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Abstract

Estimators in statistics and machine learning must typically trade off between
efficiency, having low variance for a fixed target, and distributional robustness,
such as multiaccuracy, or having low bias over a range of possible targets. In
this paper, we consider a simple estimator, ridge boosting: starting with any
initial predictor, perform a single boosting step with (kernel) ridge regression.
Surprisingly, we show that ridge boosting simultaneously achieves both efficiency
and distributional robustness: for target distribution shifts that lie within an RKHS
unit ball, this estimator maintains low bias across all such shifts and has variance
at the semiparametric efficiency bound for each target. In addition to bridging
otherwise distinct research areas, this result has immediate practical value. Since
ridge boosting uses only data from the source distribution, researchers can train
a single model to obtain both robust and efficient estimates for multiple target
estimands at the same time, eliminating the need to fit separate semiparametric
efficient estimators for each target. We assess this approach through simulations
and an application estimating the age profile of retirement income.

1 Introduction

Estimators in statistics and machine learning must typically trade off between efficiency and robust-
ness. Efficient estimators, largely developed in semiparametric statistics and econometrics, focus
on having the smallest asymptotic variance (the “efficient variance”) among unbiased estimates
for a single target estimand. Importantly, such estimators provide valid asymptotically Normal
confidence intervals—critical in many empirical applications—and these intervals have the smallest
possible width. By contrast, robust estimators, the focus of an active literature in Distributionally
Robust Optimization (DRO) and other subfields, instead aim to have good performance for many,
possibly unspecified targets. For example, Kim et al. [2022] show that a class of “multi-accurate”
estimators—based on boosting an initial predictor—constrains worst-case bias for predicting the
unknown mean in a large class of covariate shift problems. In general, we expect that controlling
worst-case bias across many estimands would come at the cost of increased variance.

Surprisingly, we show that a simple version of boosting, once-boosting with ridge regression, is
simultaneously robust over a large set of possible distribution shifts, while also achieving the efficient
variance and smallest possible confidence interval for each estimation target separately. Constructing
this ridge boosting predictor is simple: we start with any initial predictor, and then perform one step
of boosting using ridge regression in a Reproducing Kernel Hilbert Space (RKHS). For all target
populations whose density ratio with respect to the source population is well-approximated by the
RKHS, the resulting estimator is approximately unbiased and achieves the semiparametric efficiency
bound. This is a very general (but not completely general) class of distribution shifts: it includes any
shift whose density ratio can be expressed as linear in a fixed transformation of the covariates, even
infinite-dimensional transformations. For example, this includes distribution shifts whose density
ratio can be approximated as linear in the last-layer embedding of a pre-trained large language model,
but not the more general class that would involve fine-tuning the neural network.
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We similarly establish this result for a broad class of linear estimands, generalizing the results from
Kim et al. [2022] beyond the missing mean to more complex targets like average derivatives and
impulse responses. In this more general setting, we replace the density ratio with the more flexible
Riesz representer corresponding to the estimand of interest [Chernozhukov et al., 2021]. Our key
technical insight is that kernel ridge regression implicitly estimates the Riesz representer needed for
semiparametric estimation: the ridge boosting estimator we analyze is in fact numerically equivalent
to the “Automatic Debiased Machine Learning” estimator of Chernozhukov et al. [2021] and inherits
its optimality properties. As a result, we can train a single predictor using only source distribution
data. Deploying this predictor to estimate any target estimand (whose Riesz representer is in the
RKHS) will then have both low bias under distribution shift and asymptotically optimal confidence
intervals—without ever explicitly computing target-specific bias correction terms.

Our results have immediate practical implications. In settings where practitioners must estimate
many related quantities under different covariate shifts—such as estimating health outcomes across
multiple hospitals, or computing age profiles of economic variables—our approach eliminates the
need to fit separate semiparametric efficient estimators for each target. As we show in simulations,
this approach also yields valid confidence intervals for scalar estimands, an important requirement
for many applications.

Paper organization. The paper proceeds as follows. Section 2 formalizes the problem setup,
defining our estimation targets and contrasting robustness and efficiency. Section 3 introduces ridge
boosting and proves it is both multiaccurate and semiparametrically efficient. Section 4 demonstrates
performance through simulations and an empirical application. Section 5 concludes with limitations
and future directions.

1.1 Related literature

Multiaccuracy and Multicalibration: Multi-calibration, introduced by Hébert-Johnson et al. [2018],
is a refinement of group calibration that requires a predictor to be simultaneously calibrated across a
rich collection of (potentially overlapping) subpopulations. For a prediction task, calibration requires
that among the individuals which receive prediction f(x) = v, the true expectation is v. Variants of
the original definition have been studied by a number of works [Kim et al., 2019, 2022, Deng et al.,
2023, Jung et al., 2021, Gopalan et al., 2022]). Multiaccuracy [Kim et al., 2019] is a weaker version
of multi-calibration: it weakens multi-calibration by removing conditioning on the predicted values.
Both concepts strengthen classical group fairness by ensuring fine-grained predictive accuracy without
sacrificing overall performance. The multiaccuracy criterion is a special case of DRO [Hastings et al.,
2024]. The link between multicalibration and boosting is discussed extensively in Globus-Harris
et al. [2023]. Long et al. [2025] consider boosting over an RKHS to achieve multiaccuracy, but for
classification. It would be interesting to see whether or not we could extend our result to their setting.

Semiparametric efficiency and doubly robustness: Semiparametric efficiency theory provides
a rigorous foundation for the efficient estimation of target parameters in models that incorporate
both parametric and nonparametric components [Bickel et al., 1993, Newey, 1994]. In the context
of causal inference, doubly robust estimators [Robins et al., 1994, Kennedy, 2024] form a central
class of methods that can attain semiparametric efficiency under correct specification of both. One
motivation for these estimators comes from orthogonal (or Neyman-orthogonal) estimating equations
[Chernozhukov et al., 2018, 2021, Foster and Syrgkanis, 2023], which reduce sensitivity to errors
in nuisance function estimation. A complementary line of work [Zubizarreta, 2015, Ben-Michael
et al., 2021, Athey et al., 2018, Hirshberg and Wager, 2021, Bruns-Smith et al., 2025a] focuses on
balancing weights, which aim to reweight samples so that covariate distributions are matched across
treatment groups. When balancing weights are combined with outcome regression, the resulting
augmented estimators inherit both double robustness and semiparametric efficiency. In parallel,
targeted maximum likelihood estimation (TMLE) [Van Der Laan and Rubin, 2006, Van der Laan
et al., 2011] shows that, by incorporating a targeting step based on the efficient influence function
of the parameter of interest and grounded in likelihood theory, TMLE achieves semiparametric
efficiency. Cho et al. [2024] consider the TMLE update in an RKHS, and find a closely related
universal adaptability property. In future work, it may be possible to unify their results with our
boosting and multicalibration setting.
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Connection between multicalibration and causal inference: There are several recent papers
discussing the connection between multicalibration and causal inference. Wu et al. [2024] show
the connection between invariant risk minimization and multicalibration in the context of concept
shift. Ye and Li [2024] explores multicalibration and universal adaptability in survival analysis. Kern
et al. [2024] shows that the multi-accurate conditional average treatment effect estimate is robust
to unknown covariate shifts. Van Der Laan et al. [2023] also calibrate a baseline model to achieve
semiparametric efficiency, albeit without using multicalibration.

