
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUNDAMENTAL LIMITS OF CRYSTALLINE EQUIVARI-
ANT GRAPH NEURAL NETWORKS: A CIRCUIT COM-
PLEXITY PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have become a core paradigm for learning on re-
lational data. In materials science, equivariant GNNs (EGNNs) have emerged as a
compelling backbone for crystalline-structure prediction, owing to their ability to
respect Euclidean symmetries and periodic boundary conditions. Despite strong
empirical performance, their expressive power in periodic, symmetry-constrained
settings remains poorly understood. This work characterizes the intrinsic com-
putational and expressive limits of EGNNs for crystalline-structure prediction
through a circuit-complexity lens. We analyze the computations carried out by
EGNN layers acting on node features, atomic coordinates, and lattice matrices,
and prove that, under polynomial precision, embedding width d = O(n) for
n nodes, O(1) layers, and O(1)-depth, O(n)-width MLP instantiations of the
message/update/readout maps, these models admit a simulation by a uniform
TC0 threshold-circuit family of polynomial size (with an explicit constant-depth
bound). Situating EGNNs within TC0 provides a concrete ceiling on the deci-
sion and prediction problems solvable by such architectures under realistic re-
source constraints and clarifies which architectural modifications (e.g., increased
depth, richer geometric primitives, or wider layers) are required to transcend this
regime. The analysis complements Weisfeiler-Lehman style results that do not
directly transfer to periodic crystals, and offers a complexity-theoretic foundation
for symmetry-aware graph learning on crystalline systems.

1 INTRODUCTION

Graphs are a natural language for relational data, capturing entities and their interactions in domains
ranging from molecules and materials (Merchant et al., 2023) to social (Sankar et al., 2021) and
recommendation networks (Ying et al., 2018). Graph neural networks (GNNs) have consequently
become a standard tool for learning on such data: the message-passing paradigm aggregates infor-
mation over local neighborhoods to produce expressive node and graph representations that power
tasks such as node/edge prediction and graph classification. This message-passing template (i.e.,
graph convolution followed by nonlinear updates) underlies many successful architectures and ap-
plications (Jumper et al., 2021; Brehmer et al., 2023).

Recently, equivariant graph neural networks (EGNNs) (Satorras et al., 2021) have emerged as a
promising direction for modeling crystalline structures in materials science. By respecting Eu-
clidean symmetries and periodic boundary conditions, EGNNs encode physically meaningful in-
ductive biases, enabling accurate predictions of structures, energies, and related materials proper-
ties directly from atomic coordinates and lattice parameters (Schmidt et al., 2022; Merchant et al.,
2023). In practice, E(3)/E(n)-equivariant message passing and related architectures achieve strong
performance while avoiding some of the computational burdens of higher-order spherical-harmonics
pipelines (Thomas et al., 2018; Liao & Smidt, 2022), and they have been adapted to periodic crys-
tals (Jiao et al., 2023; AI4Science et al., 2023). Moreover, EGNN-style backbones are now widely
used within crystalline generative models, including diffusion/flow-based approaches that model
positions, lattices, and atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023).

Despite this progress, fundamental questions about expressive power remain. In particular, we ask:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

What are the intrinsic computational and expressive limits of EGNNs for
crystalline-structure prediction?

Prior theory for (non-equivariant) message-passing GNNs analyzes expressiveness through the lens
of the Weisfeiler–Lehman (WL) hierarchy (Xu et al., 2018; Morris et al., 2019; 2020), establishing
that standard GNNs are at most as powerful as 1-WL and exploring routes beyond via higher-order
or subgraph-based designs (Morris et al., 2019; Maron et al., 2019; Cotta et al., 2021; Qian et al.,
2022); other lines study neural models via circuit-complexity bounds. However, WL-style results
focus on discrete graph isomorphism and typically abstract away continuous coordinates and sym-
metry constraints, while most existing circuit-complexity analyses target different architectures (e.g.,
Transformers (Li et al., 2024b; Chen et al., 2025a)). These differences make such results ill-suited to
crystalline settings, where periodic lattices, continuous 3D coordinates, and E(n)-equivariance are
first-class modeling constraints. This motivates a tailored treatment of EGNNs for crystals.

In this paper, we investigate the fundamental expressive limits of EGNNs in crystalline-structure pre-
diction (Kaba & Ravanbakhsh, 2022; Jiao et al., 2023; Miller et al., 2024). Rather than comparing
against WL tests, we follow a circuit-complexity route (Chiang, 2024; Liu, 2025): we characterize
the computations performed by EGNN layers acting on node features, atomic coordinates, and lat-
tice matrices, and we quantify the resources required to simulate these computations with uniform
threshold circuits. Placing EGNNs within a concrete circuit class yields immediate implications for
the families of decision or prediction problems such models can (and provably cannot) solve under
realistic architectural and precision constraints. This perspective complements WL-style analyses
and is naturally aligned with architectures, such as EGNNs, that couple graph structure with contin-
uous, symmetry-aware geometric features.

Our contributions are summarized as follows:

• Formalizing EGNNs’ structure. We formalize the definition of EGNNs (Definition 3.10).

• Circuit-complexity upper bound for EGNNs. Under polynomial precision, embedding
width d = O(n), O(1) layers, and O(n)-width O(1)-depth MLP instantiations of the
message/update/readout maps, we prove that the EGNN class in Definition 3.10 can be
simulated by a uniform TC0 circuit family (Theorem 5).

Roadmap. In Section 2, we review the relevant works. In Section 3, we show the basic concepts
and notations. In Section 4, we analyze the circuit complexity of components. In Section 5, we
present our main results. Finally, in Section 6, we conclude our work.

