FUNDAMENTAL LIMITS OF CRYSTALLINE EQUIVARIANT GRAPH NEURAL NETWORKS: A CIRCUIT COMPLEXITY PERSPECTIVE

Anonymous authorsPaper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have become a core paradigm for learning on relational data. In materials science, equivariant GNNs (EGNNs) have emerged as a compelling backbone for crystalline-structure prediction, owing to their ability to respect Euclidean symmetries and periodic boundary conditions. Despite strong empirical performance, their expressive power in periodic, symmetry-constrained settings remains poorly understood. This work characterizes the intrinsic computational and expressive limits of EGNNs for crystalline-structure prediction through a circuit-complexity lens. We analyze the computations carried out by EGNN layers acting on node features, atomic coordinates, and lattice matrices, and prove that, under polynomial precision, embedding width d = O(n) for n nodes, O(1) layers, and O(1)-depth, O(n)-width MLP instantiations of the message/update/readout maps, these models admit a simulation by a uniform TC⁰ threshold-circuit family of polynomial size (with an explicit constant-depth bound). Situating EGNNs within TC⁰ provides a concrete ceiling on the decision and prediction problems solvable by such architectures under realistic resource constraints and clarifies which architectural modifications (e.g., increased depth, richer geometric primitives, or wider layers) are required to transcend this regime. The analysis complements Weisfeiler-Lehman style results that do not directly transfer to periodic crystals, and offers a complexity-theoretic foundation for symmetry-aware graph learning on crystalline systems.

1 Introduction

Graphs are a natural language for relational data, capturing entities and their interactions in domains ranging from molecules and materials (Merchant et al., 2023) to social (Sankar et al., 2021) and recommendation networks (Ying et al., 2018). Graph neural networks (GNNs) have consequently become a standard tool for learning on such data: the message-passing paradigm aggregates information over local neighborhoods to produce expressive node and graph representations that power tasks such as node/edge prediction and graph classification. This message-passing template (i.e., graph convolution followed by nonlinear updates) underlies many successful architectures and applications (Jumper et al., 2021; Brehmer et al., 2023).

Recently, *equivariant* graph neural networks (EGNNs) (Satorras et al., 2021) have emerged as a promising direction for modeling crystalline structures in materials science. By respecting Euclidean symmetries and periodic boundary conditions, EGNNs encode physically meaningful inductive biases, enabling accurate predictions of structures, energies, and related materials properties directly from atomic coordinates and lattice parameters (Schmidt et al., 2022; Merchant et al., 2023). In practice, E(3)/E(n)-equivariant message passing and related architectures achieve strong performance while avoiding some of the computational burdens of higher-order spherical-harmonics pipelines (Thomas et al., 2018; Liao & Smidt, 2022), and they have been adapted to periodic crystals (Jiao et al., 2023; AI4Science et al., 2023). Moreover, EGNN-style backbones are now widely used within crystalline generative models, including diffusion/flow-based approaches that model positions, lattices, and atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023).

Despite this progress, fundamental questions about *expressive power* remain. In particular, we ask:

What are the intrinsic computational and expressive limits of EGNNs for crystalline-structure prediction?

Prior theory for (non-equivariant) message-passing GNNs analyzes expressiveness through the lens of the Weisfeiler–Lehman (WL) hierarchy (Xu et al., 2018; Morris et al., 2019; 2020), establishing that standard GNNs are at most as powerful as 1-WL and exploring routes beyond via higher-order or subgraph-based designs (Morris et al., 2019; Maron et al., 2019; Cotta et al., 2021; Qian et al., 2022); other lines study neural models via circuit-complexity bounds. However, WL-style results focus on discrete graph isomorphism and typically abstract away continuous coordinates and symmetry constraints, while most existing circuit-complexity analyses target different architectures (e.g., Transformers (Li et al., 2024b; Chen et al., 2025a)). These differences make such results ill-suited to crystalline settings, where periodic lattices, continuous 3D coordinates, and E(n)-equivariance are first-class modeling constraints. This motivates a tailored treatment of EGNNs for crystals.

In this paper, we investigate the *fundamental expressive limits of EGNNs in crystalline-structure prediction* (Kaba & Ravanbakhsh, 2022; Jiao et al., 2023; Miller et al., 2024). Rather than comparing against WL tests, we follow a circuit-complexity route (Chiang, 2024; Liu, 2025): we characterize the computations performed by EGNN layers acting on node features, atomic coordinates, and lattice matrices, and we quantify the resources required to simulate these computations with uniform threshold circuits. Placing EGNNs within a concrete circuit class yields immediate implications for the families of decision or prediction problems such models can (and provably cannot) solve under realistic architectural and precision constraints. This perspective complements WL-style analyses and is naturally aligned with architectures, such as EGNNs, that couple graph structure with continuous, symmetry-aware geometric features.

Our contributions are summarized as follows:

- Formalizing EGNNs' structure. We formalize the definition of EGNNs (Definition 3.10).
- Circuit-complexity upper bound for EGNNs. Under polynomial precision, embedding width d = O(n), O(1) layers, and O(n)-width O(1)-depth MLP instantiations of the message/update/readout maps, we prove that the EGNN class in Definition 3.10 can be simulated by a *uniform* TC^0 circuit family (Theorem 5).

Roadmap. In Section 2, we review the relevant works. In Section 3, we show the basic concepts and notations. In Section 4, we analyze the circuit complexity of components. In Section 5, we present our main results. Finally, in Section 6, we conclude our work.

2 RELATED WORK

CSP and DNG in Materials Discovery Early methods for CSP and DNG approached materials discovery by generating a large pool of candidate structures and then screening them with high-throughput quantum mechanical calculations (Kohn & Sham, 1965) to estimate stability. Candidates were typically constructed through simple substitution rules (Wang et al., 2021) or explored with genetic algorithms (Glass et al., 2006; Pickard & Needs, 2011). Later, machine learning models were introduced to accelerate this process by predicting energies directly (Schmidt et al., 2022; Merchant et al., 2023).

To avoid brute-force search, generative approaches have been proposed to directly design materials (Court et al., 2020; Yang et al., 2021; Nouira et al., 2018). Among them, diffusion models have gained particular attention, initially focusing on atomic positions while predicting the lattice with a variational autoencoder (Xie et al., 2021), and more recently modeling positions, lattices, and atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023). Other recent advances incorporate symmetry information such as space groups (AI4Science et al., 2023; Jiao et al., 2024; Cao et al., 2024), leverage large language models (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver et al., 2024), or employ normalizing flows (Wirnsberger et al., 2022).

