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ABSTRACT

Given the importance of building robust machine learning models, considerable efforts
have recently been put into developing training strategies that achieve robustness to outliers
and adversarial attacks. Yet, a major aspect that remains an open problem is systematic
robustness to global forms of noise such as those that come from measurements and
quantization. Hence, we propose in this work an approach to train regression models from
data with additive forms of noise, leveraging the Wasserstein distance as a loss function.
Importantly, our approach is agnostic to the model structure, unlike the increasingly popular
Wasserstein Distributionally Robust Learning paradigm (WDRL) which, we show, does not
achieve improved robustness when the regression function is not convex or Lipschitz. We
provide a theoretical analysis of the scaling of the regression functions in terms of the
variance of the noise, for both formulations and show consistency of the proposed loss
function. Lastly, we conclude with numerical experiments on physical PDE benchmarks
and electric grid data, demonstrating competitive performance with an order of magnitude
reduction in computational cost.

1 INTRODUCTION

In real-world applications, collected data is often tainted with different forms of noise. Whether it is sensor
noise in engineering systems or measurement uncertainty in biological experiments, such noise usually
demands costly and time-consuming pre-processing steps, before meaningful results can be extracted us-
ing predictive machine learning algorithms. In order to streamline that process, different robust learning
approaches have been proposed with a focus on robustness to outliers and adversarial attacks (Mohajerin Esfa-
hani and Kuhn, 2018; Steinhardt et al., 2018; Bai et al., 2023; Levine and Feizi, 2020). Most of such strategies
rely on augmenting the data with adversarial examples (Goodfellow et al., 2014; Madry et al., 2018) or
designing suitable loss regularization techniques (Dong et al., 2020). However, for more global forms of noise,
which are commonly encountered in practice, these approaches face both statistical and practical limitations.
In the case of data augmentation, the limitations are inherent to its design, while adversarial regularization
often targets bounded perturbations, thereby overlooking standard noise models that arise in real-world
settings. In contrast, the increasingly popular paradigm of Wasserstein Distributionally Robust Learning
(WDRL) (Mohajerin Esfahani and Kuhn, 2018; Shafieezadeh-Abadeh et al., 2019; Gao et al., 2024) represents
a more general framework that allows for arbitrary perturbations, and is more theoretically appealing while
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leading to competitive performance. Yet, there seems to be a gap in the literature when it comes to robustness
properties of WDRL with respect to global forms of noise, as pointed out by Hu et al. (2020) for instance. In
this work, we address this question in a regression setting from multiple perspectives:

1. We study the global robustness properties of the popular WDRL formulation, through a theoretical
and numerical analysis of its scaling in terms of the variance of the noise.

2. Notably, we show that WDRL may fail to improve the performance when the regression functions are
neither Lipschitz nor convex.

3. To address this limitation, we propose a simple yet powerful robust learning approach that is agnostic
to the structure of regression functions, enabling more expressive models. We further provide a
theoretical analysis of its dependence on the variance of the noise.

4. We numerically demonstrate the performance of our proposed approach through various physical
problem benchmarks and electric grid usage time series data.

The rest of the paper is organized as follows. In Section 2, we review the regression setting. We explore
the shortcomings of WDRL, which has not been investigated before, in Section 3. Section 4 introduces the
novel regression approach, where we establish its main theoretical properties in Section 5. We justify the
improved scaling of the introduced regression method with respect to the empirical risk minimization and
WDRL in Proposition 5.1. Section 6 is devoted to the numerical results, where the competitive performance of
our method is demonstrated. Finally, Section 7 discusses the limitations, outlook and concluding remarks.

1.1 RELATED WORKS

Denoising and Filtering. Extensive research has been conducted on denoising and filtering techniques,
ranging from Kalman filtering (Ito and Xiong, 2000) and wavelet denoising (Sardy et al., 2001) to deep
learning based methods (Jain and Seung, 2008; Xing and Egiazarian, 2021; Krull et al., 2019; Lehtinen
et al., 2018). For a comprehensive overview in the context of image data modalities, see Elad et al. (2023).
However, most of these approaches require low noise data, focus on Gaussian noise distributions or require
an explicit noise model. Additionally, they introduce costly pre-processing steps that must be performed prior
to the modeling. In contrast, we propose an approach that directly trains competitive models from noisy data,
eliminating the need for extensive pre-processing.

Adversarial Defense. Early works introduced techniques to augment the training data with adver-
sarial examples (Goodfellow et al., 2014; Madry et al., 2018), leveraging the expressive power of neural
networks to improve robustness. Building on this, several regularization techniques such as entropic
regularization (Dong et al., 2020) and adversarial weight perturbation (Wu et al., 2020) have been proposed,
further enhancing their performance. In parallel, certified robustness approaches have focused on quantifying
the proportion of samples that remain robust to arbitrary perturbations within a given bound (Tjeng et al.,
2019; Raghunathan et al., 2018; Dathathri et al., 2020). However, these techniques often lead to overly
conservative models, which can degrade performance in the presence of global noise perturbations (Bai et al.,
2023).