2 RELATED WORK

CSP and DNG in Materials Discovery Early methods for CSP and DNG approached materials
discovery by generating a large pool of candidate structures and then screening them with high-
throughput quantum mechanical calculations (Kohn & Sham, 1965) to estimate stability. Candidates
were typically constructed through simple substitution rules (Wang et al., 2021) or explored with
genetic algorithms (Glass et al., 2006; Pickard & Needs, 2011). Later, machine learning models
were introduced to accelerate this process by predicting energies directly (Schmidt et al., 2022;
Merchant et al., 2023).

To avoid brute-force search, generative approaches have been proposed to directly design materials
(Court et al., 2020; Yang et al., 2021; Nouira et al., 2018). Among them, diffusion models have
gained particular attention, initially focusing on atomic positions while predicting the lattice with
a variational autoencoder (Xie et al., 2021), and more recently modeling positions, lattices, and
atom types jointly (Jiao et al., 2023; Yang et al., 2023; Zeni et al., 2023). Other recent advances
incorporate symmetry information such as space groups (AI4Science et al., 2023; Jiao et al., 2024;
Cao et al., 2024), leverage large language models (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver
et al., 2024), or employ normalizing flows (Wirnsberger et al., 2022).

Flow Matching for Crystalline Structures Flow Matching (Lipman et al., 2023; Tong et al., 2023b;
Dao et al., 2023) has recently established itself as a powerful paradigm for generative modeling,
showing remarkable progress across multiple areas. The initial motivation came from address-
ing the heavy computational cost of Continuous Normalizing Flows (CNFs) (Chen et al., 2018),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

as earlier methods often relied on inefficient simulation strategies (Rozen et al., 2021; Ben-Hamu
et al., 2022). This challenge inspired a new class of Flow Matching techniques (Albergo & Vanden-
Eijnden, 2022; Tong et al., 2023a; Heitz et al., 2023), which learn continuous flows directly without
resorting to simulation, thereby achieving much better flexibility. Thanks to its straightforward for-
mulation and strong empirical performance, Flow Matching has been widely adopted in large-scale
generation tasks. For instance, (Davtyan et al., 2023) proposes a latent flow matching approach
for video prediction that achieves strong results with far less computation. (Zhang et al., 2025a)
applies consistency flow matching to robotic manipulation, enabling efficient and fast policy gener-
ation. (Jing et al., 2024) develops a flow-based generative model for protein structures that improves
conformational diversity and flexibility while retaining high accuracy. (Luo et al., 2024) introduces
CrystalFlow, a flow-based model for efficient crystal structure generation. Overall, Flow Match-
ing has proven to be an efficient tool for generative modeling across diverse modalities. Notably,
EGNN-style backbones have become a de facto choice for crystalline structure generative modeling:
diffusion- and flow-based pipelines pair symmetry-aware message passing with periodic boundary
handling to jointly model positions, lattices, and compositions (Jiao et al., 2023; Yang et al., 2023;
Zeni et al., 2023; Luo et al., 2024). In these systems, the equivariant message-passing core supplies
an inductive bias that improves sample validity and stability while reducing reliance on higher-order
tensor features (Satorras et al., 2021; AI4Science et al., 2023; Jiao et al., 2024).

Geometric Deep Learning. Geometric deep learning, particularly geometrically equivariant Graph
Neural Networks (GNNs) that ensure E(3) symmetry, has achieved notable success in chemistry, bi-
ology, and physics (Jumper et al., 2021; Bronstein et al., 2021; Brehmer et al., 2023; Merchant et al.,
2023; Qiu et al., 2023; Zhang et al., 2025b). In particular, equivariant GNNs have demonstrated su-
perior performance in modeling 3D structures (Chanussot et al., 2021; Tran et al., 2023). Existing
geometric deep learning approaches can be broadly categorized into four types: (1) Invariant meth-
ods, which extract features stable under transformations, such as pairwise distances and torsion
angles (Schütt et al., 2018; Gasteiger et al., 2020; 2021); (2) Spherical harmonics-based models,
which leverage irreducible representations to process data equivariantly (Thomas et al., 2018; Liao
& Smidt, 2022); (3) Branch-encoding methods, encoding coordinates and node features separately
and interacting through coordinate norms (Jing et al., 2020; Satorras et al., 2021); (4) Frame averag-
ing frameworks, which model coordinates in multiple PCA-derived frames and achieve equivariance
by averaging the representations (Puny et al., 2021; Duval et al., 2023).

While these architectures have pushed the boundaries of modeling geometric data in 3D structures,
and advanced equivariant and invariant neural architectures in learning geometric data in chem-
istry, biology, and physics domains, the fundamental limitations of such architectures in crystalline
structures still remain less explored. In this paper, we reveal the fundamental expressive capability
limitation of equivariant GNNs via the lens of circuit complexity.

Circuit Complexity and Machine Learning. Circuit complexity is a fundamental notion in the-
oretical computer science, providing a hierarchy of Boolean circuits with different gate types and
computational resources (Vollmer, 1999; Arora & Barak, 2009). This framework has recently been
widely used to analyze the expressiveness of machine learning models: a model that can be sim-
ulated by a weaker circuit class may fail on tasks requiring stronger classes. A central line of
work applies circuit complexity to understand Transformer expressivity. Early studies analyzed
two simplified theoretical models of Transformers: SoftMax-Attention Transformers (SMATs) and
Average-Head Attention Transformers (AHATs) (Liu et al., 2023; Merrill et al., 2022; Merrill &
Sabharwal, 2023). Subsequent results have extended these analyses to richer Transformer variants,
including those with Chain-of-Thought (CoT) reasoning (Feng et al., 2023; Li et al., 2024b; Mer-
rill & Sabharwal, 2024), looped architectures (Giannou et al., 2023; Luca & Fountoulakis, 2024;
Saunshi et al., 2025), and Rotary Position Embeddings (RoPE) (Chen et al., 2025a; Yang et al.,
2025; Chen et al., 2025b). Beyond Transformers, circuit complexity has also been applied to other
architectures such as state space models (SSMs) (Chen et al., 2025c), Hopfield networks (Li et al.,
2024a), diffusion models (Cao et al., 2025; Chen et al., 2025d; Ke et al., 2025), and graph neural
networks (GNNs) (Grohe, 2023; Cui et al., 2024; Li et al., 2025). In this work, we study the circuit
complexity bounds of equivariant GNNs on crystalline structures, providing the first analysis of this
kind.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

We begin by introducing some basics of crystal representations in Section 3.1, and then introduce
the background knowledge of equivariant graph neural networks (EGNNs) in Section 3.2. Next, we
present the basics in circuit complexity in Section 3.3.

