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ABSTRACT

Model-based reinforcement learning (MBRL) methods have shown strong sample
efficiency and performance across a variety of tasks, including when faced with
high-dimensional visual observations. These methods learn to predict the envi-
ronment dynamics and expected reward from interaction and use this predictive
model to plan and perform the task. However, MBRL methods vary in their funda-
mental design choices, and there is no strong consensus in the literature on how
these design decisions affect performance. In this paper, we study a number of
design decisions for the predictive model in visual MBRL algorithms, focusing
specifically on methods that use a predictive model for planning. We find that a
range of design decisions that are often considered crucial, such as the use of latent
spaces, have little effect on task performance. A big exception to this finding is that
predicting future observations (i.e., images) leads to significant task performance
improvement compared to only predicting rewards. We also empirically find that
image prediction accuracy, somewhat surprisingly, correlates more strongly with
downstream task performance than reward prediction accuracy. We show how this
phenomenon is related to exploration and how some of the lower-scoring models
on standard benchmarks (that require exploration) will perform the same as the
best-performing models when trained on the same training data. Simultaneously,
in the absence of exploration, models that fit the data better usually perform better
on the downstream task as well, but surprisingly, these are often not the same
models that perform the best when learning and exploring from scratch. These
findings suggest that performance and exploration place important and potentially
contradictory requirements on the model.

1 INTRODUCTION

The key component of any model-based reinforcement learning (MBRL) methods is the predictive
model. In visual MBRL, this model predicts the future observations (i.e., images) that will result
from taking different actions, enabling the agent to select the actions that will lead to the most
desirable outcomes. These features enable MBRL agents to perform successfully with high data-
efficiency (Deisenroth & Rasmussen, 2011) in many tasks ranging from healthcare (Steyerberg et al.,
2019), to robotics (Ebert et al., 2018), and playing board games (Schrittwieser et al., 2019).

More recently, MBRL methods have been extended to settings with high-dimensional observations
(i.e., images), where these methods have demonstrated good performance while requiring substantially
less data than model-free methods without explicit representation learning (Watter et al., 2015; Finn
& Levine, 2017; Zhang et al., 2018; Hafner et al., 2018; Kaiser et al., 2020). However, the models
used by these methods, also commonly known as World Models (Ha & Schmidhuber, 2018), vary
in their fundamental design. For example, some recent works only predict the expected reward (Oh
et al., 2017) or other low-dimensional task-relevant signals (Kahn et al., 2018), while others predict
the images as well (Hafner et al., 2019). Along a different axis, some methods model the dynamics
of the environment in the latent space (Hafner et al., 2018), while some other approaches model
autoregressive dynamics in the observation space (Kaiser et al., 2020).

Unfortunately, there is little comparative analysis of how these design decisions affect performance
and efficiency, making it difficult to understand the relative importance of the design decisions that
have been put forward in prior work. The goal of this paper is to understand the trade-offs between
the design choices of model-based agents. One basic question that we ask is: does predicting images
actually provide a benefit for MBRL methods? A tempting alternative to predicting observations is to
simply predict future rewards, which, in principle, gives a sufficient signal to infer all task-relevant
information. However, as we will see, predicting images has clear and quantifiable benefits – in fact,
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we observe that accuracy in predicting observations correlates more strongly with control performance
than accuracy of predicting rewards.

Our goal is to specifically analyze the design trade-offs in the models themselves, decoupling this as
much as possible from the confounding differences in the algorithm. While a wide range of different
algorithms have been put forward in the literature, we restrict our analysis to arguably the simplest
class of MBRL methods, which train a model and then use it for planning without any explicit policy.
While this limits the scope of our conclusions, it allows us to draw substantially clearer comparisons.

The main contributions of this work are two-fold. First, we provide a coherent conceptual framework
for high-level design decisions in creating models. Second, we investigate how each one of these
choices and their variations can affect the performance across multiple tasks. We find that:

1. Predicting future observations (i.e. images) leads to significant task performance improvement
compared to only predicting rewards. And, somewhat suprisingly, image prediction accuracy
correlates more strongly with downstream task performance than reward prediction accuracy.

2. We show how this phenomenon is related to exploration:
- Some of the lower-scoring models on standard benchmarks that require exploration will

perform the same as the best-performing models when trained on the same training data.
- In the absence of exploration, models that fit the data better usually perform better on the

downstream task, but surprisingly, these are often not the same models that perform the best
when learning and exploring from scratch.

3. A range of design decisions that are often considered crucial, such as the use of latent spaces, have
little effect on task performance.

These findings suggest that performance and exploration place important and potentially contradictory
requirements on the model. We will open-source our implementation that can be used to reproduce
the experiments and can be further extended to other environments and models.

2 RELATED WORK

MBRL is commonly used for applications where sample efficiency is essential, such as real physical
systems (Deisenroth & Rasmussen, 2011; Deisenroth et al., 2013; Levine et al., 2016) or health-
care (Raghu et al., 2018; Yu et al., 2019; Steyerberg et al., 2019). In this work, our focus is on settings
with a high-dimensional observation space (i.e., images). Scaling MBRL to this setting has proven to
be challenging (Zhang et al., 2018), but has shown recent successes (Hafner et al., 2019; Watter et al.,
2015; Levine et al., 2016; Finn et al., 2016b; Banijamali et al., 2017; Oh et al., 2017; Zhang et al.,
2018; Ebert et al., 2018; Hafner et al., 2018; Dasari et al., 2019; Kaiser et al., 2020).

Besides these methods, a number of works have studied MBRL methods that do not predict pixels,
and instead directly predict future rewards (Oh et al., 2017; Liu et al., 2017; Schrittwieser et al., 2019;
Sekar et al., 2020), other reward-based quantities (Gelada et al., 2019), or features that correlate with
the reward or task (Dosovitskiy & Koltun, 2016; Kahn et al., 2018). It might appear that predicting
rewards is sufficient to perform the task, and a reasonable question to ask is whether image prediction
accuracy actually correlates with better task performance or not. One of our key findings is that
predicting images improves the performance of the agent, suggesting a way to improve the task
performance of these methods.