Flow Matching for Crystalline Structures Flow Matching (Lipman et al., 2023; Tong et al., 2023b; Dao et al., 2023) has recently established itself as a powerful paradigm for generative modeling, showing remarkable progress across multiple areas. The initial motivation came from addressing the heavy computational cost of Continuous Normalizing Flows (CNFs) (Chen et al., 2018),

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159 160 161 as earlier methods often relied on inefficient simulation strategies (Rozen et al., 2021; Ben-Hamu et al., 2022). This challenge inspired a new class of Flow Matching techniques (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023a; Heitz et al., 2023), which learn continuous flows directly without resorting to simulation, thereby achieving much better flexibility. Thanks to its straightforward formulation and strong empirical performance, Flow Matching has been widely adopted in large-scale generation tasks. For instance, (Davtyan et al., 2023) proposes a latent flow matching approach for video prediction that achieves strong results with far less computation. (Zhang et al., 2025a) applies consistency flow matching to robotic manipulation, enabling efficient and fast policy generation. (Jing et al., 2024) develops a flow-based generative model for protein structures that improves conformational diversity and flexibility while retaining high accuracy. (Luo et al., 2024) introduces CrystalFlow, a flow-based model for efficient crystal structure generation. Overall, Flow Matching has proven to be an efficient tool for generative modeling across diverse modalities. Notably, EGNN-style backbones have become a de facto choice for crystalline structure generative modeling: diffusion- and flow-based pipelines pair symmetry-aware message passing with periodic boundary handling to jointly model positions, lattices, and compositions (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023; Luo et al., 2024). In these systems, the equivariant message-passing core supplies an inductive bias that improves sample validity and stability while reducing reliance on higher-order tensor features (Satorras et al., 2021; AI4Science et al., 2023; Jiao et al., 2024).

Geometric Deep Learning. Geometric deep learning, particularly geometrically equivariant Graph Neural Networks (GNNs) that ensure E(3) symmetry, has achieved notable success in chemistry, biology, and physics (Jumper et al., 2021; Bronstein et al., 2021; Brehmer et al., 2023; Merchant et al., 2023; Qiu et al., 2023; Zhang et al., 2025b). In particular, equivariant GNNs have demonstrated superior performance in modeling 3D structures (Chanussot et al., 2021; Tran et al., 2023). Existing geometric deep learning approaches can be broadly categorized into four types: (1) Invariant methods, which extract features stable under transformations, such as pairwise distances and torsion angles (Schütt et al., 2018; Gasteiger et al., 2020; 2021); (2) Spherical harmonics-based models, which leverage irreducible representations to process data equivariantly (Thomas et al., 2018; Liao & Smidt, 2022); (3) Branch-encoding methods, encoding coordinates and node features separately and interacting through coordinate norms (Jing et al., 2020; Satorras et al., 2021); (4) Frame averaging frameworks, which model coordinates in multiple PCA-derived frames and achieve equivariance by averaging the representations (Puny et al., 2021; Duval et al., 2023).

While these architectures have pushed the boundaries of modeling geometric data in 3D structures, and advanced equivariant and invariant neural architectures in learning geometric data in chemistry, biology, and physics domains, the fundamental limitations of such architectures in crystalline structures still remain less explored. In this paper, we reveal the fundamental expressive capability limitation of equivariant GNNs via the lens of circuit complexity.

Circuit Complexity and Machine Learning. Circuit complexity is a fundamental notion in theoretical computer science, providing a hierarchy of Boolean circuits with different gate types and computational resources (Vollmer, 1999; Arora & Barak, 2009). This framework has recently been widely used to analyze the expressiveness of machine learning models: a model that can be simulated by a weaker circuit class may fail on tasks requiring stronger classes. A central line of work applies circuit complexity to understand Transformer expressivity. Early studies analyzed two simplified theoretical models of Transformers: SoftMax-Attention Transformers (SMATs) and Average-Head Attention Transformers (AHATs) (Liu et al., 2023; Merrill et al., 2022; Merrill & Sabharwal, 2023). Subsequent results have extended these analyses to richer Transformer variants, including those with Chain-of-Thought (CoT) reasoning (Feng et al., 2023; Li et al., 2024b; Merrill & Sabharwal, 2024), looped architectures (Giannou et al., 2023; Luca & Fountoulakis, 2024; Saunshi et al., 2025), and Rotary Position Embeddings (RoPE) (Chen et al., 2025a; Yang et al., 2025; Chen et al., 2025b). Beyond Transformers, circuit complexity has also been applied to other architectures such as state space models (SSMs) (Chen et al., 2025c), Hopfield networks (Li et al., 2024a), diffusion models (Cao et al., 2025; Chen et al., 2025d; Ke et al., 2025), and graph neural networks (GNNs) (Grohe, 2023; Cui et al., 2024; Li et al., 2025). In this work, we study the circuit complexity bounds of equivariant GNNs on crystalline structures, providing the first analysis of this kind.

3 PRELIMINARY

We begin by introducing some basics of crystal representations in Section 3.1, and then introduce the background knowledge of equivariant graph neural networks (EGNNs) in Section 3.2. Next, we present the basics in circuit complexity in Section 3.3.

3.1 Representation of Crystal Structures

The unit cell representation describes the basis vectors of the unit cell, and all the atoms in a unit cell.

Definition 3.1 (Unit cell representation of a crystal structure, implicit in page 3 of (Jiao et al., 2023)). Let $A := [a_1, a_2, \ldots, a_n] \in \mathbb{R}^{h \times n}$ denote the list of description vectors for each atom in the unit cell. Let $X := [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{3 \times n}$ denote the list of Cartesian coordinates of each atom in the unit cell. Let $L := [l_1, l_2, l_3] \in \mathbb{R}^{3 \times 3}$ denote the lattice matrix, where l_1, l_2, l_3 are linearly independent. The unit cell representation of a crystal structure can be defined as a triplet $\mathcal{C} := (A, X, L)$.

The atom set representation describes a set containing an infinite number of atoms in the periodic crystal structure.

Definition 3.2 (Atom set representation of a crystal structure, implicit in page 3 of (Jiao et al., 2023)). Let C := (A, X, L) be a unit cell representation of crystal structure as Definition 3.1, where $A := [a_1, a_2, \ldots, a_n] \in \mathbb{R}^{h \times n}$, $X := [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{3 \times n}$, and $L := [l_1, l_2, l_3] \in \mathbb{R}^{3 \times 3}$. The atom set representation of C is defined as follows:

$$S(C) := \{(a, x) : a = a_i, x = x_i + Lk, \forall i \in [n], \forall k \in \mathbb{Z}^3\},\$$

where k is a length-3 column integer vector.

Definition 3.3 (Fractional coordinate matrix, implicit in page 3 of (Jiao et al., 2023)). Let $\mathcal{C}:=(A,X,L)$ be a unit cell representation of crystal structure as Definition 3.1, where $A:=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{h\times n},\ X:=[x_1,x_2,\ldots,x_n]\in\mathbb{R}^{3\times n},\ and\ L:=[l_1,l_2,l_3]\in\mathbb{R}^{3\times 3}.$ We say that $F:=[f_1,f_2,\ldots,f_n]\in[0,1)^{3\times n}$ is a fractional coordinate matrix for \mathcal{C} if and only if for all $i\in[n]$, we have:

$$x_i = Lf_i$$
.