3.1 REPRESENTATION OF CRYSTAL STRUCTURES

The unit cell representation describes the basis vectors of the unit cell, and all the atoms in a unit
cell.
Definition 3.1 (Unit cell representation of a crystal structure, implicit in page 3 of (Jiao et al., 2023)).
LetA := [a1, a2, . . . , an] ∈ Rh×n denote the list of description vectors for each atom in the unit cell.
Let X := [x1, x2, . . . , xn] ∈ R3×n denote the list of Cartesian coordinates of each atom in the unit
cell. Let L := [l1, l2, l3] ∈ R3×3 denote the lattice matrix, where l1, l2, l3 are linearly independent.
The unit cell representation of a crystal structure can be defined as a triplet C := (A,X,L).

The atom set representation describes a set containing an infinite number of atoms in the periodic
crystal structure.
Definition 3.2 (Atom set representation of a crystal structure, implicit in page 3 of (Jiao et al.,
2023)). Let C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1, where
A := [a1, a2, . . . , an] ∈ Rh×n, X := [x1, x2, . . . , xn] ∈ R3×n, and L := [l1, l2, l3] ∈ R3×3. The
atom set representation of C is defined as follows:

S(C) := {(a, x) : a = ai, x = xi + Lk, ∀i ∈ [n],∀k ∈ Z3},

where k is a length-3 column integer vector.
Definition 3.3 (Fractional coordinate matrix, implicit in page 3 of (Jiao et al., 2023)). Let
C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1, where A :=
[a1, a2, . . . , an] ∈ Rh×n, X := [x1, x2, . . . , xn] ∈ R3×n, and L := [l1, l2, l3] ∈ R3×3. We say
that F := [f1, f2, . . . , fn] ∈ [0, 1)3×n is a fractional coordinate matrix for C if and only if for all
i ∈ [n], we have:

xi = Lfi.

Definition 3.4 (Fractional unit cell representation of a crystal structure, implicit in page 3 of (Jiao
et al., 2023)). Let C := (A,X,L) be a unit cell representation of crystal structure as Definition 3.1.
Let F be a fractional coordinate matrix as Definition 3.3. The fractional unit cell representation of
C is a triplet Cfrac := (A,F, L).
Fact 3.5 (Equivalence of unit cell representations, informal version of Fact A.1). For any fractional
unit cell representation Cfrac := (A,F, L) as Definition 3.4, there exists a unique corresponding
non-fractional unit cell representation C := (A,X,L) as definition 3.1.

Therefore, since both unit cell representations are equivalent, we only use the fractional unit cell
representation in this paper. For notation simplicity, we may abuse the notation C to denote Cfrac in
the following parts of this paper.
Definition 3.6 (Fractional atom set representation of a crystal structure, implicit in page 3 of (Miller
et al., 2024)). Let Cfrac := (A,F, L) be a fractional unit cell representation of a crystal structure
as Definition 3.4, where A := [a1, a2, . . . , an] ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and
L := [l1, l2, l3] ∈ R3×3. The atom set representation of C is defined as follows:

Sfrac(C) := {(a, f) : a = ai, f = fi + k, ∀i ∈ [n],∀k ∈ Z3},

where k is a length-3 column integer vector.

3.2 EQUIVARIANT GRAPH NEURAL NETWORK ARCHITECTURE

We first define a useful transformation that computes the distance feature between each two atoms.
Definition 3.7 (k-order Fourier transform of relative fractional coordinates). Let x ∈ (−1, 1)3 be
a length-3 column vector. Without loss of generality, we let k ∈ Z+ be a positive even number.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let the output of the k-order Fourier fractional coordinates be a matrix Y ∈ R3×k such that Y :=
ψFT,k(x). For all i ∈ [3], j ∈ [k], each element of Y is defined as:

Yi,j :=

{
sin(πjxi), j is even;

cos(πjxi), j is odd.

Then, we define a single layer for the Equivariant Graph Neural Network (EGNN) on the fractional
unit cell representation of crystals.
Definition 3.8 (Pairwise Message). Let C := (A,F, L) be a fractional unit cell representation as
Definition 3.4, where A ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and L ∈ R3×3. Let H :=
[h1, h2, . . . , hn] ∈ Rd×n be a hidden neural representation for all the atoms. Let ψFT,k be a k-
order Fourier transform of relative fractional coordinates as Definition 3.7. Let ϕmsg : Rd × Rd ×
R3×3 × R3×k → Rd be an arbitrary function. We define the message MSGi,j(F,L,H) ∈ Rd

between the i-th atom and the j-th atom for all i, j ∈ [n] as follows:

MSGi,j(F,L,H) := ϕmsg(hi, hj , L
⊤L,ψFT,k(fi − fj)).