Visual MBRL methods must make a number of architecture choices in structuring the predictive
model. Some methods investigate how to make the sequential high-dimensional prediction problem
easier by transforming pixels (Finn et al., 2016a; De Brabandere et al., 2016; Liu et al., 2017) or
decomposing motion and content (Tulyakov et al., 2017; Denton et al., 2017; Hsieh et al., 2018;
Wichers et al., 2018; Amiranashvili et al., 2019). Other methods investigate how to incorporate
stochasticity through latent variables (Xue et al., 2016; Babaeizadeh et al., 2018; Denton & Fergus,
2018; Lee et al., 2018; Villegas et al., 2019), autoregressive models (Kalchbrenner et al., 2017; Reed
et al., 2017; Weissenborn et al., 2019), flow-based approaches (Kumar et al., 2019) and adversarial
methods (Lee et al., 2018). However, whether prediction accuracy actually contributes to MBRL
performance has not been verified in detail on image-based tasks. We find a strong correlation
between image prediction accuracy and downstream task performance, suggesting video prediction is
likely a fruitful area of research for improving visual MBRL.
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Figure 1: The possible model designs for visual MBRL, based on whether or not to predict images.
The rightmost model (R) only predicts the expected rewards conditioned on future actions and
previous observations, while other designs predict the images as well. These designs can model
the transitions (dynamics) either in the latent space (LT ) or observation space (OT ). The input
source for the reward prediction model can be the predicted images (OR) or the latent state of the
model (LR). Note how these models differ in their training losses (in the case of R) and how the
errors are back-propagated, either directly through the latent space or via predicted targets.

3 A FRAMEWORK FOR VISUAL MODEL-BASED RL

MBRL methods must model the dynamics of the environment conditioned on the future actions of
the agent, as well as current and preceding observations. The data for this model comes from trials in
the environment. In an online setting, collecting more data and modeling the environment happens
iteratively, and in an offline setting, data collection happens once using a predefined policy. We are
interested in cases where the observation state is pixels, which is usually not enough to reveal the
exact state of the environment. Since our goal is specifically to analyze the design trade-offs in the
models themselves, we focus our analysis only on MBRL methods which train a model and use it for
planning, rather than MBRL methods that learn policies or value functions. We defer discussion and
analysis of policies and value functions to future work.

Therefore, we consider the problem as a partially observable Markov decision process (POMDP) with
a discrete time step t ∈ [1, T ], hidden state st, observed image ot, continuous action at and scalar
immediate reward rt. The dynamics are defined as a transition function st ∼ p(st | st−1,at−1),
observation function ot ∼ p(ot | st) and reward function rt ∼ p(rt | st). In RL, the goal is to
find a policy p(at|o≤t, r≤t, a≤t) that maximizes the expected discounted sum of future rewards
Ep
[∑T

t=1 γrt
]
, where γ is the discount factor, T is the task horizon and the expectation is over

actions sampled from the policy. In MBRL, we approximate the expected reward by predicting
its distribution conditioned on the previous observations and the future actions p(rt|o≤t,a≥t), and
then search for a high-reward action sequences via a policy optimization method such as proximal
policy optimization (PPO) (Schulman et al., 2017) or a planning algorithm like the cross-entropy
method (CEM) (Rubinstein, 1997; Chua et al., 2018). In this paper we focus on the latter.

Given the assumption that the environment is partially observable and the ground-truth states are not
accessible, the models in visual MBRL can be divided into five main categories, depending on training
signals and learned representations (Figure 1). The first category approximates the expected rewards
conditioned on future actions and previous observations p(rt | o≤t,a≥t) without explicitly predicting
images (Oh et al., 2017; Dosovitskiy & Koltun, 2016; Racanière et al., 2017; Liu et al., 2017; Kahn
et al., 2018; Schrittwieser et al., 2019). In contrast, the next four categories learn to predict the next
observations ôt+1, in addition to the reward, which results in a learned latent representation.

Given this latent space, it is possible to: (1) Model the transition function of the environment in the
observation space: ôt+1 ∼ p(ot | o≤t,a≥t) or directly in the latent space: ht ∼ p(ht | ht−1,at)
where ht is the hidden state of the model at time step t (2) Predict the future reward using the learned
latent space: rt ∼ p(rt | ht) or from the predicted future observation: rt ∼ p(rt | ôt+1).
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4 EXPERIMENTS AND ANALYSIS

Our goal in this paper is to study how each axis of variation in the generalized MBRL framework,
described in Section 3, impacts the performance of the agent. To this end, we will not only study end-
to-end performance of each model on benchmark tasks, but also analyze how these models compare
when there is no exploration (i.e. trained from the same static dataset), evaluate the importance of
predicting images, and analyze a variety of other model design choices.

4.1 EXPERIMENT SETUP

Planning Method Studying the effects of each design decision independently is difficult due to
the complex interactions between the components of MBRL (Sutton & Barto, 2018). Each training
run collects different data, entangling exploration and modeling. The added complexity of policy
learning further complicates analysis. To isolate the design decisions pertaining to only the predictive
model, we focus on MBRL methods that only learn a model, and then plan through that model to
select actions (Chua et al., 2018; Zhang et al., 2018; Hafner et al., 2018). We use the cross-entropy
method (CEM) (Rubinstein, 1997) to optimize over the actions under a given model, following prior
work. We also include an Oracle model in our comparisons, which uses the true simulator to predict
the future rewards. Since we are using the same planning algorithm for all the models, the Oracle
approximates the maximum possible performance with our planner. Note, however, that given the
limited planning horizon of CEM, the Oracle model is not necessarily optimal, particularly in tasks
with sparse and far reaching rewards.

Environments We use seven image-based continuous control tasks from the DeepMind Con-
trol Suite (Tassa et al., 2018). These environments provide qualitatively different challenges.
cheetah run and walker walk exhibit larger state and action spaces, including collisions with
the ground that are hard to predict. finger spin includes similar contact dynamics between
the finger and the object. cartpole balance require long-term memory because the cart can
move out of the frame while cartpole swingup requires long-term planning. reacher easy and
ball in cup catch also have sparse reward signal, makes them hard to plan for given a short
planning horizon. In all tasks, the only observations are 64 × 64 × 3 third-person camera images
(visualized in Figure 5 in appendix).

