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ABSTRACT

Continual learning has been widely studied in recent years to resolve the catas-
trophic forgetting of deep neural networks. In this paper, we first enforce a low-rank
filter subspace by decomposing convolutional filters within each network layer over
a small set of filter atoms. Then, we perform continual learning with filter atom
swapping. In other words, we learn for each task a new filter subspace for each
convolutional layer, i.e., hundreds of parameters as filter atoms, but keep subspace
coefficients shared across tasks. By maintaining a small footprint memory of filter
atoms, we can easily archive models for past tasks to avoid forgetting. The effec-
tiveness of this simple scheme for continual learning is illustrated both empirically
and theoretically. The proposed atom swapping framework further enables flexible
and efficient model ensemble with members selected within task or across tasks to
improve the performance in different continual learning settings. Being validated
on multiple benchmark datasets with different convolutional network structures,
the proposed method outperforms the state-of-the-art methods in both accuracy
and scalability.

1 INTRODUCTION

Humans keep acquiring new concepts without forgetting crucial ones in the past. To endow intelligent
agents with the same ability of long-term knowledge accumulation, continual learning (CL) has been
intensively studied in recent years. In continual learning, an agent learns from a sequence of tasks,
with the goal of gaining knowledge of each new task while preserving the capacity for resolving the
old ones, therefore to avoid catastrophic forgetting. The recent advances of CL mainly follow several
directions. One popular category among them is to maintain an external memory of the original
images (Robins, 1995; Rebuffi et al., 2017), synthesized images (Shin et al., 2017), or parameter
gradients (Lopez-Paz & Ranzato, 2017) for archiving the past. These memory-based methods often
suffer from heavy memory footprints, while still forgetting about the previous tasks to some extent.

Motivated by the literature on subspace modeling of tasks (Evgeniou & Pontil, 2007; Maurer et al.,
2013; Zhang & Yang, 2021; Romera-Paredes et al., 2013; Kumar & Daume III, 2012), in this paper,
we propose to learn for each task a new filter subspace for each convolutional layer, i.e., hundreds of
parameters as filter atoms, but keep subspace coefficients shared across tasks. In other words, in a
CNN, we enforce a low-rank filter subspace by decomposing convolutional filters within each network
layer over a small set of filter atoms. Then, we perform continual learning by simply swapping filter
atoms for each task. The effectiveness of our approach is empirically validated and further explained
theoretically with an excess risk bound analysis.

With the proposed approach, we can faithfully remember the past by only maintaining an atom
memory with small footprint to archive task-specific filter atoms. Any previously learned CNN
models can now be exactly recovered by multiplying the task-shared coefficients with the task-specific
atoms, which can be retrieved efficiently from the atom memory. Thus, the introduced filter atom
memory permits historical knowledge to be recalled with a guarantee against forgetting. Comparing
with state-of-the-art memory-based CL methods, our approach requires storing for each task only
some tiny size filter atoms, which in total are typically much smaller than the size of exemplars in
memory-based methods (Rebuffi et al., 2017; Prabhu et al., 2020), and therefore potentially supports
continual learning on a large scale.
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Figure 1: Illustration of the proposed continual learning method with filter atom swapping. Within each CNN
layer, we decompose a filter Wi ∈ Rc×c

′×k×k over a filter subspace spanned by m filter atoms Di ∈ Rm×k×k

as Wi = αiDi, where αi ∈ Rc×c
′×m are the subspace coefficients, c and c′ are the number of input and

output channels, k is the spatial size of each atom. With task-shared coefficients, we learn for each task a new
filter subspace as filter atoms, and store those atoms, typically a few hundred of parameters, in a small footprint
atom memory. At time T , we can recall the past model at t (t < T ) through filter reconstruction Wt

i = αiD
t
i ,

with Dt
i fetched from the atom memory, to fully recover the previous model.

Our atom swapping continual learning framework can effectively support both inter-task and intra-task
model ensemble to further enhance performance in different continual learning settings: First, inter-
task ensemble utilizes the relevant past knowledge to boost the present task performance. To ensure
that ensemble with past models can affect the current task positively, we only select a relevant subset
of past models. With a life-long learning scenario in mind, we choose to assess task relevancy simply
based on the filter subspace distance, which can be on-the-fly computed here via the Grassmann
distance (Absil et al., 2004) among task-specific filter subspaces. Second, intra-task ensemble can
be adopted in class-incremental setting to help task prediction with the minimal-entropy criterion.
Usually, ensemble members are instantiated as independent CNNs, and their learning and inference
are conducted separately for dissimilarity. However, this will lead to significant increase in training
and inference time and memory usage. We address this problem by creating within a task multiple
virtual members in a single CNN model by simply maintaining several groups of filter atoms in each
layer. In this way, different intra-task members are integrated into a single network, while learning
and inference can be conducted efficiently with group convolution.

We validate our simple yet effective approach on several continual learning benchmarks such as
MNIST, CIFAR100, and miniImageNet under both class-incremental and task-incremental settings,
and observe competitive results against state-of-the-art methods on all benchmarks with far less
memory usage.

We summarize our contributions as follows,

• We learn for each task a new filter subspace for each layer, and keep subspace coefficients shared
across tasks.

• We maintain a small footprint filter atom memory that can faithfully archive past knowledge with a
guarantee against forgetting in a highly scalable way.

• We adopt an inter-task ensemble for the present task by recalling past models based on an on-the-fly
calculated task relevancy under the task-incremental setting.

• We propose an intra-task ensemble for the class-incremental setting by creating multiple virtual
members in a single CNN model through different groups of filter atoms per layer.

2 MOTIVATION
We are motivated by the literature on task subspace modeling (Evgeniou & Pontil, 2007; Maurer
et al., 2013; Zhang & Yang, 2021; Romera-Paredes et al., 2013; Kumar & Daume III, 2012), where
it is commonly assumed that task parameters lie in a low dimensional subspace, so that tasks can
be modeled as a set of latent basis tasks and their linear combinations. The latent basis tasks and
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the respective linear combinations are often obtained via alternative optimization by fixing one and
optimizing the other (Kumar & Daume III, 2012).

In our continual learning setting, we model tasks using convolutional neural networks (CNNs).
Following (Qiu et al., 2018), we decompose a convolutional filter Wi ∈ Rc×c′×k×k for the i-th layer
over m filter atoms Di ∈ Rm×k×k, linearly combined by coefficient αi ∈ Rc×c′×m, where c and c′
are the number of input and output channels, k is the spatial size of each atom. This can be written as
Wi = αi ×Di. Note that this decomposition distributes a filter Wi into two imbalanced parts: αi

for channel mixing with mcc′ parameters, and light-weight Di for spatial filtering with only mk2
entries. In all, we use W = α×D to denote the filters decomposition in a model with l convolutional
layers, where W = {Wi}li=1,α = {αi}li=1,D = {Di}li=1 indicate all filters, coefficients, and
atoms respectively.

