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ABSTRACT

Many problems in trustworthy ML can be expressed as constraints on prediction
rates across subpopulations, including group fairness constraints (demographic
parity, equalized odds, etc.). In this work, we study such constrained minimization
problems under differential privacy (DP). Standard DP optimization techniques
like DP-SGD rely on objectives that decompose over individual examples, enabling
per-example gradient clipping and noise addition. Rate constraints, however, de-
pend on aggregate statistics across groups, creating inter-sample dependencies that
violate this decomposability. To address this, we develop RaCO-DP, a DP variant
of Stochastic Gradient Descent-Ascent (SGDA) that solves the Lagrangian formu-
lation of rate constraint problems. Through careful design, the extra privacy cost
incurred by incorporating these constraints in our approach is limited to that of pri-
vately estimating a histogram over each mini-batch at every step. We prove the con-
vergence of our algorithm through a novel analysis of SGDA that leverages the lin-
ear structure of the dual parameter. Empirical results show that our method Pareto-
dominates existing private learning approaches under group fairness constraints
and also achieves strong privacy–utility–fairness performance on neural networks.

1 INTRODUCTION

From fair learning (Zafar et al., 2017; Goel et al., 2018; Agarwal et al., 2018; Cotter et al., 2019a)
to robust optimization (Chen et al., 2017; Cotter et al., 2019b) and cost-sensitive learning (Mienye &
Sun, 2021; Cotter et al., 2019b), many Machine Learning (ML) tasks can be formulated as constrained
optimization problems. In such problems, the goal is to minimize the model’s overall error subject to
rate constraints, which enforce conditions on prediction rates across subsets of the training data. For
instance, ensuring fairness in a resume screening system might require similar rates of positive out-
comes (e.g., resumes selected for human review) across gender groups, a criterion known as equalized
odds (Hardt et al., 2016). Similarly, in a medical setting, a decision-support system may need to strictly
limit its false negative rate, e.g., to reduce the risk of misdiagnosing cancerous tumours as benign.

These learning tasks often require training models on sensitive data, such as employee or patient
records in our examples. Publicly releasing these models can expose data owners to privacy at-
tacks (Shokri et al., 2017) and disclose personal data without consent (Sweeney, 2002). Without
proper safeguards, these risks can harm individuals, undermine trust in AI systems, and discourage
data sharing in critical applications like medical research. Despite recent advances, differentially
private (DP) constrained optimization has focused almost exclusively on fairness constraints (Jagielski
et al., 2019; Mozannar et al., 2020; Tran et al., 2023; Berrada et al., 2023; Lowy et al., 2023). Methods
tailored to fairness do not extend to the broader family of rate constraints that arise in practice. We
bridge this gap with the first general DP framework for arbitrary rate-constrained problems. Our
approach expands DP’s reach to previously incompatible applications and pushes the Pareto frontier
of utility, privacy, and constraint satisfaction, including fairness, beyond the state of the art.

Differential Privacy (DP) is the standard framework for private data analysis that has been successfully
applied to training and releasing unconstrained models with formal privacy guarantees. A key
approach is the widely used DP-SGD algorithm (Song et al., 2013b; Bassily et al., 2014; Abadi
et al., 2016), which ensures DP by clipping per-sample gradients and adding calibrated noise to the
averaged gradient. This process bounds each data sample’s influence. Incorporating rate constraints
presents a challenge, however, because unlike typical training losses, these constraint functions (or
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their regularizer counterparts) do not readily decompose into per-sample terms. This fundamental
incompatibility with per-sample processing makes it difficult to integrate them with standard DP-
SGD and its variants. Our key contribution is the introduction of a DP optimization algorithm that
overcomes this limitation, enabling private optimization subject to rate constraints.

To address the challenge of privately enforcing rate constraints, we propose generalized rate con-
straints. Generalized rate constraints allow us to express all rate constraints in a common form based
on statistics (i.e., histograms) on disjoint subgroups within the dataset. This common structure is the
key to our privacy solution: it allows us to efficiently gather all the necessary information to evaluate
these constraints under DP. Beyond its advantages for privacy, our method offers greater flexibility
compared to prior work (Cotter et al., 2019b) by extending to scenarios with multiple output classes.

With generalized rate constraints at hand, we introduce RaCO-DP, a framework for optimizing
machine learning models under rate constraints with differential privacy (DP). RaCO-DP is a
differentially private variant of the Stochastic Gradient Descent Ascent (SGDA) algorithm which
leverages a Langrangian formulation and generalized rate constraints to overcome the decomposability
obstacle. Our core insight exploits the structure provided by these constraints: we can efficiently
compute differentially private statistics (e.g., histograms) for these subgroups. By privatizing these
statistics at each step, we enable private evaluation of the constraint function, and its per-sample
constraint gradients. We provide a formal convergence analysis of RaCO-DP, proving that even for
non-convex optimization problems, our method converges to an approximate stationarity point. To
achieve this, we introduce a novel approach to analyzing SGDA that accounts for bias in gradient
estimates and exploits the linear structure of the dual update to enhance convergence speed.

As a concrete application, we study private learning under various constraints, including demographic
parity (Dwork et al., 2012), false negative rate, and equalized odds. Our method achieves new
state-of-the-art (SOTA) results on four standard benchmarks and Pareto-dominates the prior best
approach (Lowy et al., 2023) in accuracy–fairness–privacy trade-offs. We further demonstrate that
RaCO-DP scales beyond convex models, achieving strong performance for deep neural networks
(ResNet16 He et al. (2016) on CelebA Liu et al. (2015)). We also validate its effectiveness on tasks
involving multiple sensitive groups (demographic parity on the ACSEmployment dataset), scaling
to 18 subgroup constraints. Additionally, our method offers two advantages over existing approaches
explicitly designed for fairness constraints. First, it provides stronger privacy guarantees than prior
approaches that only consider the privacy of the sensitive label (Jagielski et al., 2019; Tran et al.,
2023), akin to label privacy (Ghazi et al., 2021). Second, it allows practitioners to directly specify
the maximum disparity, unlike previous penalization-based methods, such as (Lowy et al., 2023),
which offer only indirect control over the desired fairness level via hyperparameter tuning.

2 BACKGROUND

2.1 DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork et al., 2006) has become the de facto standard in privacy-preserving
ML thanks to the robustness of its guarantees, its desirable behaviour under post-processing and
composition, and its extensive algorithmic framework. We recall the definition below and refer to
Dwork & Roth (2014) for more details. Let X ,Y be the input and output spaces, respectively. We fix
some m ∈ N and denote by D the space (X × Y)m of datasets of size m.

Definition 2.1 (Differential Privacy). A mechanism M : D → O is (ε, δ)-DP if for all datasets
D,D′ ∈ D differing in one datapoint and for all eventsO: P [M(D) ∈ O] ≤ eεP [M(D′) ∈ O]+δ.

In the above definition, δ ∈ (0, 1) can be thought of as the failure probability, and ε > 0 the privacy
loss; smaller ϵ and δ correspond to stronger privacy guarantees.

Differentially Private Stochastic Gradient Descent (DP-SGD) (Song et al., 2013b; Bassily et al.,
2014; Abadi et al., 2016) serves as the foundational algorithm in private ML. Given a training dataset
D ∈ D and model parameters θ ∈ Rd, DP-SGD aims to privately solve (in the sense of definition 2.1)
the empirical risk minimization problem minθ∈Rd ℓ(θ), where ℓ(θ) = 1

|D|
∑

x∈D ℓ(θ;x) and ℓ(θ, ·)
is a loss function differentiable in θ. DP-SGD follows the standard SGD update, but guarantees
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differential privacy by (i) capping each data point’s influence on the gradient through gradient clipping,
and (ii) injecting Gaussian noise into the clipped gradients.

Each iteration t ∈ [T ] of DP-SGD incurs a privacy loss (εt, δt). Privacy composition (Dwork et al.,
2006; Kairouz et al., 2015) and privacy accounting (Abadi et al., 2016; Gopi et al., 2021; Doroshenko
et al., 2022) are techniques that aggregate these per-step privacy losses into a total privacy guarantee
(ε, δ) that holds for the entire optimization process.

2.2 CONSTRAINED OPTIMIZATION VIA LAGRANGIAN

In this work, we aim to solve constrained empirical risk minimization problems of the form:

minθ∈Rd

{
ℓ(θ) := 1

|D|
∑

x∈D ℓ(θ;x)
}

s.t. ∀j ∈ [J ], Γj(θ) ≤ γj . (1)

where Γj : Rd 7→ R+ are the constraint functions and γ ∈ (R+)J are slack parameters. We focus
on inequality constraints, as equality constraints are generally infeasible under differential privacy
(Cummings et al., 2019).

Due to the difficulty of solving (1) directly, we instead solve an equivalent min-max optimization
problem with respect to the Lagrangian:

min
θ∈Rd

max
λ∈Λ
{L(θ, λ) := ℓ(θ) +R(θ, λ)} , where: R(θ, λ) =

∑J
j=1 λj(Γj(θ)− γj). (2)

Here, λ ∈ Λ ⊆ (R+)J are the Lagrange multipliers, often referred to as the dual parameter, while θ
is the primal parameter. One of the simplest algorithms to solve (2) is the generalization of (S)GD
known as (Stochastic) Gradient Descent-Ascent, (S)GDA (Nemirovski et al., 2009).

Definition 2.2 (GDA). At each iteration t:
θ(t+1) ← θ(t) − ηθ∇θL(θ(t), λ(t)), and λ(t+1) ← ΠΛ

(
λ(t) + ηλ∇λL(θ(t), λ(t))

)
. (3)

where ηθ and ηλ are step sizes and ΠΛ performs orthogonal projection onto Λ. The stochastic version
(SGDA) replaces exact gradients with stochastic estimates.

2.3 RATE CONSTRAINTS

In this work, we focus on constraints that relate to prediction behavior over subsets of the dataset.
Consider a model h : X ×Rd 7→ RK that maps inputs from feature space X to real-valued prediction
scores over the label set Y = {1, . . . ,K} using parameters θ ∈ Rd. Formally, (hard) prediction
rates count the number of points in a dataset D for which the model predicts a certain label k ∈ Y:
P hard
k (D; θ) = 1

|D|
∑

x∈D 1[argmaxk′∈[K]{h(θ;x)k′}=k].

As the indicator function is non-differentiable and thus challenging to optimize, we will use dif-
ferentiable versions of these constraints. We rely on the tempered softmax function στ (z)k =

exp(−τzk)∑K
l=1 exp(−τzl)

, where the temperature parameter τ ∈ R+ controls the sharpness of the probability
distribution. This allows us to define soft prediction rates:

Pk(D; θ, τ) = 1
|D|
∑

x∈D στ (h(θ;x))k, for k ∈ Y. (4)

Observe that limτ→∞ Pk(D; θ, τ) = P hard
k (D; θ). For brevity, unless otherwise specified, we drop

explicit mention of temperature and provide more discussion of this hyperparameter experimentally
in Appendix E. Our convergence analysis in Section 5 holds for arbitrary τ .

Rate constraints, as defined by Goh et al. (2016) and Cotter et al. (2019b) for binary classification
(Y = {0, 1}), are linear combinations of a classifier’s prediction rates across different data partitions:∑

q∈[Q] αqP1(Dq, θ) + βqP0(Dq, θ) ≤ γ, (5)

Q > 0, αq, βq ∈ R are mixing coefficients, D1, ..., DQ ⊆ D and γ is the slack parameter. Examples
of rate constraints in this form include ensuring that the fraction of positive predictions across
different demographic groups stays within a specified threshold, or requiring the model to achieve
a minimum level of precision or recall for both classes (Cotter et al., 2019a).

