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Abstract

Using pretrained models for fine-tuning is a widely adopted strategy in medical imaging,
where labeled data is scarce. While ImageNet remains the standard for pretraining in
computer vision, RadImageNet, a radiology-specific alternative, has shown promise in ra-
diology realted vision tasks. However, its effectiveness in non-radiological modalities like
endoscopy remains unclear. In this study, we conduct a focused evaluation of how transfer
learning from natural or medical images affects performance in endoscopic polyp segmen-
tation, using ImageNet, RadImageNet, and a histopathology dataset for pretraining. Two
backbone architectures—ResNet-50 and ViT-Small are integrated with a DeepLabV3+ de-
coder and evaluated on three public datasets: CVC-ClinicDB, Kvasir-SEG, and SUN-SEG.
ImageNet-pretrained models consistently outperform those pretrained on medical datasets.
These results highlight that medical-domain pretraining is not universally beneficial and
emphasize the need for modality alignment when selecting pretrained models for medical
imaging tasks. Github - https://github.com/dipikaboro2/med-pretraining

Keywords: Transfer learning, Pretraining, Polyp segmentation, ViT, ResNet

1. Introduction

Transfer learning with pretrained models is a widely adopted strategy in computer vision,
offering improved generalization, faster convergence, and more efficient training. This ap-
proach is especially valuable in domains where annotated data is limited, such as medical
image analysis. ImageNet (Deng et al., 2009) remains the default pretraining dataset due
to its large scale and strong generalization capabilities across diverse tasks. However, Ima-
geNet comprises natural images that differ substantially in structure and appearance from
medical images.

RadImageNet (Mei et al., 2022) was proposed as a radiology-specific alternative to Im-
ageNet, comprising of over a million medical images from CT, MRI, and ultrasound modal-
ities. It has shown performance gains in several radiology-focused tasks. However, medical
imaging spans a variety of modalities beyond those in RadImageNet, such as endoscopy
and histopathology, which differ significantly in structure, color, and visual semantics. The
NCT-CRC-HE-100K (Kather et al., 2018) dataset is a pathology image collection consist-
ing of 100,000 histological images of human colorectal cancer and healthy tissues. Whether
medical image pretraining, radiology-specific or histopathology-specific, generalizes to polyp
segmentation in endoscopic images remains largely unexplored.
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This study presents a systematic evaluation of ImageNet, RadImageNet and histopathol-
ogy images as pretraining sources for endoscopic image segmentation. We investigate two
representative encoder architectures—ResNet-50 (He et al., 2016), a CNN based archi-
tecture, and ViT-Small (Dosovitskiy et al., 2021), a transformer based architecture—each
integrated into a unified DeepLabV3+ (Chen et al., 2018) decoder. In order to get a compre-
hensive analysis of performance across the pretraining domains, these models are evaluated
on three publicly available polyp segmentation benchmarks: CVC-ClinicDB (Bernal et al.,
2015), Kvasir-SEG (Jha et al., 2020), and SUN-SEG (Fan et al., 2020; Ji et al., 2021, 2022).

2. Method

2.1. Framework

As shown in Figure 1, we follow an encoder-decoder framework, with ResNet-50 or ViT-
Small as the encoder and a DeepLabV3+ decoder to generate the segmentation output.

Figure 1: Architectural overview of the encoder-decoder framework.

Input images are resized to 224×224 and passed through the encoder to extract features.
For ResNet-50, the final convolutional layer output is fed into an Atrous Spatial Pyramid
Pooling (ASPP) module to capture multi-scale context, while a low-level feature map from
an earlier layer (layer1) is used in a skip connection to the decoder. For ViT-Small, in-
termediate feature maps are obtained. The final transformer block output is processed by
ASPP, and the earliest feature map serves as the decoder skip connection. The decoder
combines ASPP output with low-level features and produces a segmentation mask.

2.2. Experimental Setup

We evaluate our pretrained models on three publicly available polyp segmentation datasets:
CVC-ClinicDB (612 images), Kvasir-SEG (1,000 images), and SUN-SEG (49,136 images).
Each dataset is split 80/20 into training and validation sets using a fixed seed for repro-
ducibility.

We train using binary cross-entropy loss and the Adam optimizer (learning rate 0.0001)
for 20 epochs with a batch size of 32 on a single NVIDIA TITAN RTX GPU. Performance
is evaluated on the validation set using Dice coefficient and Intersection over Union (IoU)
score. Final results are reported using the best model checkpoint.
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3. Results and Conclusion

Table 1 presents segmentation performance across the three datasets for backbones pre-
trained on ImageNet, RadImageNet and NCT-CRC-HE-100K. ImageNet-pretrained mod-
els consistently outperform RadImageNet or NCT-CRC-HE-100K pretrained ones, with the
largest differences on smaller datasets. This pattern holds for both CNN and transformer
architectures. Sample predicted masks are shown in Figure 2.

Table 1: Dice and IoU scores of finetuned models.

Model Dataset ImageNet RadImageNet Histopathology
Dice IoU Dice IoU Dice IoU

ResNet50
CVC-DB 0.8230 0.7389 0.5820 0.4634 0.7262 0.6131
Kvasir-SEG 0.8244 0.7340 0.5279 0.4006 0.7062 0.5947
SUN-SEG 0.9353 0.8862 0.9209 0.8657 0.9307 0.8813

ViT-S
CVC-DB 0.8705 0.7913 0.5033 0.4024 0.5520 0.4325
Kvasir-SEG 0.8706 0.7986 0.5228 0.3954 0.5065 0.3839
SUN-SEG 0.9000 0.8334 0.8411 0.7580 0.8453 0.7658

Figure 2: Samples of predicted masks from finetuned ViT-small and ResNet50 models.

The performance gap narrows on SUN-SEG, the largest dataset in our evaluation. Mod-
els pretrained on histopathology data perform comparably to those pretrained on ImageNet,
with only slightly lower Dice and IoU scores, whereas RadImageNet-pretrained models con-
tinue to underperform. This may be attributed to the similarity in color characteristics
between histopathology and endoscopic images, in contrast to grayscale radiology images.

These findings suggest that although larger datasets can reduce the impact of pretraining
misalignment, features learned from ImageNet remain more transferable to non-radiological
modalities such as endoscopy. Overall, our results indicate that medical-domain pretraining
is not universally advantageous, and that modality-specific characteristics should guide the
selection of pretrained models in medical imaging tasks.
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