Definition 3.9 (One EGNN layer). Let C := (A,F, L) be a fractional unit cell representation
as Definition 3.4, where A := [a1, a2, . . . , an] ∈ Rh×n, F := [f1, f2, . . . , fn] ∈ R3×n, and
L := [l1, l2, l3] ∈ R3×3. Let H := [h1, h2, . . . , hn] ∈ Rd×n be a hidden neural representation for
all the atoms. Let ϕupd : Rd×Rd → Rd be an arbitrary function. Let MSG be the message function
defined as Definition 3.8. Let the output of the i-th EGNN layer EGNNi(A,F, L,H) be a matrix
Y = [y1, y2, . . . , yn] ∈ Rd×n, i.e., Y := EGNNi(F,L,H). For all i ∈ [n], each column of Y is
defined as:

yi := hi + ϕupd(hi,

n∑
j=1

MSGi,j(F,L,H)).

Definition 3.10 (EGNN). Let C := (A,F, L) be a fractional unit cell representation as Defini-
tion 3.4, where A ∈ Rh×n, F ∈ R3×n, and L ∈ R3×3. Let q be the number of EGNN lay-
ers. Let ϕin : Rh×n → Rd×n be an arbitrary function for the input transformation. The q-layer
EGNN : Rd×n × R3×n × R3×3 → Rd×n can be defined as follows:

EGNN(A,F, L) := EGNNq ◦ EGNNq−1 ◦ · · · ◦ EGNN1(ϕin(A), F, L).

Remark 3.11. While functions ϕmsg, ϕupd, and ϕin are usually implemented as simple MLPs in
practice, our theoretical result on equivariance and invariance works for any possible instantiation
of these functions.

3.3 CIRCUIT COMPLEXITY CLASS

In this section, we present Boolean circuits and key preliminaries for circuit complexity.
Definition 3.12 (Boolean Circuit, implicit in page 102 on (Arora & Barak, 2009)). Let n ∈ Z+. A
Boolean circuit is defined as a directed acyclic graph (DAG) that realizes a function Cn : {0, 1}n →
{0, 1}. The nodes of the graph are referred to as gates. Those with in-degree zero serve as input
nodes, corresponding to the n Boolean variables, while every other gate applies a Boolean function
to the output of its predecessors.

Since each circuit is limited to inputs of a fixed length, we rely on a sequence of circuits to handle
languages that include strings of any length.
Definition 3.13 (Circuit family recognizes languages, implicit in page 103 on (Arora & Barak,
2009)). Consider a language L ⊆ {0, 1}∗ and a family of Boolean circuits C = {Cn}n∈N, we say
that C recognizes L if every string x ∈ {0, 1}∗, C|x|(x) = 1 ⇐⇒ x ∈ L.

By restricting the size and depth of circuit families, we can define certain complexity classes, for
example NCi.

Definition 3.14 (NCi,implicit in page 40 on (Arora & Barak, 2009)). A language belongs to NCi

if it is decidable by a family of Boolean circuits of polynomial size O(poly(n)), depth O((log n)i),
and built from AND, OR, and NOT gates with bounded fan-in.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

By extending AND and OR gates to unbounded fan-in, we obtain more expressive circuits, which
define the class ACi.
Definition 3.15 (ACi, (Arora & Barak, 2009)). A language belongs to ACi if it can be recognized
by a family of Boolean circuits with polynomial size O(poly(n)) and depth O((log n)i), composed
of NOT, OR, and AND gates, with OR and AND gates permitted unbounded fan-in.

Since MAJORITY gates can simulate NOT, AND, and OR, an even larger class TCi can be defined.
Definition 3.16 (TCi, (Arora & Barak, 2009)). A language belongs to TCi if it can be recognized
by a family of Boolean circuits of polynomial size O(poly(n)) and depth O((log n)i), composed of
NOT, OR, AND, and MAJORITY gates with unbounded fan-in, where a MAJORITY gate outputs
1 when a majority of its inputs are active (1).
Remark 3.17. In Definition 3.16, the MAJORITY gates of TCi may be replaced with MOD gates
or THRESHOLD gates. Circuits that employ any of these gates are referred to as threshold circuits.
Definition 3.18 (P, implicit in page 27 on (Arora & Barak, 2009)). A language belongs to P if it
can be decided by a deterministic Turing machine in polynomial time.
Fact 3.19 (Hierarchy folklore, (Arora & Barak, 2009; Vollmer, 1999)). The following class inclu-
sions are valid for all i ≥ 0:

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.

Definition 3.20 (L-uniform, (Arora & Barak, 2009)). A circuit family C = {Cn}n∈N is said to be
L-uniform if there exists a Turing machine that, given input 1n, outputs a description of Cn using
O(log n) space. A language L belongs to a class such as L-uniform NCi if it can be decided by an
L-uniform circuit family Cn satisfying the size and depth requirements of NCi.

Next, we introduce a stronger notion of uniformity defined in terms of a time bound.
Definition 3.21 (DLOGTIME-uniform). A circuit family C = {Cn}n∈N is DLOGTIME-uniform if
there exists a Turing machine that, on input 1n, outputs a description of Cn within O(log n) time. A
language belongs to a DLOGTIME-uniform class if it can be decided by such a circuit family while
also meeting the required size and depth bounds.

The following lemmas characterize the depth and width of basic operations, which are essential in
our study of circuit complexity. We first establish that fundamental floating-point operations can be
implemented within TC0.
Lemma 3.22 (Operations on floating point numbers in TC0, Lemma 10 and Lemma 11 of (Chiang,
2024)). Assume the precision p ≤ poly(n). Then we have:

• Part 1. Consider two p-bits float point numbers x1 and x2. As described in (Chiang, 2024),
their addition, division, and multiplication can be carried out using a threshold circuit of
polynomial size and constant depth dstd, which is DLOGTIME-uniform.

• Part 2. Given n p-bits float point number x1, . . . , xn, their iterated product can be sim-
ulated by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth
d⊗.