Such constraints are limited to binary classification, and a multiclass generalization is not immediate.
More critically, it is unclear how to evaluate rate constraints in (5) while efficiently preserving privacy.
These are issues we address in the next section.
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3 PRIVATE LEARNING WITH GENERALIZED RATE CONSTRAINTS

Generalized rate constraints. We propose a generalized form of rate constraints that (i) applies to
the multi-class setting and (ii) exploits shared structure to enable accurate private estimation.
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I1 = {1} : D1
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Γ3
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Figure 1: Each rate constraint of
the form (6) builds local datasets
based on the global partition.
A class-1 (class-0) prediction is
shown with a blue (red) square. Pre-
diction rates P0, P1 are shown as
fractions. As an example, let D1,
D2, and D3 be the set of Hispanic,
Black, and Caucasian individuals
in the dataset, respectively. Con-
straint Γ1 builds its local datasets
as {{D1}, {D2 ∪ D3}}, i.e. {His-
panic, Non-Hispanic}, from the
global partition {D1, D2, D3} us-
ing the set of index subsets I1 =
{I1, I2}.

This shared structure is a partition {D1, ..., DQ} of the dataset
D for some Q > 0, which we refer to as the “global” parti-
tion. We then allow each rate constraint to incorporate pre-
diction rates over any recombination of sub-datasets in the
global partition. This structure is flexible, as it allows each
rate constraint to have its own “local” datasets, provided that
each of these datasets can be formed as a union of sets from
the global partition. For example, in the context of fairness
constraints, the global partition corresponds to the the sensitive
groups (e.g., Hispanic, Black, Caucasian), and local datasets
for one of the constraint is {Hispanic, Non-Hispanic} where
Non-Hispanic = {Black,Caucasian}. See Figure 1.

Formally, given this global partition, we assume for each j ∈ [J ]
there exists a family of subsets of [Q], denoted Ij ⊆ 2[Q], and
a weight vector αj ∈ R|Ij |·K , such that the constraint Γj can
be written in the following form:1

Γj(θ) =
∑

I∈Ij

∑K
k=1 αj,I,kPk(∪i∈IDi; θ). (6)

Assuming such a global partition is not restrictive, as the trivial
partition Dq = xq (with Q = |D|) can always be used. How-
ever, as Section 4 will show, a smaller partition size Q enables a
better privacy-utility trade-off through more effective noise use.

Remark 1. For common rate constraints, the best global par-
tition will be readily apparent (see the application to fairness
below). The smallest global partition can however be defined explicitly. Let D̄1, ..., D̄Q̄ be the
(possibly non-disjoint) subsets of D over which the functions Γ1, ...,ΓJ compute a prediction rate as
per Eq. (6). Then the smallest global partition assigns any two data points x and x′ in the same Dq

if and only if
{
∀q̄ ∈ [Q̄], {x, x′} ∩ D̄q ∈ {∅, {x, x′}}

}
.

Note that each rate constraint Γj is uniquely defined by the subset family Ij and vector αj . Both
parameters are public, specifying only the constraint’s structure and containing no sensitive data.

Application to fair learning. Group fairness in machine learning aims to prevent models from making
biased decisions across different sensitive groups. We show below our general form of rate constraints
(4) allows to capture the popular group fairness notion of demographic parity (Barocas et al., 2023).
More generally, all common group fairness measures can be formulated as rate constraints (Cotter
et al., 2019b). We provide details on formulating other fairness notions in Appendix A.

Definition 3.1 (Demographic Parity). Assume each feature vector x ∈ X contains a sensitive attribute,
denoted as Z, taking on values in Z ⊂ Z. A classifier h(θ; ·) satisfies demographic parity w.r.t. Z if
Pr[Ŷ = k | Z = z] = Pr[Ŷ = k] for all z ∈ Z, k ∈ Y , where Ŷ = h(θ;X).

In practice, probabilities are replaced by empirical rates Pk. With slack γ, this gives
Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ, ∀z ∈ Z, k ∈ Y, (7)

leading to J = |Z| · |Y| constraints of the form (6). The global partition has size Q = |Z| with
elements Dz = D[Z = z]. For the constraint indexed by (z, y) ∈ Z×Y , we take I = ({z}, [|Z|]\z)
and define α{z},y = 1, α{[|Z|]\z},y = −1, with all other components zero.

Objective. With these definitions in place, we can now state our objective: solve problem (2) with
generalized rate constraints of the form (6) under DP.

1With some abuse of notation, we denote by αj,I,k the entry of αj corresponding to subset I and label k.
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4 RACO-DP: PRIVATE RATE-CONSTRAINED OPTIMIZATION

Algorithm 1 RaCO-DP
Require: Dataset D, Parameter θ0, learning rates

ηθ, ηλ, Gaussian noise variance σ, Laplace
parameter b, clipping norm C, sampling rate r,
slack parameter vector γ, loss function ℓ(θ; ·)

1: Initialize λ(0) ← [0]
2: for each t ∈ {0, . . . , T − 1} do
3: B(t) ← PoissonSample(D, r)
4: Private Histogram:
5: Ĥ

(t)
q,k ←

∑
x∈Dq∩B(t)

σ(h(θ(t);x))k + Lap( 1
b
)

Primal Update:
6: Z(t) ∼ Gaussian(0, Idσ2)

7: ∀x ∈ B(t) : set g
(t)
x,θ as (see also Eq.(10))

1
r|D|∇θℓ(θ

(t);x)+∇θR̂(θ(t), λ(t); Ĥ(t), x)

8: g
(t)
θ ←

(∑
x∈B(t) clip(g

(t)
x,θ,

C
r|D| )

)
+Z(t)

9: θ(t+1) ← θ(t) − ηθg
(t)
θ

Dual Update:
10: [g

(t)
λ ]j ← Γpost

j (Ĥ(t))− γj , ∀j ∈ [J ]

11: λ(t+1) ← ΠΛ(λ
(t) + ηλg

(t)
λ ) (see Eqn. (12)

12: end for
13: return θ(T )

We introduce RaCO-DP (Algorithm 1), an al-
gorithm for rate-constrained optimization that ex-
tends SGDA (Definition 2.2) to satisfy DP. Each
iteration t of RaCO-DP operates on a mini-batch
B(t) and consists of three key components that we
will describe in detail in this section:

1. Private histogram computation: For each
class k ∈ [K] and part q ∈ [Q] of the parti-
tion, we privately estimate the sum of model
predictions σ(h(θt;x))k over the points x in the
mini-batch B(t) that belong to Dq , storing these
counts in a histogram H(t) (Section 4.1).

2. Private primal updates: We derive per-sample
gradients for the primal update of SGDA based
on post-processing the histogram H(t). We then
clip, average and privatize these gradients using
the Gaussian mechanism (Section 4.2).

3. Private dual updates: We compute all con-
straint values by again post-processing the his-
togram H(t), allowing us to perform the dual up-
date at no additional privacy cost (Section 4.3).

4.1 PRIVATE HISTOGRAM COMPUTATION

Our algorithm’s primal and dual updates compute prediction rates across dataset partition parts
D1, . . . , DQ for each class. To track these prediction rates privately, we construct a histogram
H(t) ∈ RQ×K that counts (soft) model predictions for each combination of part q and class k. For a
given model parameter θ, each sample xi in the mini-batch B(t) belongs to exactly one part Dq of the
partition but can influence the counts of all K classes through the softmax probabilities σ(h(θ;x))k.
This non-private histogram is constructed by accumulating these softmax vectors:

H
(t)
q,k =

∑
Dq∩B(t) σ(h(θ;xi))k. (8)

To make this histogram differentially private, we use the Laplace mechanism (Dwork et al., 2006). The
ℓ1 sensitivity of H(t) is 1, as each sample belongs to one element of the global partition and its softmax
predictions sum to 1 across classes. Thus, we achieve ε-DP by adding Laplace noise to each element:

Ĥ
(t)
q,k = H

(t)
q,k + Lap(1/ε), ∀q ∈ [Q], k ∈ Y. (9)

Remark 2. We focus on the Laplace mechanism for simplicity, but we note that our framework can
readily accommodate other differentially private histogram mechanisms that may provide better
utility in some regimes, e.g., when the histogram is high-dimensional and sparse (Wilkins et al., 2024).

In the following sections, we will see that Ĥ(t) contains all the necessary information to compute
the quantities related to the rate constraints required for both the primal and dual updates, thereby
avoiding additional privacy costs that would arise from composing multiple queries.

4.2 PRIVATELY COMPUTING THE PRIMAL GRADIENT

A key requirement in DP-SGDA is that each sample has a bounded contribution to gradient updates.
To satisfy this in RaCO-DP, we decompose the Lagrangian into per-sample terms. While the loss
ℓ(θ) naturally decomposes as in standard DP-SGD, the regularizer R is more challenging.
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Given a mini-batch B, define B∩I = B ∩ ( ∪
i∈I

Di) and recall that Ij and αj ∈ R|Ij |×K denote the

family of subsets and weight vector associated with constraint Γj . The minibatch-level regularizer is,

R(θ, λ;B)=

J∑
j=1

λj

(( ∑
I∈Ij

K∑
k

αj,I,kPk(B∩I ; θ)
)
−γj

)
=

J∑
j=1

λj

(( ∑
I∈Ij

K∑
k

∑
x∈B∩I

αj,I,k

|B∩I |
σ(h(θ;x)k

)
−γj

)
.

Note that this may be a biased estimate of R(θ, λ) due to the normalization term |B∩I |. We account
for this bias in our convergence analysis (Section 5).

We would like a per-sample decomposition of R(θ, λ;B). The main obstacle in such a decomposition
are the quantities |B∩I |, which depend on the entire mini-batch. We overcome this by first noting that
|B∩I | =

∑
i∈I

∑
k H

(t)
i,k , leading to the following per-sample regularizer estimator at point x ∈ D:

R̂(θ, λ;H,x) =

J∑
j=1

λj

((∑
I∈Ij

∑
k1∈K

αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈K

H
(t)
i,k2

σ(h(θ;x))k1

)
− γj

)
,

and thus the overall per-sample gradient is given by,
∇θℓ(θ;x)

r|D| +
∑J

j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1
1[x∈B∩I ]∑

i∈I

∑
k2∈[K]

H
(t)
i,k2

∇θ[σ(h(θ;x))k1 ]. (10)

Then, since H depends on the mini-batch B, we use instead its differentially private version Ĥ . Note
that the normalizing term 1

r|D| is necessary to correctly implement clipping in Line 8 of Algorithm 1.

Remark 3. For specific constraints, the estimation of |B∩I | can be further refined. For example,
when each Ij is itself a partition of [Q], the sensitivity of

∑
i

∑
k2

H
(t)
i,k2

is at most 1, and adding
Laplace noise directly results in a tighter estimate of |B∩I |.

With this per-sample decomposition, we can apply standard DP-SGD techniques: clipping per-sample
gradients, averaging them over the mini-batch, and adding Gaussian noise to preserve privacy.

