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ABSTRACT

Many problems in trustworthy ML can be expressed as constraints on prediction
rates across subpopulations, including group fairness constraints (demographic
parity, equalized odds, etc.). In this work, we study such constrained minimization
problems under differential privacy (DP). Standard DP optimization techniques
like DP-SGD rely on objectives that decompose over individual examples, enabling
per-example gradient clipping and noise addition. Rate constraints, however, de-
pend on aggregate statistics across groups, creating inter-sample dependencies that
violate this decomposability. To address this, we develop RaCO-DP, a DP variant
of Stochastic Gradient Descent-Ascent (SGDA) that solves the Lagrangian formu-
lation of rate constraint problems. Through careful design, the extra privacy cost
incurred by incorporating these constraints in our approach is limited to that of pri-
vately estimating a histogram over each mini-batch at every step. We prove the con-
vergence of our algorithm through a novel analysis of SGDA that leverages the lin-
ear structure of the dual parameter. Empirical results show that our method Pareto-
dominates existing private learning approaches under group fairness constraints
and also achieves strong privacy—utility—fairness performance on neural networks.

1 INTRODUCTION

From fair learning (Zafar et al.l2017; |Goel et al., 2018; |Agarwal et al., 2018} |Cotter et al.| 2019a)
to robust optimization (Chen et al., 2017} |Cotter et al.,2019b)) and cost-sensitive learning (Mienye &
Sun,, 2021} |Cotter et al.,[2019b)), many Machine Learning (ML) tasks can be formulated as constrained
optimization problems. In such problems, the goal is to minimize the model’s overall error subject to
rate constraints, which enforce conditions on prediction rates across subsets of the training data. For
instance, ensuring fairness in a resume screening system might require similar rates of positive out-
comes (e.g., resumes selected for human review) across gender groups, a criterion known as equalized
odds (Hardt et al.|[2016). Similarly, in a medical setting, a decision-support system may need to strictly
limit its false negative rate, e.g., to reduce the risk of misdiagnosing cancerous tumours as benign.

These learning tasks often require training models on sensitive data, such as employee or patient
records in our examples. Publicly releasing these models can expose data owners to privacy at-
tacks (Shokri et al., 2017) and disclose personal data without consent (Sweeney, 2002)). Without
proper safeguards, these risks can harm individuals, undermine trust in Al systems, and discourage
data sharing in critical applications like medical research. Despite recent advances, differentially
private (DP) constrained optimization has focused almost exclusively on fairness constraints (Jagielski
et al.,[2019; Mozannar et al.;,[2020; Tran et al.,|2023}; Berrada et al., 2023} Lowy et al., 2023)). Methods
tailored to fairness do not extend to the broader family of rate constraints that arise in practice. We
bridge this gap with the first general DP framework for arbitrary rate-constrained problems. Our
approach expands DP’s reach to previously incompatible applications and pushes the Pareto frontier
of utility, privacy, and constraint satisfaction, including fairness, beyond the state of the art.

Differential Privacy (DP) is the standard framework for private data analysis that has been successfully
applied to training and releasing unconstrained models with formal privacy guarantees. A key
approach is the widely used DP-SGD algorithm (Song et al., |2013b; |[Bassily et al., |2014; |Abadi
et al.| 2016)), which ensures DP by clipping per-sample gradients and adding calibrated noise to the
averaged gradient. This process bounds each data sample’s influence. Incorporating rate constraints
presents a challenge, however, because unlike typical training losses, these constraint functions (or
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their regularizer counterparts) do not readily decompose into per-sample terms. This fundamental
incompatibility with per-sample processing makes it difficult to integrate them with standard DP-
SGD and its variants. Our key contribution is the introduction of a DP optimization algorithm that
overcomes this limitation, enabling private optimization subject to rate constraints.

To address the challenge of privately enforcing rate constraints, we propose generalized rate con-
straints. Generalized rate constraints allow us to express all rate constraints in a common form based
on statistics (i.e., histograms) on disjoint subgroups within the dataset. This common structure is the
key to our privacy solution: it allows us to efficiently gather all the necessary information to evaluate
these constraints under DP. Beyond its advantages for privacy, our method offers greater flexibility
compared to prior work (Cotter et al., 2019b) by extending to scenarios with multiple output classes.

With generalized rate constraints at hand, we introduce RaCO-DP, a framework for optimizing
machine learning models under rate constraints with differential privacy (DP). RaCO-DP is a
differentially private variant of the Stochastic Gradient Descent Ascent (SGDA) algorithm which
leverages a Langrangian formulation and generalized rate constraints to overcome the decomposability
obstacle. Our core insight exploits the structure provided by these constraints: we can efficiently
compute differentially private statistics (e.g., histograms) for these subgroups. By privatizing these
statistics at each step, we enable private evaluation of the constraint function, and its per-sample
constraint gradients. We provide a formal convergence analysis of RaCO-DP, proving that even for
non-convex optimization problems, our method converges to an approximate stationarity point. To
achieve this, we introduce a novel approach to analyzing SGDA that accounts for bias in gradient
estimates and exploits the linear structure of the dual update to enhance convergence speed.

As a concrete application, we study private learning under various constraints, including demographic
parity (Dwork et al., |2012), false negative rate, and equalized odds. Our method achieves new
state-of-the-art (SOTA) results on four standard benchmarks and Pareto-dominates the prior best
approach (Lowy et al.,|2023) in accuracy—fairness—privacy trade-offs. We further demonstrate that
RaCO-DP scales beyond convex models, achieving strong performance for deep neural networks
(ResNetl6|He et al.| (2016) on CelebA |Liu et al.|(2015)). We also validate its effectiveness on tasks
involving multiple sensitive groups (demographic parity on the ACSEmployment dataset), scaling
to 18 subgroup constraints. Additionally, our method offers two advantages over existing approaches
explicitly designed for fairness constraints. First, it provides stronger privacy guarantees than prior
approaches that only consider the privacy of the sensitive label (Jagielski et al.l [2019; Tran et al.}
2023)), akin to label privacy (Ghazi et al., 2021)). Second, it allows practitioners to directly specity
the maximum disparity, unlike previous penalization-based methods, such as (Lowy et al., [2023]),
which offer only indirect control over the desired fairness level via hyperparameter tuning.

2 BACKGROUND

2.1 DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork et al., 2006) has become the de facto standard in privacy-preserving
ML thanks to the robustness of its guarantees, its desirable behaviour under post-processing and
composition, and its extensive algorithmic framework. We recall the definition below and refer to
Dwork & Roth| (2014)) for more details. Let X', Y be the input and output spaces, respectively. We fix
some m € N and denote by D the space (X x )™ of datasets of size m.

Definition 2.1 (Differential Privacy). A mechanism M : D — O is (¢,0)-DP if for all datasets
D, D’ € D differing in one datapoint and for all events O: PIM(D) € O] < efP[M(D’) € O]+.

In the above definition, § € (0, 1) can be thought of as the failure probability, and £ > 0 the privacy
loss; smaller € and & correspond to stronger privacy guarantees.

Differentially Private Stochastic Gradient Descent (DP-SGD) (Song et al., 2013bj Bassily et al.|
2014; Abadi et al.,|2016)) serves as the foundational algorithm in private ML. Given a training dataset
D € D and model parameters # € R%, DP-SGD aims to privately solve (in the sense of deﬁnition
the empirical risk minimization problem mingggra £(6), where £(6) = ﬁ > wept(0;x) and £(0, )
is a loss function differentiable in 6. DP-SGD follows the standard SGD update, but guarantees
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differential privacy by (i) capping each data point’s influence on the gradient through gradient clipping,
and (ii) injecting Gaussian noise into the clipped gradients.

Each iteration ¢ € [T'] of DP-SGD incurs a privacy loss (e, d;). Privacy composition (Dwork et al.,
2006} Kairouz et al.||2015)) and privacy accounting (Abadi et al.l 2016} |Gopi et al., 2021} Doroshenko
et al.,2022) are techniques that aggregate these per-step privacy losses into a total privacy guarantee
(e, 0) that holds for the entire optimization process.

2.2 CONSTRAINED OPTIMIZATION VIA LAGRANGIAN

In this work, we aim to solve constrained empirical risk minimization problems of the form:
mingepa {z(e) = by ZZGDE(H;QC)} st Yje[J], T;(0) <. 1)

where I'; : RY — R are the constraint functions and v € (RT)” are slack parameters. We focus
on inequality constraints, as equality constraints are generally infeasible under differential privacy
(Cummings et al.} 2019).

Due to the difficulty of solving (1)) directly, we instead solve an equivalent min-max optimization
problem with respect to the Lagrangian:
; — . _ 5/
min max {£(6,A) == £(6) + R(0,\)},  where: R(8,A) =5, A;(T'5(0) — 7). 2)
Here, A € A C (R*)”7 are the Lagrange multipliers, often referred to as the dual parameter, while 6
is the primal parameter. One of the simplest algorithms to solve (2)) is the generalization of (S)GD
known as (Stochastic) Gradient Descent-Ascent, (S)YGDA (Nemirovski et al.| 2009)).

Definition 2.2 (GDA). At each iteration t:
0D 0 — eV L0 D), and A T (AD 4 VL0000 D)). 3)

where 19 and 1)y are step sizes and I performs orthogonal projection onto A. The stochastic version
(SGDA) replaces exact gradients with stochastic estimates.

2.3 RATE CONSTRAINTS

In this work, we focus on constraints that relate to prediction behavior over subsets of the dataset.
Consider a model h : X x R? — R¥ that maps inputs from feature space X’ to real-valued prediction
scores over the label set Y = {1,..., K} using parameters 6 € R?. Formally, (hard) prediction
rates count the number of points in a dataset D for which the model predicts a certain label k € ):

P]?ard(D; 9) = ﬁ ZmED 1[argmaxk/E[K]{h(@;m)k/}:k]'

As the indicator function is non-differentiable and thus challenging to optimize, we will use dif-
ferentiable versions of these constraints. We rely on the tempered softmax function o, (z); =

exp(—7zx)
S, c-ra)” ote
distribution. This allows us to define soft prediction rates:

Py(D;0,7) = ﬁ erD or(h(0;2)), forke . 4

Observe that lim, o Py(D;0,7) = P*Y(D; ). For brevity, unless otherwise specified, we drop
explicit mention of temperature and provide more discussion of this hyperparameter experimentally
in Appendix [E| Our convergence analysis in Section[5|holds for arbitrary 7.

where the temperature parameter 7 € R™ controls the sharpness of the probability

Rate constraints, as defined by |Goh et al.|(2016) and Cotter et al.|(2019b) for binary classification
(¥ = {0,1}), are linear combinations of a classifier’s prediction rates across different data partitions:

qu[Q] aqP1 (an 9) + BqPO(an 9) <7, (5)
Q > 0, agy, B4 € R are mixing coefficients, D1, ..., Dg C D and vy is the slack parameter. Examples
of rate constraints in this form include ensuring that the fraction of positive predictions across

different demographic groups stays within a specified threshold, or requiring the model to achieve
a minimum level of precision or recall for both classes (Cotter et al., 2019a).

Such constraints are limited to binary classification, and a multiclass generalization is not immediate.
More critically, it is unclear how to evaluate rate constraints in (3)) while efficiently preserving privacy.
These are issues we address in the next section.
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3  PRIVATE LEARNING WITH GENERALIZED RATE CONSTRAINTS

Generalized rate constraints. We propose a generalized form of rate constraints that (i) applies to
the multi-class setting and (ii) exploits shared structure to enable accurate private estimation.