2 Problem setup: Robustness vs efficiency

2.1 Notation

Let X ∈ X denote covariates and Y ∈ Y ⊆ R an outcome of interest. We consider a source
distribution P over (X,Y ). We assume that we have np independent and identically distributed
observations from P , denoted by {(Xi, Yi)}

np

i=1 ∼i.i.d. P . We let Xp ∈ Rnp×d denote the matrix
of observed covariates and Yp ∈ Rnp the corresponding vector of outcomes. Define γ0(x) :=
EP [Y |X = x], the optimal mean-squared error predictor of Y given X in P .

2.2 Defining our estimation target

We consider the goal of estimating a scalar summary of the optimal predictor γ0 [see Chernozhukov
et al., 2018]. Examples include estimating a missing mean under covariate shift, estimating an
average treatment effect, and estimating an average derivative. This setup generalizes the estimands
considered in Kim et al. [2022].

Definition 1 (Target Estimand). For any function f : X → Y , define:

θtarget(f) := EP [m(f,X)],

where m is some real-valued function of f and X such that θtarget is linear in f . Our target estimand
is:

θ0 := θtarget(γ0).

Assumption 1 (Continuity). We assume that θtarget is a continuous linear functional. That is, there
exists a constant C > 0 such that:

θ(f)2 ≤ CEP [f(X)2],

for all f with E[f(X)2] <∞.

We now make this concrete with some examples.

Example 1 (Missing Mean Under Covariate Shift): We begin with an example that will be familiar
to machine learning practitioners. Let Q be another distribution on (X,Y ). We assume that we
observe samples of X drawn from Q, but that Y is unobserved. Our goal is to estimate the missing
mean EQ[Y ]. For example, if we collect health outcomes (Y ) in New York City (P ), our goal might
be to use that data to infer average health outcomes in another city like Raleigh (Q).

The issue is that New York and Raleigh are very different cities. But under the covariate shift
assumption that EP [Y |X] = EQ[Y |X], the missing mean can be written as:

EQ[Y ] = EQ[γ0(X)] = EP

[
dQ

dP
(X)γ0(X)

]
=: θtarget(γ0),

exactly as in Definition 1. In this example, Assumption 3 holds if and only if Q is absolutely
continuous with respect to P and

EP

[
dQ

dP
(X)2

]
<∞.

The analogous example in causal inference is estimating the counterfactual potential outcome for
treated units when targeting the Average Treatment Effect on the Treated: P are the control units, Q
are the treated units, and Y (0) replaces Y . See Johansson et al. [2022] for discussion.
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Example 2 (Average Derivative): We now consider an example common in applied economics. Let
X1 denote the first component of X . Then define the average derivative as:

θtarget(γ0) = EP

[
∂γ0(X)

∂X1

]
.

This θtarget is also a linear functional. For example, if Y is household spending, X1 is household
income, and the remainder ofX contains other household characteristics, then θtarget(γ0) measures the
average spending response to a change in income, known as the “Marginal Propensity to Consume.”

A central object in what follows will be the Riesz representer corresponding to the estimand θtarget:
Definition 2 (Riesz representer). Every continuous linear functional θ has a corresponding Riesz
representer, a unique function αθ(x) such that:

θ(f) = EP [αθ(X)f(X)],

for all f such that EP [f(X)2] <∞. We will write αtarget(x) to denote the Riesz representer of θtarget.

Example (Density Ratio): When θtarget(f) = EQ[f(X)], then the Riesz representer is the density
ratio, αtarget(x) = dQ/dP (x). This has a known analytic form: αtarget(x) = e(x)/(1− e(x)) where
e(x) is the propensity score or domain classifier for Q vs. P .

Note that our setup focuses on scalar summaries of the optimal predictor, and does not, for example,
consider finding a predictor that achieves small mean squared error uniformly over a target distribution
Q. Recent work in Kern et al. [2024] suggests that we could extend our results to hold uniformly
over X . We leave such an extension to future work.

2.3 Plug-in estimation and regularization bias

Before turning to robustness and efficiency, we introduce a natural starting place, the plug-in estimator.
This first fits γ̂(X) by predicting Y from X using samples from population P and then computes:

θ̂target(γ̂) :=
1

np

np∑
i=1

m(γ̂, Xi). (1)

In the special case of the missing mean (Example 1), we fit our predictor under P , but apply it to
covariates drawn from Q. That is, say that we observe nq iid samples of X from Q. The plug-in
estimate is then:1 θ̂target(γ̂) :=

1
nq

∑nq

j=1 γ̂(Xj).

The core difficulty with the plug-in estimator is regularization bias. When fitting γ̂ via machine
learning, standard methods regularize the predictor to generalize better out-of-sample. Unfortunately,
γ̂ might regularize away parts of the sample-space that are important for θtarget. Say there is a particular
combination of X that is very common in Q, but relatively rare in P . Then a cross-validated predictor
trained under P might regularize away the predictions on those values of X to reduce variance. While
optimal for prediction under P , this would lead to meaningful bias for EQ[Y ], which in turn could
lead to a very poor estimate of the target estimand. Furthermore, bias means that the estimate will not
be asymptotically normal, meaning that standard confidence intervals will not be valid — often an
important desideratum in applied work.

2.4 Robustness: Constraining worst-case bias across many unknown targets

A large literature in robust optimization and algorithmic fairness focuses on constructing estimators
that modify γ̂ above such that the plug-in estimate θ̂(γ̂) has small bias for a range of target quantities
[Kim et al., 2022]. For example, say we observe data from a single source hospital P , but we want to
estimate EQ[Y ] across many different target hospitals Q1, Q2, . . . QK , where collecting unlabeled
data and estimating density ratios αθ for each target site would be costly or possibly infeasible due
to privacy concerns. Can we still estimate a γ̂ from P that is robust to many unknown distribution
shifts? Kim et al. [2022] show that the answer is yes— although as we discuss below, we might be
concerned about this procedure inflating the variance.