Implementation and Hyper-Parameter tuning Given the empirical nature of this work, our
observations are only as good as our implementations. To minimize the effect of hyper-parameters
tuning, we chose not to design any new models, and instead used existing high performance well-
known implementations. The only exception to this wasR, for which we tested multiple architectures
and used the best one based on asymptotic performance (see appendix for details). While there
are going to be numerous shortcomings for ANY implementation, in close collaboration with the
original authors of these implementations, we took great care in making these choices so as to
minimize the performance effects of implementation details. Moreover, we conducted comprehensive
hyper-parameter optimization for cheetah run and relied on the common practice of using the same
set of hyper-parameters across other tasks (Hafner et al., 2018). Given all this, we are confident that
the performance of our implementations cannot be improved significantly on these tasks and for these
same methods by further hyper-parameter tuning. Details of these implementations, the planning
method, model variations, and hyper-parameters can be found in the appendix.

4.2 ONLINE PERFORMANCE

First, we compare the overall asymptotic performance, the stability of training, and the sample
efficiency of various model designs across all of the tasks in the online setting. In this setting, after
every ten training trajectories, collected with the latest version of the model, we evaluate the agent on
one episode. For training episodes, we add random planning noise for better exploration, while in the
evaluation episodes there is no additional noise. We train each model for a total of 1000 episodes
where each episode is 1000 steps long with an action repeat of four. Therefore, each model observes
250K training samples of the environment during its entire training (1M environment steps), while
evaluated on a total number of 25K test samples across 1000 evaluation episodes. The possible reward
range per environment step is [0, 1]; therefore, the maximum possible score on each task is 1000.
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Figure 2: The performance of different models in the online setting. The x-axis is the number of
environment steps and the y-axis is the achieved score by the agent in an evaluation episode. Each
curve represents the average score across three independent runs while the shadow is the standard
deviation. The model designs are from Figure 1. From this graph, it can be clearly seen that the
models which predict images can perform substantially better than the model which only predicts
the expected reward (R). In some cases, these models perform even better than the Oracle which
suggests that there is not a clear relation between prediction accuracy and performance, given the fact
that the Oracle is the perfect predictor. The curves are smoothed by averaging in a moving window of
size ten.

The results are shown in Figure 2. There are a number of patterns that we note in these results.
First,R consistently under-performs compared to the rest of the models, attaining lower scores and
substantially worse reward distributions in Figure 3. Second, some models clearly perform better
than others on each given task e.g. LT LR on ball in cup catch. From this, we might suppose
that these models are better able to fit the data, and therefore lead to better rollouts. However, as
we will see in the next section, this may not be the case. Third, in some rare cases, some models
outperform the Oracle model e.g. OTOR on cartpole balance. Note, that given the limited
planning horizon of CEM, the Oracle model is not necessarily optimal, particularly in tasks with
sparse and far reaching rewards such as reacher easy. This also suggests that there is not a clear
relation between prediction accuracy and performance, given the fact that the Oracle is the perfect
predictor.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reward

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
ob

ab
ilit

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reward

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Reward

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 3: This figure illustrates the distribution of the rewards in trajectories collected by best
performing models andR in the online setting for cheetah run. Since the rewards for each frame
is [0, 1] and the action repeat is set to four, the observed reward is always in [0, 4] (x-axis). This
graph demonstrates how LT LR andOTOR managed to explore a different subset of state space with
higher rewards (compared to R) which directly affected their performance (compare at Figure 2).
This shows how entangled exploration and model accuracy are which makes it hard to analyse the
effect of each design decision in the online settings.
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cheetah reacher cartpole cartpole finger ball in cup walker
run easy swingup balance spin catch walk

R 216.8 996.0 258.3 415.2 171.1 985.1 299.6
OTOR 502.6 981.1 684.7 978.5 148.0 910.3 567.5
OT LR 489.9 999.0 406.0 923.5 244.1 949.1 730.6
LT LR 502.2 994.1 413.4 543.5 373.1 996.0 552.0
LTOR 281.7 993.0 281.0 411.0 259.3 932.0 383.3

Table 1: The asymptotic performance of various model designs in the offline setting. In this setting
there is no exploration and the training dataset is pre-collected and fixed for all the models. The
reported numbers are the 90th percentile out of 100 evaluation episodes, averaged across three
different runs. This table indicates a significant performance improvement by predicting images
almost across all the tasks. Moreover, there is a meaningful difference between the numbers in this
table and Figure 2 signifying the importance of exploration in the online settings. Please note how
some of best-performing models in this table performed poorly in Figure 2.

cheetah reacher cartpole cartpole finger ball in cup walker
run easy swingup balance spin catch walk

R 0.2274 0.0226 0.4152 0.1690 0.0049 0.0055 0.2258
OTOR 0.0432 0.0612 0.2447 0.2175 0.0068 0.0010 0.1779
OT LR 0.0472 0.0280 0.2169 0.2310 0.0099 0.0009 0.1814
LT LR 0.0781 0.0045 0.1183 0.1409 0.0025 0.0019 0.1367
LTOR 0.2022 0.0601 0.4096 0.1649 0.0033 0.0018 0.1984
ρ(LR,S) -0.98 -0.62 -0.53 0.86 -0.47 0.58 -0.61

Table 2: Median reward prediction error (LR) of each model across all of the trajectories in evaluation
partition of the offline dataset. This table demonstrates a generally better task performance for
more accurate models in the offline setting, when compared with Table 1. The last row reports the
Pearson correlation coefficient between the reward prediction error and the asymptotic performance
for each task across models. This row demonstrates the strong correlation between reward prediction
error (LR) and task performance (S) in the absence of exploration. In cases which all models are
close to the maximum possible score of 1000 (such as ball in cup catch) the correlation can be
misleading because a better prediction does not help the model anymore.