It is easy to observe that, within each CNN layer, we can borrow from the task subspace modeling
methodology by creating a set of latent basis tasks through filter atoms Di and their linear combi-
nations as atom coefficients αi. The linear combination coefficients αi are learned on the first task
jointly with the first group of atoms, and then atoms for subsequent tasks are alternatively optimized
by fixing αi.

As illustrated in the subsequent sections, this seemingly under-fitting method not only enables an
efficient way to faithfully archive past models with a guarantee against forgetting, but also supports
efficient inter-task and intra-task model ensemble to further improve the performance.

3 METHODOLOGY

We consider the problem of learning T tasks sequentially. Formally, we denote the data distribution
that associates with the t-th task as Dt = (X t,Yt), t ∈ {1, 2, ..., T}, from which a dataset Dt =

{xi
t,y

i
t}

Nt
i=1 is sampled for training. The goal of continual learning is to minimize the statistical risk

of all seen tasks given no access to data Dt from previous tasks t ≤ T (Delange et al., 2021):
T∑

t=1

E(X t,Yt)[L(F t(X t; θ),Yt)], (1)

where L denotes the risk function, F t(·; θ) is the model for task t with parameter θ. Continual
learning with a guarantee against forgetting can be achieved by storing learned parameters entirely
in an external memoryM = {θt}Tt=1 given F t(·; θ) = F(·; θt), thus any previous model can be
completely recovered by retrieving the corresponding parameters from the memory. However, such a
straightforward solution based on parameter memory suffers severely on its poor scalability due to
the large size of modern deep neural networks and the potentially long task sequence. We address
the scalability issue and achieve guaranteed non-forgetting by decomposing convolutional filters in a
CNN into task-specific filter atoms and task-shared coefficients. Then only hundreds of parameters
per task need to be stored in an atom memory to guarantee non-forgetting. This proposed approach
allows efficient inter-task and intra-task ensemble to further boost performance.

3.1 A SCALABLE APPROACH AGAINST FORGETTING

In CNNs, catastrophic forgetting occurs when a model learned from a sequence of past tasks is updated
in favor of the current task, resulting in significant performance degradation. A straightforward
solution, as mentioned before, is to archive Wt in an external memoryM = {Wt}Tt=1, and the
representation space of any previous model can be faithfully recalled by memory retrieval. However,
as deep CNNs contain great amount of parameters in Wt, this simple solution scales poorly with
the number of tasks T . On the other hand, storing part of parameters, or small subsets of data for
parameter flashback cannot avoid forgetting completely (Sarwar et al., 2019; Yoon et al., 2018).

This dilemma can be resolved with the proposed filter atom decomposition, as shown in Fig. 1. With
the filter decomposition described in Sec. 2, by storing task-specific filter atoms Dt into memory, and
enforcing a task-shared coefficients α, the model archives the entire knowledge for each time point.
We refer to the memory for storing atoms as the atom memory,MD = {Dt}Tt=1,D

t ∈ Rm×k×k,
with each Dt learned in the t-th task with empirical risk minimization,

arg min
Dt

Nt∑
i=1

L(F(xt
i;α,D

t),yt
i). (2)
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The task-shared coefficients α are learned on the first task jointly with the first group of atoms,

arg min
D1,α

N1∑
i=1

L(F(x1
i ;α,D1),y1

i ). (3)

In this way, we can guarantee that the statistical risk for a previous task t at any time point remains the
same as we can recall faithfully the past model by multiplying the stored atoms with the task-shared
coefficients,

E(X t,Yt)[L(F t(X t; θ),Yt)] = E(X t,Yt)[L(F(X t;α×Dt),Yt)]. (4)

Atom memory scalability. The proposed atom memory stores a group of atoms per task, which is
scalable with increasing number of tasks. Formally, consider a l-layer CNN model with associated
filters W = {Wi}li=1. As mentioned in Sec. 2, each filter can be decomposed as Wi = αi ×Di.
The group of atoms for task t can then be denoted as Dt = {Dt

i}li=1, which requires a size of lmk2
in storing parameters per task. This typically introduces only a few hundred of parameters for each
task to be stored in the atom memory, which potentially supports continual learning on a large scale.
Details for scalability comparison are shown in Sec. 5.2.1.

Analysis of excess risk bound. With task-shared coefficients α, the model for each new task may
seemingly expect some degree of underfitting. However, as demonstrated in Section 5, we still
observe superior results over the state-of-the-art continual learning methods on all benchmarks we
have evaluated. To understand this, we here theoretically analyze the excess risk bound for new
tasks in the continual learning setting. For each tasks t ∈ {1, 2, ..., T}, model F t(·; θ) consists
of representation function φt and prediction function wt (wt ∈ Rk). The representation function
φt maps an input x to feature space Z ⊆ Rk. For the analysis purpose, we assume φt is just one
convolution layer, which can be decomposed as φt = α×Dt. Therefore, using the training samples
from task t, we can solve the following optimization problem from Eq. (2):

min
1

2N t
‖yt − (α×Dt(xt))+w

t‖2 +
λ

2
‖α×Dt‖2F +

λ

2
‖wt‖2F , (5)

where we use the mean square error as our loss, (·)+ is ReLU activation (z)+ = max{0, z}. The
shared coefficients α are learned on the first task jointly with the first group of atoms. Similar to (Du
et al., 2020), we also assume that there is a ground-truth optimal representation function φt,∗ and
prediction function wt,∗ for task t.

Assumption 1 (subgaussian input). There exists ρ > 0 such that, for all t ∈ {1, 2, ..., T}, the random
vector x̄ ∼ p̄t is ρ2-subgaussian. The p̄t is the distribution of samples in task t.

Assumption 2 (oracle network). Assume for task t ∈ {1, 2, ..., T} that yt = (α∗×Dt,∗(xt))+w
t,∗+

zt is generated by an oracle network with parameters α∗, Dt,∗, and wt,∗. Noise term zt ∼ N (0, σ2I).

Excess risk bound. We can bound the excess risk of our learned model on the task t, i.e., how much
our learned model (α̂, D̂t, ŵt) performs worse than the optimal model (α∗,Dt,∗,wt,∗) on the task
t as follows:

ER(α̂, D̂t, ŵt) = LDt(α̂, D̂t, ŵt)− LDt(α∗,Dt,∗,wt,∗)

≤ σR̄ · Õ(

√
Tr(Σ) +

√
‖Σ‖2√

N t
) + ρ4R̄2 · Õ(

Tr(Σ) + ‖Σ‖2
N t

)

where R̄ = 1
2‖α

∗ ×Dt,∗‖2F + 1
2‖w

t,∗‖2F , Σ = Ex∼p[xxᵀ], N t is the number of training samples.
Õ is the big O notation, and LDt is the expected loss with the data distribution Dt. The detailed
analysis is provided in the Appendix A.

3.2 INTER-TASK MODEL ENSEMBLE

The atom memory not only serves as an efficient way to archive past models with a guarantee
against forgetting, but also enables efficient recall of past models for model ensemble to improve
the performance in present task. As in Breiman (2001); Lakshminarayanan et al. (2017), ensemble
performance increases with the independent level of ensemble members. Motivated by this, model
ensemble over time for the current task at time r has a natural advantage that each ensemble member
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Figure 3: Intra-task ensemble with Ew = 2.

