families, we can define certain complexity classes, for
example NCi.

Definition 3.14 (NCi,implicit in page 40 on (Arora & Barak, 2009)). A language belongs to NCi

if it is decidable by a family of Boolean circuits of polynomial size O(poly(n)), depth O((log n)i),
and built from AND, OR, and NOT gates with bounded fan-in.
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By extending AND and OR gates to unbounded fan-in, we obtain more expressive circuits, which
define the class ACi.
Definition 3.15 (ACi, (Arora & Barak, 2009)). A language belongs to ACi if it can be recognized
by a family of Boolean circuits with polynomial size O(poly(n)) and depth O((log n)i), composed
of NOT, OR, and AND gates, with OR and AND gates permitted unbounded fan-in.

Since MAJORITY gates can simulate NOT, AND, and OR, an even larger class TCi can be defined.
Definition 3.16 (TCi, (Arora & Barak, 2009)). A language belongs to TCi if it can be recognized
by a family of Boolean circuits of polynomial size O(poly(n)) and depth O((log n)i), composed of
NOT, OR, AND, and MAJORITY gates with unbounded fan-in, where a MAJORITY gate outputs
1 when a majority of its inputs are active (1).
Remark 3.17. In Definition 3.16, the MAJORITY gates of TCi may be replaced with MOD gates
or THRESHOLD gates. Circuits that employ any of these gates are referred to as threshold circuits.
Definition 3.18 (P, implicit in page 27 on (Arora & Barak, 2009)). A language belongs to P if it
can be decided by a deterministic Turing machine in polynomial time.
Fact 3.19 (Hierarchy folklore, (Arora & Barak, 2009; Vollmer, 1999)). The following class inclu-
sions are valid for all i ≥ 0:

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.

Definition 3.20 (L-uniform, (Arora & Barak, 2009)). A circuit family C = {Cn}n∈N is said to be
L-uniform if there exists a Turing machine that, given input 1n, outputs a description of Cn using
O(log n) space. A language L belongs to a class such as L-uniform NCi if it can be decided by an
L-uniform circuit family Cn satisfying the size and depth requirements of NCi.

Next, we introduce a stronger notion of uniformity defined in terms of a time bound.
Definition 3.21 (DLOGTIME-uniform). A circuit family C = {Cn}n∈N is DLOGTIME-uniform if
there exists a Turing machine that, on input 1n, outputs a description of Cn within O(log n) time. A
language belongs to a DLOGTIME-uniform class if it can be decided by such a circuit family while
also meeting the required size and depth bounds.

The following lemmas characterize the depth and width of basic operations, which are essential in
our study of circuit complexity. We first establish that fundamental floating-point operations can be
implemented within TC0.
Lemma 3.22 (Operations on floating point numbers in TC0, Lemma 10 and Lemma 11 of (Chiang,
2024)). Assume the precision p ≤ poly(n). Then we have:

• Part 1. Consider two p-bits float point numbers x1 and x2. As described in (Chiang, 2024),
their addition, division, and multiplication can be carried out using a threshold circuit of
polynomial size and constant depth dstd, which is DLOGTIME-uniform.

• Part 2. Given n p-bits float point number x1, . . . , xn, their iterated product can be sim-
ulated by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth
d⊗.

• Part 3. Given n p-bits float point number x1, . . . , xn, their iterated sum can be simulated
by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth d⊕. Note
that a rounding step is applied after the summation.

We now establish that the exponential function can also be approximated in TC0.
Lemma 3.23 (Approximating the Exponential Operation in TC0, Lemma 12 of (Chiang, 2024)).
Assume the precision satisfies p ≤ poly(n). For any p-bit floating-point number x, the function
exp(x) can be approximated by a uniform threshold circuit of polynomial size and constant depth
dexp, achieving a relative error no greater than 2−p.