It is important to emphasize that, in the online setting, agents may explore entirely different regions of
the state space, which means they will be trained on different data, as visualized in Figure 3. Because
the models are all trained on different data, these results mix the consequences of prediction accuracy
with the effects of exploration. We hypothesize that these two capabilities are distinct, and isolate
modeling accuracy from exploration in the following section by training all of the models on the
same data, and then measuring both their accuracy and task performance. To further understand
this complicated relationship between model accuracy, exploration, and task performance, we next
compare the different model types when they are all trained on the same data.

4.3 OFFLINE PERFORMANCE

In the offline setting, all of the training trajectories are pre-collected, and therefore all of the models
will be trained on the same data. We create this controlled dataset by aggregating all of the trajectories
from all of the model variations trained in the online setting (Section 4.2). This dataset contains
1.25M training and 125K testing samples per task. We train each model on this dataset, and then
evaluate its performance on the actual task. Table 1 contains the results of this experiment while
Figure 8 illustrates the prediction error of each model for cheetah run.

These results show a very different trend from that seen in Section 4.2. For example, although
OT LR was a poor performer in the online setting on walker walk, it performs substantially better
on the same task when all the models are trained from the same data. As another observation,
almost all of the models managed to achieve very high scores in the offline setting on reacher easy
and ball in cup catch, while many struggled in the online setting. This suggests that models
that result in good performance on a given dataset are not necessarily the models that lead to best
performance during exploration. We speculate that some degree of model error can result in optimistic
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Figure 4: The effect of limiting the image prediction capacity on the performance of the agent. The
graphs follow the same format as Figure 2. Each model is a variant of LT LR which predicts the
entire image, or part of it (center cropped) or no image at all. This graph shows that predicting more
pixels results in higher performance as well as more stable training and better sample efficiency.
Note that in this experiment, the mode still observes the entire image, however, it predicts different
number of pixels, forced by a loss mask. The labels indicated what percentage of the image was
being predicted by the model.

exploration strategies that make it easier to obtain better data for training subsequent models, even if
such models do not perform as well on a given dataset as their lower-error counterparts. Please check
the appendix for more on this speculation. However, there is a strong correlation between prediction
errors in Table 2 and the scores in Table 1, suggesting that in absence of exploration and given the
same training data, any model that fits the data better performs the given task better as well.

We would clarify however that our analysis does not necessarily imply that models with worse
prediction accuracy result in better exploration, though that is one possible interpretation of the
results. Instead, we are observing that simply modeling the current data as accurately as possible does
not by itself guarantee good exploration, and models that are worse at prediction might still explore
better during planning. We speculate that this can be explained in terms of (implicit) optimism in the
face of uncertainty (Auer, 2002) or stochasticity (Osband & Van Roy, 2017; Levine et al., 2020).

4.4 THE IMPORTANCE OF IMAGE PREDICTION

The results in Section 4.2 and Section 4.3 differ to a great extent, but there is a common pattern
between the two: R achieves lower scores compared to other variations in both offline and online
settings. To provide further empirical support for this observation, we explore the effect of predicting
fewer pixels on LT LR. In this experiment, we limit how many pixels LT LR predicts by center-
cropping (Figure 4) and resizing (Figure 6 in appendix) the target image. It is important to note that
the model still observes the entire image; however, it predicts different number of pixels.

These results suggest that prediction of images and its reconstruction actually plays an important
role in visual MBRL, and simply substituting reward prediction is not sufficient. Methods that
predict images, rather than just reward, perform better in both the online (Section 4.2) and offline
(Section 4.3) settings and, as shown in this section, the performance of these models scales with
the amount of pixel supervision that they receive. This question raises an immediate question: does
the accuracy of image prediction actually corresponds to better task performance? This question is
particularly important because predicting the images is computationally expensive, given the fact that
observation space is typically high-dimensional.

To explore this correlation, we scale downOTOR andLT LR at multiple levels to limit their modeling
capacity, and thereby increase their prediction error (details in appendix). Then, we calculate the
Pearson correlation coefficient ρ between reward prediction error and observation prediction error
to the asymptotic performance of the agent in the online setting. The results of these experiments
are summarized in Table 3. This table shows strong correlation between image prediction error and
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OTOR LT LR
Task ρ(LO,S) ρ(LR,S) µS σS ρ(LO,S) ρ(LR,S) µS σS

cheetah run -0.96 -0.09 338 111 -0.92 0.17 566 60
cartpole swingup -0.94 -0.69 572 112 -0.74 0.72 503 51
cartpole balance -0.93 -0.85 877 108 -0.81 0.93 647 93

walker walk -0.72 0.94 308 89 -0.26 -0.84 489 149
reacher easy -0.36 0.63 644 277 -0.88 0.25 992 10
finger spin -0.08 0.93 185 87 -0.03 0.35 417 25

ball in cup catch 0.08 0.33 925 32 -0.03 0.75 997 3

Table 3: Pearson correlation coefficient ρ between image prediction error LO, reward prediction error
LR and asymptotic score S . To calculate the correlation, we scaled down OTOR and LT LR at mul-
tiple levels to limit their modeling capacity and thereby potentially increase their prediction error. µS
and σS are the average and the standard deviation of asymptotic performances across different scales
of each model. In cases with low standard deviation of the scores (such as ball in cup catch),
meaning all version of the models did more or less the same, the correlation can be misleading. This
table demonstrates the strong correlation between image prediction error and task performance.

asymptotic performance. This evidence suggests that MBRL methods can substantially perform
better using a better next frame predictive model, especially for more visually complex tasks.

Surprisingly, Table 3 also suggests that reward prediction error does not have a strong correlation
to asymptotic performance. Even in some cases, there is a positive correlation between the reward
prediction error and the asymptotic performance — meaning the agent performs better when the
prediction error is high — which is counter-intuitive. One potential explanation is the same relation
between model accuracy and exploration in Section 4.2 and Section 4.3. In some sense, one should
expect that the reward accuracy correlates negatively with performance, since overfitting on the
observed states, combined with pessimism, can harm exploration by guiding the planning algorithm
towards familiar states that have high predicted reward, rather than visiting new states that may have
higher reward. More related experiments can be found in the appendix.