1We can technically write this as a special case of m(γ̂, Xi) over a single population by combining the two
populations and introducing an indicator variable for membership in Q.
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Consider a target estimand θtarget satisfying Definition 1 and Assumption 3, but now assume that we
do not have access to θtarget ahead of time. Our goal is to use the observations in P to construct a
predictor γ̂ such that the resulting plug-in estimator for θtarget is approximately unbiased. In other
words, we want to control the worst-case bias over a large set of possible estimands. In the fair
machine learning literature, this condition is known as multiaccuracy:
Definition 3 (Multiaccuracy). Given an “auditing” function class C and source population P , a
predictor f is (C, a)-multiaccurate if for every function c(X) ∈ C,

sup
c∈C

|EP [(Y − f(X)) · c(X)]| ≤ a.

Kim et al. [2019] show that an initial predictor γ̂init can be modified to be multiaccurate by running a
simple boosting procedure, including a version of our main proposal of boosting with ridge regression.

We now generalize the result in Kim et al. [2022], which considered the specific case of estimating
a missing mean under covariate shift, to the more general class defined in Definition 1, where we
replace the density ratio with the Riesz representer. Even if we do not know θtarget in advance, if we
can construct a set Θ such that we believe θtarget ∈ Θ, then we can still obtain an unbiased estimator
of θtarget if we can construct a multiaccurate predictor γ̂ma.
Proposition 1. Let Θ be some set of functionals θ such that Definition 1 and Assumption 3 hold. Let
A be the corresponding set of Riesz representers:

A := {α : ∃θ ∈ Θ s.t. θ(f) = E[f(X)α(X)],∀f with E[f(X)2] <∞}.
Then if γ̂ma is (A, a)-multiaccurate:

|θ(γ̂ma)− θ(γ0)| ≤ a,∀θ ∈ Θ.

Remark 1 (Distributionally-Robust Optimization). Let Θ contain θ(f) = EQk
[f(X)] for many dis-

tributions Qk, where A contains the corresponding density ratios, dQk/dP . In this case, Definition 3
is a special case of the more general literature on Distributionally-Robust Optimization [Hastings
et al., 2024]. For a target estimand, θtarget(f) = EQtarget [f(X)], if dQtarget/dP ∈ A, then θtarget(γ̂ma)
is approximately unbiased for θtarget(γ̂0).

However, we might be concerned about the cost of robustness in terms of additional variance. Since
we enforce small bias over a potentially large class of target estimands θ ∈ Θ, we would therefore
expect larger variance for our specific target estimand θtarget.

2.5 Efficiency: Unbiased estimate with the smallest variance for a single, known target

In many applications, we know our target functional θtarget in advance, such as if we observe samples
of X from the distribution Q at training time. In this case, one popular strategy is to “bias correct”
the initial estimate θ̂target(γ̂), a problem studied extensively in the semiparametric statistics literature
[Chernozhukov et al., 2024]. Importantly, the resulting estimator has the smallest possible variance
among all unbiased estimators [Chernozhukov et al., 2018].

Following the general setup in Chernozhukov et al. [2021], we focus on bias correction using the
Riesz representer of θtarget. Under minimal conditions, if γ̂ is a consistent estimator of EP [Y |X], and
α̂ is a consistent estimator of αtarget(X), then the estimator,

θ̂efficient := θ̂target(γ̂) +
1

np

np∑
i=1

α̂(Xi)(Yi − γ̂(Xi))︸ ︷︷ ︸
bias correction term

,

has the following three properties, asymptotically: (1) it is unbiased, i.e., EP [θ̂efficient] = θtarget(γ0);
(2) it is normally distributed; and (3) it has the smallest variance of all regular asymptotically-linear
estimators. This third property is called semiparametric efficiency, and the corresponding variance is
called the semiparametric efficiency bound, denoted V ∗

θ for θ(γ0). Formally, we have:
√
n
(
θ̂efficient − θtarget(γ0)

)
→ N (0, V ∗

θtarget
), and V̂ →p V

∗
θtarget

,

where V̂ is the sample variance,

V̂ :=
1

np

np∑
i=1

(
m(γ̂, Xi) + α̂(Xi)(Yi − γ̂(Xi))− θ̂efficient

)2
.

See e.g. Chernozhukov et al. [2023] for a set of minimal conditions under which this result holds.

5



3 Ridge boosting simultaneously achieves robustness and efficiency

Thus far, we have explored two classes of estimators: robust estimators that have low bias over many
estimands, and bias-corrected estimators that are unbiased and efficient for a specific target estimand.
In this section, we demonstrate that it is possible to construct an estimator that is both robust and
efficient. Specifically, when the set of target Riesz representers A is the norm ball in an RKHS, we
can construct a multiaccurate predictor that has small worst-case bias over the corresponding Θ while
simultaneously achieving the semiparametric efficient variance for every target θ ∈ Θ. We refer to
the resulting procedure as once-boosting with ridge regression or, more simply, ridge boosting.

While our most general theoretical results only hold when A is a norm-ball in an RKHS, in the
Appendix we sketch out a version of our result for boosting with Random Forests. Whether there
exists a more general result is a exciting topic for future work.

3.1 Ridge boosting

In this section, we introduce the main estimator we analyze, once-boosting with ridge regression.

Setup. An RKHS H is a set of functions h : X → R defined by an inner product. In the most
general case, for all x ∈ X there exists ϕ(x) ∈ H such that for any h ∈ H, h(x) = ⟨h, ϕ(x)⟩. One
special case is the finite dimensional Hilbert space where ϕ(x) is some feature map from X → Rd

and H = {h(x) = β⊤ϕ(x) : β ∈ Rd}; our results, however also hold for infinite-dimensional
RKHS’s. For any h ∈ H, we define the norm ∥h∥2H = ⟨h, h⟩.
For some RKHS H, we consider the following function class:

A = {h ∈ H : ∥h∥H ≤ B},

for some B > 0. We set B = 1 (which will be without loss of generality), so that A forms a unit ball.

Recall that in our robustness setup, A corresponds to the set of Riesz representers for all θ ∈ Θ. In the
covariate shift setting, A is the set of density ratios. Restricting our attention to Riesz representers that
belong to such an A is very general, but not fully general. Such a set can include highly non-linear
functions of x, but only functions that can be written in terms of the fixed basis ϕ(x). For example, A
could be a set of functions that are linear in the last-layer embedding of a pre-trained large language
model (LLM). But A could not include all functions achievable by fine-tuning that pre-trained LLM.

Estimator. We now introduce once-boosting with ridge regression. For notational simplicity, we
present the algorithm in the case where H is a finite-dimensional RKHS with ϕ(x) ∈ Rd — the
arguments are identical in the infinite-dimensional case. We will write Φp ∈ Rnp×d for the matrix
with rows ϕ(xi) for each observation i. Assume that we have an initial estimator of EP [Y |X],
γ̂init(X), which could have been fit with some arbitrary machine learning algorithm. We then perform
a ridge boosting step on the residuals Yp − γ̂init(Xp):

min
β∈Rd

{
∥Yp − γ̂init(Xp)− Φpβ∥22 + λ∥β∥22

}
.