F t (t ∈ {1, 2, ..., r}) is learned from a different data distributionDt. However, most of other methods
are not affordable to perform model ensemble across tasks since they often lack an effective and
efficient way to recall past models. As illustrated in Fig. 2, with the atom memory, our method can
faithfully and rapidly recall past models F t = F(·;α×Dt) by simply fetching atoms Dt from the
atom memory; and then perform inter-task model ensemble by constructing a uniformly-weighted
mixture model and combine the predictions as (Lakshminarayanan et al., 2017),

Fr
c−ens(x) =

1

|Sr|+ 1

∑
s∈Sr∪{r}

pF (y|x, θs) =
1

Ec + 1

∑
s∈Sr∪{r}

F(x;α×Ds), (6)

where Sr denotes the index set of previous tasks used for ensemble, and Ec = |Sr|. For classification
problem, it corresponds to averaging the predictive probabilities.

In continual learning, not all past models can bring positive effects on the current task. According to
(Breiman, 2001; Lakshminarayanan et al., 2017), only the ones that have enough strengths on the
current r-th task can help enhance the performance as weak learners (Breiman, 2001), which can be
selected based on task relevancy. Our assumption is that the more a past task t resembles the current
r, the better performance will F t achieves on the present task. The problem then transforms to
evaluating the model similarity effectively and efficiently. Note that to ensure the proposed ensemble
method to be scalable across a very long historical task sequence T , highly efficient task relevancy
assessment is indispensable here.

Assessing task relevancy by filter subspace distance. Task relevancy assessments proposed in
(Achille et al., 2019; Zamir et al., 2018) work at the cost of heavy computation, which prevents their
efficient applications in continual learning. While measuring the similarities among the learned mod-
els can be a straightforward proxy to the measurement of task relevancy, the widely studied methods,
e.g., canonical correlation analysis (CCA) (Raghu et al., 2017; Morcos et al., 2018) and centered
kernel alignment (CKA) (Kornblith et al., 2019), still introduce considerable computational cost while
performing evaluations in the representation space. Directly performing relevancy measurements
by calculating the distance of filters works at a highly desirable efficiency, yet can perform poorly
without the costly semantic alignments over channels (Raghu et al., 2017). In our approach, thanks
to the task-shared coefficients acting as structural regularizations, we show that model similarity
measurements can now be efficiently evaluated through direct filter similarity measurements. And as
we model filters using task-specific filter subspaces with coefficients shared, model similarity can be
further reduced to assessing filter subspace distance via the Grassmann distance (Absil et al., 2004).

Formally, we characterize the filter subspace of the current model Vr and a past model Vt as:
Vr = Span{Br1, ...,BrM}, Vt = Span{Bt1, ...,BtM}, Vr,Vt ⊂ RL, (7)

where L = k2 is the dimension of kernel space, B = {Bj}Mj=1 are M (m > M ) linear independent
vectors serve as the bases of the filter subspace. We obtain B by performing singular value decompo-
sition (SVD) to atoms D = UΣV T ∈ RL×m and select the first M columns from U that correspond
to the top-M singular values. By definition, Vr and Vt are points of the Grassmann Manifold (Milnor
& Stasheff, 2016), i.e., Vr,Vt ∈ Grass(M,L) , {M dimensional subspaces of RL}. Then, the
Grassmann distance between Vr and Vt is defined as,

dM (Vr,Vt) = (

M∑
j

θ2j )1/2, (8)
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where θj is the j-th principle angle, which can be calculated by,

θj = arccos(σj), with (Br)TBt = UΣV T , σj = Σjj . (9)

The proposed task relevancy measurement requires merely a SVD to matrices with dimensions lower
than L. In practice, k = 3 so that L = 9, indicating that computation of dM is low. With the proposed
efficient task relevancy measurement adopted in the last convolutional layer, we select the most Ec

relevant models from previous r − 1 ones that support the current task. We provide the correlation
analysis of task similarities measured with CCA (Raghu et al., 2017) and the ones assessed by the
proposed subspace distance in Appendix. C.5.

Although it is known that the ensemble result increases in the ensemble number Ec (Lakshmi-
narayanan et al., 2017), it does not hold in our setting based on our empirical observation. In fact,
determining the Ec is a trade-off between the amount and the relevancy of past knowledge. We thus
empirically select the ensemble number Ec, which is illustrated in Sec. 5.2.1. The selected members
are further fine-tuned with new classification heads to the current task.

3.3 INTRA-TASK MODEL ENSEMBLE

Our filter decomposition not only allows ensemble with past members, but also permits an efficient
way to create ensemble members within a task. In the regular deep ensemble scenario (Lakshmi-
narayanan et al., 2017), different members are instantiated as multiple CNNs, and need to be learned
separately to ensure independence among members. Plus, obtaining ensemble results also requires
inferences with multiple CNNs. This introduces significant cost in both time and memory, making it
inappropriate in continual learning settings. The proposed atom decomposition allows a new way
of parameterization of ensemble members within a task to improve performance while substantially
reducing the training and testing time cost. Formally, given task t, the intra-task ensemble model
F t

w−ens is composed by {F̂ t,1, ..., F̂ t,Ew}, where Ew is the number of models. Rather than in-
stantiating them as different CNN models, we reparameterize them with member-specific atoms
{D̂t,1, ..., D̂t,Ew}, and member-shared coefficient αt, as shown in Fig. 3. In this way, we create
multiple virtual members using a single CNN model by simply maintaining different groups of filter
atoms in each convolutional layer. The forward pass of F t

w−ens can then be conducted by group
convolution,

F t
w−ens(x

t) =
1

Ew

Ew∑
i=1

F̂ t,i(xt) = F t
w−ens(x̂

t, Ŵ t
w−ens), (10)

where x̂t ∈ Rn×(c×Ew)×h×w is the input repeated by Ew times, Ŵ t
w−ens = [α × D̂t,1 | ... | α ×

D̂t,Ew ] ∈ Rc×(c′×Ew)×k×k (| denotes concatenation) is the filter for group convolution that is
concatenated from per-member reconstructed filters. To enforce the independence of different
members, we initialize member-specific atoms separately before training.

With diverse predictions from different virtual members, our intra-task ensemble can directly boost
the performance in task-incremental settings. Furthermore, our intra-task model ensemble makes the
model to better distinguish data from out-of-task distribution, i.e., xp(p 6= t), and shows high entropy
in its predictive distribution which is particularly useful in class-incremental (CI) setting. Note that in
CI we perform task prediction first, select a specific group of atoms, and then perform classification
within task. Task id is selected based on minimal-entropy criterion on predictive distributions. Thus,
intra-task ensemble can enhance the accuracy of task prediction, and then the overall CI performance.