4.3 PRIVATELY COMPUTING THE CONSTRAINT DUAL GRADIENT

For each constraint Γj and corresponding slack parameter γj , the gradient of the Lagrangian w.r.t λ is:

∇λL(θ(t), λ(t))j = Γj(θ
(t);B(t))− γj , (11)

The dual update in RaCO-DP thus requires evaluating rate constraints on the current mini-batch
B(t), incurring a privacy cost. To avoid this additional cost, we introduce a post-processing function
Γpost
j : RQ×K 7→ R that operates directly on the private histogram Ĥ(t). This function replaces each

sum of model predictions
∑

i∈Dq∩B(t) σ(h(θ;xi))k with the corresponding histogram count Ĥ(t)
q,k:

Γpost
j (Ĥ(t)) =

∑
I∈Ij

∑
k1∈[K]

αj,I,k1

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈[K] Ĥ

(t)
i,k2

. (12)

As Ĥ(t) is already DP, the post-processing property ensures this step incurs no additional privacy cost.

Remark 4. As standard in private optimization, mini-batches B(t) are constructed via Poisson sam-
pling, with each datapoint included with probability r. This allows us to leverage privacy amplification
by subsampling (Kasiviswanathan et al., 2011; Balle et al., 2018) for the Laplace mechanism in his-
togram computation (Section 4.1) and the Gaussian mechanism for per-sample gradients (Section 4.2).

RaCO-DP’s efficiency relies on a private histogram H(t) enabling per-sample gradient computation
and private constraint evaluation, key to handling rate constraints under DP. The privacy guarantees of
Algorithm 1 follow from composing the subsampled Laplace and Gaussian mechanisms over T steps.

Theorem 4.1. Let b ≥ 2max
{

1
ϵ ,

r
√

T log(T/δ)

ϵ

}
and σ ≥ 10max

{C log(T/δ)
r|D|ϵ , C

√
T log(T/δ)
|D|ϵ

}
, then

Algorithm 1 is (ϵ, δ)-DP.
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The proof is in Appendix B. We present this result primarily for to provide intuition about parameter
scaling. In our experiments, we use a tighter privacy accountant that improves both constants and
logarithmic factors. Additionally, in our convergence analysis, we offer a more detailed examination
when the Lagrangian is Lipschitz and the algorithm is run without clipping.

5 CONVERGENCE AND UTILITY ANALYSIS

Consider the function defined as Φ(θ) = maxλ∈Λ {L(θ, λ)}. Ideally, one would want to show that
Algorithm 1 approximately minimizes Φ. However, due to the fact that Φ may be non-convex, finding
an approximate minimizer is intractable in general. In fact, because the constraint functions, {Γj},
may be non-convex in θ, if Λ = (R+)J then even finding a point where Φ is finite may be intractable.
As such, we must make two standard concessions. First, we will assume Λ is a compact convex
set of bounded diameter. Intuitively, this bounds the penalty applied when the constraints are not
satisfied. Further, instead of guaranteeing that Algorithm 1 finds an approximate minimizer of Φ, we
will show the algorithm finds an approximate stationary point. We note that stationarity is a standard
convergence measure in non-convex optimization, and provide more discussion in Appendix D.1. Our
subsequent analysis in fact provides for a slightly stronger, but more technical, notion of stationarity
than we provide here; see Appendix D.6 for more details.

Definition 5.1. ((α, ν)-stationary point) A point θ is an (α, ν)-stationary point if ∃θ′ s.t. ∥θ−θ′∥ ≤ ν
and minv∈∂Φ(θ′) ∥v∥ ≤ α, with ∂Φ the subdifferential of Φ.

When the loss is Lipschitz and smooth, SGDA converges to an approximate stationary point of Φ (Lin
et al., 2020). Unfortunately, Algorithm 1 may have biased gradients, and the scale of noise present in
ĝθ and ĝλ may vary dramatically depending on d and J . Thus, our main goal in this section is two-fold.
First, we aim to formally show that despite using biased gradients, Algorithm 1 provably finds an
approximate stationary point. Specifically, when the error in the primal updates (w.r.t. ∥·∥2) is at most
τθ and the error in the dual updates is at most τλ (w.r.t. ∥·∥∞), we show SGDA on a nonconvex-linear
loss finds a stationary point roughly with α = O(

√
1+τθ
T 1/4 + τθ +

√
τλ + 1√

T
); see Appendix D.6.

Second, we characterize the impact of the noise in ĝθ and ĝλ added due to privacy. This involves
correctly balancing the number of iterations T with the scale of noise needed to ensure privacy, which
increases with T . This leads to the following result for Algorithm 1 run without clipping.

Theorem 5.2 (Informal). Let n = minq∈[Q] {|Dq|}. Assume h(θ;x) and ℓ(θ) are both Lipschitz
and smooth. Then, under appropriate choices of parameters, Algorithm 1 is (ϵ, δ)-DP and with
probability at least 1− ρ there exists t ∈ [T ] s.t. θt is an (α, α)-stationary point of Φ with,

α =O

((√d log(JKn
ρ

) log(n
δ
)

nϵ

) 1
3
+

K
1
4
√

log(n
δ
) log

1
4 (JKn

ρ
)

(nϵ)1/4

)
,

up to dependence on problem constants. We provide a complete statement and full proof in Appendix
D.2. In Appendix D.7, we derive Lipschitz and smoothness constants for L from those of the classifier.

There are several key steps involved in achieving this result. First, we provide a general convergence
proof for SGDA under the assumption that gradients have bounded error (Theorem D.5). Notably, in
contrast to previous analyses, this result 1) allows for biased gradients; 2) depends on the ℓ∞ error
in the dual gradient estimate (rather than the ℓ2 error); and 3) achieves faster convergence (in terms
of T ) by leveraging the linear structure of the dual. To point (3), our analysis shows SGDA in this
setting can converge as fast as 1

T 1/4 instead of 1
T 1/6 (shown by Lin et al., 2020), essentially matching

the rate observed in comparable minimization (rather than min-max) settings. See Theorem D.5
for this specific result. The next step in proving Theorem 5.2 is to control the error of the gradient
estimates while balancing the noise necessary for privacy. We show that this error scales proportional

to Õ
(√

dT
nϵ + 1√

n

)
in the primal and Õ

(√
KT log J

nϵ +
√

log J
nϵ

)
in the dual. We defer the reader to

Lemma D.4 in Appendix D for a more detailed accounting of this error.
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6 EXPERIMENTS

We empirically demonstrate that RaCO-DP: (i) achieves SOTA performance on standard tabular
benchmarks; (ii) scales for deep neural networks, maintaining high utility under strong privacy
guarantees; (iii) scales to a large number of constraints, and (iv) is computationally efficient.
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Figure 2: Fairness–utility
trade-off for RaCO-DP over
three benchmarks under de-
mographic parity constraints
training: (a) ResNet16 (5
runs), (b) and (c) logistic re-
gression with ε = 1 (20 runs)

Setup. We evaluate RaCO-DP on three constraint types:
demographic parity (on Adult (Becker & Kohavi, 1996),
Credit-Card (Yeh, 2009), Parkinsons Little (2007),
ACSEmployment (Ding et al., 2021), CelebA (Liu et al., 2015)),
false negative rate (on Adult, Heart Alex Teboul), and equal-
ized odds (on Credit-Card). We benchmark against DP-
FERMI (Lowy et al., 2023), Tran et al. (2021), and Jagielski et al.
(2019), reporting their results from Lowy et al. (2023) where avail-
able. In settings without prior DP work (e.g., FNR constraints, deep
networks on CelebA), we use non-private SGDA as a reference.
All DP methods use δ = 10−5, with privacy loss tracked via the
numerical accountant of Doroshenko et al. (2022). Full implementa-
tion and hyperparameter details are in Appendix E.2. For constraint
definitions, see Appendix A.

Tabular data. On standard tabular benchmarks, Figure 2b (together
with Figure 4, Figure 5, and Figure 6 in Appendix E.3) shows that
across multiple datasets (Adult, Credit-Card, Parkinsons)
and fairness constraints (demographic parity and equalized odds),
RaCO-DP trains logistic regression models that consistently achieve
higher accuracy at any fixed fairness disparity compared to all
baselines under the same privacy budgets. Additional ablations for
small ε values are provided in Appendix E.8.

Neural networks. To demonstrate that RaCO-DP is applicable
to large, non-convex models, we train a ResNet16 (He et al.,
2016) (6.4M parameters) on CelebA under demographic parity
constraints. As shown in Figure 2a, RaCO-DP achieves 90%
accuracy with only a 10% demographic disparity gap for ε = 1. This
result is close to the non-private model’s 95% accuracy, showing that
RaCO-DP is a practical tool for implementing fairness constraints
in deep learning pipelines without a prohibitive loss in utility.
Hyperparameter and training details are in Appendix E.7.

Scaling. To evaluate performance under a large constraint set,
we train a logistic regression on ACSEmployment, enforcing
demographic parity across 18 groups simultaneously. Figure 2c
shows our method achieves a competitive utility–fairness trade-off
even under strong privacy (ε = 1), confirming its effectiveness.

Matching non-private rates. We observe that RaCO-DP nearly
matches non-private accuracy sometimes, especially for logis-
tic regression on tasks such as Adult, Credit-Card, and
Parkinsons (see Appendix E.3). In these cases, the sample size
is large relative to the model’s dimensionality, and convergence is fast
(often within a few dozen updates). This allows training with large
batches that reduce noise and still benefit from privacy amplification by subsampling. It also keeps
the noise multiplier σ (and Laplace parameter b) small, since the privacy budget is spread across only
a handful of steps. These favorable conditions (large datasets, low-dimensional models, and rapid con-
vergence) explain why the privacy gap narrows, consistent with prior observations (Song et al., 2013a).
Once we employ higher-capacity models like ResNet16 on CelebA (see Figure 2a), the gap widens.

Satisfiability. The results in Figure 3 demonstrate that RaCO-DP consistently achieves the
pre-specified constraint values γ as measured by the hard rate constraints. This marks a significant
improvement over existing approaches, which typically rely on indirect hyperparameter tuning
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to influence constraint satisfaction. Our direct Lagrangian formulation offers practitioners a
simpler and more reliable method for constraint optimization. Additionally, these results show that
tempered-sigmoid temperature τ = 1 is sufficient to enforce hard constraints in practice.
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Figure 3: Constraint satisfac-
tion on Adult.

Computational efficiency. We benchmark the average time per
step for SGD, DP-SGD, RaCO-DP, and DP-FERMI via their
public code (Gupta, 2023). On identical hardware, RaCO-DP
trains three orders of magnitude faster than DP-FERMI on Adult
(Appendix E.5).

Limitations. Koloskova et al. (2023) shows that gradient clipping
biases SGD, which in our setting can push convergence outside the
feasible set, making the clipping norm C a critical hyperparameter.
To illustrate this general issue (not specific to RaCO-DP), we
impose a strict FNR = 0 constraint in logistic regression on
Adult without DP noise (σ = 0, b =∞). As shown in Figure 8a
of Appendix E, norms below 12.5 prevent RaCO-DP from meeting
the constraint, though weaker constraints allow smaller norms.
Another limitation is the use of soft constraints for the dual update. Hard constraints can be
applied in practice, although this departs from the theoretical guarantees of RaCO-DP; as shown
in Appendix E.4, this modification offers limited utility benefits.

7 RELATED WORK

To the best of our knowledge, private learning under general rate constraints has not been explored
in prior work, except in the specific case of group fairness constraints. Accordingly, we review
related work at the intersection of differential privacy and fairness, a key application area where early
research has identified fundamental trade-offs between these two objectives (Cummings et al., 2019).