Distributionally Robust Optimization. It is concerned with minimizing the worst-case loss over
a given set of distributions (Mohajerin Esfahani and Kuhn, 2018; Föllmer and Weber, 2015; Blanchet and
Murthy, 2019), which is formally expressed as the minimax problem

inf
θ∈Θ

sup
Q∈P

EQ [ℓθ(Z)]

where the supremum is taken over a suitably chosen class of distributions Q ∈ P . Recent focus
(Shafieezadeh Abadeh et al., 2015; Staib and Jegelka, 2017; Shafieezadeh-Abadeh et al., 2019; Chen and
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Paschalidis, 2018; Bartl et al., 2021; Gao et al., 2024; Phan et al., 2023) has been given to the formulation
with Wasserstein ambiguity set P = Bδ(P ), which is the ball centered at the empirical distribution P with
radius δ under the Wasserstein distance, leading to WDRL. See (Gao and Kleywegt, 2023) for a discussion on
theoretical advantages of this choice. WDRL has demonstrated remarkable performance in out-of-sample linear
regression (Mohajerin Esfahani and Kuhn, 2018) and classification (Shafieezadeh-Abadeh et al., 2019) tasks,
as well as in defending against adversarial attacks (Bai et al., 2023; Bui et al., 2022) on neural networks. For
classification problems, another highly effective, although computationally costly, approach was proposed by
Zhai et al. (2021). In contrast, we consider robustness to unbounded forms of noise encountered in regression,
which to the best of our knowledge, has not been much investigated for deep learning models (Liu et al.,
2024).

2 PROBLEM SETTING & BACKGROUND

We denote by P2(Ω) the set of probability measures over Ω with finite variance. The Euclidean 2-norm is
given by ∥ . ∥2. Consider the realizations (Xi)i≤n from a measure in P2(Ω), we employ m[(Xi)i≤n] =
1/n

∑n
i=1 δXi

, as the shorthand for empirical measure. Consider the regression task of predicting response
variables y ∈ Y from input features x ∈ X . Given a class of regression functions {fθ, θ ∈ Rd} and data
samples {Xi, Yi}i≤n from an underlying distribution µ(X,Y ) ∈ P2(X × Y) with fθ : X → Y , the standard
goal is to find a model θ ∈ Rd that minimizes the empirical risk

θ̂MSE ∈ arg min
θ∈Rd

1

n

n∑
i=1

∥Yi − fθ(Xi)∥22.

In Wasserstein Distributionally Robust Learning (Ben-Tal et al., 2013; Bartl et al., 2021), the aim instead is to
minimize a stronger form of the empirical risk

θ̂WDRL ∈ arg min
θ∈Rd

sup
(X,Y )∼µ

W2(µ,µ̂)≤δ

Eµ[ℓ(Y, fθ(X))] , (1)

where µ̂ ∈ P2(X × Y) is the empirical distribution over the training data, ℓ a pre-chosen loss function, and
W2 the 2-Wasserstein distance given by

W2(µ, µ̂) = min
π∈Π(µ,µ̂)

∫
(X×Y)2

∥α− β∥22 dπ(α, β)

with Π(µ, µ̂) the set of couplings between the probability measures µ and µ̂, and α, β ∈ P2(X × Y).

In this work, we focus on the setup where the response samples (Yi + σεi)i≤n are tainted with in-
dependent and identically distributed noise with variance σ2, with the objective of training deep learning
models that are the least sensitive to the noise level σ.

3 DRAWBACKS OF WDRL

In order to compute the objective function of WDRL, certain structural assumptions on the regression functions
fθ, θ ∈ Rd as well as the loss function ℓ, must be imposed. This is necessary since the original formulation
(1) involves solving an infinite dimensional optimization problem, which is generally intractable. For that
matter, two main settings have been proposed:

(a) Assuming that the function ℓθ : (x, y) 7→ ℓ(y, fθ(x)) is a finite maximum of concave functions;
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(b) Assuming that the function ℓθ : (x, y) 7→ ℓ(y, fθ(x)) is Lipschitz continuous.

In either cases, the objective function given in (1) can be rewritten (Mohajerin Esfahani and Kuhn, 2018;
Shafieezadeh Abadeh et al., 2015) under the tractable form1

d2((Yi)i≤n, (fθ(Xi))i≤n) := sup
(X,Y )∼µ

W2(µ,µ̂)≤δ

Eµ[ℓ(Y, fθ(X))]

= inf
λ≥0

[
λδ +

1

n

n∑
i=1

sup
(ξ1,ξ2)∈X×Y

{
ℓ(ξ1 − fθ(ξ2))− λ∥Yi − ξ1∥22 − λ∥Xi − ξ2∥22

}]
,

where the optimal solutions λ⋆(θ) and (ξ⋆1(θ), ξ
⋆
2(θ)) are reached for all θ ∈ Rd. Yet, to satisfy (a) or (b)

in a regression setting where the data distributions have unbounded domains, one typically needs to set
ℓ(y, x) = |y − x| and to enforce structural properties of convexity or Lipschitzness on the neural network
models, therefore, reducing their expressive power. A natural question that emerges is whether using the
tractable expression of d2 as a loss function, regardless of whether the equality holds, can improve the
robustness of the neural network models. We provide a negative answer to this question by exploring the
behavior of d2 in training a convolutional neural operator (CNO) (Raonic et al., 2024) to solve the two-
dimensional Navier-Stockes equation. In particular, we estimate the operator that maps the initial condition
(T = 0), represented as an image, to the final state (T = 1). To this end, we train the WDRL regression model
employing a stochastic descent- ascent algorithm, exploring the model behavior as the noise level increases.
We use the hyperparameters optimized by the authors who proposed the CNO architecture (Raonic et al.,
2023). We obtain the results shown in Figs. 1 and 2, for both Gaussian and heavy-tail noise distributions,
respectively. For the latter case, we use the standard Cauchy distribution, where σ represents the scale
parameter, as a Cauchy random variable does not have finite variance due to the heavy tails. We examine
model performance via the mean absolute relative error (MAE). Our results indicate that under heavy-tail
noise, WDRL training performs significantly worse than the standard MSE training. In the Gaussian noise
setting, both lead to comparable results, without noticeable improvement from WDRL. This is in contrast
with the novel regression approach introduced in the follow-up section, whose performance on this setting
is demonstrated in Section 6. Note that this limitation of WDRL has not been raised so far, to the best of
our knowledge, mainly because previous works focused on image classification where the data domains are
bounded, honouring the Lipschitz property.