Definition 3.4 (Fractional unit cell representation of a crystal structure, implicit in page 3 of (Jiao et al., 2023)). Let C := (A, X, L) be a unit cell representation of crystal structure as Definition 3.1. Let F be a fractional coordinate matrix as Definition 3.3. The fractional unit cell representation of C is a triplet $C_{\text{frac}} := (A, F, L)$.

Fact 3.5 (Equivalence of unit cell representations, informal version of Fact A.1). For any fractional unit cell representation $C_{\text{frac}} := (A, F, L)$ as Definition 3.4, there exists a unique corresponding non-fractional unit cell representation C := (A, X, L) as definition 3.1.

Therefore, since both unit cell representations are equivalent, we only use the fractional unit cell representation in this paper. For notation simplicity, we may abuse the notation \mathcal{C} to denote $\mathcal{C}_{\mathrm{frac}}$ in the following parts of this paper.

Definition 3.6 (Fractional atom set representation of a crystal structure, implicit in page 3 of (Miller et al., 2024)). Let $C_{\text{frac}} := (A, F, L)$ be a fractional unit cell representation of a crystal structure as Definition 3.4, where $A := [a_1, a_2, \ldots, a_n] \in \mathbb{R}^{h \times n}$, $F := [f_1, f_2, \ldots, f_n] \in \mathbb{R}^{3 \times n}$, and $L := [l_1, l_2, l_3] \in \mathbb{R}^{3 \times 3}$. The atom set representation of C is defined as follows:

$$S_{\text{frac}}(\mathcal{C}) := \{(a, f) : a = a_i, f = f_i + k, \forall i \in [n], \forall k \in \mathbb{Z}^3\},\$$

where k is a length-3 column integer vector.

3.2 EQUIVARIANT GRAPH NEURAL NETWORK ARCHITECTURE

We first define a useful transformation that computes the distance feature between each two atoms.

Definition 3.7 (k-order Fourier transform of relative fractional coordinates). Let $x \in (-1,1)^3$ be a length-3 column vector. Without loss of generality, we let $k \in \mathbb{Z}_+$ be a positive even number.

Let the output of the k-order Fourier fractional coordinates be a matrix $Y \in \mathbb{R}^{3 \times k}$ such that $Y := \psi_{\mathrm{FT},k}(x)$. For all $i \in [3], j \in [k]$, each element of Y is defined as:

$$Y_{i,j} := \begin{cases} \sin(\pi j x_i), & j \text{ is even;} \\ \cos(\pi j x_i), & j \text{ is odd.} \end{cases}$$

Then, we define a single layer for the Equivariant Graph Neural Network (EGNN) on the fractional unit cell representation of crystals.

Definition 3.8 (Pairwise Message). Let C := (A, F, L) be a fractional unit cell representation as Definition 3.4, where $A \in \mathbb{R}^{h \times n}$, $F := [f_1, f_2, \dots, f_n] \in \mathbb{R}^{3 \times n}$, and $L \in \mathbb{R}^{3 \times 3}$. Let $H := [h_1, h_2, \dots, h_n] \in \mathbb{R}^{d \times n}$ be a hidden neural representation for all the atoms. Let $\psi_{\mathrm{FT},k}$ be a k-order Fourier transform of relative fractional coordinates as Definition 3.7. Let $\phi_{\mathrm{msg}} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{3 \times 3} \times \mathbb{R}^{3 \times k} \to \mathbb{R}^d$ be an arbitrary function. We define the message $\mathsf{MSG}_{i,j}(F,L,H) \in \mathbb{R}^d$ between the i-th atom and the j-th atom for all $i,j \in [n]$ as follows:

$$\mathsf{MSG}_{i,j}(F,L,H) := \phi_{\mathrm{msg}}(h_i,h_j,L^\top L,\psi_{\mathrm{FT},k}(f_i - f_j)).$$

Definition 3.9 (One EGNN layer). Let $\mathcal{C}:=(A,F,L)$ be a fractional unit cell representation as Definition 3.4, where $A:=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{h\times n}$, $F:=[f_1,f_2,\ldots,f_n]\in\mathbb{R}^{3\times n}$, and $L:=[l_1,l_2,l_3]\in\mathbb{R}^{3\times 3}$. Let $H:=[h_1,h_2,\ldots,h_n]\in\mathbb{R}^{d\times n}$ be a hidden neural representation for all the atoms. Let $\phi_{\mathrm{upd}}:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$ be an arbitrary function. Let MSG be the message function defined as Definition 3.8. Let the output of the i-th EGNN layer EGNN $_i(A,F,L,H)$ be a matrix $Y=[y_1,y_2,\ldots,y_n]\in\mathbb{R}^{d\times n}$, i.e., $Y:=\mathrm{EGNN}_i(F,L,H)$. For all $i\in[n]$, each column of Y is defined as:

$$y_i := h_i + \phi_{\text{upd}}(h_i, \sum_{j=1}^n \mathsf{MSG}_{i,j}(F, L, H)).$$

Definition 3.10 (EGNN). Let $\mathcal{C}:=(A,F,L)$ be a fractional unit cell representation as Definition 3.4, where $A\in\mathbb{R}^{h\times n}$, $F\in\mathbb{R}^{3\times n}$, and $L\in\mathbb{R}^{3\times 3}$. Let q be the number of EGNN layers. Let $\phi_{\mathrm{in}}:\mathbb{R}^{h\times n}\to\mathbb{R}^{d\times n}$ be an arbitrary function for the input transformation. The q-layer EGNN: $\mathbb{R}^{d\times n}\times\mathbb{R}^{3\times n}\times\mathbb{R}^{3\times 3}\to\mathbb{R}^{d\times n}$ can be defined as follows:

$$\mathsf{EGNN}(A, F, L) := \mathsf{EGNN}_q \circ \mathsf{EGNN}_{q-1} \circ \cdots \circ \mathsf{EGNN}_1(\phi_{\mathrm{in}}(A), F, L).$$

Remark 3.11. While functions ϕ_{msg} , ϕ_{upd} , and ϕ_{in} are usually implemented as simple MLPs in practice, our theoretical result on equivariance and invariance works for any possible instantiation of these functions.

3.3 CIRCUIT COMPLEXITY CLASS

In this section, we present Boolean circuits and key preliminaries for circuit complexity.