Existing work can be grouped into three main categories. A first line of research (Bagdasaryan et al.;
Farrand et al., 2020; Suriyakumar et al., 2021; Tran et al., 2021; Kulynych et al., 2022; Esipova et al.,
2022; Tran & Fioretto, 2023; Mangold et al., 2023) examines how privacy mechanisms can inadver-
tently harm fairness. For instance, Esipova et al. (2022) characterizes the disparate impact of DP-SGD
due to gradient misalignment caused by clipping. The second line of work focuses on protecting the
privacy of sensitive attributes used to enforce fairness constraints (Jagielski et al., 2019; Mozannar
et al., 2020; Tran et al., 2023). Unlike standard DP, which protects the entire dataset, privacy for sen-
sitive attributes requires injecting less noise, leading to improved model performance. However, this
approach has significant limitations. Individuals can still be re-identified through their non-sensitive
attributes, and if sensitive and non-sensitive features are correlated, an adversary may still be able to
infer sensitive attributes. Due to these vulnerabilities, such works are not directly comparable to ours.

The third line of work, closest to ours, seeks to jointly enforce DP and group fairness (Berrada
et al., 2023; Lowy et al., 2023). Berrada et al. (2023) use DP-SGD without fairness mitigation,
finding well-generalized models show no major privacy-fairness trade-off. However, their notion
of fairness is error disparity, arguably measuring subpopulation generalization. Our work shows that
while mitigation is needed for demographic parity, appropriate algorithm design can surmount the
fairness-privacy trade-off. Lowy et al. (2023) propose a proxy objective for stochastic optimization
of group fairness measures. In contrast, RaCO-DP supports a broad range of rate constraints that
can be freely combined, without needing a task-specific objective. While its theoretical convergence
rate is slower, RaCO-DP offers greater generality, complicating direct comparisons. Notably, Lowy
et al. (2023) presents results for both sensitive attribute DP and standard DP (Definition 2.1), but
their public code and evaluations focus on the weaker notion. Despite a stronger privacy guarantee,
RaCO-DP achieves superior privacy-fairness trade-offs. We note that in contrast to Lowy et al.
(2023), which seeks to satisfy the fairness objective by running an optimization procedure on a proxy
objective, our optimization algorithm more directly targets the rate constraint of interest.

Fairness aside, SGDA is well-studied for minimax optimization (Nemirovski et al., 2009; Heusel et al.;
Lin et al., 2020), with Yang et al. (2022) proposing its first DP analogue. Private minmax optimization
has been heavily studied recently (Boob & Guzmán, 2023; Zhang et al., 2022; Bassily et al., 2023;
2024; Gonzalez et al., 2024), though work on non-convex losses is limited to (Lowy et al., 2023).
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A APPLICATION TO OTHER RATE CONSTRAINTS

A.1 FAIRNESS CONSTRAINTS

Fairness in machine learning aims to prevent models from making biased decisions based on sensitive
attributes. We aim to train a classifier under fairness constraints by formulating a constrained
optimization problem. We consider two popular group fairness Barocas et al. (2023) metrics:
demographic parity and equality of odds. All group fairness measures can be formulated as rate-
constraints Cotter et al. (2019b), for individual fairness (Dwork et al., 2012) it is easier to bound the
per-sample contribution and privatize it with clipping and noising in the style of DP-SGD, thus a
rate-constrained solution is not required, hence we focus on group fairness metrics.

Definition A.1 (Demographic Parity). A classifier h(θ; ·) satisfies demographic parity with respect to
sensitive attribute Z ∈ Z = {1, ..., |Z|} if the probability of predicting any class k is independent of
Z:

Pr[Ŷ = k | Z = z] = Pr[Ŷ = k], ∀z ∈ Z,∀k ∈ Y,

where Ŷ = h(θ;x) is the predicted label.

In practice, we do not have access to the true probabilities, so it is common to estimate them by
empirical prediction rates Pk. Using a slack parameter γ, this gives:

Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ ∀z ∈ Z,∀k ∈ Y (13)

Demographic parity thus leads to J = |Z| · |Y| rate constraints of the form specified in Eqn. (6). The
global partition is of size Q = |Z| with elements Dz = D[Z = z], ∀z ∈ Z , and for the constraint
corresponding to elements z ∈ Z and y ∈ Y , we have I = {{z} , [|Z|] \ z}. The associated vector
α has α{z},y = 1 and α{[|Z|]\z},y = −1, with the rest of the components set to 0.

Definition A.2 (Equality of Odds). A classifier h(θ; ·) satisfies equality of odds if the probability of
predicting any class k is conditionally independent of the sensitive attribute Z given the ground truth:

Pr[Ŷ = k | Y = k′, Z = z] = Pr[Y = k′, Ŷ = k, Z = z′], ∀z′, z ∈ Z,∀k, k′ ∈ Y (14)

We note that the original notion of equalized odds is for binary sensitive attribute. For non-binary
sensitive attributes, we can extend equalized odds to equalize rates between all subpopulations (as
above), or we can consider a counter-factual definition of equalized odds:

Pr[Ŷ = k | Y = k′, Z = z] = Pr[Y = k′, Ŷ = k, Z ̸= z], ∀, z ∈ Z,∀k, k′ ∈ Y (15)

In the above formulation, we seek to achieve equal odds for each subpopulation compared to other
subpopulations combined (e.g. white vs. non-white, etc.). It is clear that in the binary sensitive
attribute, the definitions are the same. Our framework can handle either variant by changing the
adjusting the local partitioning (see Section 3) but we adopt the counter-factual definition.

We observe that the only difference between the equality of odds and demographic parity is the
additional conditioning on the ground truth, which we will reflect as the additional predicate Y = k′

in our base rates to define the following constraint:

Pk(D[Y = k′, Z = z]; θ)− Pk(D[Y = k′, Z = z′]; θ) ≤ γ ∀z ∈ Z,∀k, k′ ∈ Y (16)

Equality of odds leads to J = |Y|2 × |Z| number of constraints. With regards to implementing Eqn.
(6), we can use a global partition with |Y| × |Z| where each element is the subset of D with some
fixed ground truth label k and class z. The constraint for some k ∈ [K] and z ∈ Z then has I which
specifies the local partition {D[Y = k, Z = z], D[Y = k, Z ̸= z]} with the corresponding vector α
having a +1 coefficient corresponding to a prediction rate of D[Y = k′, Z = z].

Many other group fairness constraints exist but they are all reducible to base rate constraints in a
similar manner. Note the similarity between Equations (7) and (16), where the only difference is the
additional conditioning on ground truth labels Y in equality of odds.
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Objective Formula Number of Constraints

Demographic Parity Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ
∀k ∈ Y (predicted),
∀z ∈ Z (sens.)

Equality of Odds Pk(D[Y = k′, Z = z]; θ)− Pk(D[Y = k′, Z ̸= z]; θ) ≤ γ
∀k, k′ ∈ Y (predicted

and g.t.) ∀z ∈ Z (sens. attr.)
False Negative Rate Pk(D[Y ̸= k]; θ) ≤ γ ∀k ∈ Y (predicted)

Table 1: Rate Constraints. Given a dataset D, Ck(D) is the prediction counts for class k, and
Pk(D) = Ck(D)/|D| is the prediction rate. D[pred] indicates the subset of D where predicate
pred is true, e.g., D[Y = y, Z = z] is the subset of D with sensitive attribute (sen. attr.) Z = z and
ground truth (g.t.) labels Y = y.

A.2 FALSE NEGATIVE RATE

Definition A.3. (False Negative Rate (FNR)) A classifier’s false negative rate (FNR) measures how
often it incorrectly predicts negative for samples that are actually positive. More formally, a classifier
satisfies a false negative rate constraint if

Pk(D[Y ̸= k]; θ) ≤ γ for k ∈ [|Y|] (17)

Assuming the constraint is well-defined, FNR leads J = |Y| rate constraints of the form in Eqn. (6),
with the global partition of size Q = |Y | with elements Dy = D[Y = y], y ∈ Y . For the constraint
corresponding to a fixed y ∈ Y , we have I = {Y/y} with an associated α{Y/y},y = 1.
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B PROOF OF THEOREM 4.1

Theorem B.1. Let σ ≥ 10max
{

C log(T/δ)
r|D|ϵ , C

√
T log(T/δ)
|D|ϵ

}
and b ≥ 2max

{
1
ϵ ,

r
√

T log(T/δ)

ϵ

}
, then

Algorithm 1 is (ϵ, δ)-DP.

Proof. The ℓ2-sensitivity of
(∑

x∈B(t) clip(g
(t)
x,θ,

C
r|D| )

)
is clearly at most C

r|D| . Thus the standard
guarantees of the Gaussian mechanism ensures ( 12ϵ1,

1
2δ1)-DP w.r.t. the minibatch, where ϵ1 ≤

min{1, 1

r
√

8T log(1/δ)
} and δ1 = δ

2T . Similarly, because {D1, ..., DQ} is a partition, the ℓ1-sensitivity

of the histogram is at most 1, and so the guarantees of the Laplace mechanism ensure ( 12ϵ1, 0)-
DP w.r.t. to the minibatch. By composition, the combined mechanism is (ϵ1, δ1)-DP w.r.t. the
minibatch. Since this mechanism acts a Poisson subsampled portion of the dataset and ϵ′ ≤ 1, the
privacy w.r.t. the overall dataset is (ϵ2,

1
2δ2) with ϵ2 = rϵ1 ≤ 1√

8T log(1/δ)
and δ2 ≤ rδ

2T . Now

applying advanced composition, the overall privacy of Algorithm 1 over T rounds is (ϵ3, δ3)-DP with
ϵ3 ≤

√
8T log(1/δ)ϵ2 ≤ ϵ and δ3 ≤ (T + 1)δ2 ≤ δ.

C TECHNICAL LEMMAS

Lemma C.1. Let X and Y be sums of kX and kY zero-centered Laplace random variables with
scale parameter b, respectively, and let µX , µY > 0, µx

µy
≤ 1, kX ≤ kY . For any ρ ∈ (0, 1), if

µY ≥ 4kY b ln
(

1
2ρ

)
then it holds that,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < 4kY b

µy
ln

(
8

ρ

)]
≥ 1− ρ. (18)

Proof. We have,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < ϵ

]
≥ P

[∣∣∣∣ X

µY + Y

∣∣∣∣+ ∣∣∣∣ µXY

µY (µY + Y )

∣∣∣∣ < ϵ, µY + Y >
µY

2

]
(triangle inequality)

≥ P

[∣∣∣∣2XµY

∣∣∣∣+ ∣∣∣∣2µXY

µ2
Y

∣∣∣∣ < ϵ, µY + Y >
µY

2

]
(conditioning on µY + Y >

µY

2
)

≥ P

[∣∣∣∣2XµY

∣∣∣∣ ≤ ϵ

2
,

∣∣∣∣2YµY

∣∣∣∣ < ϵ

2
, µY + Y >

µY

2

]
(using µx ≤ µy )

≥ 1− P
[
|X| ≥ µY ϵ

4

]
− P

[
|Y | ≥ µY ϵ

4

]
− P

[
Y ≤ −µY

2

]
(Negation & Union Bound)

≥ 1− 2 exp(− µY ϵ

4kY b
)− 2 exp(− µY ϵ

4kXb
)− 1

2
exp(− µY

kY b
) (concentration for Laplace R.Vs & Laplace CDF)

≥ 1− 2 exp(− µY ϵ

4kY b
)− 2 exp(− µY ϵ

4kXb
)− 1

2
exp(− µY

kY b
) (kY ≥ kX )

≥ 1− 4 exp(− µY ϵ

4kY b
)− 1

2
exp(− µY

kY b
)

≥ 1− 4 exp(− µY ϵ

4kY b
)− ρ

2

the last inequality uses that µY ≥ 4kY b ln
(

1
2ρ

)
. Now setting ϵ = 4kY b

µy
ln
(

8
ρ

)
yeilds,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < 4kY b ln(8/ρ)

µy

]
≥ 1− ρ. (19)
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Lemma C.2 (Error of sampled rates). Let p =
∑

xi∈X xi

|X| with xi ∈ [0, 1] and pr =

∑
xi∈Xq

xi

r|X| where
Xr is obtained by performing Poisson sampling on X with probability r. If |X| r ≥ log(1/ρ) then
(up to an order):

P

[
|p− pr| ≤

√
log(1/ρ)

r|X|

]
≥ 1− ρ (20)

Proof. We have,

P [|p− pr| ≤ ϵ]

= P

[∣∣∣∣
∑

Xi∈X Xi

|X| −
∑

Xi∈X Bern(r)Xi

r |X|

∣∣∣∣ ≤ ϵ

]
(Xr ∼ Poisson(X, r))

= P

[∣∣∣∣∣r ∑
Xi∈X

Xi −
∑

Xi∈X

Bern(r)Xi

∣∣∣∣∣ ≤ ϵr |X|
]

≥ 1− exp

(
− ϵ2r2 |X|2
2
(
Var(

∑
Xi∈X Bern(r)Xi) + ϵr |X| /3

)) (Bernstein Ineq.)