5 CONCLUSIONS

In this paper, we take the first steps towards analyzing the importance of model quality in visual
MBRL and how various design decisions affect the overall performance of the agent. We provide
empirical evidence that predicting images can substantially improve task performance over only
predicting the expected reward. Moreover, we demonstrate how the accuracy of image prediction
strongly correlates with the final task performance of these models. We also find models that result
in higher rewards from a static dataset may not perform as well when learning and exploring from
scratch, and some of the best-performing models on standard benchmarks, which require exploration,
do not perform as well as lower-scoring models when both are trained on the same data. These
findings suggest that performance and exploration place important and potentially contradictory
requirements on the model.

Our results with offline datasets present a complex picture of the interplay between exploration and
prediction accuracy. On the one hand, they suggest that simply building the most powerful and
accurate models may not necessarily be the right choice for attaining good exploration when learning
from scratch. On the other hand, this result can be turned around to imply that models that perform
best on benchmark tasks which require exploration may not in fact be the most accurate models.
This has considerable implication on MBRL methods that learn from previously collected offline
data (Fujimoto et al., 2019; Wu et al., 2019; Agarwal et al., 2020) – a setting that is particularly
common for real-world applications e.g. in Robotics (Finn & Levine, 2017).

We would like to emphasize that our findings are limited to the scope of our experiments and our
observations may vary under different experimental setup. First, we only trained the models with a
fixed number of samples. It would be interesting to investigate whether the benefits of predicting
images gets diminished or amplified in lower and higher sample regimes, affecting sample efficiency
of these models. Second, using a policy optimization method is a natural next step for expanding
these experiments. Finally, it is interesting to investigate whether the findings of this paper can be
generalized to more (or less) visually complex tasks in other domains.
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(a) cheetah (b) reacher (c) cartpole (d) finger (e) ball in cup (f) walker

Figure 5: The environments from DeepMind Control Suite (Tassa et al., 2018) used in our experiments.
The images show agent observations before downscaling. (a) The cheetah run includes large state
and action space. (b) The reacher easy has only a sparse reward. (c) The cartpole balance
has a fixed camera so the cart can move out of sight while cartpole swingup requires long term
planning. (d) The finger spin includes contacts between the finger and the object. (e) The
ball in cup catch has a sparse reward that is only given once the ball is caught in the cup. (f) The
walker walk has difficult to predict interactions with the ground when the robot is lying down.

A ADDITIONAL EXPERIMENTS

A.1 EFFECT OF RESIZING THE TARGET IMAGE

We repeat the same experiment in Section 4.4, this time by resizing the target instead of cropping it.
The results of this experiment, visualized in Figure 6, supports the same observation as Figure 4: the
performance of models scales with the amount of pixel supervision that they receive. It is important
to note that the model still observes the entire image; however, it predicts different number of pixels.
However, we observe a sharper transition with more pixels when compared with Figure 4. This is
expected because resizing the observation preserves more information vs cropping.

A.2 ON EFFECT OF OPTIMISM

We speculated that some degree of model error can result in optimistic exploration strategies that
make it easier to obtain better data for training subsequent models, even if such models do not perform
as well on a given dataset as their lower-error counterparts. To expand on this, we compare the
models on another carefully designed dataset, which includes only low-reward states in its training
set but has trajectories with high reward for evaluation. The rationale is that models that perform
well on this evaluation are likely to generalize well to higher-reward states, and thus be more suitable
for control. Figure 9 shows a heat-map of ground-truth reward vs. predicted reward for each model
on cheetah run. The best performing models on this task in Table 1, OTOR and LT LR, do not
actually exhibit the best generalization. Indeed, they are both pessimistic (very few points in the
upper-left half of the plot in the bottom row). In contrast, LTOR appears to extrapolate well, but
performs poorly in Table 1, likely due to the excessively optimistic prediction. At the same time,R
has high error and performed poorly at the same time. One possible implication of this conclusion is
that future work should more carefully disentangle and study the different roles of exploration vs.
prediction accuracy.

A.3 EFFECT OF SHARING THE LEARNT LATENT SPACE

In this experiment, we investigate the effect of sharing the learned representation when a model is
predicting both reward and images (Figure 7). It is a common belief (Kaiser et al., 2020) that learning
a shared representation, typically done by back-propagating from both losses into the same hidden
layers, can improve the performance of the agent. However, our results indicate that doing so does
not necessarily improve the results, and, particularly in the case of models with observation space
dynamics, can result in a large performance drop. This is an interesting observation since most of the
prior work, including recent state-of-the-art models such as Hafner et al. (2018) and Kaiser et al.
(2020), simply back-propagate all of the losses into a shared learned representation, assuming it will
improve the performance.
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Figure 6: The effect of limiting the observation prediction capacity on the performance of the agent.
The setup is exactly the same as Figure 4, except we resized the target image instead of cropping.
Similarly, this graph shows that predicting more pixels results in higher performance as well as more
stable training and better sample efficiency. Note that in this experiment, all the agents still observe
the entire image, however, they predict different number of pixels.
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Figure 7: Effect of sharing the learned latent space. The graphs follow the same format as Figure 2
except the y-axis is the difference between achieved scores by each model with and without sharing
the learned latent space. In other words, a positive delta score on y-axis means that not sharing the
learned latent space is improving the results for each particular model. This figure demonstrates
how sharing the learned latent space can degrade the performance, particularly for models with
observation space dynamics.
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Figure 8: Comparison of training and evaluation accuracy of models with and without image
prediction. Each graph demonstrates the heat map of the predicted vs. ground-truth reward
for cheetah run. The training and evaluation dataset is fixed for all of the models with fix
train/evaluation partitions. Since the rewards for each frame is [0, 1] and the action repeat is set to
four, the observed reward is always in [0, 4]. The green dash line is the perfect prediction. This figure
demonstrates better task performance for more accurate models when compared with Table 1.