• Part 3. Given n p-bits float point number x1, . . . , xn, their iterated sum can be simulated
by a DLOGTIME-uniform threshold circuit of polynomial size and constant depth d⊕. Note
that a rounding step is applied after the summation.

We now establish that the exponential function can also be approximated in TC0.
Lemma 3.23 (Approximating the Exponential Operation in TC0, Lemma 12 of (Chiang, 2024)).
Assume the precision satisfies p ≤ poly(n). For any p-bit floating-point number x, the function
exp(x) can be approximated by a uniform threshold circuit of polynomial size and constant depth
dexp, achieving a relative error no greater than 2−p.

Finally, we show that the square root function can be approximated within TC0.
Lemma 3.24 (Approximating the Square Root Operation in TC0, Lemma 12 of (Chiang, 2024)).
Assume the precision satisfies p ≤ poly(n). For any p-bit floating-point number x, the function√
x can be approximated by a uniform threshold circuit of polynomial size and constant depth dsqrt,

achieving a relative error no greater than 2−p.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 FLOATING POINT NUMBERS

In this subsection, we present the basic definitions of floating-point numbers and their operations,
which provide the computational framework for implementing GNNs on practical hardware.

Definition 3.25 (Floating Point Numbers (FPNs), Definition 9 in (Chiang, 2024)). A p-bit floating-
point number (FPN) can be expressed as a pair of binary integers ⟨s, e⟩. Here, the significand |s|
takes values in {0} ∪ [2p−1, 2p), while the exponent e lies within [−2p, 2p − 1]. The value of the
FPN is calculated as s · 2e. When e = 2p, the floating-point number represents positive or negative
infinity, depending on the sign of s. We use Fp to denote the set of all the p-bit FPNs.

Definition 3.26 (Rounding, Definition 9 in (Chiang, 2024)). Let r ∈ R be a real number with infinite
precision. Its nearest p-bit representation is written as roundp(r) ∈ Fp. If two such representations
are equally close, roundp(r) is defined as the one with an even significand.

Then, we introduce the key floating-point operations used to compute the outputs of neural networks.

Definition 3.27 (FPN operations, page 5 on (Chiang, 2024)). Let x and y be two integers. We define
the integer division operation // as follows:

x // y :=

{
x/y if x/y is a multiple of 1/4
x/y + 1/8 otherwise.

Given two p-bits FPNs ⟨s1, e1⟩ , ⟨s2, e2⟩ ∈ Fp, we define the fundamental operations on them as:

addition : ⟨s1, e1⟩+ ⟨s2, e2⟩ :=
{
roundp(⟨s1 + s2 // 2

e1−e2 , e1⟩) if e1 ≥ e2
roundp(⟨s1 // 2e2−e1 + s2, e2⟩) if e1 ≤ e2

multiplication : ⟨s1, e1⟩ × ⟨s2, e2⟩ := roundp(⟨s1s2, e1 + e2⟩)
division : ⟨s1, e1⟩ ÷ ⟨s2, e2⟩ := roundp(

〈
s1 · 2p−1 // s2, e1 − e2 − p+ 1

〉
)

comparison : ⟨s1, e1⟩ ≤ ⟨s2, e2⟩ ⇔
{
s1 ≤ s2 // 2

e1−e2 if e1 ≥ e2
s1 // 2

e2−e1 ≤ s2 if e1 ≤ e2.

Building on the previous definitions, we show that these basic operations can be efficiently executed
in parallel using simple TC0 circuit constructions, as established in the following lemma:

Lemma 3.28 (Computing FPN operations with TC0 circuits, Lemma 10 and Lemma 11 in (Chiang,
2024)). Let p be a positive integer representing the number of digits. If p ≤ poly(n), then the
following holds:

• Basic Operations: The operations “+”, “×”, “÷”, and comparison (≤) between two p-bit
FPNs, as defined in Definition 3.25, can be implemented by uniform threshold circuits of
O(1)-depth and poly(n) size. Denote the maximum depth required for these basic opera-
tions as dstd.

• Iterated Operations: The product of n p-bit FPNs, as well as the sum of n p-bit FPNs (with
rounding applied after summation) can both be computed by uniform threshold circuits
with O(1)-depth and poly(n) size. Let d⊗ and d⊕ denote the maximum circuit depth for
multiplication and addition.

In addition to the basic floating-point operations, some specialized operations can also be executed
within TC0 circuits, as shown in the following lemmas:

Lemma 3.29 (Computing exp with TC0 circuits, Lemma 12 in (Chiang, 2024)). Let x ∈ Fp be
a p-bit FPN. Provided that p ≤ poly(n), there exists a uniform threshold circuit of poly(n) size
and O(1) depth that can approximate exp(x) with a relative error less than 2−p. We denote the
maximum depth needed for this approximation by dexp.

Lemma 3.30 (Computing square root with TC0 circuits, Lemma 12 in (Chiang, 2024)). Let x ∈ Fp

be a p-bit FPN. If p ≤ poly(n), then there exists a uniform threshold circuit of O(1)-depth and
poly(n) size capable of computing

√
x with relative error smaller than 2−p. Denote the maximum

circuit depth required for this computation as dsqrt.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lemma 3.31 (Computing matrix multiplication with TC0 circuits, Lemma 4.2 in (Chen et al.,
2025a)). Let A ∈ Fn1×n2

p and B ∈ Fn2×n3
p be two matrix operands. If p ≤ poly(n) and

n1, n2, n3 ≤ n, then there exists a uniform threshold circuit of poly(n) size, with maximum depth
(dstd + d⊕) that can compute the matrix product AB.

4 CIRCUIT COMPLEXITY OF CRYSTALLINE EGNNS

We first present the circuit complexity of basic EGNN building blocks in Section 4.1, and then show
the circuit complexity for EGNN layers in Section 4.2.