≥ 1− exp

(
− ϵ2r2 |X|
2 (r(1− r) + ϵr/3)

)
(Xi ∈ [0, 1]; Var(Bern(r)) = r(1− r))

≥ 1− exp

(
− ϵ2r |X|
2 (1/4 + ϵ/3)

)
r(1− r) ≤ 1/4

=⇒ ϵ ≥ 2max

{
log(1/ρ)

r|X| ,

√
log(1/ρ)

r|X|

}

≥ 2

√
log(1/ρ)

r|X| (using the assumption that |X|r ≥ log(1/ρ))

D MISSING DETAILS FROM SECTION 5

D.1 ADDITIONAL BACKGROUND ON STATIONARY POINT DEFINITION

For a smooth function f : θ 7→ R, a standard notion of (first order) stationarity would involve bounding
the norm of the gradient. However, for non-smooth functions, this notion does not accurately capture
convergence. For example, if f(θ) = ∥θ∥, a point may be arbitrarily close to the minimum, but still
have gradient norm 1. To address this discrepancy, alternative notions of stationarity for non-smooth
functions have been introduced, such as Definition 5.1. In the example where f(θ) = ∥θ∥, this
relaxation allows points which are close to the cusp at θ = 0, whereas a bound on the gradient norm
would allow only the point θ = 0 for any non-trivial bound on the gradient. In fact, our convergence
proof yields a slightly stronger notion of stationarity known as proximal near stationarity Davis &
Drusvyatskiy (2019). We elect to present Definition 5.1 as it requires less background information.

D.2 PROOF OF THEOREM 5.2

In this section we will detail the proof of Theorem 5.2 and provide a more precise theorem statement.
Before doing so, we will introduce some important notation.

For any I ⊆ [Q], let DI = ∪
i∈I

Di. Given a subset B ⊂ D, define B∩I = B ∩ ( ∪
i∈I

Di) and recall that

Ij and αj ∈ R|Ij |×K denote the corresponding family of susbets of [Q] and weight vector associated
with constraint Γj . Let n = minq∈[Q] {|Dq|}.
Let ∥Λ∥1 be the ℓ1 diameter of Λ. Let Gℓ and Gh be the ℓ2 Lipschitz constants w.r.t. θ of h and
ℓ respectively. Similarly, let βℓ and βh be the corresponding ℓ2-smoothness constants. We recall
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the temperature parameter of the softmax is denoted as τ . Let c1 = maxj∈[J] ∥αj∥. Note that
many rate constraint only compare two prediction rates, and so c1 is typically at most 2. Define
Φ̂(θ) = minθ′

{
Φ(θ′) + β∥θ − θ′∥2

}
and Φ̂0 = Φ̂(θ0) − minθ

{
Φ̂(θ)

}
and L0 = L(θ0, λ0) −

minλ,θ {L(λ, θ)} (see Section D.6 for more details on these quantities). We can now present the
more complete version of convergence result.

Theorem D.1. Assume n ≥ 1
r max{ln

(
2c1JT

ρ

)
, 8Kb

r ln
(

2T
ρ

)
, 8 log(J |D|TK/ρ}. Then, under

appropriate choices of parameters, Algorithm 1 run without clipping is (ϵ, δ)-DP and with probability
at least 1− ρ there exists t ∈ [T ] s.t. θt is an (α, α/[2β])-stationary point of Φ with

α = O

(((
Φ̂0βG

2
)1/4

+
√

βL0 +G

)((√d log(n/δ)√log(JKn/ρ)

nϵ

)1/3
+

K1/4
√

β∥Λ∥1
√

log(n/δ)(log(JKn/ρ))1/4

(nϵ)1/4

))
,

where G = Gℓ + cτGh∥Λ∥1 and β = βℓ + 2cτ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
Proving this statement will involve several major steps. First, in Section D.4 we derive the necessary
noise levels needed to ensure that Algorithm 1 is private. Second, in Section D.5 we bound the error
in the gradients at each time step. Next, in Section D.6 we give a general convergence rate for SGDA
under the condition that the gradients have bounded error. Finally, we derive the overall Lipschitz
and smoothness constants of L based on the base smoothness and Lipschitz constants in Section D.7.
These results are then combined in Section D.3 to obtain the final result.

In one final remark, we note the following fact will be used in several places.

Lemma D.2. Let n ≥ 4 log(J |D|/ρ) and t ∈ [T ]. With probability at least 1− ρ it holds for every
j ∈ [J ] and I ∈ Ij that |B(t)

∩I | ≥ 1
2r|I|n.

Proof. By Lemma C.2 we have for any j ∈ [J ] and I ∈ Ij ,

P
[
r|DI | − |B(t)

∩I | ≥
√
r|DI | log(1/γ)

]
≤ γ.

Thus since |DI | ≥ n ≥ log(J |D|/ρ), it holds with probability at least 1− ρ, for every j ∈ [J ] and
I ∈ Ij that |B∩I | ≥ r|DI | −

√
r|DI | log(1/ρ) ≥ 0.5r|DI | ≥ 0.5r|I|n.

D.3 PROOF OF THEOREM D.1

With the previously established results, we can now verify a setting of parameters which proves the
theorem statement. Specifically, we set,

T = min

{(
nϵ√
d

)4/3

,
nϵ

K

}
, σ =

G
√
T log(T/δ)

nϵ
, b =

r
√

T log(T/δ)

ϵ
.

Note that by Theorem D.3, this ensures that Algorithm 1 is (ϵ, δ)-DP so long as r ≥ 1√
T

.

Using Lemma D.4 can now instantiate Theorem D.5. For τθ we have,

τλ = O

c1Kb log(JKn/ρ)

rn
+ c1

√√√√ log
(

JKn
ρ

)
rn



= O

c1K
√
T log(T/δ) log(JKn/ρ)

nϵ
+ c1

√√√√ log
(

JKn
ρ

)
rn

 .
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Setting τλ as the quantity above, we can write the bound on τθ as,

τθ = O

(
√
dσ
√
log(4T/ρ) +

4Gℓ

√
log(4/ρ)√
r|D|

+
4Gℓ

√
log(4/ρ)√
r|D|

+ |Λ∥1τGhτθ

)

= O

(
G

(√
dT log(T/ρ) log(T/δ)

nϵ
+

√
log(1/ρ)√
r|D|

)
+ ∥Λ∥1τGhτθ

)
.

Now, in the non-trivial regime where τθ ≤ G, Theorem D.5 implies that for r large enough,

α = O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T


= O

(((
Φ̂0βG

2
)1/4

+
√
βL0 +G

)((√d log(T/δ)√log(JKn/ρ)

nϵ

)1/3
+

K1/4
√
β∥Λ∥1

√
log(T/δ)(log(JKn/ρ))1/4

(nϵ)1/4

))
.

D.4 PRIVACY OF ALGORITHM 1 UNDER LIPSCHITZNESS

Theorem D.3. Assume h and ℓ are Gℓ and Gh Lipschitz. Then for some universal constant c and

σ ≥ c(c1∥Λ∥1τGh + Gℓ)max
{

log(T/δ)
rnϵ , C

√
T log(T/δ)

nϵ

}
and b ≥ 2max

{
1
ϵ ,

r
√

T log(T/δ)

ϵ

}
, then

Algorithm 1 is (ϵ, 3δ)-DP.

Proof. First, by Lemma D.2 and the conditions of Theorem D.1, probability at least 1− δ, for every
t ∈ [T ], j ∈ [J ] and I ∈ [I] it holds that |B∩I | ≥ 0.5r|I| · n. Consequently, the concentration
of Laplace noise and the conditions of Theorem D.1 imply

∑
i∈I

∑
k∈[K] Ĥ

(t)
i,k ≥ 0.25rn with

probability at least 1− 2δ. Conditional on this event, the ℓ2-sensitivity of
(∑

x∈B(t) g
(t)
x,θ

)
is at most

Gℓ

r|D| +
c1τGh

0.25rn since then,

∥∇R̂(θ, λ;H,x)∥ ≤
J∑

j=1

∑
I∈Ij

∑
k∈K

λjαj,I,k

0.25rn
∥∇θ[στ (h(θ;x))k]∥ ≤

c1∥Λ∥τGh

0.25rn
.

Thus, the scale of Gaussian noise implies that the releasing the primal gradient is ( 12ϵ1,
1
2δ1)-DP

w.r.t. the minibatch, where ϵ1 ≤ min{1, 1

r
√

T log(1/δ)
} and δ1 = δ

T . From here one can follow the

same steps as in the proof of Theorem 4.1 to obtain an overall privacy of (ϵ, δ)-DP conditional on the
previously mentioned event that each B∩I is large. Since this event happens with probability at least
1− 2δ, we obtain a final overall privacy guarantee of (ϵ, 3δ)-DP.

D.5 BOUNDING GRADIENT ERROR

Lemma D.4. Let ρ ∈ [0, 1] and t ∈ [T ]. Under the assumptions of Theorem D.1, conditional on
θ(t), λ(t), it holds with probability at least 1− 2ρ that,

∥g(t)θ −∇θL(θ(t), λ(t))∥2 ≤ σ
√

d log(4/ρ) +
4Gℓ

√
log(4/ρ)√
r|D|

+ ∥Λ∥1τGh

(
8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

)
,

∥g(t)λ −∇λL(θ(t), λ(t))∥∞ ≤
8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

.
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Proof. We will bound each error term separately.

Error of the Dual Gradient.
We start with the following bound,

P
[
∥ĝ(t)λ −∇λL(θ(t), λ(t))∥∞ ≥ ϵ

]
= P

max
j


∣∣∣∣∣∣∣
∑
I∈Jj

K∑
k=1

αj,I,kPk(DI)−
∑
I∈Jj

∑
k1∈K

αj,I,k1

∑
i∈I Ĥ

(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣
 ≥ ϵ



≤
J∑
j

∑
I∈Jj

K∑
k=1

1 [|αj,I,k ̸= 0|]P


∣∣∣∣∣∣∣Pk(DI)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1

 .

(21)

We thus have for any ϵ1 + ϵ2 = ϵ that,

P


∣∣∣∣∣∣∣Pk(DI)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1

 ≤ P

|Pk(DI) + Pk(B∩I)|+

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1



≤ 1− P

|Pk(DI) + Pk(B∩I)|+

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≤
ϵ

c1



≤ 1− P

|Pk(DI) + Pk(B∩I)| ≤
ϵ1
c1

,

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≤
ϵ2
c1



≤ P

[
|Pk(DI) + Pk(B∩I)| ≥

ϵ1
c1

]
+ P


∣∣∣∣∣∣∣Pk(B∩I)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ2
c1

 .