Figure 9: Comparison of training and evaluation accuracy of models with and without image
prediction. Each graph demonstrates the heat map of the predicted vs. ground-truth reward for
cheetah run. The training and evaluation dataset is fixed for all of the models and designed
specifically to make sure that there are unseen high reward states in the evaluation (separated by
the dotted black line). Since the rewards for each frame is [0, 1] and the action repeat is set to four,
the observed reward is always in [0, 4]. The green dash line is the perfect prediction. This figure
illustrate better generalization to unseen data for models which predict images. It also demonstrates
the entanglement of exploration, task performance and prediction accuracy, when comparison with
Figure 2 and Table 1.
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Figure 10: Comparison between different types of reward predictor models described in Section B.
Rrecurrent: A simple recurrent convolutional network to predict the future rewards given the last
observation (Table 8). This model has its own recurrent latent space which can be unrolled to predict
future states. Rconv: A simple convolutional network to predict the future rewards given the last
observation (Table 9). This model predicts the rewards for the entire planning horizon in one shot.
RLL: The exact same model as LT LR without image prediction. We finally used Rrecurrent as R
since it had the best overall performance, as can be seen in this figure.
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Figure 11: Correlation between accuracy of observation prediction and task performance, in the online
setting. For each graph, we scaled down the indicated model (left: OTOR, right: LT LR) by multiple
levels and report their median observation prediction error during training (x-axis) and median
achieved score (y-axis). The annotation on each data point is the scale multiplier: higher means a
bigger model (the detailed numbers can be found in appendix.) This graph clearly demonstrates the
strong correlation between observation prediction accuracy and asymptotic performance.
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B MODELS ARCHITECTURE AND DETAILS

To minimize the required hyper-parameter search, we reuse the existing stable implementations for
the model designs in Figure 1. For other variations, we modified these existing models to match the
new design. These models are inherently different in the tasks they do which means these models
vary substantially their training and inference time. Table 7 summarized the characteristics of these
models.

LT LR: Latent transition - Latent reward
This variant corresponds to several prior methods such as PlaNet (Hafner et al., 2018). Therefore, we
directly use PlaNet as a representative model of this class (a description of this model can be found in
Section B.2). By default, this model does back-propagate from both the reward loss and observation
prediction loss into its learned latent space. Given the computational cost and for consistency, we
had to use the same number of trajectories between models. This means we used a different set of
planning hyper-parameters for PlaNet (particularly shorter training and prediction horizon of 12 vs
50 and lower number of trajectory proposals of 128 vs 1000). We had to make this change since other
models are much slower than PlaNet to train and training these models with the original numbers
from PlaNet would take over 2 months using eight v100s.

LTOR: Latent transition - Observation reward
Here, we again use the PlaNet architecture to model the dynamics in the latent space; however, we
remove its reward predictor and instead utilize the reference reward model to predict the future reward
given the predicted next observation. Following the design of PlaNet, we again back-propagate
gradients from both the reward and observation.

OTOR: Observation transition - Observation reward
For this design, we used SV2P (Babaeizadeh et al., 2018) for modeling the dynamics in the observation
space (details in Section B.1). Then, we use the reference reward model to predict the expected
reward given the prediction observation. The main reason for using SV2P as the video model is
its stability compared to other next frame predictors. For this model, we do not back-propagate
gradients from the reward prediction into the latent space learned by observation prediction. We also
did not use 3-stages of training and only performed the last stage of training (identical to PlaNet).
According to the authors of SV2P, the three stage training is only required for highly stochastic and
visually complex tasks. We verified the same performance with and without three stages of training
on cheetah run. To be clear, this means that all of our models follow the exact same training
regime.

OT LR: Observation transition - Latent reward
Again, we use SV2P to model the dynamics in the observation space, however, the input to the reward
predictor is the internal states of SV2P (i.e., the aggregated states of all Conv-LSTMs of the main
tower described in (Babaeizadeh et al., 2018; Finn et al., 2016a)). This is the design behind some of
the most recent works in visual model-based RL such as SimPLe Kaiser et al. (2020). However, we
only back-propagate gradients from the observation prediction error into the learned representation.

R: Reward prediction without observation prediction
We tried multiple reward predictors from images and chose the best one asR:

1. Rrecurrent: A simple recurrent convolutional network to predict the future rewards given
the last observation (Table 8). This model has its own recurrent latent space which can be
unrolled to predict future states.

2. Rconv: A simple convolutional network to predict the future rewards given the last obser-
vation (Table 9). This model predicts the rewards for the entire planning horizon in one
shot.

3. RLL: The exact same model as LT LR without image prediction.

Figure 10 compares the performance of each one of these models on all the tasks. We finally used
Rrecurrent asR since it had the best overall performance.

Oracle: We use the environment itself as an oracle model. Since we are using the same planning
algorithm across all of the models above, the rewards from the environment approximate the maximum
possible performance with this planner.
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Model Training Signal Transition Reward Input
R Reward Error - -

OTOR Reward Error + Observation Error Observation Space Predicted Observation
OT LR Reward Error + Observation Error Observation Space Latent States
LT LR Reward Error + Observation Error Latent Space Latent States
LTOR Reward Error + Observation Error Latent Space Predicted Observation

Table 4: Summary of possible model designs based on whether or not to predict the future observations.
All of the models predict the expected reward conditioned on previous observations, rewards and
future actions. Moreover, the top four methods predict the future observations as well. These methods
can model the transition function and reward function either in the latent space or in the observation
space. Another design choice for these models is to whether or not share the learned latent space
between reward and observation prediction.

Figure 12: Architecture of SV2P. At training time, the inference network (top) estimates the posterior
qφ(z|x0:T ) = N

(
µ(x0:T ), σ(x0:T )

)
. The latent value z ∼ qφ(z|x0:T ) is passed to the generative

network along with the (optional) action. The generative network (from Finn et al. (2016a)) predicts
the next frame given the previous frames, latent values, and actions. At test time, z is sampled from
the assumed prior N (0, I).