Finally, we show that the square root function can be approximated within TC0.
Lemma 3.24 (Approximating the Square Root Operation in TC0, Lemma 12 of (Chiang, 2024)).
Assume the precision satisfies p ≤ poly(n). For any p-bit floating-point number x, the function√
x can be approximated by a uniform threshold circuit of polynomial size and constant depth dsqrt,

achieving a relative error no greater than 2−p.
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3.4 FLOATING POINT NUMBERS

In this subsection, we present the basic definitions of floating-point numbers and their operations,
which provide the computational framework for implementing GNNs on practical hardware.

Definition 3.25 (Floating Point Numbers (FPNs), Definition 9 in (Chiang, 2024)). A p-bit floating-
point number (FPN) can be expressed as a pair of binary integers ⟨s, e⟩. Here, the significand |s|
takes values in {0} ∪ [2p−1, 2p), while the exponent e lies within [−2p, 2p − 1]. The value of the
FPN is calculated as s · 2e. When e = 2p, the floating-point number represents positive or negative
infinity, depending on the sign of s. We use Fp to denote the set of all the p-bit FPNs.

Definition 3.26 (Rounding, Definition 9 in (Chiang, 2024)). Let r ∈ R be a real number with infinite
precision. Its nearest p-bit representation is written as roundp(r) ∈ Fp. If two such representations
are equally close, roundp(r) is defined as the one with an even significand.

Then, we introduce the key floating-point operations used to compute the outputs of neural networks.

Definition 3.27 (FPN operations, page 5 on (Chiang, 2024)). Let x and y be two integers. We define
the integer division operation // as follows:

x // y :=

{
x/y if x/y is a multiple of 1/4
x/y + 1/8 otherwise.

Given two p-bits FPNs ⟨s1, e1⟩ , ⟨s2, e2⟩ ∈ Fp, we define the fundamental operations on them as:

addition : ⟨s1, e1⟩+ ⟨s2, e2⟩ :=
{
roundp(⟨s1 + s2 // 2

e1−e2 , e1⟩) if e1 ≥ e2
roundp(⟨s1 // 2e2−e1 + s2, e2⟩) if e1 ≤ e2

multiplication : ⟨s1, e1⟩ × ⟨s2, e2⟩ := roundp(⟨s1s2, e1 + e2⟩)
division : ⟨s1, e1⟩ ÷ ⟨s2, e2⟩ := roundp(

〈
s1 · 2p−1 // s2, e1 − e2 − p+ 1

〉
)

comparison : ⟨s1, e1⟩ ≤ ⟨s2, e2⟩ ⇔
{
s1 ≤ s2 // 2

e1−e2 if e1 ≥ e2
s1 // 2

e2−e1 ≤ s2 if e1 ≤ e2.

Building on the previous definitions, we show that these basic operations can be efficiently executed
in parallel using simple TC0 circuit constructions, as established in the following lemma:

Lemma 3.28 (Computing FPN operations with TC0 circuits, Lemma 10 and Lemma 11 in (Chiang,
2024)). Let p be a positive integer representing the number of digits. If p ≤ poly(n), then the
following holds:

• Basic Operations: The operations “+”, “×”, “÷”, and comparison (≤) between two p-bit
FPNs, as defined in Definition 3.25, can be implemented by uniform threshold circuits of
O(1)-depth and poly(n) size. Denote the maximum depth required for these basic opera-
tions as dstd.

• Iterated Operations: The product of n p-bit FPNs, as well as the sum of n p-bit FPNs (with
rounding applied after summation) can both be computed by uniform threshold circuits
with O(1)-depth and poly(n) size. Let d⊗ and d⊕ denote the maximum circuit depth for
multiplication and addition.

In addition to the basic floating-point operations, some specialized operations can also be executed
within TC0 circuits, as shown in the following lemmas:

Lemma 3.29 (Computing exp with TC0 circuits, Lemma 12 in (Chiang, 2024)). Let x ∈ Fp be
a p-bit FPN. Provided that p ≤ poly(n), there exists a uniform threshold circuit of poly(n) size
and O(1) depth that can approximate exp(x) with a relative error less than 2−p. We denote the
maximum depth needed for this approximation by dexp.