4 EXPERIMENTAL SETUP

Datasets. We first validate our method with the Class-Incremental (CI) setting with CIFAR100 and
ImageNet-Subset , which contains 100 classes selected from ImageNet (with random seed 1993).
For each dataset, half of classes are used for model learning in the 0-th task. Then the remaining
classes are equally split into N tasks, where N can be 5 or 10. Note that in the CI setting, task
information is not provided during testing. Then, we report the performance of our method under
the Task-Incremental (TI) setting. We validate our approach on 5-Split MNIST (LeCun et al., 1998),
20-Split CIFAR100 (Krizhevsky et al., 2009), and 20-Split miniImageNet (Vinyals et al., 2016). The
5-Split MNIST uniformly splits the original 10 classes of 0-9 MNIST digits into 5 sequential tasks.
20-Split CIFAR100 and 20-Split miniImageNet are both constructed by randomly splitting 100 classes
into 20 tasks with 5 classes per task. Details of each dataset are provided in the Appendix C.
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Table 1: Class-incremental results on CIFAR100 and ImageNet-Subset with different number of
incremental tasks (N). We report average incremental accuracy for all methods.

Method CIFAR-100 ImageNet-Sub
Acc.(N=5) Acc.(N=10) Memory Acc.(N=5) Acc.(N=10) Memory

LwF-E (Li & Hoiem, 2017) 57.03 56.82

6.2 MB

65.51 65.58

301.4 MB

EWC-E (Kirkpatrick et al., 2017a) 56.28 55.41 65.22 64.13
iCaRL (Rebuffi et al., 2017) 57.17 52.57 65.04 59.53
SDC (Yu et al., 2020) 57.10 56.80 65.60 65.70
BiC (Wu et al., 2019) 59.36 54.20 70.07 64.96
LUCIR (Hou et al., 2019) 63.12 60.14 70.47 68.09

Ours (Base) 60.23 55.54 0.2 MB 71.74 64.40 2.7 MB
w/ Ew = 2 65.44 62.48 0.5 MB 75.85 72.11 7.7 MB

Network architectures and implementation details. For the class-incremental setting, we utilize
ResNet-32 for CIFAR100 and ResNet-18 for ImageNet-Subset as (Rebuffi et al., 2017). For the
task-incremental setting, we adopt an AlexNet-like network. Note that we substitute all convolutional
layers in both models with our decomposed version. Details of architecture are shown in the
Appendix C. In terms of the proposed ensemble strategies, inter-task ensemble is only deployed in
the task-incremental setting as task IDs are needed, while intra-task ensemble is utilized in both task-
incremental and class-incremental settings. In inter-task ensemble, we set M = 3 for the dimension
of filter subspaces. When intra-task ensemble and inter-task ensemble are adopted together, we use
the member with the best results in every task for calculating task relevancy. We provide the ablation
study for the inter-class and intra-class ensemble numbers Ec and Ew in Sec. 5.2.1. Training details
are showed in the Appendix C.3. For forward knowledge transfer, the most recent atoms are used to
initialize the atoms of the current task.

Evaluation metrics. In the class-incremental setting, we evaluate the model’s average class-
incremental accuracy. In the task-incremental setting, we measure the performances with ACC
as the average test accuracy across all tasks. To measure the forgetting, we adopt the backward
transfer, BWT, which shows how the previous tasks performance has degraded due to learning new
tasks. Details of these two measurements are provided in Appendix C.4.

5 RESULTS AND DISCUSSION

In this section, we start from the challenging class-incremental setting. Then we move to task-
incremental setting with self-comparison experiments to validate the effectiveness of some key
ingredients of our methods, and show the results of the proposed method on several real-world
datasets. In both settings, our method achieves improvements over state-of-the-art methods with
significant less memory usage.

5.1 CLASS-INCREMENTAL EXPERIMENTS

As a more challenging setting, class-incremental (CI) learning does not provide task id during testing.
As mentioned in Sec. 3.3, we handle this setting by breaking it down to a two-level task, task
prediction based on minimal-entropy criterion, and then within-task classification. In CI experiments,
we select the number of atoms m = 12 and the number of members for intra-task ensemble Ew = 2.
We benchmark our method by comparing with many existing methods that store 2000 exemplars in
the external memory. As shown in Tab. 1, our method with intra-task ensemble achieves the best
results with an order of magnitude less memory usage on both CIFAR100 and ImageNet-Subset,
which validates the effectiveness and scalability of our framework in the challenging CI setting.

Figure 4: Left & Middle: Ablation study on the number of atoms (m) and intra-task ensemble members (Ew)
on 20-Split CIFAR100. Right: Parameter memory growth per-task for 20-Split CIFAR100. The proposed
method shows significantly lower memory growth than other expansion methods.
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Table 2: Results on 20-Split CIFAR100 and 20-Split miniImageNet. (∗) We re-implement PNN and
APD with our network architecture. Analysis on memory is provided in Appendix C.10.

CIFAR-100 miniImageNet
Method ACC% BWT% Memory ACC% BWT% Memory

(MB) (MB)

EWC (Kirkpatrick et al., 2017a) 55.60± 1.11 23.53± 1.19 - 36.61 28.17 -
HAT (Serra et al., 2018) 76.96± 1.23 0.01± 0.02 - 59.45 0.00 -

PNN∗ (Rusu et al., 2016) 82.25± 0.04 0.00± 0.00 165.3 70.96 0.00 165.3
APD∗ (Yoon et al., 2019) 77.03± 0.14 -0.02± 0.01 60.5 61.67 0.07 60.5

iCaRL (Rebuffi et al., 2017) 58.08± 1.44 24.22± 1.35 28.8 - - 173.6
A-GEM (Chaudhry et al., 2018c) 54.38± 3.84 -21.99± 4.05 16 52.43 -15.23 110.1
ER-RES (Chaudhry et al., 2019a) 66.78± 0.48 -15.01± 1.11 16 57.32 -11.34 110.1

GCL (Tang & Matteson, 2020) 74.51± 0.99 6.54± 1.26 7.2 61.54 6.10 43.4
ACL (Ebrahimi et al., 2020) 78.08± 1.25 0.00± 0.01 - 62.07 0.00 8.5

Ours (Base) 79.13± 0.12 0.00± 0.00 0.14 66.01 0.00 0.14
w/ Ec = 3 79.91± 0.15 0.00± 0.00 0.43 66.83 0.00 0.43
w/ Ew = 2. 80.21± 0.21 0.00± 0.00 0.28 67.29 0.00 0.28

w/ both 80.75± 0.18 0.00± 0.00 0.86 67.84 0.00 0.86

5.2 RESULTS ON TASK-INCREMENTAL SETTINGS

5.2.1 SELF COMPARISONS ON 20-Split CIFAR100

In this section, we empirically analyze inter-task ensemble, intra-task ensemble, and selection of
atoms of our method in the task-incremental setting. We analyze the performance of our base model
with different number of atoms m, As shown in the left of Fig. 4, m = 12 is the best choice in
terms of both performance and efficiency. We then test the task relevancy assessment based on
subspace distance, and its instructive effect to inter-task ensemble. As shown in Fig. 5, the past
models with small Grassmann distance to the current model lead to performance improvement by
model ensemble. And past models with large Grassmann distance to the current one, in fact result
in degraded performances. In general, we test the ACC of model ensemble with the top-1 to top-3
relevant model as well as the most irrelevant model starting from the 5-th task. As shown in Fig. 5,
model ensemble with top-3 relevant models achieves the best results, and thus we set Ec = 3 in
subsequent experiments. We then explore intra-task ensemble with different members Ew = 2, 3, 4.
As illustrated in the middle of Fig. 4, ensemble within task enhances the performance consistently,
and we choose Ew = 2 for the best performance efficiency trade-off. We further illustrate the
scalability of the proposed method on the right of Fig. 4. Compared to PNN (Rusu et al., 2016) and
APD (Yoon et al., 2019), the size of our method scales much slower with the number of tasks, even
with ensemble adopted.