Call the solution β̂boost and define γ̂boost(x) := ϕ(x)⊤β̂boost. Then define:

γ̂ma(x) = γ̂init(x) + γ̂boost(x). (2)

3.2 Ridge boosting is multiaccurate

Next we will show that γ̂ma is indeed multiaccurate. In other words, θ(γ̂ma) is an approxiamtely
unbiased estimate of θ(γ0), for all θ ∈ Θ. We first define the notion of the multiaccuracy error.
Definition 4 (Multi-accuracy error). For a given auditing function class C and a source population
P , the multiaccuracy error of an estimator f̂(X) and its sample analog are defined as:

MAEC(f̂) = sup
c∈C

|EP [c(X) · (Y − f̂(X))]|, M̂AEC(f̂) = sup
c∈C

|c(Xp)
⊤(Yp − f̂(Xp))|.

Then we have the following guarantees:
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Theorem 1. For γ̂ma defined in (2), we have:

M̂AEA(γ̂ma) ≤ max
1≤j≤d

λ

λ+ σ2
j

M̂AEA(γ̂init),

where σ2
j are the eigenvalues of Φ⊤

p Φp. Under standard regularity conditions, with probability 1− η,

MAEA(γ̂ma) ≤ O

(
δn +

√
1/η

np

)
,

for δn such that δn → 0 as n→ ∞.

We provide a proof and additional discussion in the Appendix. The first result shows that one step of
ridge boosting is guaranteed to decrease the sample multiaccuracy error. The second result shows
we can generalize out of sample. The rate of convergence of δn depends on the dimensionality and
smoothness of H. When H is finite-dimensional with dimension d, δn ≤

√
d/n.

Remark 2. We emphasize that Theorem 1 is not a fundamentally new result. The multiaccuracy
literature already proves generalization bounds on the multiaccuracy error for boosting estimators
using ridge regression; see Kim et al. [2019]. However, our boosting procedure differs slightly in its
specifics (e.g. linear boosting instead of exponential weighting) and so we provide Theorem 1 for
completeness. Our proof uses standard techniques from the analysis of kernel ridge regression.

3.3 Ridge boosting is semiparametrically efficient

We showed above that boosting with ridge regression produces a predictor that is multiaccurate with
respect to A. We now show that this multiaccurate estimator is also semiparametrically efficient for
all θ ∈ Θ. Specifically, we will show that ridge boosting implicitly estimates the Riesz representer
and performs semiparametric bias correction. In fact, the resulting estimator θ(γ̂ma) is numerically
equivalent to a special case of Automatic Debiased Machine Learning using kernel Riesz regression
Chernozhukov et al. [2021], Singh [2024].

3.3.1 Ridge regression implicitly estimates Riesz representers

The key fact that will lead to our main result is that ridge regression implicitly estimates Riesz
representers. To see this, notice that for any continuous linear functional θ, the Riesz representer
αθ(X) is the unique solution to the following loss minimization problem

αθ = argmin
α:E[α(X)2]<∞

{EP [α(X)2]− 2θ(α)}. (3)

See Chernozhukov et al. [2021] for more discussion. One way to approximate αθ(X) is to minimize
(3) over an RKHS H. The sample version of this optimization problem is:

min
η∈Rd

{
1

np
η⊤Φ⊤

p Φpη − 2θ(Φp)
⊤η + λ∥η∥22

}
, (4)

with minimizer η̂λ and corresponding Riesz representer estimate α̂λ
θ (x) := ϕ(x)⊤η̂λ. See Singh

[2024] for an analysis of this estimator.

Ridge regression when used to estimate θ can always be rewritten as a weighting estimator with
weights α̂λ

θ (Xp), as we show in the following proposition.

Proposition 2. Let θ be any continuous linear functional, and define the Riesz representer estimate
α̂λ
θ from (4). Let Zp be any function of Xp and Yp. Consider the ridge regression in H that predicts
Zp given Xp:

min
β∈Rd

∥Zp − Φpβ∥22 + λ∥β∥22.

Call the solution β̂ridge and the corresponding predictor γ̂ridge(x) = ϕ(x)⊤β̂ridge. Then:

θ̂(γ̂ridge) =
1

np
α̂λ
θ (Xp)

⊤Zp.
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This is a well-known result; see Kallus [2020], and see Bruns-Smith et al. [2025a] for an extensive
discussion of the implications for semiparametric estimation.
Remark 3. Ridge regression can be written as a linear smoother. The result above says that when
we compute θ̂(γ̂ridge), the smoother weights estimate the Riesz representer. Random forests can also
be written as a linear smoother, and Lin and Han [2022] show that the weights converge to the Riesz
representer in a similar sense. We use this connection to show that the same robustness/efficiency
properties apply to boosting with Random Forests in Appendix B.

3.3.2 Main result: Semiparametric efficiency for all θ ∈ Θ

We now apply Section 3.3.1 to our estimator γ̂ma to establish our main result: θ(γ̂ma) does not just
have small worst-case bias over all θ ∈ Θ, it is semiparametrically efficient for each individual θ ∈ Θ.

For any θ ∈ Θ, we have the following:

θ̂(γ̂ma) = θ̂(γ̂init) + θ̂(γ̂boost)

= θ̂(γ̂init) +
1

np
α̂λ
θ (Xp)

⊤(Yp − γ̂init(Xp)), (5)

where the second equality follows from applying Proposition 2 for Zp = Yp − γ̂init(Xp).

Note that (6) has exactly the form of θ̂efficient from Section 2.5. In fact, this estimation strategy — in
which we fit an arbitrary machine learning estimator γ̂init and use a α̂θ(X) that minimizes (3) for
bias correction — is a well-studied estimator from the semiparametric statistics literature [Athey
et al., 2018, Hirshberg and Wager, 2021, Chernozhukov et al., 2021, Bruns-Smith et al., 2025a].
The particular form of α̂λ

θ (X) used here, which is obtained by minimizing (4) in an RKHS, is
specifically considered in Hirshberg et al. [2019], Kallus [2020], Hazlett [2020], Singh [2024]. Thus,
once-boosting with ridge provides a multiaccurate predictor, but the resulting point estimate θ(γ̂ma)
is numerically-equivalent to well-studied semiparametrically efficient estimators. We leverage this
connection to establish our main theoretical result.
Theorem 2 (Informal). Given standard regularity assumptions and some conditions on the quality
of γ̂init, then for all θ ∈ Θ, the ridge boosting plug-in estimator is asymptotically Normal and its
variance achieves the asymptotic variance lower bound V ∗

θ :
√
n
(
θ̂(γ̂ma)− θ(γ0)

)
→ N (0, V ∗

θ ), and V̂ →p V
∗
θ .

where V̂ is the sample variance,

V̂ :=
1

np

np∑
i=1

(
m(γ̂ma, Xi)− θ(γ̂ma)

)2
.