B.1 SV2P ARCHITECTURE

Introduced in Babaeizadeh et al. (2018), SV2P is a conditional variational model for multi-frame
future frame prediction. Its architecture, illustrated in Figure 12 consists of a ConvLSTM based
predictor p(xc:T |x0:c−1, z) where z is sampled from a convolutional posterior approximator assuming
Guassian distribution qφ(z|x0:T ) = N

(
µ(x0:T ), σ(x0:T )

)
. The predictor tower is conditioned on the

previous frame(s) and future proposed actions while the posterior is approximated given the future
frame itself during the training. At inference, z is sampled from N (0, I). This network is trained
using the reparameterization trick (Kingma & Welling, 2014), and optimizing the variational lower
bound, as in the variational autoencoder (VAE) (Kingma & Welling, 2014):

L(x) = −Eqφ(z|x0:T )

[
log pθ(xt:T |x0:t−1, z)

]
+DKL

(
qφ(z|x0:T )||p(z)

)
where DKL is the Kullback-Leibler divergence between the approximated posterior and assumed
prior p(z) which in this case is the standard Gaussian N (0, I). Here, θ and φ are the parameters of
the generative model and inference network, respectively. SV2P is trained using a 3-stage training
regime which is only required for visually complex tasks and was not utilized in this paper. The list
of hyper-parameter used can be found Table 11.

B.2 PLANET ARCHITECTURE

Introduced by Hafner et al. (2018), PlaNet is a model-based agent that learns a latent dynamics model
from image observations and chooses actions by fast planning in the latent space. To enable accurate
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Figure 13: Architecture of PlaNet (Hafner et al., 2018). Learned Latent Dynamics Model: In a latent
dynamics model, the information of the input images is integrated into the hidden states (green) using
the encoder network (grey trapezoids). The hidden state is then projected forward in time to predict
future images (blue trapezoids) and rewards (blue rectangle).

long-term predictions, this model uses stochastic transition functions while utilizing convolutional
encoder and decoder as well as image predictors. The main advantage of PlaNet is its fast unrolling
in the latent space since it only needs to predict future latent states and rewards, and not images, to
evaluate an action sequence. PlaNet also optimizes a variational bound on the data log-likelihood:

L(x) =
T∑
t=1

(
E
q(st|o≤t,a<t)
[ln p(ot|st)]

reconstruction

−E
q(st−1|o≤t−1,a<a−1

)

[
DKL[q(st|o≤t, a<t) ‖ p(st|st−1, at−1)]

]
complexity

)
.

We used the same training procedure and hyper-parameter optimization described in Hafner et al.
(2018). The list of hyper-parameter used can be found Table 12.

It is worth mentioning that although we used PlaNet as LT LR with no changes, our results are
different from Hafner et al. (2018). This is because we used 128 trajectories vs 1K in CEM (Table 10)
as well as a training horizon of 12 vs 50 in Hafner et al. (2018) (Table 12). We made these changes
to keep planning consistent across our models. Other models are slower than LT LR to train and
explore (Table 7) which made it infeasible to use them with original planning and training horizon
of Hafner et al. (2018). Please check Section B.4 for our approximate compute cost.

B.3 HYPER-PARAMETER SEARCH PROCEDURE

To get reasonable performance from each one of these models, we follow the same hyper-parameter
search as Hafner et al. (2018); we grid search the key hyper-parameters on cheetah run, selecting
the best performing one, and then using the same set of parameters across all of the tasks. This means
that these models will perform their best on cheetah run. We are mainly doing this to keep the
hyper-parameter search computationally feasible. The final used hyper-parameter can be found in
Table 11 and Table 12. Contrary to Hafner et al. (2018), we did not optimize the action repeat per
task and instead used the fixed value of four.

B.4 APPROXIMATED COMPUTATION COST

In this paper we have three main experiments using eight models across seven tasks in two online and
offline settings, where each run can take up to seven days on eight V100s (please check Table B.4 for
a model break-down). That is 100K V100-hours (or ∼ $70K at the time of writing of this paper) per
random seed (we did three). Note that the cost is not only about training but also unrolling hundreds
of random proposals per step. This is both time and computation expensive particularly for models
with observation space transitions.
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Figure 14: This figure illustrates the distribution of the rewards in trajectories collected by model
variations in the online setting. Since the rewards for each frame is [0, 1] and the action repeat is set
to four, the observed reward is always in [0, 4] (x-axis).
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cheetah reacher cartpole cartpole finger ball in cup walker
run easy swingup balance spin catch walk

Online
R 102± 23 588± 95 215± 7 317± 31 77± 3 205± 75 156± 3
OTOR 447± 24 480± 106 381± 30 849± 111 135± 97 43± 37 373± 21
OT LR 240± 40 801± 60 398± 17 575± 10 98± 39 204± 71 251± 23
LT LR 426± 10 768± 135 341± 18 445± 16 355± 20 711± 177 645± 20
LTOR 233± 12 757± 91 261± 8 343± 41 308± 25 421± 144 541± 12
Oracle 671 85 394 595 556 957 926

Offline
R 217± 8 996± 7 258± 6 415± 7 171± 5 985± 20 300± 7
OTOR 503± 12 981± 16 685± 11 978± 11 148± 6 910± 19 568± 7
OT LR 490± 11 999± 9 406± 6 923± 12 244± 5 949± 18 731± 6
LT LR 502± 7 994± 10 413± 9 543± 8 373± 5 996± 19 552± 8
LTOR 282± 7 993± 15 281± 7 411± 7 259± 6 932± 19 383± 7

Difference
R 115 408 43 98 94 780 144
OTOR 56 501 304 129 13 867 195
OTOR 250 198 8 348 146 745 480
OTOR 76 226 72 98 18 285 93
OTOR 49 236 20 68 49 511 158

Table 5: The asymptotic performance of various model designs in the online and offline settings
and their differences. For the online setting the reported numbers are the average (and standard
deviation) across three runs after the training. For the offline setting, the reported numbers are the
same as Table 1 rounded up ± their standard deviation across three runs. This table demonstrates a
significant performance improvement by predicting images almost across all the tasks. Moreover,
there is a meaningful difference between the results for the online and the offline settings signifying
the importance of exploration. Please note how some of best-performing models in the offline setting
perform poorly in the online setting and vice-versa. This is clear from the bottom section of the table
which includes the absolute difference of offline and online scores.