5.2.2 COMPARISONS WITH BENCHMARKS

We further report our results on 20-Split miniImageNet and 20-Split CIFAR100 in Tab. 2. Compar-
ing with regularization-based, memory-based, and expansion-based models, the proposed method
achieves the best results even with the base model. Adopting inter-task ensemble with the top-3
relevant past models, along with intra-task ensemble with 2 members, our method achieves further
improved results. Especially in 20-Split miniImageNet, the previous state-of-the-art method, ACL
(Ebrahimi et al., 2020) achieves ACC of 62.07 with a memory in size of 8.5 MB; whereas the
proposed method improves the results significantly to 67.84 with a merely 0.86 MB memory. When
comparing with other memory-based methods besides ACL, the proposed method demonstrates
superior scalability reflected by the much smaller memory size. We provide additional results on
the standard 5-Split MNIST dataset with our base model. As shown in Tab. D, our base method
outperforms both regularization-based methods and memory-based methods in terms of ACC with

Method ACC Avg. dk Memory (MB)

Base 79.13 - 0.14

w/ Ens. top-1 79.61 (+0.48) 0.43 0.23
w/ Ens. top-2 79.82 (+0.69) 0.48 0.34
w/ Ens. top-3 79.91 (+0.78) 0.56 0.43
w/ Ens. last-1 78.27 (-0.86) 1.21 0.23

Figure 5: (Plot) Ensemble effect of the base model with the most relevant and irrelevant past model. (Table)
Ablation studies on number of ensemble selections n.
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much smaller memory. The improvements over the state-of-the-art methods and the outstanding
scalability validate the effectiveness of our method on solving real-world continual learning problems.

6 RELATED WORK
Continual learning. Recent advances on continual learning are driven by three main directions,
regularization-based, memory-based and expansion-based methods. (Kirkpatrick et al., 2017b;
Aljundi et al., 2018a; Lee et al., 2017; Zenke et al., 2017b; Kolouri et al., 2019) determine the
importance of each model’s parameter per task, which prevents the important parameters from being
updated for new tasks. For example, (Kirkpatrick et al., 2017b) specify the performance of each
weight with the Fisher information matrix. Theses methods can be naturally explored from the lens of
Bayesian optimization (Nguyen et al., 2018; Titsias et al., 2020; Schwarz et al., 2018; Ebrahimi et al.,
2019; Ritter et al., 2018). All these methods address catastrophic forgetting by adding regularization
terms. As pointed out in (De Lange et al., 2019), the penalty term proposed in such methods are
unable to prevent drifts in the loss landscape of previous tasks. While alleviating forgetting, the
penalty also unavoidably prevents the plasticity to absorb new information from future tasks learned
over a long timescale (Hadsell et al., 2020).

(De Lange et al., 2019) assumes it is feasible to access data from previous tasks by having a fixed-size
memory or a generative model able to produces samples from previous tasks (Lopez-Paz & Ranzato,
2017; Riemer et al., 2018; Rios & Itti, 2018; Shin et al., 2017). (Rebuffi et al., 2017) introduces
models augmented with fixed-size memory, which accumulates samples in the proximity of class
centers. (Chaudhry et al., 2019b) proposes another memory-based model by exploiting a reservoir
sampling strategy in the raw input data selection phase. Rather than storing the original samples,
(Chaudhry et al., 2018a) accumulates the parameter gradients during task learning. (Shin et al., 2017)
incorporate a generative model into a continual learning model to alleviate catastrophic forgetting by
producing samples from previous task and retraining the model using data from previous tasks and
the the current one. These methods assume an extra neural network, such as a generative model or a
memory. Different from replay-based methods, which benefit from a memory to retrain their model
over previous tasks, our method requires storage of tiny atoms for each previous task only, which is
more scalable and do not suffer from potential forgetting caused by the inconsistent memory reply in
generative-based methods.

(Rusu et al., 2016; Yoon et al., 2018; Jerfel et al., 2019; Li et al., 2019) allocate a subset of the model
parameters for each task. Model expansion can be achieved by a gating mechanism (Wortsman
et al., 2020; Masse et al., 2018), or by incrementally adding new parameters to the models (Rusu
et al., 2016). Incrementally learning and pruning provides another direction (Mallya & Lazebnik,
2018). Given an over-parametrized model with the ability to learn potentially many tasks, (Mallya
& Lazebnik, 2018) achieves model expansion by pruning the parameters not contributing to the
performance of the current task, while keeping them avail- able for future tasks. Comparing to the
aforementioned methods, the proposed method provides a filter subspace view of modeling multiple
tasks, which further allows two kinds of model ensemble .

Filter atom decomposition. (Qiu et al., 2018) proposes an convolutional filter decomposition as
a truncated expansion with pre-fixed filter atoms. It not only reduces the number of learnable
parameters, but also imposes filter regularity with the usage of Fourier-Bessel basis. This work further
inspires other works in domain adaptation (Wang et al., 2020b), adaptive convolution (Wang et al.,
2021b; 2020a), image generation (Wang et al., 2021a; 2019), video understanding (Miao et al., 2021),
rotation equivariance (Cheng et al., 2018) and graph convolution (Cheng et al., 2020).

7 CONCLUSION

In this paper, motivated by the task subspace modeling literature, we enforced a low-rank filter
structure to each CNN layer across tasks in continual learning. By performing atom-coefficient filter
decomposition, we learned for each task a new filter subspace for each layer, while keeping subspace
coefficients shared across tasks. This simple method allows highly efficient model storage and
retrieval using a small footprint atom memory. The proposed method provided a guarantee against
forgetting, and we demonstrated further performance improvements through model ensemble. The
performance was evaluated on various continual learning tasks, and the effectiveness and scalability
were demonstrated by the state-of-the-art accuracy and the tiny size of atom memory.
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APPENDIX

A EXPECTED EXCESS RISK

Problem setup: Suppose we have T tasks sequentially. The data distribution Dt = (X t,Yt) associates t-th
task (t ∈ {1, 2, ..., T}). For each task t ∈ [T ], we assume φt : X −→ Z is a representation function, which maps
input images to feature space Z ⊆ Rk. These representation functions are restricted in function class Φ, such as
neural networks. There is also a predictor wt : Z −→ Y for task t ∈ [T ] mapping the feature representation to
labels. Our object is to minimize empirical risk:

E(X t,Yt)[L(F t(X t; θ),Yt)].