Definition 3.12 (Boolean Circuit, implicit in page 102 on (Arora & Barak, 2009)). Let $n \in \mathbb{Z}_+$. A Boolean circuit is defined as a directed acyclic graph (DAG) that realizes a function $C_n : \{0,1\}^n \to \{0,1\}$. The nodes of the graph are referred to as gates. Those with in-degree zero serve as input nodes, corresponding to the n Boolean variables, while every other gate applies a Boolean function to the output of its predecessors.

Since each circuit is limited to inputs of a fixed length, we rely on a sequence of circuits to handle languages that include strings of any length.

Definition 3.13 (Circuit family recognizes languages, implicit in page 103 on (Arora & Barak, 2009)). Consider a language $L \subseteq \{0,1\}^*$ and a family of Boolean circuits $C = \{C_n\}_{n \in \mathbb{N}}$, we say that C recognizes L if every string $x \in \{0,1\}^*$, $C_{|x|}(x) = 1 \iff x \in L$.

By restricting the size and depth of circuit families, we can define certain complexity classes, for example NC^i .

Definition 3.14 (NCⁱ, implicit in page 40 on (Arora & Barak, 2009)). A language belongs to NCⁱ if it is decidable by a family of Boolean circuits of polynomial size O(poly(n)), depth $O((\log n)^i)$, and built from AND, OR, and NOT gates with bounded fan-in.

By extending AND and OR gates to unbounded fan-in, we obtain more expressive circuits, which define the class AC^i .

Definition 3.15 (ACⁱ, (Arora & Barak, 2009)). A language belongs to ACⁱ if it can be recognized by a family of Boolean circuits with polynomial size O(poly(n)) and depth $O((\log n)^i)$, composed of NOT, OR, and AND gates, with OR and AND gates permitted unbounded fan-in.

Since MAJORITY gates can simulate NOT, AND, and OR, an even larger class TCⁱ can be defined.

Definition 3.16 (TCⁱ, (Arora & Barak, 2009)). A language belongs to TCⁱ if it can be recognized by a family of Boolean circuits of polynomial size O(poly(n)) and depth $O((\log n)^i)$, composed of NOT, OR, AND, and MAJORITY gates with unbounded fan-in, where a MAJORITY gate outputs 1 when a majority of its inputs are active (1).

Remark 3.17. In Definition 3.16, the MAJORITY gates of TCⁱ may be replaced with MOD gates or THRESHOLD gates. Circuits that employ any of these gates are referred to as threshold circuits. **Definition 3.18** (P, implicit in page 27 on (Arora & Barak, 2009)). A language belongs to P if it can be decided by a deterministic Turing machine in polynomial time.

Fact 3.19 (Hierarchy folklore, (Arora & Barak, 2009; Vollmer, 1999)). *The following class inclusions are valid for all* $i \ge 0$:

$$NC^i \subseteq AC^i \subseteq TC^i \subseteq NC^{i+1} \subseteq P$$
.

Definition 3.20 (L-uniform, (Arora & Barak, 2009)). A circuit family $C = \{C_n\}_{n \in \mathbb{N}}$ is said to be L-uniform if there exists a Turing machine that, given input 1^n , outputs a description of C_n using $O(\log n)$ space. A language L belongs to a class such as L-uniform NC^i if it can be decided by an L-uniform circuit family C_n satisfying the size and depth requirements of NC^i .

Next, we introduce a stronger notion of uniformity defined in terms of a time bound.

Definition 3.21 (DLOGTIME-uniform). A circuit family $C = \{C_n\}_{n \in \mathbb{N}}$ is DLOGTIME-uniform if there exists a Turing machine that, on input 1^n , outputs a description of C_n within $O(\log n)$ time. A language belongs to a DLOGTIME-uniform class if it can be decided by such a circuit family while also meeting the required size and depth bounds.

The following lemmas characterize the depth and width of basic operations, which are essential in our study of circuit complexity. We first establish that fundamental floating-point operations can be implemented within TC^0 .

Lemma 3.22 (Operations on floating point numbers in TC^0 , Lemma 10 and Lemma 11 of (Chiang, 2024)). Assume the precision $p \le poly(n)$. Then we have:

- Part 1. Consider two p-bits float point numbers x_1 and x_2 . As described in (Chiang, 2024), their addition, division, and multiplication can be carried out using a threshold circuit of polynomial size and constant depth $d_{\rm std}$, which is DLOGTIME-uniform.
- Part 2. Given n p-bits float point number x_1, \ldots, x_n , their iterated product can be simulated by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth d_{\otimes} .
- Part 3. Given n p-bits float point number x_1, \ldots, x_n , their iterated sum can be simulated by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth d_{\oplus} . Note that a rounding step is applied after the summation.

We now establish that the exponential function can also be approximated in TC^0 .

Lemma 3.23 (Approximating the Exponential Operation in TC^0 , Lemma 12 of (Chiang, 2024)). Assume the precision satisfies $p \leq \text{poly}(n)$. For any p-bit floating-point number x, the function $\exp(x)$ can be approximated by a uniform threshold circuit of polynomial size and constant depth d_{exp} , achieving a relative error no greater than 2^{-p} .

Finally, we show that the square root function can be approximated within TC^0 .

Lemma 3.24 (Approximating the Square Root Operation in TC^0 , Lemma 12 of (Chiang, 2024)). Assume the precision satisfies $p \leq \text{poly}(n)$. For any p-bit floating-point number x, the function \sqrt{x} can be approximated by a uniform threshold circuit of polynomial size and constant depth d_{sqrt} , achieving a relative error no greater than 2^{-p} .

3.4 FLOATING POINT NUMBERS

In this subsection, we present the basic definitions of floating-point numbers and their operations, which provide the computational framework for implementing GNNs on practical hardware.

Definition 3.25 (Floating Point Numbers (FPNs), Definition 9 in (Chiang, 2024)). A p-bit floating-point number (FPN) can be expressed as a pair of binary integers $\langle s,e \rangle$. Here, the significand |s| takes values in $\{0\} \cup [2^{p-1},2^p)$, while the exponent e lies within $[-2^p,2^p-1]$. The value of the FPN is calculated as $s \cdot 2^e$. When $e=2^p$, the floating-point number represents positive or negative infinity, depending on the sign of s. We use \mathbb{F}_p to denote the set of all the p-bit FPNs.

Definition 3.26 (Rounding, Definition 9 in (Chiang, 2024)). Let $r \in \mathbb{R}$ be a real number with infinite precision. Its nearest p-bit representation is written as $\operatorname{round}_p(r) \in \mathbb{F}_p$. If two such representations are equally close, $\operatorname{round}_p(r)$ is defined as the one with an even significand.

Then, we introduce the key floating-point operations used to compute the outputs of neural networks.