4.1 CIRCUIT COMPLEXITY OF BASIC EGNN BUILDING BLOCKS

We begin by introducing a useful lemma that introduces the TC0 computation of trigonometric
functions.
Lemma 4.1 (Trigonometric function computation in TC0, Lemma 4.1 of (Chen et al., 2025a)).
Assume p ≤ poly(n). For any p-bit floating-point number x, the function sin(x) and cos(x) can be
approximated by a uniform threshold circuit of polynomial size and constant depth 8dstd+d⊕+d⊗,
achieving a relative error no greater than 2−p.

Then, we show that k-order Fourier Transforms, a fundamental building block for Crystalline EGNN
layers, can be computed by the TC0 circuits.
Lemma 4.2 (k-order Fourier Transform computation in TC0). Assume p ≤ poly(n) and k =
O(n). For any p-bit floating-point number x, the function ψFt,k(x) defined in Definition 3.7 can be
approximated by a uniform threshold circuit of polynomial size and constant depth 10dstd+d⊕+d⊗,
achieving a relative error no greater than 2−p.

Proof. According to Definition 3.7, for each (i, j) ∈ [3]× [k] there are two fixed cases:

Case 1. j is even, then Yi,j := sin(πjxi). Computing πjxi uses 2dstd depth and poly(n) size.
Then, according to Lemma 4.1, we need to use 8dstd + d⊕ + d⊗ and poly(n) size for the sin
operation. Thus, the total depth of this case is 10dstd + d⊕ + d⊗, and the size is poly(n).

Case 2. j is odd, then Yi,j := cos(πjxi). Similar to case 1, the only difference is we need to use
cos instead of sin. According to Lemma 4.1, cos takes 8dstd + d⊕ + d⊗ depth and poly(n) size,
which is same as sin in case 1. Thus, the total depth of this case is 10dstd + d⊕ + d⊗, and the size
is poly(n).

Since all [3] × [k] elements in Y can be computed in parallel, thus we need 3k parallel circuit with
10dstd + d⊕ + d⊗ depth to simulate the computation of Y . Since k = O(n), thus we can simulate
the computation with circuit of poly(n) size and 10dstd + d⊕ + d⊗ = O(1) depth. Thus k-order
Fourier Transform can be simulated by a TC0 uniform threshold circuit.

We also show that MLPs are computable with uniform TC0 circuits.
Lemma 4.3 (MLP computation in TC0, , Lemma 4.5 of (Chen et al., 2025a)). Assume the precision
p ≤ poly(n). Then, we can use a size bounded by poly(n) and constant depth 2dstd + d⊕ uniform
threshold circuit to simulate the MLP layer with O(1) depth and O(n) width, achieving a relative
error no greater than 2−p.

4.2 CIRCUIT COMPLEXITY OF EGNN LAYER

Lemma 4.4 (Pairwise Message computation in TC0.). Assume p ≤ poly(n), d = O(n) and k =
O(n). Assume ϕmsg is instantiated with O(1) depth and O(n) width MLP. For any p-bit floating-
point number x, the function MSG(F,L,H) defined in Definition 3.8 can be approximated by a
uniform threshold circuit of polynomial size and constant depth 13dstd + 2d⊕ + d⊗, achieving a
relative error no greater than 2−p.

Proof. We first analyze the arguments in for the ϕmsg function. The first two arguments do not
involve computation. The third argument L⊤L involves one matrix multiplication. According to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Lemma 3.31, we could compute the matrix multiplication using a circuit of poly(n) size and dstd +
d⊕ depth.

In order to analyze the last argument ψFT,k(fi − fj), we first analyze fi − fj , which takes dstd
depth and constant size. Then, according to Lemma 4.2, we can compute the ψFT,k(·) with circuit of
poly(n) size and 10dstd+d⊕+d⊗ depth. Therefore, we can compute the last argument ψFT,k(fi−
fj) with circuit of poly(n) size and 11dstd + d⊕ + d⊗ depth.

Next, since d = O(n) and k = O(n) according to Lemma 4.3, we can use circuit with poly(n) size
and 2dstd + d⊕ to compute the ϕmsg(·) function.

Combining above, we can use circuit with poly(n) size and 2dstd+d⊕+max{dstd+d⊕, 11dstd+
d⊕ + d⊗} = 13dstd + 2d⊕ + d⊗ = O(1) depth to compute the pairwise message. Thus, pairwise
message computation can be simulated by a TC0 uniform threshold circuit.

Lemma 4.5 (One EGNN layer approximation in TC0, informal version of Lemma B.1). Assume
p ≤ poly(n), d = O(n) and k = O(n). Assume ϕmsg and ϕupd are instantiated with O(1) depth
andO(n) width MLPs. For any p-bit floating-point number x, the function EGNNi(A,F,H) defined
in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant
depth 16dstd + 3d⊕ + 2d⊗, achieving a relative error no greater than 2−p.

5 MAIN RESULTS

In this section, we present our main result, which show that under some assumptions, EGNN class
in Definition 3.10 can be simulated by a uniform TC0 circuit family.

Theorem 5.1. If precision p ≤ poly(n), embedding size d = O(n), the number of layers q = O(1),
k = O(n), and all the functions ϕmsg, ϕupd, and ϕin are instantiated with O(1) depth and O(n)
width MLPs, then the equivariant graph neural network EGNN : Rd×n × R3×n × R3×3 → Rd×n

which defined in Definition 3.10 can be simulated by the uniform TC0 circuit family.

Proof. Since d = O(n), according to Lemma 4.3, the computation of first argument (ϕin(A)) can
be approximated by a circuit of 2dstd + d⊕ depth and poly(n) size. Last two arguments does not
include computation.