For analysis purpose, we consider representation function φt as single convolutional layer, which can be
decomposed as φt = α×Dt. With the predictor wt, the loss can be written as:

L(F t(X t; θ),Yt) =
1

2N t

Nt∑
i=1

(yi − 〈wt, (α×Dt(xi))+〉)2,

where Dt(x) is the convolution operation on the input images, (·)+ is ReLU activation. As the input x ∈
Rc×h×w and atoms D ∈ Rm×k×k, where h× w are the size of input images, c is the number of input channel,
and m is the number of kernels which have size of k × k. Dt(x) contains c×m convolution operations that
maps input x into the latent zl ∈ Rcm×h

′×w′ . The latent zl then maps into feature space Z by α× zl.

We can treat each convolution operation as matrix product by converting the convolution kernel to a doubly
blocked Toeplitz matrix D′t ∈ Rhw×h

′w′ (Gray, 2006), and converting input image x into x′ ∈ Rc×hw.
Therefore, the convolution operation Dt(x) is transformed as reshaped image x′ multiple by m reformed
kernels D′t. To simplify the problem, we assume consider each channel of the input images and each base of
atoms, such that c = 1 and m = 1. Consider of all N t samples Xt ∈ RN

t×hw with labels Y t ∈ RN
t

for task t,
Thus, the loss can be written as:

L(F t(X t; θ),Yt) =
1

2N t

Nt∑
i=1

(yi − 〈wt, (α×Dt(xi))+〉)2

=
1

2N t
‖Y t − (αᵀXtD′t)+w

ᵀt‖2

The first task trains the α, D′1, and w1 at the same time, but the following tasks only optimize over Dt and
wt and keep α fixed. With fixed α, we can represent the samples as X̃t = αᵀXt. By solving the object, we
get (D̂t, ŵt). We also assume that there is an optimal atom Dt,∗ of representation function φt,∗ and prediction
function wt,∗ for task t. We now analyze the bound for the excess risk of our learned model on the task t, i.e.,
how much our learned model (D̂t, ŵt) performs worse than the optimal model (Dt,∗,wt,∗) on the task t:

ER(φ̂t, ŵt) = LDt(D̂t, ŵt)− LDt(Dt,∗,wt,∗)

=
1

2
((X̃tD̂′ᵀt)+ŵ

ᵀt − (X̃tD′ᵀt,∗)+w
ᵀt,∗)2

(1)

A standard lifting of neural networks can be formulated as infinite dimension linear regression (Du et al., 2020).
Define the infinite feature vector with the coordinates φ(x)b = (bᵀx)+ for every b ∈ Sd0−1. Let βt be a signed
measure on Sd0−1. The inner product notation denotes integration: βᵀφ(x) =

∫
Sd0−1 φ(x)bdβb. By convert

input feature x to the lifted feature vector φ(x), according to (Du et al., 2020), Equation. 1 can be bounded by:
R(φ̂t, ŵt) = 1

2
(X̃tD̂′ᵀtŵᵀt − X̃tD′ᵀt,∗wᵀt,∗)2.

Let E[x̃x̃ᵀ] = Σ̃, we have
1

2
(X̃tD̂′ᵀtŵᵀt − X̃tD′ᵀt,∗wᵀt,∗)2 =

1

2
‖Σ̃1/2D′ᵀt,∗wᵀt,∗ − Σ̃1/2D̂′ᵀtŵᵀt‖2.

With Assumption 1 and 2, based on the inequality in (Du et al., 2020), for a fixed δ > 0, we further have
1

2
‖Σ̃1/2D′ᵀt,∗wᵀt,∗ − Σ̃1/2D̂′ᵀtŵᵀt‖2 ≤ ε2ee,1R̄+ ε2ic,1R̄

2 + ε2ee,2r + ε2ic,2r
2,

where ε2ee,1 = 1√
N1
σ(log 1

δ
)3/2log(n)

√
‖Σ̃‖+ Tr(Σ̃), ε2ee,2 = 1√

Nt
σ(log 1

δ
)3/2log(n)

√
‖Σ̃‖ are estimation

error and εic,1 = 2Cρ2√
N1

(
√
Tr(Σ̃) +

√
log 2

δ
‖Σ̃‖), εic,2 = Cρ2√

Nt

√
‖Σ̃‖R̄log 1

δ
are intrinsic dimension concen-

tration error, R̄ = 1
2
‖α∗ ×Dt,∗‖2F + 1

2
‖wt,∗‖2F . Therefore, suppose we have the same number of samples
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in each task, with probability at least 1− δ over the samples, the expected excess risk of the learned atom and
predictor on the task satisfies:

E[ER(φ̂t, ŵt)] ≤ σR̄ · Õ(

√
Tr(Σ) +

√
‖Σ‖2√

N t
) + ρ4R̄2 · Õ(

Tr(Σ) + ‖Σ‖2
N t

)

B ALGORITHM

We provide the algorithm of the proposed method in Alg. 1.

Algorithm 1 Continual Learning with Filter Atom Swapping

Initialize MD ←− [ ], α = {αi}li=1 ←− α0, D1 = {D1
i }li=1 ←− D1,0.

for task t = 1, 2, ..., T do
if t == 1 then

Optimize α,D1 according to (3).
Update Atom Memory MD ←− [MD,D

1].
else

if t < 5 then
Initialize Dt = {Dt

i}li=1 ←− Dt,0, then optimize Dt according to (2).
Update Atom Memory MD ←− [MD,D

t].
else

Initialize Dt = {Dt
i}li=1 ←− Dt,0, then optimize Dt according to (2).

Initialize distance list dt = [0, ..., 0],where length(dt) = t− 1.
for j=1:t-1 do

Calculate dM (Dt
l ,D

j
l ) in the last convolutional layer according to (8), and update

dt[j] = dM (Dt
l ,D

j
l )

end for
Sort dt in ascending order, and select least Ec indices to construct St.
Finetune additional n heads on current task.
Update Atom Memory MD ←− [MD,D

t].
end if

end if
end for
return MD, α.

C EXPERIMENTAL DETAILS

C.1 DATASET STATISTICS

We provide the dataset statistics of 10-Split CIFAR100 used in class-incremental setting in Tab. A, and statistics
of 20-Split CIFAR100and 20-Split miniImageNetin task-incremental setting in Tab. B and Tab. C.

Table A: Statistics of 10-Split CIFAR100.

10-Split CIFAR100
# tasks 10

Img. Size 32× 32× 3
# tasks/task 10

# Training samples/task 4500
# Validation samples/task 500

# Test samples/task 100

C.2 NETWORK ARCHITECTURE

C.2.1 ARCHITECTURE FOR CLASS-INCREMENTAL LEARNING

We adopt the ResNet-32 as in (Rebuffi et al., 2017), which includes 31 convolutional layers and 1 fully connected
layer. We substitute every convolutional layer with the one has the proposed decomposed filters (m = 12) that
has the same number of input/ output channels.
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Table B: Statistics of 20-Split CIFAR100and 20-Split miniImageNet.