4 WASSERSTEIN BATCH MATCHING

The key idea behind our approach is to relax the strict matching between features Xi and their responses
Yi + σεi for i ∈ Ip, where Ip denotes the index set of a training batch. The motivation for this relaxation
is that, in the presence of noise, the observed response Yi + σεi already deviates from the true response Yi.
Consequently, if the batch elements are close enough, allowing features to match responses without a fixed
correspondence yields more robust estimates while reducing the sensitivity of the loss function to the noise.
We provide in the following a consistency result as well as an asymptotic analysis of the WBM loss function.

4.1 FORMULATION & CONSISTENCY

The formal way to implement this idea is to compute the Wasserstein distance between the empirical
distributions of the predictions (fθ(Xi))i∈Ip and the responses (Yi)i∈Ip , leading to Wasserstein Batch

1(Blanchet and Murthy, 2019) propose a more general condition for the equality to hold, but leave the question of
existence of optimizers, which is essential here, open.
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Figure 1: Test error evolution for Navier-Stockes op-
erator learning with 30% corrupted training data with
Cauchy noise

Figure 2: Test error evolution for Navier-Stockes op-
erator learning with 30% corrupted training data with
Gaussian noise

Matching (WBM) regression

θ̂WBM ∈ arg min
θ∈Rd

∑
p≥1

W2(m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]) ,

instead of the Mean Squared Error (MSE) regression. We illustrate the WBM idea in figure 3. For our setting of
empirical distributions, note that the Wasserstein distance reduces to

W2(m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]) = min
P∈C

〈
P, M((Yi)i∈Ip ,(fθ(Xi))i∈Ip )

〉
, (2)

where M((Yi)i∈Ip ,(fθ(Xi))i∈Ip )
=

(
∥Yi − fθ(Xj)∥22

)
i,j∈Ip

is the matrix of the pairwise norms be-
tween the predictions and the target values, and C the set of coupling matrices of dimension
#Ip. As a sanity check, we show in proposition (1) below that, asymptotically such a match-
ing scheme recovers any continuously differentiable bandlimited function, among its co-monotonic
functions from its samples, in the noise-free regime. The proof is reported in Appendix (A).

Figure 3: Wasserstein Batch Matching il-
lustration. The regression through cloud
of points in a batch (depicted by blue) is
tackled by finding optimal map, depicted by
black line, between distributions of (Xi)i
and (Yi + σϵ)i, shown by red and green
histograms.

Proposition 4.1. (Consistency)
Let f : Rd −→ R be a continuously differentiable and inte-
grable function with compactly supported Fourier transform
and let (f(xϕ(i)))i≤n be its values sampled at ordered points
(xi)i≤n, where ϕ is an unknown permutation preserving the
batch partition. Then, given a fixed batch size and an arbitrary
amount of samples, f is completely characterized by minimiz-
ing

min
g∈G

∑
p≥1

W2(m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]) ,

where {Ip, p ≥ 1} is the finite collection of batch index sets
and G the set of continuously differentiable and integrable
bandlimited functions that are co-monotonic with f .
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Remark. (Complexity) From a computational complexity per-
spective, training with WBM involves solving a linear program
at each training step, which costs O(s), where s = dim(Y)
is the dimension of the response space Y . However, this is
independent of the strucutre of the regression functions. On
the other hand, WDRL involves solving a minimax problem
which is in O(s3) when the function ℓθ is convex-concave.
However, in the absence of this structure, the problem can
become arbitrarily hard.

Remark. (Differentiability) The proposed WBM loss is differentiable with respect to the regression
parameters θ ∈ Rd by the envelope theorem (Bonnans and Shapiro, 2013), which makes it suitable for
training deep learning models.

5 NOISE SCALING ANALYSIS

To investigate the theoretical advantage of the WBM regression, we examine the robustness of the learned
function with respect to the noise variance. First, we provide a sensitivity analysis of the scaling of the WDRL-
and WBM- loss functions in terms of the variance of the noise, and contrast their scaling with that of the MSE
loss. Next, we investigate and discuss the consequences of this scaling on the learned regression functions.

5.1 NOISE SCALING OF LOSS FUNCTIONS

An important feature of the introduced WBM loss is its scaling with respect to the noise which is derived in the
following. The proof is reported in Appendix (B).
Proposition 5.1. (Noise Scaling) Assume2 the response variables (Yi)i≤n to be normalized and let σ2 denote
the variance of the output noise. Then, for σ ∈ (0, 1), we have for the WBM loss

1

2
W2

(
m[(Yi + σεi)i∈Ip ],m[(fθ(Xi))i∈Ip ]

)
− 1

2
W2

(
m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]

)
=∑

i,j∈Ip

[
(Yi − fθ(Xj))− (Yi − fθ(Xj))

3
]
Pi,jσεi +O(σ2) ,

where (Pi,j)i,j is a constant coupling matrix. For the WDRL loss, we have

d2
(
(Yi + σεi)i∈Ip , (fθ(Xi))i∈Ip

)
− d2

(
Yi)i∈Ip , (fθ(Xi))i∈Ip

)
≥ Cσ +O(σ2) ,

where C((Yi)i∈Ip , (Xi)i∈Ip , θ) is a positive constant, and we assumed the regression function fθ to be
Lipschitz and continuously differentiable.