This shared structure is a partition {Ds, ..., Dg } of the dataset
D for some Q > 0, which we refer to as the “global” parti-
tion. We then allow each rate constraint to incorporate pre-
diction rates over any recombination of sub-datasets in the
global partition. This structure is flexible, as it allows each
rate constraint to have its own “local” datasets, provided that
each of these datasets can be formed as a union of sets from
the global partition. For example, in the context of fairness
constraints, the global partition corresponds to the the sensitive
groups (e.g., Hispanic, Black, Caucasian), and local datasets
for one of the constraint is {Hispanic, Non-Hispanic} where
Non-Hispanic = {Black, Caucasian}. See Figurel[l}

Formally, given this global partition, we assume for each j € [J]
there exists a family of subsets of [(], denoted Z; C 2[@1 and

a weight vector a; € RIZiI"K such that the constraint I'; can
be written in the following formﬂ

05(0) = Yrez, Yney @ik Pe(Uier Dis0).  (6)

_ D, D, D
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Iy = {3} : Ds Ig={1,2}: Dy UD,

Figure 1: Each rate constraint of
the form (6) builds local datasets
based on the global partition.
A class-1 (class-0) prediction is
shown with a blue (red) square. Pre-
diction rates Py, P, are shown as
fractions. As an example, let D1,
Dy, and Ds be the set of Hispanic,
Black, and Caucasian individuals
in the dataset, respectively. Con-

straint I'; builds its local datasets
as {{Dl}, {DQ U Dg}}, i.e. {His-
panic, Non-Hispanic}, from the
global partition {D;, D2, D3} us-
ing the set of index subsets Z; =
{L, I5}.

Assuming such a global partition is not restrictive, as the trivial
partition Dy = x4 (with Q = |D|) can always be used. How-
ever, as Sectionwill show, a smaller partition size () enables a
better privacy-utility trade-off through more effective noise use.

Remark 1. For common rate constraints, the best global par-
tition will be readily apparent (see the application to fairness ~ ~
below). The smallest global partition can however be defined explicitly. Let Dy, ..., Dy be the
(possibly non-disjoint) subsets of D over which the functions I'1, ..., T' ; compute a prediction rate as
per Eq. (6). Then the smallest global partition assigns any two data points x and ' in the same D,

if and only if {vq € [Q],{z, 2’} N Dy € {0, {z,2'}}}.

Note that each rate constraint I'; is uniquely defined by the subset family Z; and vector «;. Both
parameters are public, specifying only the constraint’s structure and containing no sensitive data.

Application to fair learning. Group fairness in machine learning aims to prevent models from making
biased decisions across different sensitive groups. We show below our general form of rate constraints
(@) allows to capture the popular group fairness notion of demographic parity (Barocas et al.,[2023).
More generally, all common group fairness measures can be formulated as rate constraints (Cotter
et al.| 2019b). We provide details on formulating other fairness notions in Appendix

Definition 3.1 (Demographic Parity). Assume each feature vector x € X contains a sensitive attribute,
denoted as Z, taking on values in Z C Z. A classifier h(6; ) satisfies demographic parity w.r.t. Z if

PrlY =k | Z=2=Pr[Y =k]forall z € Z,k €Y, whereY = h(0; X).

In practice, probabilities are replaced by empirical rates Py. With slack ~, this gives
leading to J = |Z]| - |)| constraints of the form (6). The global partition has size @ = |Z| with

elements D, = D[Z = z]. For the constraint indexed by (z,y) € Zx ), wetake Z = ({2}, [| Z|]\ 2)
and define oy, = 1, agz\2},y = —1, with all other components zero.

Objective. With these definitions in place, we can now state our objective: solve problem (2 with
generalized rate constraints of the form (6)) under DP.

'With some abuse of notation, we denote by o, 1,k the entry of a; corresponding to subset I and label k.
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4 RACO-DP: PRIVATE RATE-CONSTRAINED OPTIMIZATION

We introduce RaCO-DP (Algorithm , an al-
gorithm for rate-constrained optimization that ex-
tends SGDA (Definition to satisfy DP. Each
iteration ¢ of RaCO-DP operates on a mini-batch
B and consists of three key components that we
will describe in detail in this section:

Algorithm 1 RaCO-DP

Require: Dataset D, Parameter g, learning rates

Mg, Mx, Gaussian noise variance o, Laplace
parameter b, clipping norm C, sampling rate 7,
slack parameter vector -y, loss function £(6; -)

1: Initialize A(9) « [0]
1. Private histogram computation: For each 2: foreacht € {0,...,7 — 1} do
class k € [K] and part ¢ € [Q)] of the parti- 3. B()  PoissonSample(D, r)
tion, we privately estimate the sum of model 4. Privare Histogram:
predictions o (h(6; x))y over the points x in the . AY < S o(h(6®;2))k + Lap(2)
mini-batch B(®) that belong to D,, storing these - @€DyNB®) ’
counts in a histogram H®) (Section[4.1). Primal Update:
. . _ 6: Z® ~ Gaussian(0, 140?)
2. Private primal updates: We derive per-sample

gradients for the primal update of SGDA based

Vo € BY : set g% as (sce also Eq.{T0))

ﬁvgg(g(t); x)+v01§(9(t)7 A, ﬁ(t)@)
) _C

gét) — (ZzEB(t) Clip(ga(;@’ T[D] )) +20

i+ . pt) _ negét)
Dual Update:

on post-processing the histogram H (), We then
clip, average and privatize these gradients using  g.
the Gaussian mechanism (Section [4.2)).

3. Private dual updates: We compute all con- 9
straint values by again post-processing the his- )
togram H(*), allowing us to perform the dual up- 10: [gf\t)]j — FEOSt(H(t)) =, Vi €[J]
date at no additional privacy cost (Section@.3). ;1. \(t+1D) T AND 4, gf\t)) (see Eqn.

12: end for

13: return 6(7)

4.1 PRIVATE HISTOGRAM COMPUTATION

Our algorithm’s primal and dual updates compute prediction rates across dataset partition parts
Dy, ..., Dgq for each class. To track these prediction rates privately, we construct a histogram
H® ¢ RO*K that counts (soft) model predictions for each combination of part ¢ and class k. For a
given model parameter 6, each sample z; in the mini-batch B(*) belongs to exactly one part D, of the
partition but can influence the counts of all K classes through the softmax probabilities o (h(6; )).
This non-private histogram is constructed by accumulating these softmax vectors:

Hétl)c =2 p,npm o(h(0; i)k 3

To make this histogram differentially private, we use the Laplace mechanism (Dwork et al.,[2006). The
¢; sensitivity of H® is 1, as each sample belongs to one element of the global partition and its softmax
predictions sum to 1 across classes. Thus, we achieve e-DP by adding Laplace noise to each element:

A = 1Y + Lap(1/2),

Vge QL ke ). )
Remark 2. We focus on the Laplace mechanism for simplicity, but we note that our framework can
readily accommodate other differentially private histogram mechanisms that may provide better

utility in some regimes, e.g., when the histogram is high-dimensional and sparse (Wilkins et al.| 2024)).

In the following sections, we will see that H® contains all the necessary information to compute
the quantities related to the rate constraints required for both the primal and dual updates, thereby
avoiding additional privacy costs that would arise from composing multiple queries.

4.2 PRIVATELY COMPUTING THE PRIMAL GRADIENT

A key requirement in DP-SGDA is that each sample has a bounded contribution to gradient updates.
To satisfy this in RaCO-DP, we decompose the Lagrangian into per-sample terms. While the loss
£(9) naturally decomposes as in standard DP-SGD, the regularizer R is more challenging.
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Given a mini-batch B, define By = BN (UIDZ-) and recall that Z; and a; € RIZ//*X denote the
1€

family of subsets and weight vector associated with constraint I';. The minibatch-level regularizer is,

R(6,; B) ;)\( ZZaﬂkPk Bars0)) =) =>_ i (( ZZ > e 0;0)1) = ).

I€T; j=1 I€T; k x€Bn

Note that this may be a biased estimate of R(, \) due to the normalization term | Bn;|. We account
for this bias in our convergence analysis (Section [5).

We would like a per-sample decomposition of R(6, \; B). The main obstacle in such a decomposition
are the quantities | Bny|, which depend on the entire mini-batch. We overcome this by first noting that

|Brrl = icr 21 H, Z( , leading to the following per-sample regularizer estimator at point = € D:

(0, H, ) Z/\ (= Ma(h(e;m)kl) - %),

(®)
I€Zjk1eK H1 ko
zEI ko€ K

and thus the overall per-sample gradient is given by,

z Aj @51,k Lo
T+ i Lrer, Dnepg 5 g Velo (h(050))e, . (10)

a)
i€1 ko €[K] 2

Then, since H depends on the mini-batch B, we use instead its differentially private version H. Note
that the normalizing term r|1D| is necessary to correctly implement clipping in Line|8|of Algorlthml

Remark 3. For specific constraints, the estimation of |Bny| can be further refined. For example,
when each ; is itself a partition of [Q)], the sensitivity of 3, > . H ,3 is at most 1, and adding

Laplace noise directly results in a tighter estimate of | Bny|.

With this per-sample decomposition, we can apply standard DP-SGD techniques: clipping per-sample
gradients, averaging them over the mini-batch, and adding Gaussian noise to preserve privacy.

4.3 PRIVATELY COMPUTING THE CONSTRAINT DUAL GRADIENT

For each constraint I'; and corresponding slack parameter y;, the gradient of the Lagrangian w.r.t A is:

VALOD,A0); =T;(60; BY) — -, (1)
The dual update in RaCO-DP thus requires evaluating rate constraints on the current mini-batch
B incurring a privacy cost. To avoid this additional cost, we introduce a post-processing function
F?OSt : RY*K s R that operates directly on the private histogram H(*). This function replaces each

sum of model predictions ), D,AB® o(h(0; x;)); with the corresponding histogram count H ét,)f
()

post 7 (t) _ Qj,1,ky Zz‘el Hi,kl
F] (H ) ZIEIJ quE[K] Ziel Zk2E[K] Hff}ZQ . (12)

As H® js already DP, the post-processing property ensures this step incurs no additional privacy cost.

Remark 4. As standard in private optimization, mini-batches B\") are constructed via Poisson sam-
pling, with each datapoint included with probability r. This allows us to leverage privacy amplification
by subsampling (Kasiviswanathan et al.| 2011} |Balle et al.| | 2018) for the Laplace mechanism in his-
togram computation (Section{d.1) and the Gaussian mechanism for per-sample gradients (Section{4.2).

RaCO-DP’s efficiency relies on a private histogram H®) enabling per-sample gradient computation
and private constraint evaluation, key to handling rate constraints under DP. The privacy guarantees of
Algorithm [T]follow from composing the subsampled Laplace and Gaussian mechanisms over 7" steps.

Theorem 4.1. Let b > 2 max { L v e /% Tlog(T/6 } and o > 10 max { 010%1'“6/5)7 CﬁllDoi(T/(s) } then
Algorzthmlzs €,0)-DP.



Under review as a conference paper at ICLR 2026

The proof is in Appendix [B] We present this result primarily for to provide intuition about parameter
scaling. In our experiments, we use a tighter privacy accountant that improves both constants and
logarithmic factors. Additionally, in our convergence analysis, we offer a more detailed examination
when the Lagrangian is Lipschitz and the algorithm is run without clipping.