20-Split CIFAR100 20-Split miniImageNet
# tasks 20 20

Img. Size 32× 32× 3 84× 84× 3
# tasks/task 5 5

# Training samples/task 2,125 2,125
# Validation samples/task 375 375

# Test samples/task 500 500

Table C: Statistics of 5-Split MNIST.

Task (0,1) (2,3) (4,5) (6,7) (8,9)
# Training samples/task 10,766 10,276 9,574 10,356 10,030

# Validation samples/task 1,899 1,813 1,689 1,827 1,770
# Test samples/task 2,115 2,042 1,874 1,986 1,983

C.2.2 ARCHITECTURE FOR TASK-INCREMENTAL LEARNING

Architecture for 5-Split MNIST. Conv(k=3, m=12, 16)-ReLU-Dropout(0.2)-MaxPool(2)-Conv(k=3,
m=12,32)-ReLU-Dropout(0.2)-MaxPool(2)-Conv(k=3, m=12, 64)-ReLU-Dropout(0.2)-GAP-FC(32)-ReLU-
Dropout(0.5)-FC(2),

where GAP stands for global average poling, Conv(k, m, c) means the convolution layer with kernel size
k, m atoms, c output channels, Dropout(p) indicates the dropout layer with probability p, and FC(c) is the
fully-connect layer with c output channels.

Architecture for 20-Split CIFAR100and 20-Split miniImageNet. Conv(k=3, m=12, 64)-ReLU-
MaxPool(2)-Conv(k=3, m=12, 192)-ReLU-MaxPool(2)-Conv(k=3, m=12, 384)-ReLU-Conv(k=3, m=12, 256)-
ReLU-Conv(k=3, m=12, 256)-ReLU-MaxPool(2)-GAP-Dropout(0.5)-FC(5)

C.3 TRAINING DETAILS

C.3.1 CLASS-INCREMENTAL LEARNING

For CIFAR100, we choose SGD with batch-size of 128, learning rate of 0.01, momentum of 0.9 and weight
decay 1e-3. The model is trained for 250 epochs, with learning rate drop by 0.1 at the 100-th and 200-th epoch.
For ImageNet-Subset, we choose SGD with batch-size of 128, learning rate of 0.05, momentum of 0.9, and
weight decay 1e-4. The model is trained for 150 epochs, with learning rate drop by 0.1 at the 90-th and 120-th
epoch. For CUBS and Flowers, We choose SGD with momentum 0.9, batch-size of 64, and weight decay of
1e-4. On CUBS, the model is finetuned for 200 epochs with learning rate of 1e-2 (drop by 0.1 at the 100th and
160th epoch) on the first task, and trained for 120 epochs with learning rate of 5e-3 (drop by 0.1 at the 70th
epoch) on task 2-6. On Flowers, the model is finetuned for 120 epochs with learning rate of 1e-2 (decay by 0.1
at the 50th and 90th epoch) on the first task, and trained for 70 epochs with learning rate of 1e-3 (decay by 0.1 at
the 40th epoch) on task 2-6.

C.3.2 TASK-INCREMENTAL LEARNING

We choose SGD with batch-size of 64 for all experiments under the task-incremental setting. For 5-Split MNIST,
we train the model for 20 epochs with learning rate of 0.001. For 20-Split CIFAR100, we train the model for
100 epochs with learning rate of 0.001, which drops by 0.1 at the 60-th epoch. For 20-Split miniImageNet, we
train the model for 200 epochs with learning rate of 0.001, which drops at the 100-th and 150-th epoch.

C.4 METRIC

ACC and BWT used in the task-incremental settings can be expressed as,

ACC =
1

T

T∑
i=1

AccT,i, BWT =
1

T − 1

T−1∑
i=1

AccT,i − Acci,i, (2)

where T is total number of tasks, Acci,j is performance on j-th task after learning i-th task (Lopez-Paz &
Ranzato, 2017).
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Figure A: Correlation analysis between task similarities calculated with CCA (Raghu et al., 2017)
and task similarities assessed with filter subspace distance.

C.5 CORRELATION ANALYSIS BETWEEN CCA AND FILTER SUBSPACE DISTANCE.

We conduct the analysis between the task similarities measured with CCA (Raghu et al., 2017) on deep feature
spaces, and the proposed task similarities assessed with Grassmann distance on filter subspaces. The analysis is
conducted on 20-Split CIFAR100with the proposed model. We randomly select 50 task pairs from

(
20
2

)
task

pairs. Given a task pair, we use 500 images from each task to calculate the CCA similarity, and use the inverse
of their Grassmann distance between their last layers’ filter subspaces as the filter-subspace similarity. As shown
in Fig. A, filter-subspace similarities quite correlates to CCA similarities which we deem as the golden standard,
while they are significantly more efficient to calculate with our atom continual learning framework.

C.6 ADDITIONAL TASK-INCREMENTAL EXPERIMENTAL RESULTS

We provide additional results on the standard 5-Split MNIST dataset. Note that due to the simplicity of 5-Split
MNIST, we only apply on it our base model, which is composed by cross-task coefficient sharing and atom
swapping only. As shown in Tab. D, our base method outperforms both regularization-based methods and
memory-based methods in terms of ACC. Besides, the proposed method demonstrates a guarantee against
forgetting reflected by 0 in BWT. Note that the proposed base model is much smaller in size compared to the
other methods. Moreover, comparing to GEM Lopez-Paz & Ranzato (2017) and VCL Nguyen et al. (2018), our
base network adopts far smaller memory for storing merely filter atoms for 3 layers, each of them has a hundred
of parameters only.

Table D: Results on 5-Split MNIST.

Method ACC% BWT% Arch. Size Memory
(MB) (MB)

EWC (Kirkpatrick et al., 2017a) 95.78± 0.35 -4.20± 0.21 1.1 -
HAT (Serra et al., 2018) 99.59± 0.01 0.00± 0.04 1.1 -

UCB (Ebrahimi et al., 2019) 99.63± 0.02 0.00± 0.00 2.2 -
VCL (Nguyen et al., 2018) 95.97± 1.03 -4.62± 1.28 1.1 -

GEM (Lopez-Paz & Ranzato, 2017) 94.34± 0.82 -2.01± 0.05 6.5 0.63
VCL-C (Nguyen et al., 2018) 93.6± 0.2 -3.10± 0.20 1.7 0.63
ACL (Ebrahimi et al., 2020) 99.76± 0.03 0.01± 0.01 1.6 -
MIR (Aljundi et al., 2019a) 87.60± 0.70 7.00± 0.90 5.9 0.71
GSS (Aljundi et al., 2019b) 84.80± 1.80 - 3.7 0.58

Ours (Base) 99.84± 0.05 0.00± 0.00 0.24 0.04
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C.7 ADDITIONAL CLASS-INCREMENTAL RESULTS

C.7.1 ADDITIONAL RESULTS ON 10-Split CIFAR100

We provide results 10-Split CIFAR100 under class-incremental setting with the ResNet-18 (He et al., 2016) in
Tab. E and Fig. B. Our method achieves the best result with a large margin.