See the Appendix for a formal Theorem statement and proof. This result establishes that for any
estimand θ whose Riesz representer belongs to the RKHS ball A, the ridge boosting estimator θ̂(γ̂ma)
is not just robust, it is semiparametrically efficient.

This estimator is also computationally convenient for practitioners interested in efficient inference.
We simply take the initial predictor and run one step of boosting with kernel ridge regression, which
has many readily-available implementations. And since a plug-in estimator using this new predictor
is semiparametrically efficient for any estimand in Θ, we do not have to (explicitly) fit individual
Riesz representer estimates α̂θ for each θ, which can be expensive when there are many θs of interest.
We also do not require specialized code for minimizing the Riesz loss (3), which can be a barrier for
practitioners with less familiarity with Riesz representers.

4 Experiments

4.1 Simulation study

We now demonstrate in simulation that we simultaneously achieve robust and efficient inference
by deploying our multiaccurate predictor on different estimands in different environments. To
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Figure 1: The empirical coverage comparisons between single kernel ridge outcome regression and
kernel-ridge-boosted estimator across sample-sizes and the three environments µ ∈ {0, 1,−1}. The
blue lines with triangle markers plot the coverage for the base ridge model, and the orange line with
circular markers for the once-boosted ridge model. The dotted line is at 0.95.

demonstrate the generality of the framework, we consider estimating an average derivative with
correlated covariates — on its own, already a difficult task — under distribution shift. We will fit
both ridge and once-boosted ridge models in a training sample, and then compute the usual 95%
asymptotic Normal confidence interval for the average derivative across three test distributions,
assessing empirical coverage over simulation draws.

Simulation Setup: We consider three-dimensional correlated covariates: X1, X2 ∼ N(µ, 1), and

X3 = 4 · σ(X1 −X2) + ϵ− 2,

where σ(·) is the sigmoid, and ϵ ∼ N(0, 22). For the training distribution, P , µ = 0; for the test
distributions, we vary µ. The outcomes are generated as:

Y = Y ∼ f(X) + η, f(X) = X1 · (0.2 + sin(X1) + σ(X2)− 0.2 ·X3), η ∼ N(0, 22).

The estimand is the average derivative of f(X) with respect to X1 under Q, EQ[∂f(X)/∂X1]. We
consider three different distributions for Q, with the same setup but with µ ∈ {−1, 0, 1}. The
dependence of X3 on both X1 and X2 makes the average derivative more challenging to estimate.

Methods: We compare two estimators. (1) Naive Kernel Ridge: a standard kernel ridge outcome
regression trained on the source data and plugged in for each target estimand. (2) Boosted Kernel
Ridge: a one-step kernel ridge boosting procedure applied to the residuals of the initial kernel ridge
regression. Both models are trained solely on the training (source) data and evaluated on each of the
three test (target) distributions.

Monte Carlo Simulation: For each simulation, we draw a training sample of X and Y from the
source distribution, and fit the kernel ridge and boosted kernel ridge model. We then draw one sample
of X from each of the three test distributions, and estimate the average derivative with respect to
X1 on that test distribution by symmetric differencing, along with the usual 95% asymptotic normal
confidence interval. The whole process is repeated for sample sizes ranging from 50 to 500 and with
1,000 Monte Carlo replications. We report the empirical coverage of the confidence intervals for both
methods across sample sizes and replications. The full simulation study is run on a four-core laptop.

Results: The results are shown in Figure 1. Across all three test distributions, the naive confidence
intervals using the base ridge model under cover. By contrast, the confidence intervals from once-
boosted ridge regression achieve good empirical coverage even with a moderate sample size (n =
300). The same pattern holds across all three randomly generated covariate shifts, showing the
boosted ridge regression can achieve robustness toward covariate shifts and statistical efficiency at
the same time. This reveals a new practical benefit of the multiaccurate estimator in this setting
previously unexplored in the multicalibration literature: we achieve valid uncertainty quantification
under distribution shift.

4.2 Empirical application to retirement income

We now consider an empirical economics application: estimating the age profile of income throughout
retirement. For an individual i, let Yi be total income (including retirement income), letAi be age, and
let Xi be other covariates like education, race, and marital status. Define γ0(A,X) := E[Y |A,X].

9



65 70 75 80 85 90
Ages

50000

52000

54000

56000

58000

60000

62000

Av
er

ag
e 

In
co

m
e

Naive
Boosted

65 70 75 80 85 90
Ages

1400

1500

1600

1700

1800

1900

Co
nf

id
en

ce
 In

te
rv

al
 W

id
th

Figure 2: The left panel shows our point estimates for the age profile of income using a naive
kernel ridge regression plug-in estimator and our ridge boosting estimator. The dotted lines are the
corresponding 95% confidence intervals and the width of the intervals are plotted in the right panel.

Our estimand is the age profile of income (for ages 65, . . . , 89), which is defined as the following
counterfactual means:

θ65 := E[γ0(65, X)], θ66 := E[γ0(66, X)], ... , θ89 := E[γ0(89, X)].

That is, for each θa, we want the average value of γ0(A,X), but where we have counterfactually
replaced the age of every individual with the fixed value a. This is a key input into structural models
of the macroeconomy — see, for example, Gourinchas and Parker [2002], Kaplan and Violante
[2014]. Because the distribution of the covariates X varies with A, this can induce very significant
distribution shift, especially late in retirement. We emphasize that this is a highly simplified example
inspired by Bruns-Smith et al. [2025b], although applying our methodology to their setting is a
promising direction for future work.

State of the art modeling here would construct separate semiparametric efficient estimators for each
point in the age profile, necessarily requiring a separate debiasing term at every age. In this application,
we instead use a single multiaccurate predictor to estimate the 25 different target estimands—one for
each year of retirement age— demonstrating the utility of our procedure in practice. We estimate the
age profile of retirement using data from 2018 American Community Survey as processed by the
FolkTables package [Ding et al., 2021]. As in Section 4.1 we fit a single kernel ridge and boosted
kernel ridge model, and then compute plug-in estimates of θa using these two models. The results are
displayed in Figure 2. Whereas the naive estimate (without boosting) features a steep decline of $11k
from ages 65-89, our boosted estimates are substantially flatter — better matching the theoretical
model for pension and social security income from Kaplan and Violante [2014]. Furthermore, while
the naive confidence intervals shrink for the highest ages, our boosted confidence intervals actually
grow slightly, suggesting that the naive model may undercover for the oldest part of the age profile.