5 CONVERGENCE AND UTILITY ANALYSIS

Consider the function defined as ®(0) = maxyeca {£(0, A)}. Ideally, one would want to show that
Algorithm|[T]approximately minimizes ®. However, due to the fact that & may be non-convex, finding
an approximate minimizer is intractable in general. In fact, because the constraint functions, {Fj},
may be non-convex in 6, if A = (RT)7 then even finding a point where ® is finite may be intractable.
As such, we must make two standard concessions. First, we will assume A is a compact convex
set of bounded diameter. Intuitively, this bounds the penalty applied when the constraints are not
satisfied. Further, instead of guaranteeing that Algorithm [T finds an approximate minimizer of ®, we
will show the algorithm finds an approximate stationary point. We note that stationarity is a standard
convergence measure in non-convex optimization, and provide more discussion in Appendix Our
subsequent analysis in fact provides for a slightly stronger, but more technical, notion of stationarity
than we provide here; see Appendix [D.6]for more details.

Definition 5.1. ((«, v)-stationary point) A point 0 is an (o, v)-stationary point if 3¢’ s.t. |0 —0'|| < v
and min,cpa (g1 ||v]| < o, with O the subdifferential of ®.

When the loss is Lipschitz and smooth, SGDA converges to an approximate stationary point of ® (Lin
et al.}[2020). Unfortunately, Algorithm[Tmay have biased gradients, and the scale of noise present in
go and g, may vary dramatically depending on d and .J. Thus, our main goal in this section is two-fold.
First, we aim to formally show that despite using biased gradients, Algorithm [I] provably finds an
approximate stationary point. Specifically, when the error in the primal updates (w.r.t. ||-||2) is at most
Tp and the error in the dual updates is at most 7 (W.r.t. || - || oo ), We show SGDA on a nonconvex-linear

loss finds a stationary point roughly with o = O( ”Tlltf’ + 79+ /TA + ﬁ), see Appendix
Second, we characterize the impact of the noise in gg and g, added due to privacy. This involves

correctly balancing the number of iterations 7" with the scale of noise needed to ensure privacy, which
increases with 7". This leads to the following result for Algorithm [T]run without clipping.

Theorem 5.2 (Informal). Let n = minge(q) {|Dyl}. Assume h(0;x) and 6(9) are both Lipschitz

and smooth. Then, under appropriate choices of parameters, Algorithm . is (€,0)-DP and with
probability at least 1 — p there exists t € [T s.t. 0y is an («, «)-stationary point of D with,

dlog(¥5™)log(3)\ 1 K%, /log(%)log# (Z£n)
« :O<( ) + 1/4 . )’
ne (ne) /

up to dependence on problem constants. We provide a complete statement and full proof in Appendix
[D.2] In Appendix[D.7] we derive Lipschitz and smoothness constants for L from those of the classifier.

There are several key steps involved in achieving this result. First, we provide a general convergence
proof for SGDA under the assumption that gradients have bounded error (Theorem [D.5)). Notably, in
contrast to previous analyses, this result 1) allows for biased gradients; 2) depends on the /., error
in the dual gradient estimate (rather than the ¢5 error); and 3) achieves faster convergence (in terms
of T') by leveraging the linear structure of the dual To point (3), our analysis shows SGDA in this
setting can converge as fast as Tl 717z instead of = /6 (shown by |Lin et al.| 2020), essentially matching
the rate observed in comparable minimization (rather than min-max) settings. See Theorem
for this specific result. The next step in proving Theorem [5.2]is to control the error of the gradient
estimates while balancing the noise necessary for privacy. We show that this error scales proportional

to O(m + \/ﬁ) in the primal and O (¥A1loe ﬁlog 7 4+ 1/™7) in the dual. We defer the reader to
Lemma [D.4]in Appendix [D]for a more detalled accounting of this error.




Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

We empirically demonstrate that RaCO-DP: (i) achieves SOTA performance on standard tabular
benchmarks; (ii) scales for deep neural networks, maintaining high utility under strong privacy
guarantees; (iii) scales to a large number of constraints, and (iv) is computationally efficient.

Setup. We evaluate RaCO-DP on three constraint types: R
demographic parity (on Adult (Becker & Kohavi, [1996), T i;;f;g;uv ‘;j;j
Credit-Card (Yehl [2009), Parkinsons [Little] (2007), o9 [ L '
ACSEmployment (Ding et al,[2021), CelebA (Liu et al}2015)), =

false negative rate (on Adult, Heart |Alex Teboul), and equal-

Accuracy
H
—
—
—
]
H
o

ized odds (on Credit-Card). We benchmark against DP- 0.85

FERMI (Lowy et al., [2023)), Tran et al.[(2021), and Jagielski et al. -

(2019), reporting their results from|Lowy et al.|(2023)) where avail- U}g;ﬁ;;i:ﬂ:;}'ﬂ?1Pum0 giwtm?ffm)
able. In settings without prior DP work (e.g., FNR constraints, deep '

networks on CelebA), we use non-private SGDA as a reference. (a) CelebA

All DP methods use § = 105, with privacy loss tracked via the
numerical accountant of Doroshenko et al.|(2022). Full implementa-
tion and hyperparameter details are in Appendix For constraint
definitions, see Appendix [Al

Tabular data. On standard tabular benchmarks, Figure 2b| (together
with Figure [} Figure 5] and Figure[6]in Appendix [E.3)) shows that
across multiple datasets (Adult, Credit—-Card, Parkinsons)
and fairness constraints (demographic parity and equalized odds),
RaCO-DP trains logistic regression models that consistently achieve
higher accuracy at any fixed fairness disparity compared to all
baselines under the same privacy budgets. Additional ablations for
small ¢ values are provided in Appendix
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Neural networks. To demonstrate that RaCO-DP is applicable 0.6 T —e" RaCO-DP (oure)
to large, non-convex models, we train a ResNetl6 (He et al.
2016) (6.4M parameters) on CelebA under demographic parity
constraints. As shown in Figure RaCO-DP achieves 90%
accuracy with only a 10% demographic disparity gap for € = 1. This
result is close to the non-private model’s 95% accuracy, showing that
RaCO-DP is a practical tool for implementing fairness constraints
in deep learning pipelines without a prohibitive loss in utility.
Hyperparameter and training details are in Appendix

SGDA (Non-Private)

0.2

Demographic Disparity

0.01

024 0.32 040 048 0.56
Scaling. To evaluate performance under a large constraint set, Test Error
we train a logistic regression on ACSEmployment, enforcing
demographic parity across 18 groups simultaneously. Figure (c) ACSEmployment
shows our method achieves a competitive utility—fairness trade-off
even under strong privacy (¢ = 1), confirming its effectiveness. Figure 2: Fairness—utility
trade-off for RaCO-DP over
three benchmarks under de-
mographic parity constraints
training: (a) ResNetl6 (5
runs), (b) and (c) logistic re-
gression with € = 1 (20 runs)

Matching non-private rates. We observe that RaCO-DP nearly
matches non-private accuracy sometimes, especially for logis-
tic regression on tasks such as Adult, Credit-Card, and
Parkinsons (see Appendix[E.3). In these cases, the sample size
is large relative to the model’s dimensionality, and convergence is fast
(often within a few dozen updates). This allows training with large
batches that reduce noise and still benefit from privacy amplification by subsampling. It also keeps
the noise multiplier o (and Laplace parameter b) small, since the privacy budget is spread across only
a handful of steps. These favorable conditions (large datasets, low-dimensional models, and rapid con-
vergence) explain why the privacy gap narrows, consistent with prior observations (Song et al., 2013a).
Once we employ higher-capacity models like ResNet16 on CelebA (see Figure2a), the gap widens.

Satisfiability. The results in Figure [3| demonstrate that RaCO-DP consistently achieves the
pre-specified constraint values v as measured by the hard rate constraints. This marks a significant
improvement over existing approaches, which typically rely on indirect hyperparameter tuning
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to influence constraint satisfaction. Our direct Lagrangian formulation offers practitioners a
simpler and more reliable method for constraint optimization. Additionally, these results show that
tempered-sigmoid temperature 7 = 1 is sufficient to enforce hard constraints in practice.

Computational efficiency. We benchmark the average time per ==+ Target  (lne)
step for SGD, DP-SGD, RaCO-DP, and DP-FERMI via their 0201 g
public code (Gupta, 2023). On identical hardware, RaCO-DP I —— y=01
trains three orders of magnitude faster than DP-FERMI on Adult

i
33

—x—i —- =015
—x— =02

ard Constraint

(Appendix [E.5). P

Limitations. [Koloskova et al|(2023)) shows that gradient clipping = +

biases SGD, which in our setting can push convergence outside the & "]

feasible set, making the clipping norm C' a critical hyperparameter. P el el il = -
To illustrate this general issue (not specific to RaCO-DP), we P LLESE S
impose a strict FNR = 0 constraint in logistic regression on Test Error

Adult without DP noise (o = 0, b = 00). As shown in Figure Figure 3: Constraint satisfac-
of Appendix [E} norms below 12.5 prevent RaCO-DP from meeting o1 on Adult.

the constraint, though weaker constraints allow smaller norms.

Another limitation is the use of soft constraints for the dual update. Hard constraints can be
applied in practice, although this departs from the theoretical guarantees of RaCO-DP; as shown
in Appendix [E.4] this modification offers limited utility benefits.

7 RELATED WORK

To the best of our knowledge, private learning under general rate constraints has not been explored
in prior work, except in the specific case of group fairness constraints. Accordingly, we review
related work at the intersection of differential privacy and fairness, a key application area where early
research has identified fundamental trade-offs between these two objectives (Cummings et al., [2019).

Existing work can be grouped into three main categories. A first line of research (Bagdasaryan et al.;
Farrand et al., [2020; Suriyakumar et al., [2021}; [Tran et al., [2021; Kulynych et al.| 2022} |[Esipova et al.}
2022; Tran & Fioretto, |2023; Mangold et al., 2023 examines how privacy mechanisms can inadver-
tently harm fairness. For instance, |[Esipova et al.|(2022) characterizes the disparate impact of DP-SGD
due to gradient misalignment caused by clipping. The second line of work focuses on protecting the
privacy of sensitive attributes used to enforce fairness constraints (Jagielski et al., 2019; Mozannar
et al., [2020; |Tran et al., [2023)). Unlike standard DP, which protects the entire dataset, privacy for sen-
sitive attributes requires injecting less noise, leading to improved model performance. However, this
approach has significant limitations. Individuals can still be re-identified through their non-sensitive
attributes, and if sensitive and non-sensitive features are correlated, an adversary may still be able to
infer sensitive attributes. Due to these vulnerabilities, such works are not directly comparable to ours.

The third line of work, closest to ours, seeks to jointly enforce DP and group fairness (Berrada
et al.l 2023 |[Lowy et al., [2023). Berrada et al.| (2023 use DP-SGD without fairness mitigation,
finding well-generalized models show no major privacy-fairness trade-off. However, their notion
of fairness is error disparity, arguably measuring subpopulation generalization. Our work shows that
while mitigation is needed for demographic parity, appropriate algorithm design can surmount the
fairness-privacy trade-off. [Lowy et al.|(2023)) propose a proxy objective for stochastic optimization
of group fairness measures. In contrast, RaCO-DP supports a broad range of rate constraints that
can be freely combined, without needing a task-specific objective. While its theoretical convergence
rate is slower, RaCO-DP offers greater generality, complicating direct comparisons. Notably, Lowy
et al.[(2023) presents results for both sensitive attribute DP and standard DP (Definition @]) but
their public code and evaluations focus on the weaker notion. Despite a stronger privacy guarantee,
RaCO-DP achieves superior privacy-fairness trade-offs. We note that in contrast to [Lowy et al.
(2023), which seeks to satisfy the fairness objective by running an optimization procedure on a proxy
objective, our optimization algorithm more directly targets the rate constraint of interest.