Then, according to Lemma 4.5, for each EGNN layer, we need a circuit with poly(n) size and
16dstd + 3d⊕ + 2d⊗ depth to simulate the computation.

Combining results above, since there are q serial layer of EGNN, we need circuit of poly(n) size
and

q(16dstd + 3d⊕ + 2d⊗ + 2dstd + d⊕) = q(18dstd + 4d⊕ + 2d⊗)

= O(1)

depth to simulate the EGNN. Thus, the EGNN can be simulated by a TC0 uniform threshold circuit.

6 CONCLUSION

We studied the computational expressiveness of equivariant graph neural networks (EGNNs) for
crystalline-structure prediction through the lens of circuit complexity. Under realistic architectural
and precision assumptions—polynomial precision, embedding width d = O(n), q = O(1) layers,
and O(1)-depth, O(n)-width MLP instantiations of the message, update, and readout maps—we
established that an EGNN as formalized in Definition 3.10 admits a simulation by a uniform TC0

circuit family of polynomial size. Our constructive analysis further yields an explicit depth bound
of q(18dstd + 4d⊕ + 2d⊗), thereby placing a concrete ceiling on the computations performed by
such models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Mila AI4Science, Alex Hernandez-Garcia, Alexandre Duval, Alexandra Volokhova, Yoshua Ben-
gio, Divya Sharma, Pierre Luc Carrier, Yasmine Benabed, Michał Koziarski, and Victor
Schmidt. Crystal-gfn: sampling crystals with desirable properties and constraints. arXiv preprint
arXiv:2310.04925, 2023.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel,
Ricky TQ Chen, and Yaron Lipman. Matching normalizing flows and probability paths on mani-
folds. arXiv preprint arXiv:2207.04711, 2022.

Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco S Cohen. Geometric algebra transformer.
Advances in Neural Information Processing Systems, 36:35472–35496, 2023.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Yang Cao, Yubin Chen, Zhao Song, and Jiahao Zhang. Towards high-order mean flow generative
models: Feasibility, expressivity, and provably efficient criteria. arXiv preprint arXiv:2508.07102,
2025.

Zhendong Cao, Xiaoshan Luo, Jian Lv, and Lei Wang. Space group informed transformer for
crystalline materials generation. arXiv preprint arXiv:2403.15734, 2024.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020
(oc20) dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Circuit complexity bounds for rope-based transformer architecture. In EMNLP, 2025a.

Bo Chen, Zhenmei Shi, Zhao Song, and Jiahao Zhang. Provable failure of language models in
learning majority boolean logic via gradient descent. arXiv preprint arXiv:2504.04702, 2025b.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational limits of
state-space models and mamba via the lens of circuit complexity. In The Second Conference on
Parsimony and Learning (Proceedings Track), 2025c.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fundamental limits of visual
autoregressive transformers: Universal approximation abilities. In Forty-second International
Conference on Machine Learning, 2025d.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Chiang. Transformers in uniform tc 0. arXiv preprint arXiv:2409.13629, 2024.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Callum J Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 2020.

Guanyu Cui, Yuhe Guo, Zhewei Wei, and Hsin-Hao Su. Rethinking gnn expressive power from a
distributed computational model perspective. arXiv preprint arXiv:2410.01308, 2024.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely condi-
tioned flow matching. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 23263–23274, 2023.

Alexandre Agm Duval, Victor Schmidt, Alex Hernandez-Garcia, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pp. 9013–9033. PMLR,
2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36:70757–70798, 2023.

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materi-
als, and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint
arXiv:2011.14115, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
neural networks for molecules. Advances in Neural Information Processing Systems, 34:6790–
6802, 2021.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure
prediction. Computer physics communications, 175(11-12):713–720, 2006.

Martin Grohe. The descriptive complexity of graph neural networks. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14. IEEE, 2023.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and
Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text. arXiv
preprint arXiv:2402.04379, 2024.

Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α-(de) blending: A minimalist deter-
ministic diffusion model. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–8, 2023.

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36:17464–17497, 2023.

Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
generation. arXiv preprint arXiv:2402.03992, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411, 2020.

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Oumar Kaba and Siamak Ravanbakhsh. Equivariant networks for crystal structures. Advances in
Neural Information Processing Systems, 35:4150–4164, 2022.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical review, 140(4A):A1133, 1965.

Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power of
modern hopfield networks. arXiv preprint arXiv:2412.05562, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the com-
putational capability of graph neural networks: A circuit complexity bound perspective. arXiv
preprint arXiv:2501.06444, 2025.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024b. URL https://openreview.net/forum?id=3EWTEy9MTM.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In ICLR, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In ICLR, 2023.

Yuxi Liu. Perfect diffusion is TC0–bad diffusion is turing-complete. arXiv preprint
arXiv:2507.12469, 2025.

Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
formers. In Proceedings of the 41st International Conference on Machine Learning, pp. 2319–
2363. PMLR, 2024.

Xiaoshan Luo, Zhenyu Wang, Qingchang Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yan-
ming Ma. Crystalflow: A flow-based generative model for crystalline materials. arXiv preprint
arXiv:2412.11693, 2024.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85,
2023.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
NeurIPS, 2023.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

12

https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generat-
ing materials with riemannian flow matching. In International Conference on Machine Learning,
pp. 35664–35686. PMLR, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020.

Asma Nouira, Nataliya Sokolovska, and Jean-Claude Crivello. Crystalgan: learning to
discover crystallographic structures with generative adversarial networks. arXiv preprint
arXiv:1810.11203, 2018.

Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of Physics: Condensed
Matter, 23(5):053201, 2011.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. arXiv preprint
arXiv:2110.03336, 2021.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. Advances in Neural Information Processing Systems, 35:21030–
21045, 2022.