Table E: Class-incremental results on 10-Split CIFAR100.

Method Acc. (avg.) Acc. (last)

LwF (Li & Hoiem, 2017) 44.5 23.9
EWC (Kirkpatrick et al., 2017a) 36.2 16.4
SI (Zenke et al., 2017a) 37.8 23.3
MAS (Aljundi et al., 2018b) 33.4 15.4
RWalk (Chaudhry et al., 2018b) 35.2 17.9
DMC (Zhang et al., 2020) 57.1 36.2

Ours (Base) 58.6 40.57
w/ E = 2 62.4 46.37
w/ E = 3 62.9 46.50

Figure B: Class incremental learning results on 10-Split CIFAR100.

C.7.2 ADDITIONAL RESULTS ON 10-Split ImageNet-Subset

We further validate our method on a large-scale image classification dataset, ImageNet-Subset, which is a subset
of the ImageNet dataset that contains the first 100 classes. As in Masanaet et al. (2020), we split 100 classes into
10 tasks with 10 classes per task. We adopt the ResNet-18 as the architecture and substitute the convolutional
layers with our decomposed version. Training details are provided in Appendix C.3.

Table F: Class-incremental results on 10-Split ImageNet-Subset.

Method Memory Acc. (last)

iCaRL (Rebuffi et al., 2017)

301.4 MB

43.6
EEIL (Castro et al., 2018) 36.6
BiC (Wu et al., 2019) 45.6
IL2M (Belouadah & Popescu, 2019) 38.2

Ours (Base) 7.3 MB 43.9
w/ Ew = 2 7.7 MB 46.3

We benchmark our method with existing methods that store 2000 exemplars in the external memory. Their
results are faithfully reproduced in Masanaet et al. (2020). As shown in the Tab. F, our method with intra-task
ensemble achieves the best result with significantly less memory usage.

C.7.3 ADDITIONAL RESULTS ON CUBS AND FLOWERS

We further validate our methods on CUBS (Welinder et al., 2010) and Flowers (Nilsback & Zisserman, 2008)
datasets. Following Yu et al. (2020), we use the random seed (1993) to select 100/50 classes as the first task, and
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evenly split the rest 100/50 classes into 5 tasks. We adopt ResNet-18 pretrained on ImageNet with substituted
decomposed convolutional layers. Training details are illustrated in Appendix C.3.

Table G: Average incremental accuracy on CUBS and Flowers datsets

.

Method CUBS Flowers

LwF-E∗ (Li & Hoiem, 2017) 69.8 87.2
EWC-E∗ (Kirkpatrick et al., 2017a) 69.7 85.9
MAS-E∗ (Aljundi et al., 2018b) 68.5 84.7
SDC (Yu et al., 2020) 70.0 86.8

Ours (Base) 69.3 86.9
w/ Ew = 2 72.1 89.3

Under the class-incremental setting, we compare the average incremental accuracy with other benchmarks. On
both datasets, as shown in the table above, our method produces the best results.

C.8 ABLATION STUDY ON DISTANCE METRICS IN INTER-TASK ENSEMBLE

We present an ablation study of different distance metrics including the Grassmann distance, L2 norm, and
cosine distance for inter-task ensemble. As shown in Tab. H, inter-task ensemble with Grassmann distance
achieves the best result.

Table H: Ablation study on different metrics in inter-task ensemble.

Method CIFAR-100 miniImageNet

Ours (Base) 79.13 66.01

w/ Ec = 3 (L2 norm) 80.35 67.13
w/ Ec = 3 (cosine) 80.11 66.82

w/ Ec = 3 (Grassmann) 80.75 67.84

C.9 INFERENCE TIME COMPARISONS

On the CIFAR-100 dataset, we compare inference time on all classes with other methods. All methods are tested
on a single RTX 2080ti GPU under the class-incremental setting. Our method has comparable inference time to
other methods, as shown in the Tab. I.

Table I: Inference time comparisons on CIFAR100.

Method Time (s)

EWC-E∗ (Kirkpatrick et al., 2017a) 9.37
LwM-E∗ (Dhar et al., 2019) 9.71
iCaRL (Rebuffi et al., 2017) 10.03

BiC (Wu et al., 2019) 9.35

Ours (Base) 10.27
w/ Ew = 2 13.51

C.10 MEMORY CALCULATION

C.10.1 CLASS-INCREMENTAL LEARNING

We calculate the external memory usage for exemplar-based methods with 2000 exemplars, e.g., Rebuffi et al.
(2017), and our method with atom memory.

• 2000 exemplars (CIFAR-100): 2000 ∗ (32 ∗ 32 ∗ 3 + 1)/1e6 = 6.15 MB.

• 2000 exemplars (ImageNet-Subset): 2000 ∗ (224 ∗ 224 ∗ 3 + 1)/1e6 = 301.4 MB.

• Our (Base) (ResNet-32): (31 ∗ 1 ∗ 12 ∗ 9 + 16 ∗ 5 ∗ 9 + 32 ∗ 5 ∗ 9 + 64 ∗ 5 ∗ 9 + 64 ∗ 10 ∗ 9
+16 ∗ 32 ∗ 9 + 32 ∗ 64 ∗ 9) ∗ 4/1e6 ∗ 9 = 0.19 MB.

• Our (w/ Ew = 2): (31 ∗ 1 ∗ 12 ∗ 9 + 16 ∗ 5 ∗ 2 ∗ 9 + 32 ∗ 5 ∗ 2 ∗ 9 + 64 ∗ 5 ∗ 2 ∗ 9
+64 ∗ 10 ∗ 9 ∗ 2 + 16 ∗ 32 ∗ 9 + 32 ∗ 64 ∗ 9) ∗ 4/1e6 ∗ 9 = 0.52 MB.
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C.10.2 TASK-INCREMENTAL LEARNING

We calculate external memory usage for our method in 20-Split CIFAR100 and 20-Split miniImageNet below.

• Our (Base): (5 ∗ 12 ∗ 9 + 256 ∗ 5)/1e6 ∗ 4 ∗ 19 = 0.14 MB

• Our (w/ Ec = 3): (5 ∗ 12 ∗ 9 + 256 ∗ 5 + 256 ∗ 5 ∗ 3)/1e6 ∗ 4 ∗ 19 = 0.43 MB

• Our (w/ Ew = 2): (5 ∗ 12 ∗ 9 ∗ 2 + 256 ∗ 5 ∗ 2)/1e6 ∗ 4 ∗ 19 = 0.28 MB

• Our (w/ both): (5 ∗ 12 ∗ 9 ∗ 2 + 256 ∗ 5 ∗ 2 + 256 ∗ 5 ∗ 2 ∗ 3)/1e6 ∗ 4 ∗ 19 = 0.86 MB
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