Fairness aside, SGDA is well-studied for minimax optimization (Nemirovski et al.,2009; Heusel et al.;
Lin et al.;,[2020), with Yang et al.|(2022) proposing its first DP analogue. Private minmax optimization
has been heavily studied recently (Boob & Guzman), 2023 Zhang et al., 2022} Bassily et al.| 2023}
2024} Gonzalez et al.| 2024), though work on non-convex losses is limited to (Lowy et al., 2023).



Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In Proceedings of the 35th International Conference on
Machine Learning, Proceedings of Machine Learning Research. PMLR, 2018.

Alex Teboul. Heart disease health indicators dataset. URL https://www.kaggle.com/
datasets/alexteboul /heart-disease-health-indicators—dataset.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential Privacy Has Disparate
Impact on Model Accuracy. In Advances in Neural Information Processing Systems.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. Advances in neural information processing systems, 31,
2018.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limitations
and Opportunities. MIT Press, 2023.

Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private Empirical Risk Minimization:
Efficient Algorithms and Tight Error Bounds. In FOCS, 2014.

Raef Bassily, Cristébal Guzmén, and Michael Menart. Differentially private algorithms for the
stochastic saddle point problem with optimal rates for the strong gap. In Proceedings of Thirty
Sixth Conference on Learning Theory, Proceedings of Machine Learning Research, 2023.

Raef Bassily, Cristobal A Guzman, and Michael Menart. Private algorithms for stochastic saddle
points and variational inequalities: Beyond euclidean geometry. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996.

Leonard Berrada, Soham De, Judy Hanwen Shen, Jamie Hayes, Robert Stanforth, David Stutz, Push-
meet Kohli, Samuel L. Smith, and Borja Balle. Unlocking Accuracy and Fairness in Differentially
Private Image Classification, 2023.

Digvijay Boob and Cristébal Guzmén. Optimal algorithms for differentially private stochastic
monotone variational inequalities and saddle-point problems. Mathematical Programming, 2023.

Robert S. Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for
non-convex objectives. In NIPS, 2017.

Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
Zhang. Scalable dp-sgd: Shuffling vs. poisson subsampling. arXiv preprint arXiv:2411.04205,
2024.

Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang,
Blake Woodworth, and Seungil You. Training Well-Generalizing Classifiers for Fairness Metrics
and Other Data-Dependent Constraints. In Proceedings of the 36th International Conference on
Machine Learning. PMLR, 2019a.

Andrew Cotter, Heinrich Jiang, Serena Wang, Taman Narayan, Seungil You, Karthik Sridharan, and
Maya R. Gupta. Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 2019b.

Rachel Cummings, Varun Gupta, Dhamma Kimpara, and Jamie Morgenstern. On the compatibility of
privacy and fairness. In Adjunct publication of the 27th conference on user modeling, adaptation
and personalization, 2019.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29, 2019.

10


https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset

Under review as a conference paper at ICLR 2026

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Advances in Neural Information Processing Systems, 34, 2021.

Vadym Doroshenko, Badih Ghazi, Pritish Kamath, Ravi Kumar, and Pasin Manurangsi. Con-
nect the dots: Tighter discrete approximations of privacy loss distributions. arXiv preprint
arXiv:2207.04380, 2022.

Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations
and Trends® in Theoretical Computer Science, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography, 2006.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference,
2012.

Maria S Esipova, Atiyeh Ashari Ghomi, Yaqiao Luo, and Jesse C Cresswell. Disparate impact in
differential privacy from gradient misalignment. In The Eleventh International Conference on
Learning Representations, 2022.

Tom Farrand, Fatemehsadat Mireshghallah, Sahib Singh, and Andrew Trask. Neither private nor fair:
Impact of data imbalance on utility and fairness in differential privacy. In Proceedings of the 2020
Workshop on Privacy-Preserving Machine Learning in Practice, 2020.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang. Deep learning
with label differential privacy. In Advances in Neural Information Processing Systems, volume 34,
2021.

Naman Goel, Mohammad Yaghini, and Boi Faltings. Non-Discriminatory Machine Learning through
Convex Fairness Criteria. In Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and
Society, 2018.

Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander. Satisfying real-world goals
with dataset constraints. Advances in neural information processing systems, 29, 2016.

Tomas Gonzalez, Cristobal Guzman, and Courtney Paquette. Mirror descent algorithms with nearly
dimension-independent rates for differentially-private stochastic saddle-point problems extended
abstract. In Proceedings of Thirty Seventh Conference on Learning Theory, Proceedings of Machine
Learning Research, 2024.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy. In
Advances in Neural Information Processing Systems, volume 34, 2021.

Devansh Gupta. Stochastic-Differentially-Private-and-Fair-Learning,
2023. URL https://github.com/devanshquptal60/
Stochastic-Differentially-Private—-and-Fair-Learningl

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANSs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994.

Matthew Jagielski, Michael Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi,
and Jonathan Ullman. Differentially private fair learning. In International Conference on Machine
Learning. PMLR, 2019.

11


https://github.com/devanshgupta160/Stochastic-Differentially-Private-and-Fair-Learning
https://github.com/devanshgupta160/Stochastic-Differentially-Private-and-Fair-Learning

Under review as a conference paper at ICLR 2026

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In International conference on machine learning. PMLR, 2015.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40, 2011.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning. PMLR, 2023.

Bogdan Kulynych, Yao-Yuan Yang, Yaodong Yu, Jarost aw Bt asiok, and Preetum Nakkiran. What
you see is what you get: Principled deep learning via distributional generalization. In Advances in
Neural Information Processing Systems, 2022.

Christian Janos Lebeda, Matthew Regehr, Gautam Kamath, and Thomas Steinke. Avoiding pit-
falls for privacy accounting of subsampled mechanisms under composition. arXiv preprint
arXiv:2405.20769, 2024.

Tianyi Lin, Chi Jin, and Michael Jordan. On Gradient Descent Ascent for Nonconvex-Concave
Minimax Problems. In Proceedings of the 37th International Conference on Machine Learning.
PMLR, 2020.

Max Little. Parkinsons. UCI Machine Learning Repository, 2007.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Andrew Lowy, Devansh Gupta, and Meisam Razaviyayn. Stochastic differentially private and fair
learning. In The Eleventh International Conference on Learning Representations, 2023.

Paul Mangold, Michaél Perrot, Aurélien Bellet, and Marc Tommasi. Differential Privacy has Bounded
Impact on Fairness in Classification. In ICML, 2023.

Ibomoiye Domor Mienye and Yanxia Sun. Performance analysis of cost-sensitive learning methods
with application to imbalanced medical data. Informatics in Medicine Unlocked, 2021.

Hussein Mozannar, Mesrob Ohannessian, and Nathan Srebro. Fair learning with private demographic
data. In International Conference on Machine Learning. PMLR, 2020.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. 2009.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), 2017.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pp. 245-248, 2013a. doi: 10.1109/GlobalSIP.2013.6736861.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, 2013b.

Vinith M. Suriyakumar, Nicolas Papernot, Anna Goldenberg, and Marzyeh Ghassemi. Chasing Your
Long Tails: Differentially Private Prediction in Health Care Settings. In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, 2021.

Latanya Sweeney. K-anonymity: A model for protecting privacy. 2002.

Cuong Tran and Ferdinando Fioretto. On the Fairness Impacts of Private Ensembles Models. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023.

Cuong Tran, My Dinh, and Ferdinando Fioretto. Differentially Private Empirical Risk Minimization
under the Fairness Lens. In Advances in Neural Information Processing Systems, volume 34, 2021.

12



Under review as a conference paper at ICLR 2026

Cuong Tran, Keyu Zhu, Ferdinando Fioretto, and Pascal Van Hentenryck. Sf-pate: Scalable, fair,
and private aggregation of teacher ensembles. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI-23. International Joint Conferences on Artificial
Intelligence Organization, 2023.

Arjun Wilkins, Daniel Kifer, Danfeng Zhang, and Brian Karrer. Exact privacy analysis of the gaussian
sparse histogram mechanism. Journal of Privacy and Confidentiality, 14(1), 2024.

Zhenhuan Yang, Shu Hu, Yunwen Lei, Kush R. Varshney, Siwei Lyu, and Yiming Ying. Differentially
private SGDA for minimax problems. In The 38th Conference on Uncertainty in Artificial
Intelligence, 2022.

I-Cheng Yeh. Default of Credit Card Clients. UCI Machine Learning Repository, 2009.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi. Fair-
ness Constraints: Mechanisms for Fair Classification. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, 2017.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Bring your own algo-
rithm for optimal differentially private stochastic minimax optimization. In Advances in Neural
Information Processing Systems, volume 35. Curran Associates, Inc., 2022.

13



Under review as a conference paper at ICLR 2026

A APPLICATION TO OTHER RATE CONSTRAINTS

A.1 FAIRNESS CONSTRAINTS

Fairness in machine learning aims to prevent models from making biased decisions based on sensitive
attributes. We aim to train a classifier under fairness constraints by formulating a constrained
optimization problem. We consider two popular group fairness [Barocas et al.| (2023) metrics:
demographic parity and equality of odds. All group fairness measures can be formulated as rate-
constraints [Cotter et al.| (2019b)), for individual fairness (Dwork et al.| |2012) it is easier to bound the
per-sample contribution and privatize it with clipping and noising in the style of DP-SGD, thus a
rate-constrained solution is not required, hence we focus on group fairness metrics.

Definition A.1 (Demographic Parity). A classifier h(6; ) satisfies demographic parity with respect to
sensitive attribute Z € Z = {1, ..., | Z|} if the probability of predicting any class k is independent of
Z:

PrlY =k |Z=z]=Pt]Y =k], Vze ZVke),
where Y = h(0; z) is the predicted label.

In practice, we do not have access to the true probabilities, so it is common to estimate them by
empirical prediction rates Pj,. Using a slack parameter -, this gives:

Pu(D|Z =2);0) — Pu(D[Z # 2);0) <y Vze ZVkeY (13)

Demographic parity thus leads to J = | Z| - | V| rate constraints of the form specified in Eqn. (6). The
global partition is of size Q = |Z| with elements D, = D[Z = z], Vz € Z, and for the constraint
corresponding to elements z € Z and y € ), we have T = {{z},[| Z]] \ z}. The associated vector
ahas ay.y, = 1and oy z|\z},y = —1, with the rest of the components set to 0.

Definition A.2 (Equality of Odds). A classifier h(6; -) satisfies equality of odds if the probability of
predicting any class k is conditionally independent of the sensitive attribute Z given the ground truth:

Pr[Y =k |Y =k, Z=2=Pr]Y =k,Y =k, Z="), VI ,2€ZVkk ey (14

We note that the original notion of equalized odds is for binary sensitive attribute. For non-binary
sensitive attributes, we can extend equalized odds to equalize rates between all subpopulations (as
above), or we can consider a counter-factual definition of equalized odds:

Pr[Y =k |Y =k, Z=2=Pr]Y =k \Y =k, Z+#2], V,2€ZVk K )y (15

In the above formulation, we seek to achieve equal odds for each subpopulation compared to other
subpopulations combined (e.g. white vs. non-white, etc.). It is clear that in the binary sensitive
attribute, the definitions are the same. Our framework can handle either variant by changing the
adjusting the local partitioning (see Section [3) but we adopt the counter-factual definition.

We observe that the only difference between the equality of odds and demographic parity is the
additional conditioning on the ground truth, which we will reflect as the additional predicate Y = &’
in our base rates to define the following constraint:

PDIY =K ,Z=2);0)—Po(D[Y =k, Z=72),0) <~y V2€ ZVkK €Y (16

Equality of odds leads to J = |Y|? x | Z| number of constraints. With regards to implementing Eqn.
(6), we can use a global partition with || X | Z| where each element is the subset of D with some
fixed ground truth label k and class z. The constraint for some k € [K] and z € Z then has Z which
specifies the local partition {D[Y = k, Z = z], D[Y = k, Z # z|} with the corresponding vector «
having a +1 coefficient corresponding to a prediction rate of D[Y = k/, Z = z].