Definition 3.27 (FPN operations, page 5 on (Chiang, 2024)). Let x and y be two integers. We define the integer division operation // as follows:

$$x // y := \begin{cases} x/y & \text{if } x/y \text{ is a multiple of } 1/4 \\ x/y + 1/8 & \text{otherwise.} \end{cases}$$

Given two p-bits FPNs $\langle s_1, e_1 \rangle$, $\langle s_2, e_2 \rangle \in \mathbb{F}_p$, we define the fundamental operations on them as:

$$\begin{aligned} \operatorname{addition}: \langle s_1, e_1 \rangle + \langle s_2, e_2 \rangle &:= \begin{cases} \operatorname{round}_p(\langle s_1 + s_2 /\!\!/ \, 2^{e_1 - e_2}, e_1 \rangle) & \text{if } e_1 \geq e_2 \\ \operatorname{round}_p(\langle s_1 /\!\!/ \, 2^{e_2 - e_1} + s_2, e_2 \rangle) & \text{if } e_1 \leq e_2 \end{cases} \\ \operatorname{multiplication}: \langle s_1, e_1 \rangle \times \langle s_2, e_2 \rangle &:= \operatorname{round}_p(\langle s_1 s_2, e_1 + e_2 \rangle) \\ \operatorname{division}: \langle s_1, e_1 \rangle \div \langle s_2, e_2 \rangle &:= \operatorname{round}_p(\langle s_1 \cdot 2^{p-1} /\!\!/ \, s_2, e_1 - e_2 - p + 1 \rangle) \\ \operatorname{comparison}: \langle s_1, e_1 \rangle \leq \langle s_2, e_2 \rangle \Leftrightarrow \begin{cases} s_1 \leq s_2 /\!\!/ \, 2^{e_1 - e_2} & \text{if } e_1 \geq e_2 \\ s_1 /\!\!/ \, 2^{e_2 - e_1} \leq s_2 & \text{if } e_1 \leq e_2. \end{cases} \end{aligned}$$

Building on the previous definitions, we show that these basic operations can be efficiently executed in parallel using simple TC^0 circuit constructions, as established in the following lemma:

Lemma 3.28 (Computing FPN operations with TC^0 circuits, Lemma 10 and Lemma 11 in (Chiang, 2024)). Let p be a positive integer representing the number of digits. If $p \leq poly(n)$, then the following holds:

- Basic Operations: The operations "+", "×", "÷", and comparison (≤) between two p-bit FPNs, as defined in Definition 3.25, can be implemented by uniform threshold circuits of O(1)-depth and poly(n) size. Denote the maximum depth required for these basic operations as d_{std}.
- Iterated Operations: The product of n p-bit FPNs, as well as the sum of n p-bit FPNs (with rounding applied after summation) can both be computed by uniform threshold circuits with O(1)-depth and poly(n) size. Let d_{\otimes} and d_{\oplus} denote the maximum circuit depth for multiplication and addition.

In addition to the basic floating-point operations, some specialized operations can also be executed within TC⁰ circuits, as shown in the following lemmas:

Lemma 3.29 (Computing exp with TC^0 circuits, Lemma 12 in (Chiang, 2024)). Let $x \in \mathbb{F}_p$ be a p-bit FPN. Provided that $p \leq \text{poly}(n)$, there exists a uniform threshold circuit of poly(n) size and O(1) depth that can approximate $\exp(x)$ with a relative error less than 2^{-p} . We denote the maximum depth needed for this approximation by d_{exp} .

Lemma 3.30 (Computing square root with TC^0 circuits, Lemma 12 in (Chiang, 2024)). Let $x \in \mathbb{F}_p$ be a p-bit FPN. If $p \leq \operatorname{poly}(n)$, then there exists a uniform threshold circuit of O(1)-depth and $\operatorname{poly}(n)$ size capable of computing \sqrt{x} with relative error smaller than 2^{-p} . Denote the maximum circuit depth required for this computation as d_{sort} .

Lemma 3.31 (Computing matrix multiplication with TC^0 circuits, Lemma 4.2 in (Chen et al., 2025a)). Let $A \in \mathbb{F}_p^{n_1 \times n_2}$ and $B \in \mathbb{F}_p^{n_2 \times n_3}$ be two matrix operands. If $p \leq \operatorname{poly}(n)$ and $n_1, n_2, n_3 \leq n$, then there exists a uniform threshold circuit of $\operatorname{poly}(n)$ size, with maximum depth $(d_{\operatorname{std}} + d_{\oplus})$ that can compute the matrix product AB.

4 CIRCUIT COMPLEXITY OF CRYSTALLINE EGNNS

We first present the circuit complexity of basic EGNN building blocks in Section 4.1, and then show the circuit complexity for EGNN layers in Section 4.2.

4.1 CIRCUIT COMPLEXITY OF BASIC EGNN BUILDING BLOCKS

We begin by introducing a useful lemma that introduces the TC⁰ computation of trigonometric functions.

Lemma 4.1 (Trigonometric function computation in TC^0 , Lemma 4.1 of (Chen et al., 2025a)). Assume $p \leq \operatorname{poly}(n)$. For any p-bit floating-point number x, the function $\sin(x)$ and $\cos(x)$ can be approximated by a uniform threshold circuit of polynomial size and constant depth $8d_{\mathrm{std}} + d_{\oplus} + d_{\otimes}$, achieving a relative error no greater than 2^{-p} .

Then, we show that k-order Fourier Transforms, a fundamental building block for Crystalline EGNN layers, can be computed by the TC^0 circuits.

Lemma 4.2 (k-order Fourier Transform computation in TC^0). Assume $p \leq \mathrm{poly}(n)$ and k = O(n). For any p-bit floating-point number x, the function $\psi_{\mathrm{Ft},k}(x)$ defined in Definition 3.7 can be approximated by a uniform threshold circuit of polynomial size and constant depth $10d_{\mathrm{std}} + d_{\oplus} + d_{\otimes}$, achieving a relative error no greater than 2^{-p} .