We will start by bounding P
[∣∣∣Pk(B∩I)−

∑
i∈I Ĥ

(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ ϵ1
c1

]
for any fixed I and k. Observe that

conditional on |B∩I |, the sampling process is equivalent to drawing |B∩I | samples uniformly at
random from |DI | without replacement. Therefore by Lemma C.1 we have,

P

∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ 4K|I|b log(16JKn/ρ)

|B∩I |

∣∣∣∣∣|B∩I |

 ≤ ρ

4JKn
.

Now by Lemma D.2, P
[
|B∩I| ≤ r

2 |I|n
]
≤ ρ

4JKn , and so,

P

∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ 8Kb log(16JKn/ρ)

rn

 ≤ ρ

2JKn
.

Thus it suffices to have ϵ1 = 8c1b log(16JKn/ρ)
rn .

Looking now at the statistical error term and applying Lemma C.2 we obtain:

P

|Pk(B∩I)− Pk(DI)| ≥

√√√√ log
(

2JKn
ρ

)
r|DI |

 ≤ ρ

2JKn
. (22)

Observing that

√
log( 2JKn

ρ )
r|DI | ≤

√
log( 2JKn

ρ )
rn , one can see it suffices for ϵ2 = c1

√
log( 2JKn

ρ )
rn .
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Plugging ϵ = ϵ1 + ϵ2 back into Eqn. (21) we obtain

P

∥ĝ(t)λ −∇λL(θ(t), λ(t))∥∞ ≥
8c1b log(16JKn/ρ)

rn
+ c1

√√√√ log
(

2JKn
ρ

)
rn


≤

J∑
j

∑
I∈Jj

K∑
k=1

1 [|αj,I,k ̸= 0|] ρ

JKn
≤ ρ.

This proves the claim.

Error in Primal Gradient. First observe that

∥ĝθ −∇θL(θ(t), λ(t))∥ ≤ ∥Z(t)∥+
∥∥∥∇θℓ(θ

(t))− 1

r|D|
∑

x∈B(t)

∇θℓ(θ
(t);x)

∥∥∥
+
∥∥∥∇θR(θ(t), λ(t))−

∑
x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥

For ĝθ ∈ Rd, using the concentration of Gaussian noise we obtain,

P [∥Z(t)∥ ≥ σ
√
d log(4/ρ)] ≤ ρ

4
.

For the second term, by Bernstein’s inequality we have

P

∥∥∥∥∥∥
 ∑

i∈B(t)

∇θℓ(θ, λ;xi)

− r|D|∇θℓ(θt, λt)

∥∥∥∥∥∥ ≥ α

 ≤ exp

(
− α2/2

αGℓ/3 + |D|G2
ℓ max {r, 1/2}

)
.

Thus with probability at least 1− ρ
4 one has that,∥∥∥∥∥∥

 1

r|D|
∑

i∈B(t)

∇θℓ(θ, λ, xi)

−∇θℓ(θt, λt)

∥∥∥∥∥∥ ≤ 4max

{
Gℓ

√
log(4/ρ)√
r|D|

,
Gℓ log(4/ρ)

r|D|

}
.

And so if r|D| ≥ log(4/ρ) we have with probability at least 1− ρ/4 that,∥∥∥∇θℓ(θ
(t))− 1

r|D|
∑

x∈B(t)

∇θℓ(θ
(t);x)

∥∥∥ ≤ 4Gℓ

√
log(4/ρ)√
r|D|

.

For the regularizer we have,∥∥∥∇θR(θ(t), λ(t))−
∑

x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥

≤

∥∥∥∥∥∥∥∥
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈DI ]∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

∇θ[στ (h(θ;x))k1 ]−
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∇θ[στ (h(θ;x))k1 ]

∥∥∥∥∥∥∥∥
≤

∣∣∣∣∣∣∣∣
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈DI ]∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

−
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣∣ τGh

≤

∣∣∣∣∣∣∣∣
J∑

j=1

λj

∑
I∈Ij

∑
k1∈[K]

αj,I,k1

 |DI |∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

− |B∩I |∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2


∣∣∣∣∣∣∣∣ τGh

≤

 J∑
j=1

λj

∣∣∣∣∣∣∣∣
∑
I∈Ij

∑
k1∈[K]

αj,I,k1 |DI |∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

−
∑
I∈Ij

∑
k1∈[K]

αj,I,k1 |B∩I |∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣∣
 τGh
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The term inside the absolute value can be bounded using the same analysis used in bounding the dual
gradient error. Thus we have with probability at least 1− ρ

4 that,

∥∥∥∇θR(θ(t), λ(t))−
∑

x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥ ≤ ∥Λ∥1τGh

8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

 .

Combining the above bounds yields the claimed bound on the primal gradient error.

D.6 CONVERGENCE OF SGDA

The overall structure of our convergence proof is similar to that of Lin et al. (2020), but with several
significant modifications. Most significantly, our proof explicitly leverages the linear structure of
the dual to improve the convergence rate for our application. This linear structure also allows our
analysis to depend on an ∥ · ∥∞ bound on the gradient error when Λ has bounded ∥ · ∥1 diameter.
This in contrast to previously existing analysis which depend on the ∥ · ∥2 error of the dual gradient,
which could be much worse in our case due to the noise added for privacy. Separately, our analysis
also differs from Lin et al. (2020) in that it accounts for potential bias in the gradient estimates and
tracks the disparate impact the scale of noise in gθ and gλ may have on the convergence rate.

In order to present our proof, we start with some necessary preliminaries. Let Φ(θ) =

maxλ∈Λ {L(θ, λ)}. Let Φ̂ denote the Moreau envelope of Φ with parameter 2β. That is,
Φ̂(θ) = minθ′

{
Φ(θ′) + β∥θ − θ′∥2

}
. Let ∆(t) = Φ(θ(t)) − L(θ(t), λ(t)) for all t ∈ {0, ..., T}.

Further, we define λ∗(θ) = argmaxλ∈Λ {L(θ, λ)}. We denote the proximal operator of a function
f as proxf (θ) = argminθ

{
f(θ′) + 1

2∥θ − θ′∥2
}

. It is known that under the condition that f is
β-smooth and Λ is bounded, that Φ̂ is differentiable with ∇Φ̂(θ) = 2β(θ − proxΦ/[2β](θ)), and
that any point θ for which which ∥∇Φ̂(θ)∥ ≤ α is an (α, α/[2/β])-stationary point with respect to
Definition 5.1; see Lin et al. (2020, Lemma 3.8). Also, under these conditions, Φ is G-Lipschitz. We
defer the reader towards Lin et al. (2020) for more details on these statements.

We present the following statement, which gives a convergence rate for Algorithm 1 in terms of the
amount of noise added.

Theorem D.5. Define Φ̂0 = Φ̂(θ0)−minθ

{
Φ̂(θ)

}
and L0 = L(θ0, λ0)−minλ,θ {L(λ, θ)}. Assume

L(·, ·) is β-smooth, L(·, λ) is G-Lipschitz for all λ ∈ Λ, and L(θ, ·) is linear for all θ ∈ Rd.
Conditional on the event that for all t ∈ {0, ..., T − 1}, ∥gθ,t −∇θL(θ(t), λ(t))∥2 ≤ τθ and ∥g(t)λ −
∇λL(θ(t), λ(t))∥∞ ≤ τλ, when Algorithm 1 is run with ηλ ≥

(
ηθG(G+τθ)

τλ

)
and ηθ =

√
Φ̂0

2Tβ(G2+τ2
θ )

there exists t ∈ {0, ..., T − 1} such that θt is an (α, α/[2β])-stationary point with

α = O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T

 .

We will prove this statement by showing that Algorithm 1 finds a point where the gradient of Φ̂
is small. Note this is sufficient as Lin et al. (2020, Lemma 3.8) implies that a point, θ, for which
∥∇Φ̂(θ)∥ ≤ α is an (α, α/[2β])-stationary point with respect to Definition 5.1.

We will break the majority of the proof into three distinct lemmas. The first lemma gives a bound on
the decrease in Φ̂.

Lemma D.6. Under the assumptions of Theorem D.5, the iterates of Algorithm 1 satisfy for any
t ∈ [T − 1],

Φ̂(θ(t))− Φ̂(θ(t−1)) ≤ −ηθ
4
∥∇Φ̂(θ(t−1))∥2 + 2βηθ∆

(t−1) + 2βη2θ(G
2 + τ2θ ) + 2ηθτ

2
θ . (23)
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Proof. Let θ̂(t−1) = proxΦ̂(θ
(t−1)). By the definition of the Moreau envelope we have

Φ̂(θ(t)) ≤ Φ(θ̂(t−1)) + β∥θ̂(t−1) + θ(t)∥2. (24)

Using the update rule we have

∥θ̂(t−1) − θ(t)∥2 = ∥θ̂(t−1) − θ(t−1) + ηθg
(t−1)
θ ∥2

= ∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ

〉
+ η2θ∥g(t−1)

θ ∥2

≤ ∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ

〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+ 2ηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
+ 2η2θ(G

2 + τ2θ )

Plugging this back into Eqn. (24) and using the definition of the Moreau envelope we obtain,

Φ̂(θ(t)) ≤ Φ̂(θ̂(t−1)) + 2βηθ

〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+ 2βηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
+ 2βη2θ(G

2 + τ2θ ) (25)

By way of bounding the third term on the RHS above, we use Young’s inequality to derive,

2βηθ
〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
≤ β2ηθ

2
∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ∥g(t−1)

θ −∇θL(θ(t−1), λ(t−1))∥2.

Plugging this into the above, we now have the following derivation,

Φ̂(θ(t))− Φ̂(θ̂(t−1))

≤ 2βηθ
〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+

β2ηθ
2
∥θ̂(t−1) − θ(t−1)∥2 + 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

(i)

≤ 2βηθ

(
L(θ̂(t−1), λ(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

≤ 2βηθ

(
Φ(θ̂(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

= 2βηθ

(
Φ(θ̂(t−1)) + Φ(θ(t−1))− Φ(θ(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

(ii)

≤ 2βηθ

(
−β∥θ̂(t−1) − θ(t−1)∥2 +∆(t−1) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

= −ηθβ
2

2
∥θ̂(t−1) − θ(t−1)∥2 + 2βηθ∆

(t−1) + 2βη2
θ(G

2 + τ2
θ ) + 2ηθτ

2
θ

(iii)
= −ηθ

2
∥∇Φ̂((θ(t−1))∥2 + 2βηθ∆

(t−1) + 2βη2
θ(G

2 + τ2
θ ) + 2ηθτ

2
θ

Above, (i) uses the fact that θ̂(t−1) is generated by the proximal operator. Inequality (ii) uses the fact
the definitions of the Moreau envelope and ∆(t−1), i.e. ∥θ̂(t−1) − θ(t−1)∥2 = 1

4β2 ∥∇Φ̂(θ(t−1))∥2.
Equality (iii) uses properties of the Moreau envelope.

The next two lemmas pertain to bounding the ∆(t) terms.