Many other group fairness constraints exist but they are all reducible to base rate constraints in a
similar manner. Note the similarity between Equations (7)) and (T6)), where the only difference is the
additional conditioning on ground truth labels Y in equality of odds.

14



Under review as a conference paper at ICLR 2026

Objective Formula Number of Constraints
VEk € Y (predicted),
Vz € Z (sens.)

Vk, k' € Y (predicted
and g.t.) Vz € Z (sens. attr.)

False Negative Rate Pi(D[Y #k];0) <~y Vk € Y (predicted)

Demographic Parity Py(D[Z = z];0) — P(D[Z # 2];0) <~

Equality of Odds  Py(D[Y =k',Z = z2|;0) — P,(D|Y =k, Z # 2];0) <~

Table 1: Rate Constraints. Given a dataset D, Cy (D) is the prediction counts for class k, and
Py(D) = Ci(D)/|D| is the prediction rate. D[pred] indicates the subset of D where predicate
predistrue, e.g., D[Y =y, Z = z] is the subset of D with sensitive attribute (sen. attr.) Z = z and
ground truth (g.t.) labels Y = y.

A.2 FALSE NEGATIVE RATE

Definition A.3. (False Negative Rate (FNR)) A classifier’s false negative rate (FNR) measures how
often it incorrectly predicts negative for samples that are actually positive. More formally, a classifier
satisfies a false negative rate constraint if

Pe(DY #k;0) <~ fork e [|Y] (17

Assuming the constraint is well-defined, FNR leads J = || rate constraints of the form in Eqn. @
with the global partition of size = |Y'| with elements D, = D[Y = y],y € ). For the constraint
corresponding to a fixed y € ), we have Z = {)/y} with an associated oy /3, = 1.
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B PROOF OF THEOREM [4.1]

Theorem B.1. Let o > 10 max { Clog(T/) OVT log(T/d) } and b > 2 max {1, ryTlog(T/3) }, then

r|Dle |Dle €
Algorithmll)is (¢, 8)-DP.
Proof. The {5-sensitivity of ——n clip g(t) ,=5)) is clearly at most —S-. Thus the standard
y 2EB® 2,67 7D y r[D*
%q, 251) -DP w.r.t. the minibatch, where ¢; <
and §; = .Similarl ,because { D1, ..., Do} is a partition, the ¢1-sensitivit
} Yy Qfisap y

guarantees of the Gaussian mechanism ensures (

\/m
of the histogram is at most 1, and so the guarantees of the Laplace mechanism ensure (261, 0)-
DP w.rt. to the minibatch. By composition, the combined mechanism is (e, d7)-DP wrt the
minibatch. Since this mechanism acts a Poisson subsampled portion of the dataset and ¢’ < 1, the

min{1,

1
privacy w.r.t. the overall dataset is (ez, 252) with €5 = re1 < \/W and 0o < . Now
applying advanced composition, the overall privacy of Algorithm 1 over 7" rounds is (€3, (53)-DP with

3 < /8T log(1/d)es < eand d3 < (T + 1)ds < 4. O

C TECHNICAL LEMMAS

Lemma C.1. Let X and Y be sums of kx and ky zero-centered Laplace random variables with
scale parameter b, respectively, and let |1 x, uy > 0, Z—T <1, kx <ky. Forany p € (0,1), if

wy > 4kybln ( ) then it holds that,

X 4kyb 8
P{V”{+——MX < Y hl()]z’L—p. (18)
py +Y 1% My P
Proof. We have,
X
P HW kx| 6]
wy +Y oy
N X pxyY ‘ MY:| . . .
> P + < €, +Y > — (triangle inequality)
_My+Y‘ ’MY(uy+Y) a 2 S ety
12X 2uxY
>P||l— ‘ M)Z( <epy +Y > ,uy] (conditioning on py +Y > Hy )
LI By Ky 2 2
12X 2Y
EP — _Eai <€7MY+Y>W:| (us1ng,u1§,uy)
Lty 27 py| 2 2

>1-— [\X| > MZE} [\Y| > HZG] P {Y < —'UTY] (Negation & Union Bound)

1
>1- Zexp(ffk—};}) — 2exp(— ﬁ;:b) o xp( %) (concentration for Laplace R.Vs & Laplace CDF)
1
> 1= 2ep(— ) = 2ep(- ) — el ) Gy 2 k)
Py € 1 Ky
>1— — _ =
Z 1=dexp(= ) — 5 o= )
Hy€ p
>1— dexp(— _P
z1-dew-g ) =5

the last inequality uses that py > 4ky bln ( ) Now setting € = 42”’ In ( ) yeilds,

4kyb1In(8/p)

X
PHW_MX
Hy

wy +Y  uy

]Zl—p (19)
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Z:L'iEX T Zmiqu z;

KT with z; € [0,1] and p, = X
X, is obtained by performing Poisson sampling on X with probability r. If | X|r > log(1/p) then
(up to an order):

Lemma C.2 (Error of sampled rates). Let p = where

log(1
Pllp—pil <[ 2002 /p)] 1=y @0
r|X|
Proof. We have,
Pllp—pr| < €]
YoxexXi  Dox.ex Bern(r)X;

_p ; _ X < X, ~ Poisson(X

[ X X < e] (X, oisson(X, 7))
=P||r Z X; — Z Bern(r)X; Ser|X]

X;eX X;eX

>1 r? | X[ (Bernstein Ineq.)

—exp | — .
= P\ T2 (Var(S ¢ o x Ben(r)X;) + er [ X[ /3) d

er? | X|
>1—exp(— X; € [0, 1]; Var(B —r(1—
> 1o (<o) (X, € 0,1); Var(Bern(r) = (1 7))
er | X|
>1-— _—— 1—-r)<1/4
> 1= (5 o) sy
log(1/p) [log(1/p)
>
=>e2max{ P X] , P X]
log(1
>2 Og|(X/|p) (using the assumption that | X |r > log(1/p))
7

O

D MISSING DETAILS FROM SECTION 3]

D.1 ADDITIONAL BACKGROUND ON STATIONARY POINT DEFINITION

For a smooth function f : § — R, a standard notion of (first order) stationarity would involve bounding
the norm of the gradient. However, for non-smooth functions, this notion does not accurately capture
convergence. For example, if f(6) = ||0]|, a point may be arbitrarily close to the minimum, but still
have gradient norm 1. To address this discrepancy, alternative notions of stationarity for non-smooth
functions have been introduced, such as Definition In the example where f(6) = ||0]|, this
relaxation allows points which are close to the cusp at § = 0, whereas a bound on the gradient norm
would allow only the point # = 0 for any non-trivial bound on the gradient. In fact, our convergence
proof yields a slightly stronger notion of stationarity known as proximal near stationarity Davis &
Drusvyatskiy| (2019). We elect to present Definition[5.1] as it requires less background information.

D.2 PROOF OF THEOREM[3.2]

In this section we will detail the proof of Theorem [5.2]and provide a more precise theorem statement.
Before doing so, we will introduce some important notation.

Forany I C [Q], let D; = 'UIDi' Given a subset B C D, define Bny = BN ('UIDi) and recall that
1€ 1€

Zjand o € RIZi1*K denote the corresponding family of susbets of [Q] and weight vector associated
with constraint I';. Let nn = mingeq) {|Dgl}-

Let ||A||; be the ¢; diameter of A. Let G, and G}, be the {5 Lipschitz constants w.r.t. 6 of h and
¢ respectively. Similarly, let 5, and 3 be the corresponding ¢>-smoothness constants. We recall

17
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the temperature parameter of the softmax is denoted as 7. Let ¢; = max;¢( ||a;||. Note that
many rate constraint only compare two prediction rates, and so c; is typically at most 2. Define

®(0) = ming {B(O') + B[ — 0|2} and by = B(0y) — ming {cﬁ(e)} and Lo = L(00, \o) —

miny g {£(A,0)} (see Section for more details on these quantities). We can now present the
more complete version of convergence result.

Theorem D.1. Assume n > 1 max{In (%) ,8Eb 1 (%) ,8log(J|D|TK/p}. Then, under
appropriate choices of parameters, Algorithm|l|run without clipping is (€, 0)-DP and with probability
at least 1 — p there exists t € [T s.t. 0y is an («, o/ [23])-stationary point of P with

azo(((éOBGQ)qu-\/ﬂTo—i—G) <(\/310g(n/6)\/10g(JT/p))1/3

ne

L KV 5|A||1¢W<1og<mn/p»”4)>

(ne)l/4

where G = Gy + ¢TGy||A||1 and B = B¢ + 2¢7 - max {Gh\/j, Al (2Gh + Tﬂh)}

Proving this statement will involve several major steps. First, in Section[D.4] we derive the necessary
noise levels needed to ensure that Algorithm|[I]is private. Second, in Section[D.5]we bound the error
in the gradients at each time step. Next, in Section[D.6|we give a general convergence rate for SGDA
under the condition that the gradients have bounded error. Finally, we derive the overall Lipschitz
and smoothness constants of £ based on the base smoothness and Lipschitz constants in Section[D.7]
These results are then combined in Section[D.3]to obtain the final result.

In one final remark, we note the following fact will be used in several places.

Lemma D.2. Let n > 4log(J|D|/p) and t € [T). With probability at least 1 — p it holds for every
j€[J)and I € T; that |BY)| > Lr|I|n.

Proof. By Lemmawe have for any j € [J] and I € Z;,

P [r[Dy| — [B§)| = V/rIDTlog(1/7)] <.
Thus since |D;| > n > log(J|D|/p), it holds with probability at least 1 — p, for every j € [J] and
I € 7; that |Bny| > r|Dy| — /7| Dr|log(1/p) > 0.57|D;| > 0.5r|I|n. O
D.3 PROOF OF THEOREMD.T]

With the previously established results, we can now verify a setting of parameters which proves the
theorem statement. Specifically, we set,

T . ne \ % ne GV/Tlog(T/6) b r4/T log(T/9)

= min — - o= ——" = -
Vd K[ ne ’ €

Note that by Theorem this ensures that Algorithmis (e,8)-DP so long as r >

S

Using Lemma[D.4] can now instantiate Theorem [D.5] For 79 we have,

log JKn
R c1Kblog(JKn/p) fe ( o )
n rn
JKn
_0 1 KVTlog(T/5)log(JKn/p) e log (T)
= A —7 7
ne ™m

18
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Setting 7 as the quantity above, we can write the bound on 7y as,

B AGgy/log(4/p)  4Gy/log(4/p)
0] (\/&U log(4T/p) + W + m + |A||1'7'Gh’7'9>
0 (a (V Wlog/p) o8(T/3) 1"%9)) + ||A17Gh79> |

Now, in the non-trivial regime where 79 < G, Theorem implies that for r large enough,

(‘i)oﬁ(GQ —|—7'92)>1/4 /Bﬁ
a=0 T1/4 + 70 + VBIAl1TA + \/To

log(JKn/p))l/3

o ((B) " it o) (00
| KV /BIATL 1o (T/8) log(J K/ p ))1/4>>.

(ne)t/4

D.4 PRIVACY OF ALGORITHM [[]UNDER LIPSCHITZNESS

Theorem D.3. Assume h and { are Gy and Gy, Lipschitz. Then for some universal constant c and
o > c(c|| A1 7GR + G¢) max { logfge/é), Cf]sg(T/é) } and b > 2max {L T”ka(T/(;)}, then
Algorithm|l|is (e, 35)-DP.