Remark. To put the previous bounds into perspective, consider the noise scaling of the MSE loss

dMSE
(
(Yi + σεi)i∈Ip , (fθ(Xi))i∈Ip

)
− dMSE

(
(Yi)i∈Ip , (fθ(Xi))i∈Ip

)
=

2σ

#Ip

∑
i∈Ip

(Yi − fθ(Xi)) εi +O(σ2),

where we took Y = R, for simplicity of presentation and dMSE is the MSE loss, given by

dMSE((Yi)i∈Ip , (Xi)i∈Ip) =
1

#Ip

∑
i∈Ip

∥Yi −Xi∥22 .

2without loss of generality
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Comparing the scaling of WBM loss with the one resulting from MSE, we observe that for small deviations
between (Yi)i∈Ip and (fθ(Xi))i∈Ip , the prefactor of the linear term is smaller in the former. This reduction
arises because the WBM loss penalizes the prefactor through a cubic term when the deviation is less than unity.
This is not surprising, since WBM performs regression over the infimum of all possible couplings between
the regression function and the response, leading to a diminished dependency of the WBM loss compared to
MSE. This theoretical insight is further confirmed by numerical experiments demonstrated in Section 6. In the
following, we clarify how the derived scalings can have implications on the learned function fθ for θ ∈ Rd.

5.2 NOISE SCALING OF REGRESSION FUNCTIONS

To estimate the effect of the scaling of the loss on the learned parameters defining the estimated regression
functions, we consider the invariant probability measures of the Markov chains defined by the Stochastic
Gradient Descent (SGD) iterates, given in the MSE case by

θk+1 = θk − η∇θ

 1

#Ip

∑
i∈Ip

(Yi − fθ(Xi))
2

−∇θ

 σ

#Ip

∑
i∈Ip

(Yi − fθ(Xi)) εi

 .

This is motivated by the fact that SGD is a standard way to solve the regression problem, when training
deep learning models. Furthermore, this perspective has the advantage of taking into account other sources
of randomness, encountered in model training. Yet, to keep the presentation concise, following constant
step-size stochastic approximation literature (Dieuleveut et al., 2020; Park et al., 2022; Vlatakis-Gkaragkounis
et al., 2024), we assume in the following the loss functions to be strongly convex. This assumption can be
relaxed when considering decreasing step-sizes algorithms (Atchadé et al., 2017; Ben Arous et al., 2022;
Arous et al., 2021). In this instance, this assumption translates to considering regularized versions of the
loss functions with reproducing Hilbert kernel space hypotheses classes (Wainwright, 2019). The following
results address regularized MSE and WBM, and are based on applying results by (Dieuleveut et al., 2020). We
postpone their proofs to Appendix (D) and (E) respectively.
Corollary 5.2. Assume the MSE and WBM loss functions (denoted generically as ℓθ) to be strongly convex.
Then, under suitable regularity assumptions (detailed in Appendix D), the averaged optimization iterates

θ̄k =
1

k + 1

k∑
j=0

θk

converge to a unique stationary distribution πη with expectation θ̄η =
∫
Rd α dπη(α) such that

θ̄η − θ⋆ = η
(
∇2ℓθ⋆

)−1 (∇3ℓθ⋆

)
A(θ⋆)V (θ⋆) +O(η2)

where θ⋆ is the optimum of the noise free respective problem, A =
(
∇2ℓθ⋆ ⊗ I + I ⊗∇2ℓθ⋆

)−1
and

V (θ⋆) = E
[
(∇σℓθ⋆)⊗2

]
.

Remark. We can see the effect of the first order coefficient of the loss functions in terms of the noise level
in V (θ⋆). For the WDRL loss, the gradient iterates have a non-centered bias term making convergence not
achievable in general. We derive bounds on the resulting learnt parameters in corollary E.1 (see Appendix E).

6 NUMERICAL RESULTS

We demonstrate the performance of WBM regression on two important practical problems: operator learning for
PDEs and electric grid usage forecasting. Evaluation on test data is carried out using the mean absolute error
(MAE) in all displayed figures, where we compare models trained with the MSE to those trained with WBM.
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We focus on this setting, since the state-of-the-art method for practical noise regimes WDRL was shown in
section 3 to underperform ERM. For completeness though, we report comparison of WBM to divergence-based
methods CVaR DRO and Chi-Sq DRO (Duchi and Namkoong, 2021), in figure 7. As for GCDRO (Liu
et al., 2024), it is based on kNN graph construction, which is known to perform poorly on high-dimensional
data (Radovanović et al., 2009), which we focus on in this work. We explore the robustness properties of
WBM both to standard Gaussian and heavy-tail Cauchy noise. Heavy-tail noise is present in many real-world
applications such as vibration sensors for intelligent monitoring, power consumption sensors, and LIDAR
systems. It comes from transient events, sudden extreme changes such as short circuits, or atmospheric noise
which exhibits heavy-tails. Additionally, we explore robustness to distribution shift properties, by training on
(almost) noise-free data and testing on noisy data. Such a use-case is encountered in practice, when a model
is developped based on cleaned data before being deployed on real data. The results are averages over 13
samples. Code available at code.