Lemma 3.30 (Computing square root with TC0 circuits, Lemma 12 in (Chiang, 2024)). Let x ∈ Fp

be a p-bit FPN. If p ≤ poly(n), then there exists a uniform threshold circuit of O(1)-depth and
poly(n) size capable of computing

√
x with relative error smaller than 2−p. Denote the maximum

circuit depth required for this computation as dsqrt.
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Lemma 3.31 (Computing matrix multiplication with TC0 circuits, Lemma 4.2 in (Chen et al.,
2025a)). Let A ∈ Fn1×n2

p and B ∈ Fn2×n3
p be two matrix operands. If p ≤ poly(n) and

n1, n2, n3 ≤ n, then there exists a uniform threshold circuit of poly(n) size, with maximum depth
(dstd + d⊕) that can compute the matrix product AB.

4 CIRCUIT COMPLEXITY OF CRYSTALLINE EGNNS

We first present the circuit complexity of basic EGNN building blocks in Section 4.1, and then show
the circuit complexity for EGNN layers in Section 4.2.

4.1 CIRCUIT COMPLEXITY OF BASIC EGNN BUILDING BLOCKS

We begin by introducing a useful lemma that introduces the TC0 computation of trigonometric
functions.
Lemma 4.1 (Trigonometric function computation in TC0, Lemma 4.1 of (Chen et al., 2025a)).
Assume p ≤ poly(n). For any p-bit floating-point number x, the function sin(x) and cos(x) can be
approximated by a uniform threshold circuit of polynomial size and constant depth 8dstd+d⊕+d⊗,
achieving a relative error no greater than 2−p.

Then, we show that k-order Fourier Transforms, a fundamental building block for Crystalline EGNN
layers, can be computed by the TC0 circuits.
Lemma 4.2 (k-order Fourier Transform computation in TC0). Assume p ≤ poly(n) and k =
O(n). For any p-bit floating-point number x, the function ψFt,k(x) defined in Definition 3.7 can be
approximated by a uniform threshold circuit of polynomial size and constant depth 10dstd+d⊕+d⊗,
achieving a relative error no greater than 2−p.

Proof. According to Definition 3.7, for each (i, j) ∈ [3]× [k] there are two fixed cases:

Case 1. j is even, then Yi,j := sin(πjxi). Computing πjxi uses 2dstd depth and poly(n) size.
Then, according to Lemma 4.1, we need to use 8dstd + d⊕ + d⊗ and poly(n) size for the sin
operation. Thus, the total depth of this case is 10dstd + d⊕ + d⊗, and the size is poly(n).

Case 2. j is odd, then Yi,j := cos(πjxi). Similar to case 1, the only difference is we need to use
cos instead of sin. According to Lemma 4.1, cos takes 8dstd + d⊕ + d⊗ depth and poly(n) size,
which is same as sin in case 1. Thus, the total depth of this case is 10dstd + d⊕ + d⊗, and the size
is poly(n).

Since all [3] × [k] elements in Y can be computed in parallel, thus we need 3k parallel circuit with
10dstd + d⊕ + d⊗ depth to simulate the computation of Y . Since k = O(n), thus we can simulate
the computation with circuit of poly(n) size and 10dstd + d⊕ + d⊗ = O(1) depth. Thus k-order
Fourier Transform can be simulated by a TC0 uniform threshold circuit.

We also show that MLPs are computable with uniform TC0 circuits.
Lemma 4.3 (MLP computation in TC0, , Lemma 4.5 of (Chen et al., 2025a)). Assume the precision
p ≤ poly(n). Then, we can use a size bounded by poly(n) and constant depth 2dstd + d⊕ uniform
threshold circuit to simulate the MLP layer with O(1) depth and O(n) width, achieving a relative
error no greater than 2−p.