Proof. First, by Lemma|D.2]and the conditions of Theorem D.I] probability at least 1 — 4, for every
t € [T],j € [J] and I € [I] it holds that |Bn;| > 0.57|I] - n. Consequently, the concentration

of Laplace noise and the conditions of Theorem imply >, Zke[ K] fIZ(t,z > 0.25rn with
probability at least 1 — 24. Conditional on this event, the ¢2-sensitivity of (Zz cB® gg(ct)e) is at most

ClTGh
r|D| + 0.25rn

J
)\ O Tk ClHA”TGh
< 974K . < - -
IVAG. 5 Bl < 3 §Ij > B Vol (h(Bsa))i| < S5

since then,

Thus, the scale of Gaussian noise implies that the releasing the pr1ma1 gradient is ( €1, 261)
w.r.t. the minibatch, where ¢; < min{1, r\/jl/ﬁ} and §; = &. From here one can follow the

same steps as in the proof of Theorem to obtain an overall privacy of (e, §)-DP conditional on the
previously mentioned event that each Bn is large. Since this event happens with probability at least
1 — 20, we obtain a final overall privacy guarantee of (¢, 39)-DP. O

D.5 BOUNDING GRADIENT ERROR

Lemma D.4. Let p € [0,1] and t € [T]. Under the assumptions of Theorem|[D.1| conditional on
01 XD it holds with probability at least 1 — 2p that,

4
lgs” = Vor(@®, AD)|l2 < ov/dlog(4/p) + \/TD(/p)

lo SJKn
8c1Kblog(64JKn/p) g >
tea\ ——"2),
M r™m

+ ||A||1TGh(

lo SJKn
8c1 Kblog(64JKn/p) re g
1 - .

o8 = VAL 2o <
m m
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Proof. We will bound each error term separately.

Error of the Dual Gradient.
We start with the following bound,

K (®)
~ Q1K Zl Jig
p [Ilgi‘) —VAL(6D D) > 6} =P |max{ (3 Y ayraPe(Dn) - > Y %
’ 1€7; k=1 [eTmer 2 2 Hi,
i€lko€K
J K i (t)
Zz IH'Lk €
<H D> gk A0 P | |Pu(Dr) — EiH(tl) z o
i I€Jj k=1 Z Z i,ko
i€lkoe K
2D
We thus have for any €; + €5 = € that,
g HW
P ||Pu(Dr) - 2k | S N o p |\ B(Dy) + PuBon)| + | Pu(Bor) — =ik | 5 €
> A, @ > IR, @
i€lkoe K 2 iclksck 7
Sier 17
< 1= P ||Pe(Dr) + Pe(Bor)| + |Pu(Bnr) — <€t | < <
> X AR, @
L i€lkoe K
[ ()
€ Zz Hz
< 1P |[P(D1) + Pe(Bar)| < 7%, | P(Bor) — ﬁ <
1
L s
i (t)
H,
SP{|Pk(D1)+Pk(Bm)|zZ—1} + P ||Pu(Bar) - ZZ;HZ)
1
i€lkoe K
. . ZLEI H(t) €
We will start by bounding P[‘Pk(Bm 1) — W > j] for any fixed I and k. Observe that
i,ko
i€Tkg €K

conditional on |Bny|, the sampling process is equivalent to drawing |Bn;| samples uniformly at
random from |D;| without replacement. Therefore by Lemma we have,

iy (t)
‘Pk(B [) Z'LGIH’LIC ‘ > 4K|I|b10g(16‘]Kn/p) |B I‘ < 14
n - fetl N = .
ST H(t | Bzl 4JKn
i€lks€K ok
Now by Lemma|D.2| P [|BnI| < 5|I|n] < 155, and so,
H-(t)
D> H“,g m 2JKn
icThock 7
Thus it suffices to have €] = W
Looking now at the statistical error term and applying Lemma[C.2] we obtain:
P
P . 22
2JKn @2)
o 2JKn o 2JKn o 2JKn
Observing that log 24 < log (22 ),one can see it suffices for e; = ¢; M.

r|Dy| — n rn

20
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Plugging € = €; + €5 back into Eqn. (ZI)) we obtain

2JKn
8c1blog(16JKn/p) log< )
+c1
™ ™m

P16 = VaLe®, A0, >

J K
)
< Z Zl (v, # 0] TKn < p.
J

i IeJ; k=1

This proves the claim.

Error in Primal Gradient. First observe that

g0 = VoL(®® AO)| < 2] +||Vot(6®) — —= 3 Vol(6®:a)

+ | FoRED D) = 37 REDANO; 1,2)|
zeB®)

For gy € R, using the concentration of Gaussian noise we obtain,

Pl20] = o/dlog{4/p)] < .

For the second term, by Bernstein’s inequality we have

a?/2
ST PIRZOEEY RS B <o (~ B T )

Thus with probability at least 1 — £ one has that,

Gyy/log(4 log(4
Z vae(ev Aa xi) - Veé(eta At) < 4 max { ‘ Og( /p) ) Gé Og( /p) } .
ieB0 VriD| riD|

And so if | D| > log(4/p) we have with probability at least 1 — p/4 that,

1 (4
| otco t>>_i Z V(0 H_M_
‘ B(f) T|D|

r|D|

For the regularizer we have,

Hv ROV AD) = ST ROV B x)H

zeB(t)
J AN i1k lizen )\Oélkl B
<|Ty s v A deic o, - 35 5 Mt deraigo g
@€D j=11€Z; ki €|K] Z > Hy, @€D j=1I€Z; ki €[K] > szQ
i€l ko €[K] ’LGI’CQE K]
J Ajajre 1 J A a 1
< ZZ Z LW(E?;:’I_ZZZ Z 3,1,k1 [xe(gm] —en
z€D j=11€Z; k1€[K] Z E szz z€D j=11€Z; k1 €[K] E sz2
i€l ko€ K ZEI ko €lK]
J
| Dr| | Brr|
S SIS : .=
s I, (t) (t)
j=1 I€Z; k1 €[K] Z Z H'Lkg Z E H’LkQ
i€l ko€ K i€l ko€[K]
J
; Dy| ; B
S DSBS D DI DI R e

t (t)
j=1 I€T; ky €[K] > Hz(132 IE€T; ky €[K Z > szz

i€l koK zEI ko €[K]
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The term inside the absolute value can be bounded using the same analysis used in bounding the dual
gradient error. Thus we have with probability at least 1 — £ that,

8c1Kblog(64J K
1 Kblog(647Kn/p) |

™™m

HVQR 00Ny — ST ROV, AO: B, ) H < ||All:7Gn
reB®)

Combining the above bounds yields the claimed bound on the primal gradient error.

D.6 CONVERGENCE OF SGDA

The overall structure of our convergence proof is similar to that of |[Lin et al.[(2020), but with several
significant modifications. Most significantly, our proof explicitly leverages the linear structure of
the dual to improve the convergence rate for our application. This linear structure also allows our
analysis to depend on an || - || bound on the gradient error when A has bounded || - ||; diameter.
This in contrast to previously existing analysis which depend on the || - || error of the dual gradient,
which could be much worse in our case due to the noise added for privacy. Separately, our analysis
also differs from |Lin et al.|(2020) in that it accounts for potential bias in the gradient estimates and
tracks the disparate impact the scale of noise in gy and g, may have on the convergence rate.

In order to present our proof we start with some necessary preliminaries. Let ®(0) =
maxyea {£(6,)\)}. Let & denote the Moreau envelope of ® with parameter 23. That is,
P(0) = ming {®(0) + B0 — 0']?}. Let A = &) — £OD, D) for all t € {0,...,T}.
Further, we define \*(0) = arg max,c, {£(0, \)}. We denote the proximal operator of a function
[ as prox(0) = argmin, { f(6") + 5|0 — ¢'||*}. It is known that under the condition that f is
B-smooth and A is bounded, that & is differentiable with V®(8) = 25(0 — proxg /24 (¢)), and

that any point 6 for which which ||[V®(8)| < «is an (a, a/[2/])-stationary point with respect to
Deﬁnition@ see|Lin et al.| (2020, Lemma 3.8). Also, under these conditions, ® is G-Lipschitz. We
defer the reader towards [Lin et al.| (2020) for more details on these statements.

We present the following statement, which gives a convergence rate for Algorithm E]in terms of the
amount of noise added.

Theorem D.5. Define & = () —ming {@(9)} and Lo = L0y, \o) —miny g {L(A, 0)}. Assume
L(-,-) is B-smooth, L(-,\) is G-Lipschitz for all X\ € A, and L(0,-) is linear for all § € Rd.
Conditional on the event that for all t € {0, .. Vo L0, X)) ||y < 79 and ||g>\ —
VALOD AP0 < 7o, whenAlgortthmzs run with ny > (M) andng = ,/m

there exists t € {0,...,T — 1} such that 0, is an (o, o/ [2])-stationary point with
(®o8(G2 + Tg))1/4 B
a=0 + 719+ VBAl1iTA + —= 0

T1/4 VT

We will prove this statement by showing that Algorithm 1] finds a point where the gradient of P
is small. Note this is sufficient as [Lin et al.| (2020, Lemma 3.8) implies that a point, €, for which

[V®(6)|| < ais an (o, o/ [23])-stationary point with respect to Deﬁnition

We will break the majority of the proof into three distinct lemmas. The first lemma gives a bound on
the decrease in .

Lemma D.6. Under the assumptions of Theorem [D.5] the iterates of Algorithm (1] satisfy for any
te[T-1)

o) — b6 1) < —%IIV@(@“_”)H2 + 28 ATV 12803 (G? + 75) + 2mp7; . (23)
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Proof. Let 0=1) = proxg (V). By the definition of the Moreau envelope we have

B(01) < B(OUD) + B + 6|2

(24)
Using the update rule we have
||g(t—1) _ 9(25)H2 _ ||g(t—1) p(t—1) +7l g(t 1)H2
= 017 = 0D 2y (17— 0070, 617V + gy V)
<1641 — g2 1 2p <é<t—1> AR A (N A(t—1>)>
+ 200 (07 = 607D, gff 7V = Vo£(67D, M) ) + 2 (G2 + 77)
Plugging this back into Eqn. (24) and using the definition of the Moreau envelope we obtain
B(HW) <O V) +28ng <é(t—1) IV vl )\(t—l))>
+28m0 <@(t—1) _ g(t—l),gétfl) VL6, )\(t—l))> BG4 (25)

By way of bounding the third term on the RHS above, we use Young’s inequality to derive

28n9 <9(t D _ gt U,gét_l)—Voﬁ(ﬁ(t_l),k(t_l))> 5 770||0(t 1) _ gt— 1)” T2 ||g(t 1) _v L(O(t NG 1))”

Plugging this into the above, we now have the following derivation

(i,(g(t)) _ (i)(é(tfl))

2
< 98 (807 — 67D, L0V, X)) 4 T D gD 498062 4 73) + 20073
< 2610 (c g ATy — c(@“*%““ﬂ?Hé“*“—e“*”\F) + 2803 (G® + 75) + 2n075
< 28ne (@O )

_ 3B At _
(o 0= N0 T30 6OV 428G 4 1) + 2ot
(t 1) 0(t 1) _® e(t—l) _ e(t—l) )\(t—l) % é(t—l)_e(t—l) 2
26m0 (2(0 )= B(6 V) — Lo DA+ 2 u
+ 2603 (G* + 73) + 2n07)

(i3) N _ _ 3B Ae— _
< 2y (=100 = 604 A 4 B0 60D 425G 4 o) + 2ot

2
R R T T

+74) + 20075
WL Th((0" ) + 26n0A0 ) + 2603 (G2 + 1) + 2n07i

Above, (%) uses the fact that 6(t=1) is generated by the proximal operator. Inequality (i¢) uses the fact
the definitions of the Moreau envelope and A®*~1) i.e. ||9(t b

—0UD|2 = Va2,
Equality (zi7) uses properties of the Moreau envelope. O

The next two lemmas pertain to bounding the A(*) terms.