- *Proof.* According to Definition 3.7, for each $(i, j) \in [3] \times [k]$ there are two fixed cases:
- Case 1. j is even, then $Y_{i,j} := \sin(\pi j x_i)$. Computing $\pi j x_i$ uses $2d_{\rm std}$ depth and ${\rm poly}(n)$ size. Then, according to Lemma 4.1, we need to use $8d_{\rm std} + d_{\oplus} + d_{\otimes}$ and ${\rm poly}(n)$ size for the sin operation. Thus, the total depth of this case is $10d_{\rm std} + d_{\oplus} + d_{\otimes}$, and the size is ${\rm poly}(n)$.
- Case 2. j is odd, then $Y_{i,j} := \cos(\pi j x_i)$. Similar to case 1, the only difference is we need to use cos instead of sin. According to Lemma 4.1, cos takes $8d_{\rm std} + d_{\oplus} + d_{\otimes}$ depth and $\mathrm{poly}(n)$ size, which is same as sin in case 1. Thus, the total depth of this case is $10d_{\rm std} + d_{\oplus} + d_{\otimes}$, and the size is $\mathrm{poly}(n)$.
 - Since all $[3] \times [k]$ elements in Y can be computed in parallel, thus we need 3k parallel circuit with $10d_{\mathrm{std}} + d_{\oplus} + d_{\otimes}$ depth to simulate the computation of Y. Since k = O(n), thus we can simulate the computation with circuit of $\mathrm{poly}(n)$ size and $10d_{\mathrm{std}} + d_{\oplus} + d_{\otimes} = O(1)$ depth. Thus k-order Fourier Transform can be simulated by a TC^0 uniform threshold circuit.
 - We also show that MLPs are computable with uniform TC⁰ circuits.
 - **Lemma 4.3** (MLP computation in TC^0 , Lemma 4.5 of (Chen et al., 2025a)). Assume the precision $p \leq \text{poly}(n)$. Then, we can use a size bounded by poly(n) and constant depth $2d_{\text{std}} + d_{\oplus}$ uniform threshold circuit to simulate the MLP layer with O(1) depth and O(n) width, achieving a relative error no greater than 2^{-p} .

4.2 CIRCUIT COMPLEXITY OF EGNN LAYER

Lemma 4.4 (Pairwise Message computation in TC^0 .). Assume $p \leq \text{poly}(n)$, d = O(n) and k = O(n). Assume ϕ_{msg} is instantiated with O(1) depth and O(n) width MLP. For any p-bit floating-point number x, the function $\mathsf{MSG}(F, L, H)$ defined in Definition 3.8 can be approximated by a uniform threshold circuit of polynomial size and constant depth $13d_{\text{std}} + 2d_{\oplus} + d_{\otimes}$, achieving a relative error no greater than 2^{-p} .

Proof. We first analyze the arguments in for the ϕ_{msg} function. The first two arguments do not involve computation. The third argument $L^{\top}L$ involves one matrix multiplication. According to

Lemma 3.31, we could compute the matrix multiplication using a circuit of poly(n) size and $d_{std} + d_{\oplus}$ depth.

In order to analyze the last argument $\psi_{\mathrm{FT},k}(f_i-f_j)$, we first analyze f_i-f_j , which takes d_{std} depth and constant size. Then, according to Lemma 4.2, we can compute the $\psi_{\mathrm{FT},k}(\cdot)$ with circuit of $\mathrm{poly}(n)$ size and $10d_{\mathrm{std}}+d_{\oplus}+d_{\otimes}$ depth. Therefore, we can compute the last argument $\psi_{\mathrm{FT},k}(f_i-f_j)$ with circuit of $\mathrm{poly}(n)$ size and $11d_{\mathrm{std}}+d_{\oplus}+d_{\otimes}$ depth.

Next, since d = O(n) and k = O(n) according to Lemma 4.3, we can use circuit with poly(n) size and $2d_{std} + d_{\oplus}$ to compute the $\phi_{msg}(\cdot)$ function.

Combining above, we can use circuit with $\operatorname{poly}(n)$ size and $2d_{\operatorname{std}} + d_{\oplus} + \max\{d_{\operatorname{std}} + d_{\oplus}, 11d_{\operatorname{std}} + d_{\oplus} + d_{\otimes}\} = 13d_{\operatorname{std}} + 2d_{\oplus} + d_{\otimes} = O(1)$ depth to compute the pairwise message. Thus, pairwise message computation can be simulated by a TC^0 uniform threshold circuit.

Lemma 4.5 (One EGNN layer approximation in TC⁰, informal version of Lemma B.1). Assume $p \leq \operatorname{poly}(n)$, d = O(n) and k = O(n). Assume $\phi_{\operatorname{msg}}$ and $\phi_{\operatorname{upd}}$ are instantiated with O(1) depth and O(n) width MLPs. For any p-bit floating-point number x, the function EGNN_i(A, F, H) defined in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant depth $16d_{\operatorname{std}} + 3d_{\oplus} + 2d_{\otimes}$, achieving a relative error no greater than 2^{-p} .

5 MAIN RESULTS

In this section, we present our main result, which show that under some assumptions, EGNN class in Definition 3.10 can be simulated by a uniform TC⁰ circuit family.

Theorem 5.1. If precision $p \leq \operatorname{poly}(n)$, embedding size d = O(n), the number of layers q = O(1), k = O(n), and all the functions $\phi_{\operatorname{msg}}$, $\phi_{\operatorname{upd}}$, and ϕ_{in} are instantiated with O(1) depth and O(n) width MLPs, then the equivariant graph neural network EGNN: $\mathbb{R}^{d \times n} \times \mathbb{R}^{3 \times n} \times \mathbb{R}^{3 \times 3} \to \mathbb{R}^{d \times n}$ which defined in Definition 3.10 can be simulated by the uniform TC^0 circuit family.

Proof. Since d=O(n), according to Lemma 4.3, the computation of first argument $(\phi_{\rm in}(A))$ can be approximated by a circuit of $2d_{\rm std}+d_{\oplus}$ depth and ${\rm poly}(n)$ size. Last two arguments does not include computation.

Then, according to Lemma 4.5, for each EGNN layer, we need a circuit with poly(n) size and $16d_{\rm std} + 3d_{\oplus} + 2d_{\otimes}$ depth to simulate the computation.

Combining results above, since there are q serial layer of EGNN, we need circuit of poly(n) size and

$$q(16d_{\rm std} + 3d_{\oplus} + 2d_{\otimes} + 2d_{\rm std} + d_{\oplus}) = q(18d_{\rm std} + 4d_{\oplus} + 2d_{\otimes})$$

= $O(1)$

depth to simulate the EGNN. Thus, the EGNN can be simulated by a TC⁰ uniform threshold circuit.

6 CONCLUSION

We studied the computational expressiveness of equivariant graph neural networks (EGNNs) for crystalline-structure prediction through the lens of circuit complexity. Under realistic architectural and precision assumptions—polynomial precision, embedding width d=O(n), q=O(1) layers, and O(1)-depth, O(n)-width MLP instantiations of the message, update, and readout maps—we established that an EGNN as formalized in Definition 3.10 admits a simulation by a *uniform* TC^0 circuit family of polynomial size. Our constructive analysis further yields an explicit depth bound of $q(18d_{\rm std} + 4d_{\oplus} + 2d_{\otimes})$, thereby placing a concrete ceiling on the computations performed by such models.

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications. We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions, and complete proofs in the appendix. The main text states each theorem clearly and refers to the detailed proofs. No external data or software is required.