4.2 CIRCUIT COMPLEXITY OF EGNN LAYER

Lemma 4.4 (Pairwise Message computation in TC0.). Assume p ≤ poly(n), d = O(n) and k =
O(n). Assume ϕmsg is instantiated with O(1) depth and O(n) width MLP. For any p-bit floating-
point number x, the function MSG(F,L,H) defined in Definition 3.8 can be approximated by a
uniform threshold circuit of polynomial size and constant depth 13dstd + 2d⊕ + d⊗, achieving a
relative error no greater than 2−p.

Proof. We first analyze the arguments in for the ϕmsg function. The first two arguments do not
involve computation. The third argument L⊤L involves one matrix multiplication. According to
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Lemma 3.31, we could compute the matrix multiplication using a circuit of poly(n) size and dstd +
d⊕ depth.

In order to analyze the last argument ψFT,k(fi − fj), we first analyze fi − fj , which takes dstd
depth and constant size. Then, according to Lemma 4.2, we can compute the ψFT,k(·) with circuit of
poly(n) size and 10dstd+d⊕+d⊗ depth. Therefore, we can compute the last argument ψFT,k(fi−
fj) with circuit of poly(n) size and 11dstd + d⊕ + d⊗ depth.

Next, since d = O(n) and k = O(n) according to Lemma 4.3, we can use circuit with poly(n) size
and 2dstd + d⊕ to compute the ϕmsg(·) function.

Combining above, we can use circuit with poly(n) size and 2dstd+d⊕+max{dstd+d⊕, 11dstd+
d⊕ + d⊗} = 13dstd + 2d⊕ + d⊗ = O(1) depth to compute the pairwise message. Thus, pairwise
message computation can be simulated by a TC0 uniform threshold circuit.

Lemma 4.5 (One EGNN layer approximation in TC0, informal version of Lemma B.1). Assume
p ≤ poly(n), d = O(n) and k = O(n). Assume ϕmsg and ϕupd are instantiated with O(1) depth
andO(n) width MLPs. For any p-bit floating-point number x, the function EGNNi(A,F,H) defined
in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant
depth 16dstd + 3d⊕ + 2d⊗, achieving a relative error no greater than 2−p.

5 MAIN RESULTS

In this section, we present our main result, which show that under some assumptions, EGNN class
in Definition 3.10 can be simulated by a uniform TC0 circuit family.

Theorem 5.1. If precision p ≤ poly(n), embedding size d = O(n), the number of layers q = O(1),
k = O(n), and all the functions ϕmsg, ϕupd, and ϕin are instantiated with O(1) depth and O(n)
width MLPs, then the equivariant graph neural network EGNN : Rd×n × R3×n × R3×3 → Rd×n

which defined in Definition 3.10 can be simulated by the uniform TC0 circuit family.

Proof. Since d = O(n), according to Lemma 4.3, the computation of first argument (ϕin(A)) can
be approximated by a circuit of 2dstd + d⊕ depth and poly(n) size. Last two arguments does not
include computation.

Then, according to Lemma 4.5, for each EGNN layer, we need a circuit with poly(n) size and
16dstd + 3d⊕ + 2d⊗ depth to simulate the computation.

Combining results above, since there are q serial layer of EGNN, we need circuit of poly(n) size
and

q(16dstd + 3d⊕ + 2d⊗ + 2dstd + d⊕) = q(18dstd + 4d⊕ + 2d⊗)

= O(1)

depth to simulate the EGNN. Thus, the EGNN can be simulated by a TC0 uniform threshold circuit.