5 Conclusion

In this manuscript, we investigate the connection between multiaccuracy and semiparametric effi-
ciency. Specifically, we show that boosting an initial predictor with kernel ridge produces an estimator
that is not only multiaccurate over estimands in an RKHS norm ball but is also semiparametrically
efficient for each target separately. This result can be understood through the lens of Riesz regression:
ridge boosting implicitly performs Riesz regression, thereby yielding an augmented balancing weight
estimator that attains the semiparametric efficiency bound. We demonstrate one practical benefit:
valid confidence intervals across distributions under covariate-shifts not seen at training time. How-
ever, our results are limited to shifts described by an RKHS. And making this proposal fully practical
requires additional investigation of appropriate hyperparameter tuning. We hope this initial work
leads to further exchange between the robustness and semiparametrics literatures.
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duction.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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Justification: We provide simulations to justify the efficiency of the proposed method in
Section 4.1.
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the Supplemental Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide simulation details in Section 4.1.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported the empirical coverage of the confidence intervals for different
methods in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these information in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed this in the introduction.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs of Theoretical Results

A.1 Proof of Proposition 1

Proposition. Let Θ be some set of functionals θ such that Definition 1 and Assumption 3 hold. Let A
be the corresponding set of Riesz representers:

A := {α : ∃θ ∈ Θ s.t. θ(f) = E[f(X)α(X)],∀f with E[f(X)2] <∞}.

Then if γ̂ma is (A, a)-multiaccurate:

|θ(γ̂ma)− θ(γ0)| ≤ a,∀θ ∈ Θ.

Proof. For all θ ∈ Θ,

|θ(γ0)− θ(γ̂ma)| = |EP [αθ(X)γ0(X)]− EP [αθ(X)γ̂ma(X)]|
= |E[αθ(X)(γ0(X)− γ̂ma(X))]|
= |E[αθ(X)(Y − γ̂ma(X))]|
≤ sup

α∈A
|E[α(X)(Y − γ̂ma(X))]| ≤ a.

A.2 Proof of Theorem 1

Assumption 2. We require the following boundedness conditions:

1. Assume that EP [∥ϕ(X)∥2H] < B1.

2. Assume that Y , γ̂init(X), and ϕ(X) are bounded P -almost-surely.
Theorem. For γ̂ma defined in (2), we have:

M̂AEA(γ̂ma) ≤ max
1≤j≤d

λ

λ+ σ2
j

M̂AEA(γ̂init),

where σ2
j are the eigenvalues of Φ⊤

p Φp. Under standard regularity conditions, with probability 1− η,

MAEA(γ̂ma) ≤ O

(
δn +

√
1/η

np

)
,

for δn such that δn → 0 as n→ ∞.

Proof. We begin by proving the first inequality — that the sample multiaccuracy of γ̂ma is always
smaller than that of γ̂init. We have:

M̂AEA(γ̂ma) = sup
a∈A

∣∣∣∣ 1na(Xp)
T (Yp − γ̂init(Xp)− Φpβ̂)

∣∣∣∣ .
Here A is a Hilbert ball with norm 1. Since Hilbert spaces are self-dual, we can use the definition of
the dual norm:

M̂AEA(γ̂ma) = sup
a∈A

∣∣∣∣ 1na(Xp)
T (Yp − γ̂init(Xp)− Φpβ̂)

∣∣∣∣ = 1

n
∥ΦT

p (Yp − γ̂init(Xp)− Φpβ̂)∥22.

Similarly, the multi-accuracy error of γ̂init is

M̂AEA(γ̂init) =
1

n
∥ΦT

p (Yp − γ̂init(Xp))∥22.

Using the closed-form for ridge regression, we have:

β̂boost =

(
1

n
ΦT

p Φp + λId

)−1
1

n
ΦT

p (Yp − γ̂init(Xp)).
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Therefore:

M̂AEC(γ̂ma) =
1

n
∥ΦT

p (Yp − γ̂init(Xp))− ΦT
p Φp(

1

n
ΦT

p Φp + λId)
−1 1

n
ΦT

p (Yp − γ̂init(Xp))∥22

=
1

n
∥(In − 1

n
ΦT

p Φp(
1

n
ΦT

p Φp + λId)
−1) · (Yp − γ̂init(Xp))∥22.

Define

Pλ =
1

n
ΦT

p Φp

(
1

n
ΦT

p Φp + λId

)−1

.

Consider the singular value decomposition (SVD) of 1√
n
Φp = UΣ

1/2
p V T , we have

Pλ = V Σp(Σp + λId)
−1V T

The eigenvalues of Pλ are thus
σ2
j

σ2
j + λ

, j = 1, . . . , d,

where σ2
j are the eigenvalues of Φ⊤

p Φp. The eigenvalues of In − Pλ are

λ

σ2
j + λ

, j = 1, . . . , d.

Thus we have

M̂AEA(γ̂ma) ≤
1

n
max
1≤j≤d

λ

λ+ σ2
j

∥ΦT
p (Yp − γ̂(Xp))∥22 = max

1≤j≤d

λ

λ+ σ2
j

M̂AEA(γ̂init).

Now we turn to the second inequality, that the multiaccuracy of γ̂ma generalizes. We apply the same
dual norm argument to the population multiaccuracy error:

MAEA(f̂) = sup
a∈A

|EP [a(X) · (Y − γ̂ma(X))]|

= ∥EP [ϕ(X) · (Y − γ̂ma(X))]∥H
≤
√
B1EP [(Y − γ̂ma(X))2]

=
√
B1EP [((Y − γ̂init(X))− γ̂boost(X))2]

where the expression in the second line is well-defined when Assumption 4 holds, the third line uses
Jensen’s inequality for norms plus Cauchy-Schwarz and Assumption 4, and the last line uses the law
of iterated expectations.

So ultimately, the expression depends on the mean squared error of kernel ridge regression for
predicting Y − γ̂init(X) using X . Here we can use any off-the-shelf bound to get our main result.

For example, when ϕ(X) ∈ Rd, as we assume for simplicity in the main text, and if λ is sufficiently
small, we can apply the standard critical radius argument in Wainwright [2019] to get that with
probability at least 1− η,

EP [((Y − γ̂init(X))− γ̂boost(X))2] ≤ O

(√
d

n
+

√
1/η

n

)
.

More generally, if H is an infinite dimensional Hilbert space, then given an effective dimension b and
certain standard smoothness assumptions, then by following Fischer and Steinwart [2020], Singh
[2024] we can show that taking λ = (log(n)/n)b/(b+1), the squared generalization error of kernel
ridge regression converges to 0 at rate:

O
(
(log(n)/n)b/(b+1)

)
.
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A.3 Proof of Proposition 2 (Numerical equivalence of ridge regression and Riesz regression)

Ridge Regression: Given the auditing function class H, ridge regression solves

min
β∈Rd

∥Zp − Φpβ∥22 + λ∥β∥22.

with closed-form solution

β̂λ = (
1

np
ΦT

p Φp + λId)
−1 · 1

np
ΦT

p Zp.

The ridge boosting estimator is then given by

θ(Φp)
T β̂λ = θ(Φp)

T (
1

np
ΦT

p Φp + λId)
−1 · 1

np
ΦT

p Zp.