REFERENCES

- Mila AI4Science, Alex Hernandez-Garcia, Alexandre Duval, Alexandra Volokhova, Yoshua Bengio, Divya Sharma, Pierre Luc Carrier, Yasmine Benabed, Michał Koziarski, and Victor Schmidt. Crystal-gfn: sampling crystals with desirable properties and constraints. *arXiv preprint arXiv:2310.04925*, 2023.
- Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. *arXiv preprint arXiv:2209.15571*, 2022.
- Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge University Press, 2009.
- Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel, Ricky TQ Chen, and Yaron Lipman. Matching normalizing flows and probability paths on manifolds. *arXiv preprint arXiv:2207.04711*, 2022.
- Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco S Cohen. Geometric algebra transformer. *Advances in Neural Information Processing Systems*, 36:35472–35496, 2023.
- Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.
- Yang Cao, Yubin Chen, Zhao Song, and Jiahao Zhang. Towards high-order mean flow generative models: Feasibility, expressivity, and provably efficient criteria. *arXiv* preprint arXiv:2508.07102, 2025.
- Zhendong Cao, Xiaoshan Luo, Jian Lv, and Lei Wang. Space group informed transformer for crystalline materials generation. *arXiv preprint arXiv:2403.15734*, 2024.
- Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020 (oc20) dataset and community challenges. *Acs Catalysis*, 11(10):6059–6072, 2021.
- Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Jiahao Zhang. Circuit complexity bounds for rope-based transformer architecture. In *EMNLP*, 2025a.
- Bo Chen, Zhenmei Shi, Zhao Song, and Jiahao Zhang. Provable failure of language models in learning majority boolean logic via gradient descent. *arXiv preprint arXiv:2504.04702*, 2025b.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In *NeurIPS*, 2018.
 - Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational limits of state-space models and mamba via the lens of circuit complexity. In *The Second Conference on Parsimony and Learning (Proceedings Track)*, 2025c.
 - Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fundamental limits of visual autoregressive transformers: Universal approximation abilities. In *Forty-second International Conference on Machine Learning*, 2025d.

- David Chiang. Transformers in uniform to ⁰. *arXiv preprint arXiv:2409.13629*, 2024.
- Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations. *Advances in Neural Information Processing Systems*, 34:1713–1726, 2021.
 - Callum J Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M Cole. 3-d inorganic crystal structure generation and property prediction via representation learning. *Journal of Chemical Information and Modeling*, 60(10):4518–4535, 2020.
 - Guanyu Cui, Yuhe Guo, Zhewei Wei, and Hsin-Hao Su. Rethinking gnn expressive power from a distributed computational model perspective. *arXiv* preprint arXiv:2410.01308, 2024.
 - Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint arXiv:2307.08698*, 2023.
 - Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned flow matching. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 23263–23274, 2023.
 - Alexandre Agm Duval, Victor Schmidt, Alex Hernandez-Garcia, Santiago Miret, Fragkiskos D Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for materials modeling. In *International Conference on Machine Learning*, pp. 9013–9033. PMLR, 2023.
 - Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the mystery behind chain of thought: a theoretical perspective. *Advances in Neural Information Processing Systems*, 36:70757–70798, 2023.
 - Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials, and protein binding sites directly in three dimensions as xyz, cif, and pdb files. *arXiv* preprint *arXiv*:2305.05708, 2023.
 - Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günnemann. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. *arXiv* preprint *arXiv*:2011.14115, 2020.
 - Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural networks for molecules. Advances in Neural Information Processing Systems, 34:6790– 6802, 2021.
 - Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Papailiopoulos. Looped transformers as programmable computers. In *International Conference on Machine Learning*, pp. 11398–11442. PMLR, 2023.
 - Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure prediction. *Computer physics communications*, 175(11-12):713–720, 2006.
 - Martin Grohe. The descriptive complexity of graph neural networks. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14. IEEE, 2023.
 - Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text. *arXiv* preprint arXiv:2402.04379, 2024.
 - Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α -(de) blending: A minimalist deterministic diffusion model. In *ACM SIGGRAPH 2023 Conference Proceedings*, pp. 1–8, 2023.
 - Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal structure prediction by joint equivariant diffusion. *Advances in Neural Information Processing Systems*, 36:17464–17497, 2023.
 - Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal generation. *arXiv preprint arXiv:2402.03992*, 2024.

- Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning from protein structure with geometric vector perceptrons. *arXiv preprint arXiv:2009.01411*, 2020.
- Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating protein ensembles. *arXiv preprint arXiv:2402.04845*, 2024.
 - John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
 - Oumar Kaba and Siamak Ravanbakhsh. Equivariant networks for crystal structures. *Advances in Neural Information Processing Systems*, 35:4150–4164, 2022.
 - Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity analysis. *arXiv preprint arXiv:2501.04377*, 2025.
 - Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. *Physical review*, 140(4A):A1133, 1965.
 - Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power of modern hopfield networks. *arXiv preprint arXiv:2412.05562*, 2024a.
 - Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the computational capability of graph neural networks: A circuit complexity bound perspective. *arXiv* preprint arXiv:2501.06444, 2025.
 - Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to solve inherently serial problems. In *The Twelfth International Conference on Learning Representations*, 2024b. URL https://openreview.net/forum?id=3EWTEy9MTM.
 - Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs. *arXiv preprint arXiv:2206.11990*, 2022.
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. In *ICLR*, 2023.
 - Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers learn shortcuts to automata. In *ICLR*, 2023.
 - Yuxi Liu. Perfect diffusion is TC⁰-bad diffusion is turing-complete. *arXiv preprint* arXiv:2507.12469, 2025.
 - Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped transformers. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 2319–2363. PMLR, 2024.
 - Xiaoshan Luo, Zhenyu Wang, Qingchang Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming Ma. Crystalflow: A flow-based generative model for crystalline materials. *arXiv* preprint *arXiv*:2412.11693, 2024.
 - Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. *Advances in neural information processing systems*, 32, 2019.
 - Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85, 2023.
 - William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In *NeurIPS*, 2023.
 - William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=NjNGlPh8Wh.