Lemma D.7. Under the conditions of Theorem D.5, for any t ∈ [T ] and s ≤ t− 1 one has,

∆(t−1) ≤ ηθG(G+ τθ)(2t− 2s− 1) +
1

2ηλ
(∥λ∗(θ(s))− λ(t−1)∥2 − ∥λ∗(θ(s))− λ(t)∥2) + 2∥Λ∥1τλ

+ [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]. (26)
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Proof. Let s ≤ t− 1. By adding and subtracting terms we have
∆(t−1) = [L(θ(t−1), λ∗(θ(t−1)))− L(θ(t−1), λ∗(θ(s)))] + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]

+ [L(θ(t−1), λ(t))− L(θ(t), λ(t))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ [L(θ(t−1), λ∗(θ(t−1)))− L(θ(t−1), λ∗(θ(t−1))] + [L(θ(t−1), λ∗(θ(s))− L(θ(t−1), λ∗(θ(s)))]

+ [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))] + [L(θ(t−1), λ(t))− L(θ(t), λ(t))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ G(G+ τθ)[2∥θ(t−1) − θ(s)∥+ ∥θ(t−1) − θ(t)∥] + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]

+ [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ ηθG(G+ τθ)(2t− 2s− 1) + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))].

To complete the lemma, we will bound the loss difference L(θ(t−1), λ∗(θ(s))) − L(θ(t−1), λ(t)).
Since L(θ(t−1), ·) is linear we have,

L(θ(t−1), λ(t−1))− L(θ(t−1), λ(t)) =
〈
λ(t−1) − λ(t),∇λL(θ(t−1), λ(t))

〉
≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+
〈
λ(t−1) − λ(t),∇λL(θ(t−1), λ(t))− g

(t)
λ )
〉

≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+ ∥λ(t−1) − λ(t)∥1 · ∥∇λL(θ(t−1), λ(t))− g

(t)
λ )∥∞

≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+ ∥Λ∥1τλ

Now a standard analysis using the fact that λ(t−1) + g
(t)
λ is projected orthogonaly onto Λ we have

0 ≤ ∥λ(t) − λ(t−1)∥2 ≤ 1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2 + λ

〈
g
(t)
λ , λ(t) − λ∗

〉
Now by plugging back into the above yields,
L(θ(t−1), λ(t−1))− L(θ(t−1), λ(t))

≤
〈
λ∗(θ(s))− λ(t), g

(t)
λ

〉
+ ∥Λ∥1τλ +

1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2.

Using concavity we obtain,

L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)) ≤
〈
λ∗(θ(s))− λ(t), g

(t)
λ −∇λL(θ(t−1), λ(t))

〉
+ ∥Λ∥1τλ

+
1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2

≤ 1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2 + 2∥Λ∥1τλ.

Plugging this back into the starting inequality achieves the claimed bound.

Lemma D.8. Under the conditions of Theorem D.5 it holds that,

1

T

T−1∑
t=0

∆(t) ≤ ∥Λ∥1

√
ηθG(G+ τθ)

ηλ
+ 2∥Λ∥1τλ +

L(θT , λT )− L(θ0, λ0)

T
.

Proof. For any s ∈ [T ] and M ∈ [T ] one has by analyzing the telescoping sum created from Eqn.(26)
that
s+M−1∑

t=s

∆(t) ≤ ηθG(G+ τθ)M
2 +

1

2ηλ
(∥λ(s) − λ∗(θ(s))∥2 + ∥λ(s+M) − λ∗(θ(s))∥2) + 2M∥Λ∥1τλ

+ [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))]

≤ ηθG(G+ τθ)M
2 +

1

ηλ
∥Λ∥22 + 2M∥Λ∥1τλ + [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))]

≤ ηθG(G+ τθ)M
2 +

1

ηλ
∥Λ∥21 + 2M∥Λ∥1τλ + [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))].
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By applying this inequality over disjoint “blocks” of iterates, of which there are at most T/M , we
can use this to obtain,

1

T

T−1∑
t=0

∆(t) ≤ ηθG(G+ τθ)M +
1

Mηλ
∥Λ∥21 + 2∥Λ∥1τλ +

L0

T
.

We can now set M = ∥Λ∥1√
ηθηλG(G+τθ)

to obtain the desired inequality.

We can now prove the main theorem statement.

Proof of Theorem D.5. Recall Φ̂0 = Φ̂(θ0)−minθ

{
Φ̂(θ)

}
andL0 = L(θ0, λ0)−minλ,θ {L(λ, θ)}.

Summing over Eqn. (23) obtains,

Φ̂(θT−1) ≤ Φ̂(θ0) + 2βηθ

(
T−1∑
t=0

∆(t)

)
+ 2T [βη2θ(G

2 + τ2θ ) + ηθτ
2
θ ]−

ηθ
4

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
.

Which implies for any M ∈ [T ],

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤ 4Φ̂0

ηθT
+

8β

T

(
T−1∑
t=0

∆(t)

)
+ 4βηθ(G

2 + τ2θ ) + 4τ2θ

(i)

≤ 4Φ̂0

ηθT
+ 8βηθ(G

2 + τ2θ ) + 4τ2θ

+ 8β∥Λ∥1

√
ηθG(G+ τθ)

ηλ
+ 8β∥Λ∥1τλ +

8βL0

T
.

Inequality (i) above uses Eqn. (26). Setting ηλ ≥
(

ηθG(G+τθ)
τλ

)
yields,

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤ 4Φ̂0

ηθT
+ 8βηθ(G

2 + τ2θ ) + 4τ2θ + 16β∥Λ∥1τλ +
8βL0

T
.

Setting ηθ =
√

Φ̂0

2Tβ(G2+τ2
θ )

yields,

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤

16
√
Φ̂0β(G2 + τ2θ )√

T
+ 4τ2θ + 16β∥Λ∥1τλ +

16βL0

T
.

Finally, this implies the claimed convergence.

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥
)

= O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T

 .

D.7 REGULARITY PROPERTIES OF LAGRANGIAN

We will use the following standard fact about composing Lipschitz and/or smooth functions.

Lemma D.9. Let h : Rd 7→ Rk be Gh-Lipschitz and βh-smooth and g : Rk 7→ R be Gg-Lipschitz and
βg-smooth. Then g ◦ h is (GhGg)-Lipschitz and (Ghβg +G2

gβh)-smooth.
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Proof. Let Jh(θ) denote the Jacobian of h at θ. Since h is Gh Lipschitz, the spectral norm of
the Jacobian is at most Gh, ∥Jh(θ)∥2 ≤ Gh. Observe ∇θg(h(θ)) = ∇g(h(θ))⊤Jh(θ). Thus
∥∇θg(h(θ))∥ ≤ ∥∇g(h(θ))∥ · ∥Jh(θ)∥2 ≤ GgGh.

For the second part of the claim, observe that,

∥∇θg(h(θ))−∇θg(h(θ
′))∥ ≤ ∥∇g(h(θ))Jh(θ)−∇g(h(θ′))Jh(θ

′)∥
= ∥[∇g(h(θ))−∇g(h(θ′))]Jh(θ

′) +∇g(h(θ))[Jh(θ)− Jh(θ
′)]∥

≤ (G2
hβg +Ggβh)∥θ − θ′∥.

In the following, we assume the predictor h is Gh-Lipschitz and βh-smooth with respect to h,
and similarly for ℓ with parameters Gℓ and βℓ. Our aim is to derive regularity parameters for the
Lagrangian given these base parameters. Note that the function which outputs one coordinate the
tempered soft max is τ -Lipschitz and τ -smooth.

Lemma D.10. Let Λ ⊂ (R+)K×Q be a bounded set of diameter at most ∥Λ∥1 w.r.t. ∥ · ∥1. Assume for
any j ∈ [J ] that the vector α associated with rate constraint j satisfies ∥α∥1 ≤ c1 for some constant
c. Then L(·, λ) is G-Lipschitz with G = Gℓ + cτGh∥Λ∥1 for any λ ∈ Λ and L is β-smooth with

β = βℓ + 2cτ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
.

Before presenting the proof, we note that Gℓ and βℓ could also be further decomposed using the
Lipschitz/smoothness constants of ℓ and h via Lemma D.9. However, as these parameters are not
affected by our approach in the way the regularity parameters of the regularizer are, we omit these
more specific details.

Proof. Let for I ⊆ [Q] let DI = ∪q∈IDq. To establish Lipschitzness w.r.t. θ, we have for any θ, λ
that

∥∇θL(θ, λ)∥ ≤ ∥∇θℓ(θ)∥+
J∑

j=1

λj

∑
I∈Jj

K∑
k

αj,I,k

∥∥∥∇θPk(DI ; θ)
∥∥∥
2

≤ Gℓ + ∥λ∥1c1 · max
S⊆D,k∈[K]

{∥∇θPk(S; θ)∥}

Note that for any S ⊆ D and k ∈ [K] that ∥∇θPk(S; θ, τ)∥ = ∥ 1
|S|
∑

x∈S ∇θ[στ (h(θ;x))k]∥ ≤
τGh. Plugging this into the above achieved the claimed Lipschitz parameter.

To prove L is smooth, we have for any θ, θ′ ∈ Rd and λ, λ′ ∈ Λ,

∥∇L(θ, λ)−∇L(θ′, λ′)∥2 ≤ 2∥∇L(θ, λ)−∇L(θ, λ′)∥2 + 2∥∇L(θ, λ′)−∇L(θ′, λ′)∥2

= 2∥∇θL(θ, λ)−∇θL(θ, λ′)∥2 + 2∥∇λL(θ, λ)−∇λL(θ, λ′)∥2

+ 2∥∇θL(θ, λ′)−∇θL(θ′, λ′)∥2 + 2∥∇λL(θ, λ′)−∇λL(θ′, λ′)∥2.
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Bounding each term we have,

∥∇θL(θ, λ)−∇θL(θ, λ′)∥ ≤

∥∥∥∥∥∥
J∑

j=1

(λj − λ′
j)
∑
I∈Jj

K∑
k

αj,I,k∇θPk(DI ; θ)

∥∥∥∥∥∥
2

≤ c1τGh∥λ− λ′∥1
≤ c1τGh

√
J∥λ− λ′∥2.

∥∇λL(θ, λ)−∇λL(θ, λ′)∥ = 0.

∥∇θL(θ, λ′)−∇θL(θ′, λ′)∥ ≤ ∥∇θℓ(θ)−∇θℓ(θ
′)∥+

∥∥∥∥∥∥
J∑

j=1

λ′
j

∑
I∈Jj

K∑
k

αj,I,k(∇θPk(DI ; θ)−∇θPk(DI ; θ
′))

∥∥∥∥∥∥
2

(i)

≤ βℓ∥θ − θ′∥+ ∥Λ∥1c1(Ghτ + τ2βh)∥θ − θ′∥
≤ (βℓ + c1∥Λ∥1τ(Gh + τβh))∥θ − θ′∥

∥∇λL(θ, λ′)−∇λL(θ′, λ′)∥ ≤
∥∥∥ J∑

j=1

λ′
j

∑
I∈Jj

K∑
k=1

αj,q,k (Pk(h(θ;x)− Pk(h(θ
′;x)))

∥∥∥
(ii)

≤ c1τ∥Λ∥1Gh∥θ − θ′∥
Above, in (i) we have used the fact that Pk is the composition of a Gh-Lipschitz and βh-smooth
function with a τ -Lipschitz and τ -smooth function, resulting in a (Ghτ + τ2β)-smooth function.
Similarly, in (ii), we have used the fact that Pk is the composition of two Lipschitz functions,
resulting in another Lipschitz function.

Ultimately we obtain that ∥∇L(θ, λ)−∇L(θ′, λ′)∥2 is bounded by,

max
{
(c1τGh

√
J)2, [βℓ + ∥Λ∥1c1(Ghτ + τ2βh)]

2 + [c1τ∥Λ∥1Gh]
2
}
(∥θ − θ′∥2 + ∥λ− λ∥2).