6 CONCLUSION

We studied the computational expressiveness of equivariant graph neural networks (EGNNs) for
crystalline-structure prediction through the lens of circuit complexity. Under realistic architectural
and precision assumptions—polynomial precision, embedding width d = O(n), q = O(1) layers,
and O(1)-depth, O(n)-width MLP instantiations of the message, update, and readout maps—we
established that an EGNN as formalized in Definition 3.10 admits a simulation by a uniform TC0

circuit family of polynomial size. Our constructive analysis further yields an explicit depth bound
of q(18dstd + 4d⊕ + 2d⊗), thereby placing a concrete ceiling on the computations performed by
such models.
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Alexander Pritzel, and Charles Blundell. Normalizing flows for atomic solids. Machine Learning:
Science and Technology, 3(2):025009, 2022.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffu-
sion variational autoencoder for periodic material generation. arXiv preprint arXiv:2110.06197,
2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mor-
datch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235, 2023.

Songlin Yang, Yikang Shen, Kaiyue Wen, Shawn Tan, Mayank Mishra, Liliang Ren, Rameswar
Panda, and Yoon Kim. Path attention: Position encoding via accumulating householder transfor-
mations. arXiv preprint arXiv:2505.16381, 2025.

Wenhui Yang, Edirisuriya M Dilanga Siriwardane, Rongzhi Dong, Yuxin Li, and Jianjun Hu. Crystal
structure prediction of materials with high symmetry using differential evolution. Journal of
Physics: Condensed Matter, 33(45):455902, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.
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Appendix
Roadmap. In Section A, we supplement the missing proofs in Section 3. In Section B, we show the
missing proofs in Section 4.

A MISSING PROOFS IN SECTION 3

Fact A.1 (Equivalence of unit cell representations, formal version of Fact 3.5). For any fractional
unit cell representation Cfrac := (A,F, L) as Definition 3.4, there exists a unique corresponding
non-fractional unit cell representation C := (A,X,L) as definition 3.1.

Proof. Part 1: Existence. By Definition 3.1, we can conclude that L is invertible since all the
columns in L are linearly independent. Thus, we can choose X = L−1F and finish the proof.

Part 2: Uniqueness. We show this by contradiction. First, we assume that there exist two different
unit cell representations C1 := (A,X1, L) and C2 := (A,X2, L) for Cfrac, i.e., X1 ̸= X2. By
Definition 3.3, we have X1 = X2 = LF , which contradicts X1 ̸= X2. Thus, we finish the
proof.

B MISSING PROOFS IN SECTION 4

Lemma B.1 (One EGNN layer approximation in TC0, formal version of Lemma 4.5). Assume
p ≤ poly(n), d = O(n) and k = O(n). Assume ϕmsg and ϕupd are instantiated with O(1) depth
andO(n) width MLPs. For any p-bit floating-point number x, the function EGNNi(A,F,H) defined
in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant
depth 16dstd + 3d⊕ + 2d⊗, achieving a relative error no greater than 2−p.

Proof. We start with analyzing the arguments in ϕupd(·). The first argument does not involve com-
putation. For the second argument, according to Lemma 4.4, we need circuit with poly(n) size and
13dstd + 2d⊕ + d⊗ depth to simulate MSGi,j(F,L,H) computation.

Then, for the summation
∑n

j=1 MSGi,j(F,L,H), we can compute n MSGi,j(F,L,H) in parallel,
and use a circuit with d⊕ width to perform the summation. Thus we can simulate the last argument
with circuit of poly(n) size 13dstd + 2d⊕ + 2d⊗ depth to simulate the last argument.

Next, for ϕupd(·), since d = O(n), according to Lemma 4.3, we can simulate ϕupd(·) with circuit of
poly(n) size 2dstd + d⊕ depth. Finally, for the addition of Rd size vector, we need circuit poly(n)
size and dstd depth to simulate it.

Combining circuits above, we can simulate EGNNi(A,F,H) with a circuit of poly(n) size and

13dstd + 2d⊕ + 2d⊗ + 2dstd + d⊕dstd = 16dstd + 3d⊕ + 2d⊗

= O(1)

depth to simulate the computation. Thus, one EGNN layer can be simulated by a TC0 uniform
threshold circuit.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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