6.1 LEARNING OF PDES

PDEs model a wide range of physical and engineering problems and feature a rich set of dynamical processes
that illustrate the performance of machine learning models on a wide range of practical regression problems.
For that matter, we demonstrate the performance of WBM on two extensively used PDEs: the wave equation and
the Navier-Stockes equation. More precisely, we consider the corresponding recently proposed benchmarks
in Raonic et al. (2024), where the task consists of learning operators mapping initial conditions (T = 0),
represented as images, to the final state reached by the system, e.g., corresponding to (T = 1). The underlying
images represent two-variable functions sampled at a given resolution. We train convolutional neural operators
(Raonic et al., 2023), which have been proposed as featuring robustness properties notably to change in
resolution. We set the hyperparameters optimized in (Raonic et al., 2023), and keep the same for WBM

Figure 4: Test error evolution for Navier-Stockes op-
erator learning; 30% corrupted test data with Cauchy
noise

Figure 5: Test error evolution for wave equation oper-
ator learning; 30% corrupted training data with Gaus-
sian noise

training, except the batch size for which we explore different values. The convolutional neural operator
architecture is based on mapping the sampled images back to function space using the Whittaker-Shannon
interpolation formula (Raonic et al., 2023). We display the results in Figs. 4, 5, 6 and 7. We note that, WBM
regression consistently outperforms MSE regression. In particular, while both MSE and WDRL regressions
indicate significant errors in Navier-Stokes operator learning subject to the Cauchy noise, as shown in
Fig. 6, the introduced WBM regression demonstrates notable robustness. Furthermore, we note that WBM
regression outperforms divergence-based DRO methods, as shown in Fig. 7, while being significantly cheaper
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computationally. Indeed, note that WBM does require additional hyper-parameter tuning leading to at least
10-fold computational training gain compared to CVaR and Chi-Sq DRO. We report additional numerical
results and error bars in Appendix F.

6.2 ELECTRIC GRID USAGE FORECASTING

Predicting electric load is an important and timely problem, especially given the increasing share of renewable
energy sources in grid networks. We employ the recently proposed state-of-the-art model TSMixer (Chen
et al.), to forecast electric transformer usage from the popular ETDataset (Zhou et al., 2021; Ilbert et al.,
2024). TSMixer is based on mixing operations via stacking multi-layer perceptions. We train the model
with input sequence length of 336 and prediction sequence length of 96. We utilize the hyperparameters
proposed by the authors, except the number of training epochs which we reduce to a single swap over the
data. This is justified by the fact that we compare the model against itself trained with different loss functions.
Hence, the comparison point can be chosen in a flexible way. We display the results in Figs. 8 and 9, where
WBM outperforms MSE, especially in the case of Cauchy noise, suggesting its performance extends across
high-dimensional learning problems.

Figure 6: Test error evolution for Navier-Stockes oper-
ator learning; 30% corrupted training data with Cauchy
noise

Figure 7: Test error evolution for Navier-Stockes op-
erator learning; 30% corrupted training data with Gaus-
sian noise

7 DISCUSSION

Limitations & Outlook. Although WBM demonstrates competitive performance, it has certain limitations.
First, as indicated by Proposition 4.1, WBM requires the underlying function to be sufficiently regular. As a
consequence, it struggles in operator learning tasks involving discontinuities, such as shock wave problems.
Additionally, in the low-noise regime, WBM may exhibit slight underperformance. This can be attributed
to weak matching underlying WBM, which, while beneficial in noisy settings, is suboptimal when perfect
knowledge of the responses is available. That being said, most real-world data is noisy and there exists a
fundamental limit of learning algorithms when it comes to performing well both on clean and noisy data.
Despite the limitations, WBM introduces a novel perspective on robust learning, paving the way for future
research into robustness against unbounded, correlated, or structured forms of noise.

Conclusion. We considered the open problem of robustness to global forms of additive noise and
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Figure 8: Test error evolution for electric time series
forecasting; 30% corrupted test data with Cauchy noise

Figure 9: Test error evolution for electric time series
forecasting; 30% corrupted test data with Gaussian
noise

proposed an efficient learning approach WBM, overcoming the drawbacks of current robust learning methods.
We investigated the scaling of the introduced regression along with other approaches with respect to noise
levels, offering a theoretical justification for the gains achieved by WBM. Furthermore, we demonstrated the
practical performance of WBM via several numerical experiments involving PDE operators and electrical time
series forecasting. We believe this work paves the way for robust learning methods that streamline the costly
data pre-processing step, while advancing the development of reliable machine learning models.
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A PROOF OF PROPOSITION 4.1: CONSISTENCY

Let’s first assume that X = Y = R. Let f, g ∈ G. Given that g is continuously differentiable, it has bounded
variations on every compact, that is for all a, b ∈ R such that a < b, we have

sup
pr∈Pr

npr∑
i=1

|g(xi+1)− g(xi)| < +∞ ,

where the supremum is taken over the set{
pr = {x0, . . . , xnpr

} | pr is a partition of [a, b] satisfying xi ≤ xi+1 for 0 ≤ i ≤ npr − 1}
}

This implies that there exists a partition of the feature space into intervals of lengths (δn)n∈N such that g is
monotonous on every interval. The same holds for f . Hence, we consider the partition formed by Ii ∩ Jj
where (Ii)i∈N and (Jj)j∈N are the chosen partitions for f and g respectively. We denote by (δn)n∈N the new
lengths. Since, f is bandlimited, let the support of its Fourier transform be included in [−B,B] with B > 0.
We can choose (δn)n such that δn ≤ 1