This implies that f is β-smooth with β = βℓ + 2c1τ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET AND PRE-PROCESSING DETAILS

We evaluate RaCO-DP on tabular fairness and privacy benchmark datasets from Lowy et al.
(2023), namely, Adult (Becker & Kohavi, 1996), German Credit Card (Hofmann, 1994),
and Parkinsons (Little, 2007). The classification task for Credit Card and Parkinsons
is “whether the user will default payment the next month”, and “whether the total UPDRS score
of the patient is greater than the median or not,” respectively. For Adult, the task is “whether the
individual will make more than $50K.” In all tasks, the sensitive attribute is gender.

To evaluate on more diverse subgroups, we also evaluate RaCO-DP on folkstables which is the
2018 yearly American Community Survey. We use the python package ‘folktables‘ (Ding et al., 2021)
to download and process the data for the Alabama (“AL”) state in the US. We choose a “5”-year
horizon and choose survey option to be ‘person.‘ We adopt the experimental setup of Lowy et al.
(2023) (including classification task, pre-processing, etc.) and report the baselines results directly
from the official repository (Gupta, 2023).

We also present results on the Heart Disease Health Indicators dataset Alex Teboul (21 risk factors).

To prove the scalability of RaCO-DP on neural network, we train a ResNet16 He et al. (2016) on the
CelebA dataset. CelebA (CelebFaces Attributes Dataset) is a large-scale face dataset containing over
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Dataset SGD DP-SGD RaCO-DP DP-FERMI
Adult 0.018± 0.001 ms 0.037± 0.001 ms 0.064± 0.010 ms 85± 10 ms
CreditCard 0.020± 0.005 ms 0.035± 0.004 ms 0.055± 0.003 ms 88± 14 ms

Table 2: Computational overhead comparison in terms of wall-time clock.

200,000 celebrity images, each annotated with 40 attribute labels (e.g. smiling, eyeglasses, or hair
color) and five landmark locations, widely used for training and testing in computer vision tasks such
as face recognition. For the fairness constraints, CelebA is used with gender as the sensitive attribute.

E.2 HYPERPARAMETER TUNING AND ACCOUNTING

Our hyperparameter selection process follows a two-phase approach. In the first phase, we run
a hyperparameter search over predefined ranges: Gaussian noise variance σ ∈ [3, 6], Laplace
parameter b ∈ [0.1, 0.5], learning rates ηθ, ηλ ∈ [10−4, 0.1], mini-batch size B ∈ [256, 1256], and
softmax temperature τ ∈ [1, 10]. We constrain the dual variables λ to be non-negative by setting
the projection set Λ = (R+)J . For each configuration, we target a specific constraint value γ
and evaluate performance across five different seeds, selecting the hyperparameters that achieve
the best validation accuracy while satisfying the constraint. In the second phase, we use the best
hyperparameters identified through 200 optimization runs to train 20 new models. We report test
accuracy and constraint satisfaction for each model based on the checkpoint that achieved the highest
validation accuracy while satisfying the constraints on the train set.

Recent work by Lebeda et al. (2024) and Chua et al. (2024) shows that the common use of shuffled
fixed-size mini-batches can violate guarantees from privacy accountants, which assume Poisson
sampling. Therefore, we use Poisson sampling for the mini-batches.

E.3 REGULARIZATION–PRIVACY–ACCURACY TRADE-OFFS

Demographic Parity. In Figure 4, we compare fairness–utility trade-offs of RaCO-DP against
baseline methods on logistic regression models trained with demographic parity constraints across
the Adult, Credit-Card, and Parkinsons datasets. We evaluate a range of privacy budgets
ε ∈ {0.5, 1, 2, 9}. Consistent with the main results in Section 6, RaCO-DP significantly narrows the
gap to the non-private baseline and Pareto-dominates existing private baselines.

False Negative Rates. Figure 5 illustrates the flexibility of our framework beyond fairness constraints
by enforcing limits on false negative rate (FNR, i.e., 1 − recall). Controlling FNR is particularly
important in medical settings. For example, on the Heart dataset, XGBoost achieves 90% accuracy
but suffers from an FNR of 90%. Non-private SGDA reduces FNR to 58% with 87.5% accuracy,
while DP-RaCO nearly matches this trade-off with 60% FNR at the same accuracy (Figure 5b). We
also observe that once the constraint threshold is pushed beyond a certain point, RaCO-DP fails to
further reduce FNR, an effect discussed in Section 6 (Limitations) and analyzed in Appendix E.6.

Equalized Odds. In Figure 6, we show results on the Credit-Card dataset for logistic regression
trained under equalized odds constraints. The performance trends mirror those under demographic
parity. Note that the DP-FERMI results are taken directly from Lowy et al. (2023) and not re-run; as
reported, both mean and variance remain unchanged across privacy levels ε ∈ {0.5, 1, 3, 9}.

E.4 HARD VS. SOFT CONSTRAINTS

Figure 8b compares soft and hard constraints for the dual update. Notably, the soft constraint (with
tuned softmax temperature τ ) achieves similar performance compared to its hard constraint coun-
terpart (solid dots) for most target values while maintaining similar levels of constraint satisfaction.
This suggests that using soft constraints for the dual update does not significantly impact utility or
constraint enforcement.
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(c) Parkinsons

Figure 4: Fairness–utility trade-offs under demographic parity constraints for logistic regression
on three benchmark datasets. RaCO-DP consistently reduces the gap to non-private performance
and outperforms private baselines across privacy budgets ε ∈ {0.5, 1, 2, 9}.
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Figure 5: Performance–privacy trade-offs under a false negative rate (FNR) constraint. On the
Heart dataset, RaCO-DP achieves accuracy–FNR trade-offs competitive with non-private baselines.
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Figure 6: Fairness–utility trade-offs under equalized odds constraints for logistic regression on the
Credit-Card dataset. Results for DP-FERMI are taken from Lowy et al. (2023).
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Figure 7: Fairness–utility trade-offs under demographic parity for logistic regression on the
ACSEmployment dataset.
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(a) False Negative Rate-Constrained Classification
on Adult. The clipping norm C plays a critical role in
satisfying a pessimistic constraint (γ = 0), even with-
out noise related to differential privacy (σ = 0, b =
∞).
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Figure 8: Constraint Analysis on Adult Dataset. (a) Effect of clipping norm on false negative
rate-constrained classification. (b) Comparison of hard vs. soft demographic parity constraints.
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E.5 COMPUTE PERFORMANCE

We provide a computational comparison between methods in Table 2, where we report the mean time
of computing an SGD step, compared to a DP-SGD step and a RaCO-DP step on an eight-core CPU
machine on Adult and Credit-Card on a batch size of 512. For reference, we also report the mean
time of a DP-FERMI step using the publicly available implementation.

RaCO-DP is 3 orders of magnitude faster to train than DP-FERMI on the same machine. Our
algorithm builds on DP-SGD with the only additional overhead being computing the dual updates,
which scales linearly in the number of constraints.

We note that our method’s extra cost over standard DP-SGD is computing the dual update, which,
if implemented naively, scales linearly in the number of constraints Q, implying Q extra backward
passes to compute the gradients in the worst case. However, in practice, we can compute the gradient
only for the active constraints (λ(i) > 0), which can significantly reducing the computational costs.

E.6 IMPACT OF THE CLIPPING NORM

Figure 8a shows how the clipping threshold C affects RaCO-DP when we enforce a pessimistic
constraint of FNR < 0 on the ADULT dataset, in a non-private setting (σ = 0, b = ∞). With a
small clipping norm (C ≤ 2) the empirical FNR violation is still above 0.6, confirming that the
bias introduced by clipping alone can drive the iterates far outside the feasible set. As the threshold
increases, this bias shrinks rapidly; once C ≥ 12.5, the FNR aligns with the target (red line), and the
constraint is consistently satisfied.

These results demonstrate that an obstacle to satisfying the chosen constraints for our RaCO-DP
is the bias from clipping and not the DP noise. Therefore, we stress that tuning C is an important
aspect when applying RaCO-DP in practice.

E.7 DEEP LEARNING EXPERIMENT

We further evaluate RaCO-DP on deep neural networks by training a ResNet16 He et al. (2016)
on CelebA under demographic parity constraints. Following common practice in private training
Berrada et al. (2023), we replace batch normalization with group normalization (16 groups) to avoid
reliance on batch statistics, which interact poorly with privacy constraints due to their reliance on
batch-level statistics. Models are trained with a batch size of 256. For non-private baselines, we
use a learning rate of 0.01, while private models require a larger learning rate (0.2) to compensate
for the effect of gradient clipping. For ε = 1 and ε = 9, we add Gaussian noise with σ = 1.2
and σ = 0.6, respectively, and set the Laplace noise scale b = 0.5. All results are averaged
over five random seeds. Figure Figure 2a reports accuracy under varying disparity thresholds
γ ∈ {1, 0.1, 0.075, 0.05}, highlighting that RaCO-DP maintains strong utility even under strict
fairness and privacy requirements.

E.8 EXPERIMENTS ON LOW EPSILON
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Figure 9: Variance in fairness–utility
trade-offs at small privacy budgets.

In figure Figure 9 we employ RaCO-DP to train a logis-
tic regression on Adult with demographic parity con-
straints at three restrictive privacy-budget settings: ε ∈
{0.01, 0.1, 1}. From a utility perspective, tightening the
privacy budget from ε = 1 to ε = 0.1 results in only a
modest decrease in accuracy of approximately three per-
centage points (≈ 85% to≈ 82%). Even under a stringent
budget of ε = 0.01, the most accurate model maintains
an accuracy of about 80%. From a fairness perspective,
smaller budgets lead to wider 95% confidence intervals
(CIs) for the disparity metric γ: the CI width increases
from roughly 0.05 at ε = 0.1 to about 0.10 at ε = 0.01,
with a mean γ ≈ 0.17. The corresponding mean disparity
gap between ε = 0.01 and ε = 0.1 can be as large as 0.15
(15%), reflecting the greater noise introduced at lower ε.
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Overall, DP-RaCO exhibits graceful degradation: while
very small budgets (ε = 0.01) exacerbate the accuracy–fairness trade-off, a moderate budget (ε = 0.1)
achieves reliable performance with a narrow CI (≈ ±0.05).

F BROADER IMPACT

An important takeaway from our work is that privacy and robustness criteria (such as the absence of
performance disparities for underrepresented groups) are not inherently at odds with each other. This
realization calls into question the practice of broadening the concept of privacy-utility trade-offs to
include trade-offs with other robustness criteria. In high-risk decision-making systems that require
both privacy and robustness, the responsibility for achieving such robustness falls on the beneficiaries
of automated decision-making systems (governments and private institutions), as well as algorithm
designers. These stakeholders must take care not to mistakenly attribute a lack of robustness to
privacy mitigations, or a lack of privacy to robustness requirements.

Our work contributes to the existing literature in algorithmic fairness and privacy, and as such, adopts
and further formalizes their computational interpretations of these human values. It is important
to note that these interpretations, while useful in the contexts we have explored, are by no means
collectively exhaustive. Specifically, the use of our algorithm does not ensure privacy in the broad
sense, but rather in the limited sense of differential privacy, which protects the privacy of individuals
whose data has been collected for training. Given the technical complexities of correctly implementing
differential privacy, inappropriate tuning of model parameters or use outside its intended context can
lead to a false sense of privacy—and, worse, may be exploited for privacy-washing by malicious
actors in charge.
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