- William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856, 2022.
 - Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generating materials with riemannian flow matching. In *International Conference on Machine Learning*, pp. 35664–35686. PMLR, 2024.
 - Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4602–4609, 2019.
 - Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards scalable higher-order graph embeddings. *Advances in Neural Information Processing Systems*, 33:21824–21840, 2020.
 - Asma Nouira, Nataliya Sokolovska, and Jean-Claude Crivello. Crystalgan: learning to discover crystallographic structures with generative adversarial networks. *arXiv preprint arXiv:1810.11203*, 2018.
 - Chris J Pickard and RJ Needs. Ab initio random structure searching. *Journal of Physics: Condensed Matter*, 23(5):053201, 2011.
 - Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and Yaron Lipman. Frame averaging for invariant and equivariant network design. *arXiv preprint arXiv:2110.03336*, 2021.
 - Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered subgraph aggregation networks. *Advances in Neural Information Processing Systems*, 35:21030–21045, 2022.
 - Weikang Qiu, Huangrui Chu, Selena Wang, Haolan Zuo, Xiaoxiao Li, Yize Zhao, and Rex Ying. Learning high-order relationships of brain regions. *arXiv preprint arXiv:2312.02203*, 2023.
 - Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-based generative modeling on manifolds. *Advances in neural information processing systems*, 34: 17669–17680, 2021.
 - Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in large-scale social platforms. In *Proceedings of the Web Conference 2021*, pp. 2535–2546, 2021.
 - Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.
 - Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J. Reddi. Reasoning with latent thoughts: On the power of looped transformers. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=din0lGfZFd.
 - Jonathan Schmidt, Noah Hoffmann, Hai-Chen Wang, Pedro Borlido, Pedro JMA Carriço, Tiago FT Cerqueira, Silvana Botti, and Miguel AL Marques. Large-scale machine-learning-assisted exploration of the whole materials space. *arXiv preprint arXiv:2210.00579*, 2022.
 - Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller. Schnet–a deep learning architecture for molecules and materials. *The Journal of chemical physics*, 148(24), 2018.
 - Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. *arXiv preprint arXiv:1802.08219*, 2018.
 - Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023a.

- Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic optimal transport. *arXiv preprint arXiv:2302.00482*, 2(3), 2023b.
- Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M Wood, Siddharth Goyal, Abhishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, et al. The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts. *ACS Catalysis*, 13(5):3066–3084, 2023.
- Heribert Vollmer. *Introduction to circuit complexity: a uniform approach*. Springer Science & Business Media, 1999.
- Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline compounds using chemical similarity. *npj Computational Materials*, 7(1):12, 2021.
- Peter Wirnsberger, George Papamakarios, Borja Ibarz, Sébastien Racaniere, Andrew J Ballard, Alexander Pritzel, and Charles Blundell. Normalizing flows for atomic solids. *Machine Learning: Science and Technology*, 3(2):025009, 2022.
- Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion variational autoencoder for periodic material generation. *arXiv preprint arXiv:2110.06197*, 2021.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2018.
- Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. *arXiv preprint arXiv:2311.09235*, 2023.
- Songlin Yang, Yikang Shen, Kaiyue Wen, Shawn Tan, Mayank Mishra, Liliang Ren, Rameswar Panda, and Yoon Kim. Path attention: Position encoding via accumulating householder transformations. *arXiv preprint arXiv:2505.16381*, 2025.
- Wenhui Yang, Edirisuriya M Dilanga Siriwardane, Rongzhi Dong, Yuxin Li, and Jianjun Hu. Crystal structure prediction of materials with high symmetry using differential evolution. *Journal of Physics: Condensed Matter*, 33(45):455902, 2021.
- Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983, 2018.
- Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for inorganic materials design. *arXiv preprint arXiv:2312.03687*, 2023.
- Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu. Flow-policy: Enabling fast and robust 3d flow-based policy via consistency flow matching for robot manipulation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39:14, pp. 14754–14762, 2025a.
- Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems. *Foundations and Trends*® *in Machine Learning*, 18(4):385–912, 2025b.

756 **Appendix** 758 **Roadmap.** In Section A, we supplement the missing proofs in Section 3. In Section B, we show the 759 missing proofs in Section 4. 760 761 MISSING PROOFS IN SECTION 3 762 763 Fact A.1 (Equivalence of unit cell representations, formal version of Fact 3.5). For any fractional 764 unit cell representation $\mathcal{C}_{frac} := (A, F, L)$ as Definition 3.4, there exists a unique corresponding 765 non-fractional unit cell representation C := (A, X, L) as definition 3.1. 766 767 *Proof.* Part 1: Existence. By Definition 3.1, we can conclude that L is invertible since all the 768 columns in L are linearly independent. Thus, we can choose $X = L^{-1}F$ and finish the proof. 769 Part 2: Uniqueness. We show this by contradiction. First, we assume that there exist two different 770 unit cell representations $\mathcal{C}_1 := (A, X_1, L)$ and $\mathcal{C}_2 := (A, X_2, L)$ for $\mathcal{C}_{\text{frac}}$, i.e., $X_1 \neq X_2$. By 771 Definition 3.3, we have $X_1 = X_2 = LF$, which contradicts $X_1 \neq X_2$. Thus, we finish the 772 proof. 773 774 MISSING PROOFS IN SECTION 4 775 776 **Lemma B.1** (One EGNN layer approximation in TC⁰, formal version of Lemma 4.5). Assume 777 $p \leq \text{poly}(n)$, d = O(n) and k = O(n). Assume ϕ_{msg} and ϕ_{upd} are instantiated with O(1) depth 778 and O(n) width MLPs. For any p-bit floating-point number x, the function EGNN_i(A, F, H) defined 779 in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant 780 depth $16d_{\text{std}} + 3d_{\oplus} + 2d_{\otimes}$, achieving a relative error no greater than 2^{-p} . 781 782 *Proof.* We start with analyzing the arguments in $\phi_{\text{upd}}(\cdot)$. The first argument does not involve com-783 putation. For the second argument, according to Lemma 4.4, we need circuit with poly(n) size and 784 $13d_{\mathrm{std}} + 2d_{\oplus} + d_{\otimes}$ depth to simulate $\mathsf{MSG}_{i,j}(F,L,H)$ computation. 785 Then, for the summation $\sum_{j=1}^{n} \mathsf{MSG}_{i,j}(F,L,H)$, we can compute n $\mathsf{MSG}_{i,j}(F,L,H)$ in parallel, 786 and use a circuit with d_{\oplus} width to perform the summation. Thus we can simulate the last argument 787 with circuit of poly(n) size $13d_{\rm std} + 2d_{\oplus} + 2d_{\otimes}$ depth to simulate the last argument. 788 789 Next, for $\phi_{\rm upd}(\cdot)$, since d=O(n), according to Lemma 4.3, we can simulate $\phi_{\rm upd}(\cdot)$ with circuit of 790 $\operatorname{poly}(n)$ size $2d_{\operatorname{std}} + d_{\oplus}$ depth. Finally, for the addition of \mathbb{R}^d size vector, we need circuit $\operatorname{poly}(n)$ 791 size and $d_{\rm std}$ depth to simulate it. 792 Combining circuits above, we can simulate $EGNN_i(A, F, H)$ with a circuit of poly(n) size and 793 $13d_{\mathrm{std}} + 2d_{\oplus} + 2d_{\otimes} + 2d_{\mathrm{std}} + d_{\oplus}d_{\mathrm{std}} = 16d_{\mathrm{std}} + 3d_{\oplus} + 2d_{\otimes}$ 794 796 depth to simulate the computation. Thus, one EGNN layer can be simulated by a TC0 uniform 797 threshold circuit. 798 799 800 LLM USAGE DISCLOSURE 801 802 LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content.

804 805