Weikang Qiu, Huangrui Chu, Selena Wang, Haolan Zuo, Xiaoxiao Li, Yize Zhao, and Rex Ying.
Learning high-order relationships of brain regions. arXiv preprint arXiv:2312.02203, 2023.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-
based generative modeling on manifolds. Advances in neural information processing systems, 34:
17669–17680, 2021.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J. Reddi. Reasoning
with latent thoughts: On the power of looped transformers. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?
id=din0lGfZFd.

Jonathan Schmidt, Noah Hoffmann, Hai-Chen Wang, Pedro Borlido, Pedro JMA Carriço, Tiago FT
Cerqueira, Silvana Botti, and Miguel AL Marques. Large-scale machine-learning-assisted explo-
ration of the whole materials space. arXiv preprint arXiv:2210.00579, 2022.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of chemical physics,
148(24), 2018.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023a.

13

https://openreview.net/forum?id=din0lGfZFd
https://openreview.net/forum?id=din0lGfZFd

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
optimal transport. arXiv preprint arXiv:2302.00482, 2(3), 2023b.

Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M Wood, Siddharth Goyal, Abhishek Das,
Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, et al. The open catalyst
2022 (oc22) dataset and challenges for oxide electrocatalysts. ACS Catalysis, 13(5):3066–3084,
2023.

Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline compounds
using chemical similarity. npj Computational Materials, 7(1):12, 2021.

Peter Wirnsberger, George Papamakarios, Borja Ibarz, Sébastien Racaniere, Andrew J Ballard,
Alexander Pritzel, and Charles Blundell. Normalizing flows for atomic solids. Machine Learning:
Science and Technology, 3(2):025009, 2022.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffu-
sion variational autoencoder for periodic material generation. arXiv preprint arXiv:2110.06197,
2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mor-
datch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235, 2023.

Songlin Yang, Yikang Shen, Kaiyue Wen, Shawn Tan, Mayank Mishra, Liliang Ren, Rameswar
Panda, and Yoon Kim. Path attention: Position encoding via accumulating householder transfor-
mations. arXiv preprint arXiv:2505.16381, 2025.

Wenhui Yang, Edirisuriya M Dilanga Siriwardane, Rongzhi Dong, Yuxin Li, and Jianjun Hu. Crystal
structure prediction of materials with high symmetry using differential evolution. Journal of
Physics: Condensed Matter, 33(45):455902, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
inorganic materials design. arXiv preprint arXiv:2312.03687, 2023.

Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu. Flow-
policy: Enabling fast and robust 3d flow-based policy via consistency flow matching for robot
manipulation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39:14,
pp. 14754–14762, 2025a.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. Foundations and Trends® in Machine Learning, 18(4):385–912, 2025b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we supplement the missing proofs in Section 3. In Section B, we show the
missing proofs in Section 4.

A MISSING PROOFS IN SECTION 3

Fact A.1 (Equivalence of unit cell representations, formal version of Fact 3.5). For any fractional
unit cell representation Cfrac := (A,F, L) as Definition 3.4, there exists a unique corresponding
non-fractional unit cell representation C := (A,X,L) as definition 3.1.

Proof. Part 1: Existence. By Definition 3.1, we can conclude that L is invertible since all the
columns in L are linearly independent. Thus, we can choose X = L−1F and finish the proof.

Part 2: Uniqueness. We show this by contradiction. First, we assume that there exist two different
unit cell representations C1 := (A,X1, L) and C2 := (A,X2, L) for Cfrac, i.e., X1 ̸= X2. By
Definition 3.3, we have X1 = X2 = LF , which contradicts X1 ̸= X2. Thus, we finish the
proof.

B MISSING PROOFS IN SECTION 4

Lemma B.1 (One EGNN layer approximation in TC0, formal version of Lemma 4.5). Assume
p ≤ poly(n), d = O(n) and k = O(n). Assume ϕmsg and ϕupd are instantiated with O(1) depth
andO(n) width MLPs. For any p-bit floating-point number x, the function EGNNi(A,F,H) defined
in Definition 3.9 can be approximated by a uniform threshold circuit of polynomial size and constant
depth 16dstd + 3d⊕ + 2d⊗, achieving a relative error no greater than 2−p.

Proof. We start with analyzing the arguments in ϕupd(·). The first argument does not involve com-
putation. For the second argument, according to Lemma 4.4, we need circuit with poly(n) size and
13dstd + 2d⊕ + d⊗ depth to simulate MSGi,j(F,L,H) computation.

Then, for the summation
∑n

j=1 MSGi,j(F,L,H), we can compute n MSGi,j(F,L,H) in parallel,
and use a circuit with d⊕ width to perform the summation. Thus we can simulate the last argument
with circuit of poly(n) size 13dstd + 2d⊕ + 2d⊗ depth to simulate the last argument.

Next, for ϕupd(·), since d = O(n), according to Lemma 4.3, we can simulate ϕupd(·) with circuit of
poly(n) size 2dstd + d⊕ depth. Finally, for the addition of Rd size vector, we need circuit poly(n)
size and dstd depth to simulate it.

Combining circuits above, we can simulate EGNNi(A,F,H) with a circuit of poly(n) size and

13dstd + 2d⊕ + 2d⊗ + 2dstd + d⊕dstd = 16dstd + 3d⊕ + 2d⊗

= O(1)

depth to simulate the computation. Thus, one EGNN layer can be simulated by a TC0 uniform
threshold circuit.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

15

	Introduction
	Related Work
	Preliminary
	Representation of Crystal Structures
	Equivariant Graph Neural Network Architecture
	Circuit Complexity Class
	Floating Point Numbers

	Circuit Complexity of Crystalline EGNNs
	Circuit Complexity of Basic EGNN Building Blocks
	Circuit Complexity of EGNN Layer

	Main Results
	Conclusion
	Missing Proofs in Section 3
	Missing Proofs in Section 4