Lemma D.7. Under the conditions of Theorem foranyt € [T] and s <t — 1 one has
1
A <y G(G +79) (2 — 25 — 1) + TN (A" (O) = AEDI2 — A= (0)) —
A

ADI2) + 2/ All17a
+ L0, Ay — (gD \E=D)y),

(26)
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Proof. Let s <t — 1. By adding and subtracting terms we have
AG=D _ [E(H(t_l), /\*(G(t_l))) _ E(‘g(i—l)7 /\*(9(5)))] + [L(g(t))\(t)) _ ﬁ(@(t—U’/\(t—l))]
+ [c(e(tfl)j)\(t)) _ L:(@(t)’)\@))} + [ﬁ(@(tfl)»\*(@(S))) _ L(@@*l)’ /\(t)))]
e (e N (S R o (P N (A R Ve P N A B (P ()]
+ [E(Q(t),)\(t)) _ ﬁ(e(t—l)’)\(t—l))] + [E(Q(t_l),)\(t)) _ L(G(t),)\m)} + [5(0“‘”,)\*(0(5))) _ E(G(t_l), )\(t)))]
S GG+ I = 0] 41107 = 0+ [£(0%, A1) = £(0" Y AT
+ [0, N (09)) — £, A))]
< G(G +719)(2t — 25 — 1) + [L(OD,AD) — £(0 D AT 4+ (£, A7 (09))) — (0", AD))).
To complete the lemma, we will bound the loss difference £(6®*—1, \*(8(*))) — £(#*=D  X1),
Since £(6~1, ) is linear we have,
LOED AED) _ £(gt=D \®) = <A<t—1) _ A(t)7v,\£(9(t_1),)\(t))>

< <A<t71> _ A<t>vg<t)> n <A<H> A v, LD \B) - g§t>)>
< (A0 A0 ) 4 A AOY|y - VL0, A0) = g0) |
< <)\(t_1) — A0 g > + A7

Now a standard analysis using the fact that A(*~1) + gg\ )

- Loy pt— - Loy gt x
0.< A = AT < S AR (60D) = ATV = S A% (6¢D) = AD2 4 A (7 A0 - x7)
21 21

is projected orthogonaly onto A we have

Now by plugging back into the above yields,
ﬁ(g(t*1)7 )\(tfl)) — ﬁ(g(t*1)7 )\(t))

1 1
< *n(s)y _ (1) (D) *(t—1)y _ (t=1))12 _ x(e(t=1)) _ \(®))2
< (W(09) =20, g07) Al + 5N (OCD) = AV = A (0) - A0

Using concavity we obtain,

L0012 (0)) = £, A0) < (X1(0)) = A, g = VALE D, AD)) + [A]l1a

1
A H(t_l) _)\(t—l) 2_7 AF e(t—l) _)\(t) 2
3N (0070) = XD — (D) - 4|

1 1
< A* e(t—l) —A(t_l) 2 - )\* e(t—l) _)\(t) 2 21l A .
g IV (047) = XD = X (00) =X 4 2 Ay
Plugging this back into the starting inequality achieves the claimed bound.
O

Lemma D.8. Under the conditions of Theorem it holds that,

GG+ L7 ) — L6, \
*ZA”<”AH 7o ( T6)+2||A||1T)\+ (T T)T (0 0)'

Proof. Forany s € [T] and M € [T one has by analyzing the telescoping sum created from Eqn.(26))

that
s+M—1

1 ; X *
D A GG )M+ (N = N EF 4 A = X)) + 201 A1
t=s

+[LOHD A — £(6), AC))]
1
< MGG +70)M? + —[IAl + 2D [Afura + [CEHD, AEHD) — L9, AD)]

1
< neG(G + 19) M? + n—A||A||§ + 2M || A1 + [L(OETMD NETMY _ pgs) A=),
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By applying this inequality over disjoint “blocks” of iterates, of which there are at most 7'/M, we
can use this to obtain,

T—1
1 1 L
~ 5N AW <pG(@ M+ —||A|2 +2|A =,
T; < MGG+ )M + e [IAIF + 21 Al + 7
We can now set M = ——U81L 5 obtain the desired inequality. [
VnenxG(G+o)

We can now prove the main theorem statement.

Proof of Theorem[D.3] Recall &y = &(fy) —ming {@(9)} and Lo = L(0p, \o) —miny g {L(A, 0)}.
Summing over Eqn. (23) obtains,

T-1

O(07-1) < B(6o) + 260 (ZA >+2T[ﬂ G (G2 +75) + 1073 ) — (Z [Ve(6™D) ||2>

t=0

Which implies for any M € [T,

(t 2 4(I)O 8/8 - (t) 2 2 2
ZHVM )| + D> AW ) 440G + 7)) + 47

t=0
(i) 4P
< =2 4 860e(G* + 73) + 478
neT
G(G + 7 86L
+ 8l 2EEET) L ggn )y, + Lo,
X T
Inequality (¢) above uses Eqn. (26). Setting 7y > (M) yields,
o 8L
= (Z Ve (M) ||2> +85ng(a2 +73) 4 473 4+ 16| A1 7> + BTO.
Setting 179 = ,/WM yields,
161/ ®0B(G* + 72) 168L
1 )12 0
T (Z [Vo(OD)]| ) Wi + 472 + 168 A1y + T

Finally, this implies the claimed convergence.

. 1/4
S B08(G? + 73)
;(EHWQWU>=O (A4 8) e JaTRT o+ YL
t=0

T1/4 VT

D.7 REGULARITY PROPERTIES OF LAGRANGIAN

We will use the following standard fact about composing Lipschitz and/or smooth functions.
Lemma D.9. Let h : R? +— R¥ be G),-Lipschitz and 3y,-smooth and g : R¥ — R be G-Lipschitz and
Bg-smooth. Then g o h is (G Gy)-Lipschitz and (G185 + G2 By)-smooth.
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Proof. Let J;(0) denote the Jacobian of h at 6. Since h is G}, Lipschitz, the spectral norm of
the Jacobian is at most Gy, ||J,(0)|l2 < Gj. Observe Vyg(h(0)) = Vg(h(0)) Jn(0). Thus
IVeg(h(O))I] < IVg(R(O)]] - ITn(0)]|2 < GyGn.

For the second part of the claim, observe that,

[Vag(h(0)) — Vog(h(@)|| < [Vg(h(8))In(0) — Vg(h(8')In(8)]
= [[[Vg(h(0)) = Vg(h(O)N]In(0") + Vg(h(6))[In(8) — Tn(0)]]l
< (GEBy + Ggbn)|6 —0'].

In the following, we assume the predictor h is Gj,-Lipschitz and (;,-smooth with respect to h,
and similarly for ¢ with parameters G and §,. Our aim is to derive regularity parameters for the
Lagrangian given these base parameters. Note that the function which outputs one coordinate the
tempered soft max is 7-Lipschitz and 7-smooth.

Lemma D.10. Let A C (RT)5*? be a bounded set of diameter at most | A||y w.r.t. || - ||1. Assume for
any j € [J] that the vector o associated with rate constraint j satisfies ||c||1 < ¢1 for some constant
¢. Then L(-,\) is G-Lipschitz with G = G; + ¢t Gy||Al|1 for any A € A and L is B-smooth with

B = By + 2¢7 - max {Gh\/l IA]1(2Gh + Tﬁh)}.

Before presenting the proof, we note that Gy and 3, could also be further decomposed using the
Lipschitz/smoothness constants of ¢ and h via Lemma[D.9] However, as these parameters are not
affected by our approach in the way the regularity parameters of the regularizer are, we omit these
more specific details.

Proof. Let for I C [Q] let D; = UgyerD,. To establish Lipschitzness w.r.t. 6, we have for any 6, A
that

J K
V60N < IVt + 3% 3 3 oy VoPu(Dr:0)

j=1 IeJ; k
< A . P (S50
< GetIher - | _max {IVoPL(S:0)]}

2

Note that for any S C D and k € [K] that | Vg Py (S;0,7)| = ||ﬁ > wes Volor(h(0; )]l <
TG, Plugging this into the above achieved the claimed Lipschitz parameter.

To prove L is smooth, we have for any 6,6’ € R% and X\, ' € A,
VL0, ) = VLEO, N[> <2 VLG, N) — VLEO, NI +2[VLEO, X) — VLE X))

= 2Hv9£(9a )‘) - V9£(07 AI)HQ + 2||V)\L(03 A) - V)\‘C(ev A/)”2
+2/[VoL(0,N) = Vo L(0', N)||* +2[| VLB, X) — VAL, X))
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Bounding each term we have,

J K
IVoL(0,A) — VoL(0,N)| < Z ) Z Zaj,l,kvepk(Dﬁe)

j=1 I1€eJ; k 2
S ClTGhH)\ — )‘/Hl
< arGRV (A = X2

IVAL(8,A) — VAL(B, X)|| = 0.

J K
IVoL(8,X') = VoL(0, X)|| < [IVal(8) — Vol ()| + || > N, Z > . 11(VoPi(Dr;0) — Vo Pi(Dr;0))
Ji k

Jj=1 9

(i)
< Bell0 = 0|l + [[Alver (G + 7261)1160 — ||
< (Be + ||l (Gr +760))(10 — 0|

K
[VAL(B,N) — VAL(E', A |<HZ/\’ Zam,k(Pk(h(e;x)—Pk(h(e’;m)))]‘

j=1 I1c€J; k=1

(@)
< aTl[ALGallo -6

Above, in (i) we have used the fact that Py, is the composition of a G/j,-Lipschitz and Sj,-smooth
function with a 7-Lipschitz and 7-smooth function, resulting in a (G, 7 + 72/3)-smooth function.
Similarly, in (i7), we have used the fact that Py is the composition of two Lipschitz functions,
resulting in another Lipschitz function.

Ultimately we obtain that ||[V.£(, \) — VL(#', \')||? is bounded by,

max { (e7GuV ), [Be + [Alner (Gur + 72802 + [ea I Gl b (10 = 01 + A = AlI%)
This implies that f is S-smooth with 8 = 8y + 2¢17 - max {G;L\/j, AL (2Gr + Tﬁh)}. O

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET AND PRE-PROCESSING DETAILS

We evaluate RaCO-DP on tabular fairness and privacy benchmark datasets from [Lowy et al.
(2023)), namely, Adult (Becker & Kohavi, [1996), German Credit Card (Hofmann, [1994])),
and Parkinsons (Little, 2007). The classification task for Credit Card and Parkinsons
is “whether the user will default payment the next month”, and “whether the total UPDRS score
of the patient is greater than the median or not,” respectively. For Adult, the task is “whether the
individual will make more than $50K.” In all tasks, the sensitive attribute is gender.

To evaluate on more diverse subgroups, we also evaluate RaCO-DP on folkstables which is the
2018 yearly American Community Survey. We use the python package ‘folktables‘ (Ding et al.,[2021)
to download and process the data for the Alabama (“AL”) state in the US. We choose a “5”-year
horizon and choose survey option to be ‘person.‘ We adopt the experimental setup of Lowy et al.
(2023)) (including classification task, pre-processing, etc.) and report the baselines results directly
from the official repository (Gupta, [2023]).

We also present results on the Heart Disease Health Indicators dataset|Alex Teboull (21 risk factors).