B for all n ∈ N. Furthermore, we can sample each interval a number of
times equal to the prefixed batch size. Since, f satisfies

min
g∈G

∑
p≥1

W2

(
m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]

)
=

∑
p≥1

W2(m[(f(xi))i∈Ip ],m[(f(xj))j∈Ip ])

= 0,

we know that a minimizer g ∈ G of

g 7→
∑
p≥1

W2

(
m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]

)
must satisfy

∀p ≥ 1, W2(m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]) = 0 .

Furthermore, since f and g are co-monotonic, the Wasserstein matching recovers the true matching. Last,
by the Shannon sampling theorem we conclude g is equal f . As for generalization to the multi-dimensional
setting, the co-monotonicity property is expressed through ∇f · ∇g ≥ 0. Intervals are replaced by hyperrect-
angles (Cartesian products of intervals) and the matching argument carries on over hyperrectangles. Last, the
bounded variation property carries on as an implication of Mean Value Inequality.

B PROOF OF PROPOSITION 5.1: NOISE SCALING

B.1 WASSERSTEIN BATCH MATCHING

For simplicity of the presentation, we take Y = R. The proof relies on establishing the scaling for the Sinkhorn
regularized version Wλ of the Wasserstein distance, then concluding by taking the limit as λ→ +∞. This is
motivated by the fact that Wλ is strictly convex with respect to the coupling matrix P , hence it allows for a
richer characterization of the optimal coupling matrix P ⋆ and its differentiability properties. First, recall that
for λ > 0,

Wλ(a, b) = min
P∈U(a,b)

⟨P,M⟩ − 1

λ
h(P ) with h(P ) = −

n∑
i,j=1

Pi,j(logPi,j − 1) ,

where M is the cost matrix, that depends on the data {Xi, Yi + σεi}i≤n, and a, b the discrete distributions
under consideration. In our case, we consider uniform a and b. That is, ai = bi =

1
#Ip

for i ≤ #Ip. Denoting
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by Pλ the solution of the above optimization problem, we have by Sinkhorn’s scaling theorem (Sinkhorn and
Knopp, 1967; Luise et al., 2018) the characterization

Pλ = diag(eλα
⋆

)e−λMdiag(eλβ
⋆

) ,

where α⋆ and β⋆ are the optimal Lagrange multipliers. We would like to compute the derivative of Pλ with
respect to σ to deduce its sensitivity to noise for small values of σ, for e.g. σ ∈ (0, 1). But, first let us
establish that σ 7→ Pλ(σ) is differentiable. Consider the Lagrangian

L(σ;α, β) = α⊤a+ β⊤b+

n∑
i,j=1

e−λ(Mij−αi−βj)

λ
.

By theorem 2 in (Luise et al., 2018), it is smooth and strictly convex in γ = (α, β), hence for every fixed
σ > 0, there exists γ⋆(σ) such that L(σ; γ⋆(σ)) = minγ L(σ; γ). As a result, following the proof of theorem
2 in (Luise et al., 2018), by the implicit function theorem, we deduce that Pλ is continuously differentiable.
Furthermore, denoting ψ = ∇γL, we have

ψ(σ; γ) =

(
a− Pλ1
b− P⊤

λ 1

)
with

ψ(σ; γ⋆(σ)) = 0.

By differentiation, we get

∇1ψ(σ, γ
⋆(σ)) +∇σγ

⋆(σ)∇2ψ(σ, γ
⋆(σ)) = 0

and consequently

∇σγ
⋆(σ) =

(
∇σα

⋆(σ)
∇σβ

⋆(σ)

)
=

(
(2(Yi − fθ(Xj)) + 2σεi)i,j≤n

(2(Yi − fθ(Xj)) + 2σεi)i,j≤n

)
.

Now, we can compute

d
dσ

n∑
i,j=1

Mij(σ)(P
⋆
λ (σ))ij =

n∑
i,j=1

dMij(σ)

dσ
(P ⋆

λ (σ))ij +

n∑
i,j=1

Mij(σ)
d(P ⋆

λ (σ))ij
dσ

=

n∑
i,j=1

2(Yi − fθ(Xj))(P
⋆
λ (σ))ij +M(σ)(∇σα

⋆(σ)P ⋆
λ (σ))ij +M(σ)(∇σMij(σ)P

⋆
λ (σ))ij +M(σ)(∇σβ

⋆(σ)P ⋆
λ (σ))ij =

n∑
i,j=1

2(Yi − fθ(Xj))(P
⋆
λ (σ))ij −M(∇σβ

⋆(σ)P ⋆
λ (σ))ij ,

where we discarded the terms in O(σ). Finally, since this holds for each σ ∈ (0, 1), and Pλ(σ) → P (σ)
where P (σ) is the optimal coupling in the non-regularized Wasserstein distance, which is continuous in σ
(see for e.g. (Bonnans and Shapiro, 2013)), we conclude by Dini’s theorem that the convergence is uniform,
hence by taking the limit when λ→ +∞, of the estimate on the derivative, we get the result.