Riesz regression: The Riesz regression solves

η̂λ = min
f∈F

{
1

np
ηTΦT

p Φpη − 2θ(Φp)
⊤η + λ∥η∥2

}
.

The resulting Riesz representer estimator is

α̂λ
θ (Φp) = Φpη̂λ = Φp(

1

np
ΦT

p Φp + λI)−1θ(Φp).

The corresponding bias correction term is thus given by

1

np
α̂λ
θ (Φp)

T · Zp = θ(Φp)
T (

1

np
ΦT

p Φp + λI)−1 · 1

np
ΦT

p Zp.

This shows the numerical equivalence:

1

np
α̂λ
θ (Xp)

T · Zp = θ(Φp)
T β̂λ.

Therefore, ridge regression estimator is numerically equivalent to the Riesz regression-based aug-
mented estimator.

A.4 Proof of Theorem 2

A.4.1 Notation

We first introduce notation that will be used in the proofs.

• We denote the conditional excess risks of the nuisance estimators γ̂ and α̂ given the observed
covariates as follows:

R(γ̂) := E
[
{γ̂(X)− γ0(X)}2

∣∣Xp

]
, R(α̂) := E

[
{α̂(X)− αθ(X)}2

∣∣Xp

]
.

• We denote the efficient influence function for θ(γ0) as ψ0(X) and its high-order moments
as

σ2
0 = EQ[ψ0(X)2], κ3 = EQ[ψ0(X)3], ζ4 = EQ[ψ0(X)4].

A.4.2 Assumptions

Assumption 3 (Continuity). We assume that θtarget is a continuous linear functional. That is, there
exists a constant C > 0 such that:

θ(f)2 ≤ CEP [f(X)2],

for all f with E[f(X)2] <∞.

Assumption 4. We require the following boundedness conditions:
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1. Assume that EP [∥ϕ(X)∥2H] < B1.

2. Assume that Y , γ̂init(X), and ϕ(X) are bounded P -almost-surely.

Assumption 5. EP

[
γ20(X)

]
<∞ and σ2

0(X) = EP [(Y − γ0(X))2|X] is bounded.

Assumption 6. The initial estimator γ̂ for γ0 is consistent in the sense that R(γ̂) →p 0.
Assumption 7. The moments of the efficient influence function ψ0(X) satisfy((κ

σ

)3
+ ζ2

)
n−1/2 → 0.

A.4.3 Revisiting the theorems

Theorem 3. Assume that we have a source population P and Assumption 3-7 hold. Consider a
RKHS H satisfying αθ ∈ H and

√
nR1/2(γ̂) →p 0. .

Then the ridge boosting estimator with λ = n−1/2 is asymptotically normal and its variance achieves
the asymptotic variance lower bound V ∗

θ :
√
n(θ̂(γ̂ma)− θ(γ0))

V̂ (λ)
→ N (0, 1), and V̂ (λ) →p V

∗
θ .

where

V̂ (λ) =
1

nQ

nQ∑
i=1

(θ̂(γ̂init) + ΦT
i (Φ

T
p Φp + λI)−1ΦT

p (Yp − γ̂init(Xp))− θ̂(γ̂ma))
2.

A.4.4 Proof of Theorem 3

In Proposition 2, we established the numerical equivalence between ridge regression and Riesz
regression. For any θ ∈ Θ, we have the following:

θ̂(γ̂ma) = θ̂(γ̂init) + θ̂(γ̂boost)

= θ̂(γ̂init) + Φ̄T
q β̂λ

= θ̂(γ̂init) +
1

np
α̂λ
θ (Xp)

⊤(Yp − γ̂init(Xp)),

where the last equality follows from applying Proposition 2 for Zp = Yp − γ̂init(Xp).

With this result, we then can derive the asymptotic normality using the Riesz regression formulation.

The asymptotic normality of the Riesz regression-based augmented estimator follows from Corollary
5.1 in [Chernozhukov et al., 2023] (Lemma 1 in the Appendix).

The constants σ̄ , ᾱ and ᾱ′ are assumed to be bounded and are independent of sample size n. With a
sufficiently large sample size, the last three conditions in Theorem 3 reduce to

{R(γ̂)}1/2 = op(1), {R(α̂λ)}1/2 = op(1), {nR(γ̂)R(α̂λ)}1/2 = op(1).

{R(γ̂)}1/2 = op(1) is guaranteed from the conditions in Theorem 3.

Now it remains to study E
[
{α̂λ(X)− αθ(X)}2

∣∣Xp

]
. Theorem 2 in [Singh, 2024] implies that

when λ = n−
1
2 ,

lim
τ→∞

lim sup
n→∞

PXp∼P

{
E
[
{α̂λ(X)− αθ(X)}2

∣∣Xp

]
> τ · n−1

}
= 0.

Now we can show

{R(α̂λ)}1/2 = op(1) and {nR(γ̂)R(α̂λ)}1/2 = op(1).

Therefore, we can directly show the asymptotic normality of the ridge boosting estimator.
√
n(θ̂(γ̂ma)− θ)

V̂ (λ)
→ N (0, 1).

Finally, the consistency of the variance estimator follows from the law of large numbers.
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A.4.5 Additional Lemma

Lemma 1 (Corollary 5.1 in [Chernozhukov et al., 2023]). Suppose the following regularity and
learning rate conditions hold as n→ ∞:

• The conditional variance is uniformly bounded: E[(Y − γ0(W ))2 |W ] ≤ σ̄2,

• The nuisance parameter and estimator are uniformly bounded:∥αθ∥∞ ≤ ᾱ, ∥α̂∥∞ ≤ ᾱ′,

• The moments of the efficient influence function are controlled:
((

κ
σ0

)3
+ ζ2

)
n−1/2 → 0,

• The excess risks decay appropriately:

(
ᾱ

σ0
+ ᾱ′) · {R(γ̂)}1/2 = op(1), σ̄ · {R(α̂)}1/2 = op(1),

{nR(γ̂)R(α̂)}1/2

σ0
= op(1).

Then the estimator θ̂ is consistent and asymptotically normal.

θ̂ = θ0 + op(1), σ−1
0 n1/2(θ̂ − θ0)⇝ N (0, 1).

B Random Forest Boosting

Our main “Universal Efficiency” argument for Ridge Boosting hinges on the fact that: For any θ ∈ Θ,
we have the following:

θ̂(γ̂ma) = θ̂(γ̂init) + θ̂(γ̂boost)

= θ̂(γ̂init) +
1

np
α̂λ
θ (Xp)

⊤(Yp − γ̂init(Xp)), (6)

which has a form of a debiased estimator. Following the semiparametric efficiency theory results
from Chernozhukov et al. [2023], as long as γ̂init converges to γ0 as n→ ∞, and α̂λ

θ (Xp) → α0, and
their product rate is sufficiently fast, the resulting estimator is efficient. Furthermore,

The implied weights that come from ridge boosting, α̂λ
θ (Xp) are equivalent to a ridge minimizer of

the Riesz loss. That allows us to use the fast rates proven in Singh [2024] for kernel Riesz representer
estimates.