# Parameters Training Step Inference Step #GPUs
R 81.6K 3 5 1× V 100
OTOR 8.34M 40 310 8× V 100
OT LR 8.38M 44 361 8× V 100
LT LR 5.51M 32 10 1× V 100
LTOR 5.29M 56 101 8× V 100

Table 6: Wall clock time of training and inference step of each model. The numbers are in seconds.
Model R which only predicts the reward is the fastest model while the models with pixel space
dynamics are the slowest. Please note thatR is much smaller models compare to the other ones since
it does not have any image decoder.

cheetah reacher cartpole cartpole finger ball in cup walker
run easy swingup balance spin catch walk

R 20.4 117.6 43.0 63.4 15.4 41.0 31.2
OTOR 1.4 1.5 1.2 2.7 0.4 0.1 1.2
OT LR 0.7 2.2 1.1 1.6 0.3 0.6 0.7
LT LR 42.6 76.8 34.1 44.5 35.5 71.1 64.5
LTOR 2.3 7.5 2.6 3.4 3.0 4.2 5.4

Table 7: Cost-normalized scores foe each model. These numbers are the online score achieved by
each model divided by the inference cost (time) of the corresponding model. As expected, faster
models – i.e. R and LT LR which do not predict the images at inference time – get a big advantage.
This table clearly shows that LT LR is generally a good design choice if there is no specific reason
for modeling the dynamic or reward function in the pixel space.
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Layer Type Filters Size Strides Activation
Last Observation Encoder

Convolutional 32 3x3 2 LeakyReLU
Convolutional 64 3x3 2 LeakyReLU
Convolutional 16 3x3 2 LeakyReLU
Convolutional 8 3x3 2 LeakyReLU

Action Encoder
Dense 32 - - LeakyReLU
Dense 16 - - LeakyReLU
Dense 8 - - LeakyReLU

Last Reward Encoder
Dense 32 - - LeakyReLU
Dense 16 - - LeakyReLU
Dense 8 - - LeakyReLU

Next State Predictor
LSTM 64 - - LeakyReLU

Reward Predictor
Dense 32 - - relu
Dense 2 - - relu
Dense 1 - - None

Table 8: The architecture ofRrecurrent.

Layer Type Filters Size Strides Activation
Last Observation Encoder

Convolutional 32 3x3 2 LeakyReLU
Convolutional 64 3x3 2 LeakyReLU
Convolutional 16 3x3 2 LeakyReLU
Convolutional 8 3x3 2 LeakyReLU

Action Encoder
Dense 32 - - LeakyReLU
Dense 16 - - LeakyReLU
Dense 8 - - LeakyReLU

Last Reward Encoder
Dense 32 - - LeakyReLU
Dense 16 - - LeakyReLU
Dense 8 - - LeakyReLU

Reward Predictor
Dense 32 - - LeakyReLU
Dense 16 - - LeakyReLU

Dense planning
horizon - - None

Table 9: The architecture ofRconv

Parameter Value
Planning Horizon 12
Optimization Iterations 10
Number of Candidate Trajectories 128
Number of Selected Trajectories 12

Table 10: The hyper-parameters used for CEM. We used the same planning algorithm across all
models and tasks.
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Hyper-parameter Value
Input frame size 64×64×3
Number of input frames 2
Number of predicted frames 12
Beta β 1e-3
Latent channels 1
Latent minimum log variance -5.0
Number of masks 10
ReLU shift 1e-12
DNA kernel size 5
Optimizer Adam
Learning Rate 1e-3
Epsilon 1e-3
Batch Size 64
Training Steps per Iteration 100
Reward Loss Multiplier 1.0

Table 11: The hyper-parameter values used for SV2P (Babaeizadeh et al., 2018; Finn et al., 2016a)
model (used in OTOR and OT LR). The number of ConvLSTM filters can be found in Table 14.
The rest of parameters are the same as Babaeizadeh et al. (2018).

Hyper-parameter Value
Input frame size 64×64×3
Number of predicted frames 12
Units in Deterministic Path 200
Units in Stochastic Path 30
Units in Fully Connected Layers 300
Number of Encoder Dense Layers 1
Number of Reward Predictor Layers 3
Free Entropy nats 3.0
Minimum Standard Deviation 0.1
Optimizer Adam
Learning Rate 1e-3
Epsilon 1e-3
Batch Size 50
Training Steps per Iteration 100
Reward Loss Multiplier 10.0

Table 12: The hyper-parameter values used for PlaNet (Hafner et al., 2018) model (used in LTOR
and LT LR). The rest of parameters are the same as Hafner et al. (2018).

Hyper-parameter Value
Input frame size 64×64×3
Number of predicted rewards 12
Number of Reward Predictor Layers 3
Number of Reward Predictor Layers 3
Minimum Standard Deviation 0.1
Optimizer Adam
Learning Rate 1e-3
Epsilon 1e-3
Batch Size 32
Training Steps per Iteration 100

Table 13: The hyper-parameter values used forRrecurrent (used asR). The hyper-parameters for the
planner is the same as other models (Table 10).
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1 1 1 2 2 4 2 1
2 2 2 4 4 8 4 2
3 4 4 8 8 16 8 4
4 8 8 16 16 32 16 8
5 16 16 32 32 64 32 16
6 32 32 64 64 128 64 32

Table 14: The downsized version of OTOR. We down-scaled the model by reducing the number of
ConvLSTM filters, limiting the modeling capacity and thereby potentially increasing their prediction
error. The detailed architecture of the model and layers can be found in Finn et al. (2016a);
Babaeizadeh et al. (2018).

Model Units in Fully Units in
ID Connected Layers Deterministic Path
1 100 200
2 100 100
3 100 50
4 50 200
5 50 100
6 50 50
7 200 200
8 200 100
9 200 50

Table 15: The downsized version of LT LR. We down-scaled the model by reducing the number
of units in fully connected paths, limiting the modeling capacity and thereby potentially increasing
their prediction error. The detailed architecture of the model and layers can be found in Hafner et al.
(2018).
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