B.2 WASSERSTIEN DISTRIBUTIONALLY ROBUST LEARNING

Under the Lipschitz assumption, we obtain the existence of optimizers for d2. Such optimizers (λ⋆, ξ⋆1 , ξ
⋆
2)

satisfy
0 ∈ ∂λ,ξ1,ξ2d2((Yi + σεi)i≤n, (fθ(Xi))i≤n) ,
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where ∂λ,ξ1,ξ2d2((Yi + σεi)i≤n, (fθ(Xi))i≤n) is the Clarke subdifferential of d2 leveraging the differentia-
bility properties of fθ and the implicit function theorem, we use this inclusion to obtain the derivatives of
the optimizers with respect to σ. Note that the only non-smooth part comes from taking ℓ(x, y) = |x− y|.
Specifically, we get {

0 ∈ 1− 2λ(ξ1 − Yi + σεi) ∂| · |
.0 ∈ [∇fθ − 2λ(ξ2 −Xi)] ∂| · |

by differentiation we get {
0 ∈ −2λ(dξ1dσ + εi) ∂| · |
0 ∈ dξ2

dσ ∇2fθ(ξ2)− 2λdξ2
dσ ∂| · |

since ∂| · | = [−1, 1], and leveraging the Lagrangian to differentiate λ with respect to σ we get

0 ∈ (δ − ∥ξ1 − Yi∥2 − ∥ξ2 −Xi∥)
dλ

dσ
+

1

2λ
[−1, 1] .

Now, as we have the derivatives of the optimizers, we can differentiate

d2((Yi + σεi)i≤n, (fθ(Xi))i≤n) = λ⋆δ +
1

n

n∑
i=1

{
ℓ(ξ⋆1 − fθ(ξ

⋆
2))− λ∥Yi − ξ⋆1∥22 − λ∥Xi − ξ⋆2∥22

}
leading to the result.

C DISCUSSION ON ASYMPTOTIC SCALING

Further insights into the relationship between WBM and MSE regression can be obtained by considering the
asymptotic limit of regression problem in a batch of infinitely many samples. Specifically, we analyze the
case where the feature-response pair (X,Y ) ∈ X 2 are random variables, satisfying the following conditions.

1. The laws of X and Y , µX,Y , are Gaussian measures with mean values mX,Y and covariances ΣX,Y .

2. The covariance between X and Y is optimal, i.e., Cov(X,Y ) =
(
Σ

1/2
X ΣY Σ

1/2
X

)1/2

.

3. The regression is performed over linear functions of θ ∈ R.

In this setting, it is straight-forward to see that the two loss functions become identical. In particular, following
Gelbrich bound (Gelbrich, 1990), we have

W2(µY , fθ#µX) = ∥mX − θmY ∥22 + tr ΣY + θ2tr ΣX − 2θtr
(
Σ

1/2
X ΣY Σ

1/2
X

)1/2

,

where fθ#µX is push-forward of µX by fθ, and therefore the MSE loss becomes

E∥Y − θX∥22 = ∥mX − θmY ∥22 + tr ΣY

+ θ2tr ΣX − 2θtr Cov(X,Y )

= W2(µY , fθ#µX) .
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D PROOF OF COROLLARY 5.2

First, let us detail the assumptions. In addition to strong convexity, we assume that the loss function is five
times continuously differentiable with second to fifth bounded derivatives. Moreover, we assume for the
covariance matrix C(θ) = E[(∇σ)

⊗2], there exists s, k ≥ 0 such that for all θ ∈ Rd, we have

max
i∈{1,2,3}

∥∥∥C(i)(θ)
∥∥∥ ≤M(1 + ∥θ − θ⋆∥k) .

Recall that for the MSE loss given by

dMSE
(
(Yi + σεi)i∈Ip , (fθ(Xi))i∈Ip

)
=

1

#Ip

∑
i∈Ip

(Yi + σεi − fθ(Xi))
2
,

we have

∇θdMSE
(
(Yi + σεi)i∈Ip , (fθ(Xi))i∈Ip

)
= ∇θ

 1

#Ip

∑
i∈Ip

(Yi − fθ(Xi))
2

+∇θ

 σ

#Ip

∑
i∈Ip

(Yi − fθ(Xi)) εi


along with

∇θ

 σ

#Ip

∑
i∈Ip

(Yi − fθ(Xi)) εi

 =
σ

#Ip

∑
i∈Ip

εi∇θ (Yi − fθ(Xi)) ,

and thus

E

∇θ

 σ

#Ip

∑
i∈Ip

(Yi − fθ(Xi)) εi

 =
σ

#Ip

∑
i∈Ip

E[εi] ∇θ (Yi − fθ(Xi)) = 0 .

Similarly for the WBM loss, we get

E
[
∇θW2

(
m[(Yi + σεi)i∈Ip ],m[(fθ(Xi))i∈Ip

)]
) = ∇θW2

(
m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]

)
+ξ((Yi)i∈Ip , (fθ(Xi))i, (εi)i) ,

with E[ξ((Yi)i∈Ip , (fθ(Xi))i, (εi)i)] = 0. Hence, by Proposition 2 and Theorem 4 in (Dieuleveut et al.,
2020), we obtain the result for both loss functions.