What about other linear smoothers that have the form: θ̂(γ̂linsmooth) = 1
np
w(Xp)

⊤Zp? Ridge
regression is one example with the important property that the smoother weights implicitly estimate
the Riesz representer, but are there other examples?

Remarkably, Lin and Han [2022] show that Random Forests (which can be written as a linear
smoother) also have implied weights that estimate the Riesz representer. Furthermore, the rate is
fast enough to secure semiparametric efficiency. Therefore, boosting with Random Forests will have
exactly the same efficiency guarantees that we show for ridge boosting. This is important because
Random Forests are much more flexible than ridge regression in a fixed basis — indeed, one can
think of Random Forests as kernel ridge regression but that learns an adaptive kernel. That would
mean that the robustness/universal efficiency properties would hold to a wider class of estimands than
just those expressible by a single RKHS.

However, the proof in Lin and Han [2022] is specific to ATE / covariate shift type estimands. It would
be interesting to see if this could be generalized in future work to apply to generic Riesz representers.

C Connection between multiaccuracy and TMLE: A unified view from
boosting

C.1 Boosting to get a multiaccurate estimator

The multi-accurate estimator can be derived by a boosting strategy, where you first have an initial
estimator γ̂ of the outcome regression function, and then solve the following least square regression
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problem:
min

{λϕ}ϕ∈H
EP [(Y − γ̂(X)−

∑
ϕ∈H

λϕ · ϕ(X))2].

Let ˆ{λϕ}ϕ∈H be the optimal solution, the first order optimality condition for this is exactly the
definition of multiaccuracy with α = 0:

EP [h(X) · (Y − γ̂(X)−
∑
ϕ∈H

λ̂ϕ · ϕ(X))] = 0.

In this way, the final estimator γ̂(X) +
∑

ϕ∈H λ̂ϕ · ϕ(X) is multiaccurate.

In the context of ridge boosting, you could treat the above H as the basis of the Hilbert space.

C.2 TMLE

C.2.1 TMLE can be viewed as boosting in the direction of the estimated clever covariate

The boosting step to get a multi-accurate estimator share a similar principle as the targeting step of
the TMLE. In the targeting step of TMLE, we first have an initial estimator γ̂(X). Then, we specify
a parametric working submodel:

µ̂ϵ(X) = µ̂(X) + ϵ · ϕ̂(X), ϵ ∈ (−δ, δ).

Here ϕ̂(X) is the estimated clever covariate, which is usually given in the explicitly derived efficient
influence function. Then the targeting step in TMLE solves the following boosting-type regression:

ϵ̂ = argmin
ϵ

EP [(Y − µ̂ϵ(X))2] = argmin
ϵ

EP [(Y − µ̂(X)− ϵ · ϕ̂(X))2].

In the case of estimating ATE, solving the optimization once (one-step TMLE) will give you the
semiparametrically efficient estimator under the standard assumptions, because it automatically solves
the score equation

EP [ϕ̂(X) · (Y − µ̂(X)− ϵ̂ · ϕ̂(X))] = 0.

and the update of clever covariate ϕ̂ is not needed.

C.3 Ridge boosting multiaccurate estimator can be seen as a TMLE for multidimensional
parameters with known clever covariate (Riesz representer)

C.3.1 Ridge boosting multiaccurate estimator

Consider auditing with the function class,

C =
{
c(x) = βTϕ(x) : ∥β∥H ≤ B

}
=

{
c(x) =

d∑
k=1

βk · ϕk(x) : ∥β∥H ≤ B

}
,

We could implement the following boosting step:

β̂ := arg min
β∈Rd

{
EP

[
∥y − γ̂(X)− ϕ(X)Tβ∥22

]
+ λ∥β∥22

}
to obtain a multiaccurate estimator γ̂(X) + ϕ(X)T β̂.

C.3.2 Viewing this as TMLE for multidimensional parameters

From the TMLE perspective, the auditing function class C here can be seen as a multidimensional
(possibly infinite) parametric submodel in the targeting step. However, instead of targeting a single
target parameter, we simultaneously target multiple parameters

[EQ1
(Y ), . . . ,EQd

(Y )]T .
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with dQk/dP = ϕk(X), where ϕk(X) is the kth dimension basis of C. Here dQk/dP can be seen
as the clever covariate for the target parameter EQk

(Y ).

With this multidimensional parametric submodel, unregularized TMLE simulateneously solves
multiple score equations for these different parameters.

EP [ϕk(X) · (y − γ̂(X)− ϕ(X)T β̂)] = 0, ∀k = 1, . . . , d.

By doing this, we get a simultaneously semiparametrically efficient estimator for

[EQ1(Y ), . . . , EQd
(Y )]T .

Moreover, if dQ/dP (Q is the target population) can be approximated by the linear combination of
[dQ1/dP, . . . , dQd/dP ]

T . In other words,

min
c∈C

∥dQ
dP

− c∥2 → 0.

Then we could still obtain a semiparametrically efficient estimator for EQ[Y ] by applying γ̂(X) +

ϕ(X)T β̂ on Xq if the initial estimator γ̂ is good enough in the sense that:

∥γ̂ − γ0∥2 → 0, and
√
n∥γ̂ − γ0∥2 ·min

c∈C
∥dQ
dP

− c∥2 →p 0.

D Score-preserving TMLE

There is a recent paper about Score-Preserving TMLE [Pimentel et al., 2025]. The general idea is
that instead of using the estimated clever covariate only, we add the basis functions in the nuisance
parameter estimation into the targeting step. This paper mentioned that solving additional scores
reduces the remainder term in the von-Mises expansion of our estimator because these scores may
come close to spanning higher-order influence functions and result in an estimator with better
finite-sample performance.

In the case of estimating E[Y (1)], the authors use the following parametric submodel in the targeting
step:

logit Q̂(ϵ)
n (W ) = logit Q̂n(W ) + ϵ0 ·

A

ĝn(W )
+
∑
j

ϵj Φn,j(W ),

where Q̂n(W ) is the initial estimator, A
ĝn(W ) is the estimated clever covariate and Φn,j(W ) is the

basis function in the nuisance parameter estimation. There is a deep connection between Score-
preserving TMLE and ridge boosting: If we use ridge outcome regression and ridge boosting with
function class C, it seems that we are indeed performing a version of score-preserving TMLE because
we include the basis functions of outcome regression in this submodel, and the clever covariate can
also be represented using these basis functions. Right now, the Score-preserving TMLE is studied
in the setting of highly adaptive lasso. But there is a recent paper on highly adaptive ridge [Schuler
et al., 2024], where ridge regression might be a good fit for score-preserving TMLE.
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