To prove the scalability of RaCO-DP on neural network, we train a ResNet16 He et al.| (2016) on the
CelebA dataset. CelebA (CelebFaces Attributes Dataset) is a large-scale face dataset containing over
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Dataset SGD DP-SGD RaCO-DP DP-FERMI

Adult 0.018 £0.001 ms 0.037 £0.001 ms 0.064 £0.010 ms 85+ 10 ms
CreditCard 0.020 £ 0.006 ms  0.035+0.004 ms  0.055 +0.003 ms 88 £ 14 ms

Table 2: Computational overhead comparison in terms of wall-time clock.

200,000 celebrity images, each annotated with 40 attribute labels (e.g. smiling, eyeglasses, or hair
color) and five landmark locations, widely used for training and testing in computer vision tasks such
as face recognition. For the fairness constraints, CelebA is used with gender as the sensitive attribute.

E.2 HYPERPARAMETER TUNING AND ACCOUNTING

Our hyperparameter selection process follows a two-phase approach. In the first phase, we run
a hyperparameter search over predefined ranges: Gaussian noise variance o € [3,6], Laplace
parameter b € [0.1,0.5], learning rates 79,7, € [10~%,0.1], mini-batch size B € [256, 1256], and
softmax temperature 7 € [1,10]. We constrain the dual variables A to be non-negative by setting
the projection set A = (R*)”7. For each configuration, we target a specific constraint value
and evaluate performance across five different seeds, selecting the hyperparameters that achieve
the best validation accuracy while satisfying the constraint. In the second phase, we use the best
hyperparameters identified through 200 optimization runs to train 20 new models. We report test
accuracy and constraint satisfaction for each model based on the checkpoint that achieved the highest
validation accuracy while satisfying the constraints on the train set.

Recent work by |Lebeda et al.[(2024) and |Chua et al.|(2024) shows that the common use of shuffled
fixed-size mini-batches can violate guarantees from privacy accountants, which assume Poisson
sampling. Therefore, we use Poisson sampling for the mini-batches.

E.3 REGULARIZATION-PRIVACY—ACCURACY TRADE-OFFS

Demographic Parity. In Figure |4, we compare fairness—utility trade-offs of RaCO-DP against
baseline methods on logistic regression models trained with demographic parity constraints across
the Adult, Credit-Card, and Parkinsons datasets. We evaluate a range of privacy budgets
e € {0.5,1,2,9}. Consistent with the main results in Section@ RaCO-DP significantly narrows the
gap to the non-private baseline and Pareto-dominates existing private baselines.

False Negative Rates. Figure[S]illustrates the flexibility of our framework beyond fairness constraints
by enforcing limits on false negative rate (FNR, i.e., 1 — recall). Controlling FNR is particularly
important in medical settings. For example, on the Heart dataset, XGBoost achieves 90% accuracy
but suffers from an FNR of 90%. Non-private SGDA reduces FNR to 58% with 87.5% accuracy,
while DP-RaCO nearly matches this trade-off with 60% FNR at the same accuracy (Figure[5b). We
also observe that once the constraint threshold is pushed beyond a certain point, RaCO-DP fails to
further reduce FNR, an effect discussed in Section [6|(Limitations) and analyzed in Appendix [E.6|

Equalized Odds. In Figure[6] we show results on the Credit-Card dataset for logistic regression
trained under equalized odds constraints. The performance trends mirror those under demographic
parity. Note that the DP-FERMI results are taken directly from |Lowy et al.|(2023) and not re-run; as
reported, both mean and variance remain unchanged across privacy levels € € {0.5,1, 3,9}.

E.4 HARD VS. SOFT CONSTRAINTS

Figure [8b|compares soft and hard constraints for the dual update. Notably, the soft constraint (with
tuned softmax temperature 7) achieves similar performance compared to its hard constraint coun-
terpart (solid dots) for most target values while maintaining similar levels of constraint satisfaction.
This suggests that using soft constraints for the dual update does not significantly impact utility or
constraint enforcement.

28



Under review as a conference paper at ICLR 2026

e=0.5 e=1 c=3 =9
£0.201 1 1 ]
—
v}
[oN
.43 0.15 1 1 1
)]
2
i 0.10 A 1 1 1
E
20.05 1 ] ] ]
i
S
0.00 1 I 1 I 1 I i I
0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20
Test Error Test Error Test Error Test Error
RaCO-DP (ours) SGDA Tran et al. (2021) DP-FERMI Jagielski et al. (2019)
(a) Adult
e=05 e=1 e=3 e=9
=
= 0.020 1 1 1 1
o,
2 0.0151 ] 1 1
2
£°0.010 1 1 1
—
b
o
£ 0.005 1 ] ]
)]
0175 0.200 0175 0.200 0175 0.200 0175 0.200
Test Error Test Error Test Error Test Error
RaCO-DP (ours) SGDA Tran et al. (2021) DP-FERMI Jagielski et al. (2019)
(b) Credit-Card
e=0.5 e=1 e=3 e=9
> 0.08 1 1 1 1
£
—
v}
270.061 1 1 1
)]
2 0.04 ] 1 1
2,
<
)
g 0.02 A 1 1 1
g
= 0001 : L : 1 : 1 :
0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10
Test Error Test Error Test Error Test Error
RaCO-DP (ours) SGDA Tran et al. (2021) DP-FERMI Jagielski et al. (2019)
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Figure 4: Fairness—utility trade-offs under demographic parity constraints for logistic regression
on three benchmark datasets. RaCO-DP consistently reduces the gap to non-private performance
and outperforms private baselines across privacy budgets ¢ € {0.5,1, 2,9}.
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Figure 5: Performance—privacy trade-offs under a false negative rate (FNR) constraint. On the
Heart dataset, RaCO-DP achieves accuracy-FNR trade-offs competitive with non-private baselines.
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Figure 6: Fairness—utility trade-offs under equalized odds constraints for logistic regression on the
Credit-Card dataset. Results for DP-FERMI are taken from Lowy et al.|(2023)).
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Figure 7: Fairness—utility trade-offs under demographic parity for logistic regression on the

ACSEmployment dataset.
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(a) False Negative Rate-Constrained Classification
on Adult. The clipping norm C' plays a critical role in
satisfying a pessimistic constraint (y = 0), even with-
out noise related to differential privacy (¢ = 0,b =
00).
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(b) Hard vs Soft Constraints on Adult. Trade-off be-
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show target constraints, with soft (hollow circles) and
hard (solid dots) implementations achieving similar
performance.

Figure 8: Constraint Analysis on Adult Dataset. (a) Effect of clipping norm on false negative
rate-constrained classification. (b) Comparison of hard vs. soft demographic parity constraints.
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E.5 COMPUTE PERFORMANCE

We provide a computational comparison between methods in Table 2| where we report the mean time
of computing an SGD step, compared to a DP-SGD step and a RaCO-DP step on an eight-core CPU
machine on Adult and Credit-Card on a batch size of 512. For reference, we also report the mean
time of a DP-FERMI step using the publicly available implementation.

RaCO-DP is 3 orders of magnitude faster to train than DP-FERMI on the same machine. Our
algorithm builds on DP-SGD with the only additional overhead being computing the dual updates,
which scales linearly in the number of constraints.

We note that our method’s extra cost over standard DP-SGD is computing the dual update, which,
if implemented naively, scales linearly in the number of constraints (), implying () extra backward
passes to compute the gradients in the worst case. However, in practice, we can compute the gradient
only for the active constraints (A(;y > 0), which can significantly reducing the computational costs.

E.6 IMPACT OF THE CLIPPING NORM

Figure [8a) shows how the clipping threshold C' affects RaCO-DP when we enforce a pessimistic
constraint of FNR < 0 on the ADULT dataset, in a non-private setting (¢ = 0, b = o0). With a
small clipping norm (C' < 2) the empirical FNR violation is still above 0.6, confirming that the
bias introduced by clipping alone can drive the iterates far outside the feasible set. As the threshold
increases, this bias shrinks rapidly; once C' > 12.5, the FNR aligns with the target (red line), and the
constraint is consistently satisfied.

These results demonstrate that an obstacle to satisfying the chosen constraints for our RaCO-DP
is the bias from clipping and not the DP noise. Therefore, we stress that tuning C' is an important
aspect when applying RaCO-DP in practice.

E.7 DEEP LEARNING EXPERIMENT

We further evaluate RaCO-DP on deep neural networks by training a ResNet16 |He et al.| (2016)
on CelebA under demographic parity constraints. Following common practice in private training
Berrada et al.| (2023)), we replace batch normalization with group normalization (16 groups) to avoid
reliance on batch statistics, which interact poorly with privacy constraints due to their reliance on
batch-level statistics. Models are trained with a batch size of 256. For non-private baselines, we
use a learning rate of 0.01, while private models require a larger learning rate (0.2) to compensate
for the effect of gradient clipping. For ¢ = 1 and ¢ = 9, we add Gaussian noise with o = 1.2
and o = 0.6, respectively, and set the Laplace noise scale b = 0.5. All results are averaged
over five random seeds. Figure Figure [2a reports accuracy under varying disparity thresholds
~v € {1,0.1,0.075,0.05}, highlighting that RaCO-DP maintains strong utility even under strict
fairness and privacy requirements.

E.8 EXPERIMENTS ON LOW EPSILON

In figure Figure[9] we employ RaCO-DP to train a logis-
tic regression on Adult with demographic parity con-

straints at three restrictive privacy-budget settings: € € Privacy Level (c)

{0.01,0.1,1}. From a utility perspective, tightening the é 0.4 o E———
privacy budget from € = 1 to € = 0.1 results in only a g A

modest decrease in accuracy of approximately three per-

centage points (~ 85% to ~ 82%). Even under a stringent <

budget of ¢ = 0.01, the most accurate model maintains é

an accuracy of about 80%. From a fairness perspective, 25

smaller budgets lead to wider 95% confidence intervals
(ClIs) for the disparity metric : the CI width increases
from roughly 0.05 at ¢ = 0.1 to about 0.10 at ¢ = 0.01,
with a mean v ~ 0.17. The corresponding mean disparity
gap between € = 0.01 and € = 0.1 can be as large as 0.15 Figure 9: Variance in fairness—utility
(15%), reflecting the greater noise introduced at lower ¢. trade-offs at small privacy budgets.

0.0 0.1 0.2 0.3
Disparity Bound ~
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Overall, DP-RaCO exhibits graceful degradation: while
very small budgets (¢ = 0.01) exacerbate the accuracy—fairness trade-off, a moderate budget (¢ = 0.1)
achieves reliable performance with a narrow CI (= %0.05).

F BROADER IMPACT

An important takeaway from our work is that privacy and robustness criteria (such as the absence of
performance disparities for underrepresented groups) are not inherently at odds with each other. This
realization calls into question the practice of broadening the concept of privacy-utility trade-offs to
include trade-offs with other robustness criteria. In high-risk decision-making systems that require
both privacy and robustness, the responsibility for achieving such robustness falls on the beneficiaries
of automated decision-making systems (governments and private institutions), as well as algorithm
designers. These stakeholders must take care not to mistakenly attribute a lack of robustness to
privacy mitigations, or a lack of privacy to robustness requirements.

Our work contributes to the existing literature in algorithmic fairness and privacy, and as such, adopts
and further formalizes their computational interpretations of these human values. It is important
to note that these interpretations, while useful in the contexts we have explored, are by no means
collectively exhaustive. Specifically, the use of our algorithm does not ensure privacy in the broad
sense, but rather in the limited sense of differential privacy, which protects the privacy of individuals
whose data has been collected for training. Given the technical complexities of correctly implementing
differential privacy, inappropriate tuning of model parameters or use outside its intended context can
lead to a false sense of privacy—and, worse, may be exploited for privacy-washing by malicious
actors in charge.
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