E PARAMETER ERROR BOUNDS

Corollary E.1. Assume the loss functions to be strongly convex with constant κ > 0. Then, for σ ∈ (0, 1),
the WBM noise-free estimate θ⋆WBM satisfies

∥θ⋆σ − θ⋆WBM∥ ≤
√
D1
WBM σ

κ
+

√
D2
WBM σ2

κ

where θ⋆σ is the noisy estimate and D1
WBM, D

2
WBM > 0 a constant. In contrast, the noise-free MSE estimate

satisfies

∥θ⋆σ − θ⋆MSE∥ ≤
√
D1
MSE σ

κ
+

√
D2
MSE σ

2

κ

where D1
MSE is a constant that depends on (Xi, Yi, εi)i∈Ip , θ⋆σ is the noisy estimate, and D2

MSE > 0.
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Proof. First, denote the loss functions generically as ℓθ. The proof is based on a classical argument, and we
show it for WBM. Specifically, strong convexity implies for θ, θ⋆ ∈ Rd

ℓθ ≥ ℓθ⋆ +
κ

2
∥θ − θ⋆∥2

at the minimizers

ℓθ⋆
σ
(σ) ≤ ℓθ⋆

σ
(0) + δ and ℓθ⋆

WBM
(0) ≤ ℓθ⋆

WBM
(σ) + δ for σ > 0 .

By combining these inequalities and the fact that

|ℓθ⋆
σ
(σ)− ℓθ⋆

WBM
(0)| ≤ D1

WBM σ +D2
WBM σ

2 ,

one gets
κ ∥θ⋆σ − θ⋆MSE∥

2 ≤ 2(D1
WBM σ +D2

WBM σ
2)

which concludes the argument.

F ADDITIONAL NUMERICAL RESULTS

We illustrate the evolution of the WBM loss for different Gaussian noise levels for the polynomial function

x 7→ (x− 2)(x− 4)(x− 5)

as opposed to the MSE in figure 10. We note that the WBM loss changes more slowly with noise levels,
suggesting it recovers regression functions that are less impacted by noise. Additionally, we report error bars

Figure 10: Loss evolution between a function and its noisy version

over the test batches for the results presented in section 6 as well as complementary numerical results for
learning of the Navier-Stockes equation, Wave equation and Electricity Times Series. Note that for training on
noisy the error bounds are much smaller due to the fact that the model training smoothens the noise, whereas
for testing on noisy data the difference can be significant among batches.

Batch Size Scaling
We report in figure 20 the relative test error for various batch sizes, under noise level 1. We note that WBM is
not very sensitive to batch size values especially in the smaller range (up to 80).
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Figure 11: Test error evolution for Navier-
Stockes operator learning - 30% corrupted test
data with Cauchy noise

Figure 12: Test error evolution for wave equation
operator learning - 30% corrupted training data
with Gaussian noise

Figure 13: Test error evolution for Navier-
Stockes operator learning - 30% corrupted train-
ing data with Cauchy noise, 4σ

Figure 14: Test error evolution for Navier-
Stockes operator learning - 30% corrupted train-
ing data with Gaussian noise

Wall-Clock Time We report in figure 21 the wall-clock time for WBM and the state-of-the-art χ2-
DORO method across batch sizes, for the Navier-Stokes problem and 100 epoch of training. We note
that WBM does not require higher time, since the cost is dominated by the dimension as discussed in the
complexity remark of section 4. We also report wall-clock time across dimensions in figure 24 demonstrating
the dominance of the dimension for time complexity. Furthermore, we report in table ?? below the run time
for each class of methods without hyper-parameter tuning. Since WBM does not require any additional
hyper-parameter tuning beyond the standard deep learning hyper-parameters (such as batch size), it results in
reduction of computational cost of at least an order of magnitude compared to the state-of-the-art which
requires at least one additional hyper-parameter.
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Figure 15: Test error evolution for electric time
series forecasting - 30% corrupted test data with
Cauchy noise

Figure 16: Test error evolution for electric time
series forecasting - 30% corrupted test data with
Gaussian noise

Figure 17: Test error evolution for Navier-
Stockes operator learning - 30% corrupted train-
ing data with Cauchy noise

Figure 18: Test error evolution for Navier-
Stockes operator learning - 30% corrupted test
data with Gaussian noise

Method WBM χ2-DORO WDRL
Time (s) 2160.92 2211.51 3476.27

Table 1: Execution times of different methods.
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Figure 19: Test error evolution for wave equation operator learning - 30% corrupted training data with Cauchy
noise

Figure 20: Sensitivity of WBM to batch size

Multiplicative noise
We explore the effectiveness of WBM in case where the noise is multiplicative, for the Navier-Stokes problem.
We report the relative MAE in figure 23. We observe that WBM maintains a relatively stable error across
noise levels.
Correlated noise
Similarly, we report the relative error of WBM for the Navier-Stokes problem, with strongly correlated noise.
The noise is generated by sampling a Gaussian with covariance matrix of the form Σ + α11⊤, where α
control the correlation level and Σ follows a Wishart distribution with diagonal scaling matrix. We note
that WBM is less effective for correlated noise, which is an expected effect given that WBM is based on
distributional matching.
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Figure 21: Wall-Clock time across batch size Figure 22: Wall-Clock time across dimensions

Figure 23: Test error across multiplicative noise
levels

Figure 24: Test error across noise corelation lev-
els
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G REPRODUCIBILITY

We provide a version of the code used for the numerical experiments in the following link: code. It is based
on modifications of the publicly available code from (Raonic et al., 2023) and (Ilbert et al., 2024). The
experiments were performed on NVIDIA Tesla T4 and Tesla P100 16GB Cores.
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