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ABSTRACT

Model-based reinforcement learning (RL) has emerged as a promising tool for
developing controllers for real world systems (e.g., robotics, autonomous driving,
etc.). However, real systems often have constraints imposed on their state space
which must be satisfied to ensure the safety of the system and its environment.
Developing a verification tool for RL algorithms is challenging because the non-
linear structure of neural networks impedes analytical verification of such models
or controllers. To this end, we present a novel safety verification framework for
model-based RL controllers using reachable set analysis. The proposed frame-
work can efficiently handle models and controllers which are represented using
neural networks. Additionally, if a controller fails to satisfy the safety constraints
in general, the proposed framework can also be used to identify the subset of initial
states from which the controller can be safely executed.

1 INTRODUCTION

One of the primary reasons for the growing application of reinforcement learning (RL) algorithms
in developing optimal controllers is that RL does not assume a priori knowledge of the system dy-
namics. Model-based RL explicitly learns a model of the system dynamics, from observed samples
of state transitions. This learnt model is used along with a planning algorithm to develop optimal
controllers for different tasks. Thus, any uncertainties in the system, including environment noise,
friction, air-drag etc., can also be captured by the modeled dynamics.

However, the performance of the controller is directly related to how accurately the learnt model
represents the true system dynamics. Due to the discrepancy between the learnt model and the
true model, the developed controller can behave unexpectedly when deployed on the real physical
system, e.g., land robots, UAVs, etc. (Benbrahim & Franklin, [1997; [Endo et al.| [2008; [Morimoto
& Doyal, 2001)). This unexpected behavior may result in the violation of constraints imposed on the
system, thereby violating its safety requirements (Moldovan & Abbeel, 2012). Thus, it is necessary
to have a framework which can ensure that the controller will satisfy the safety constraints before
it is deployed on a real system. This raises the primary question of interest: Given a set of safety
constraints imposed on the state space, how do we determine whether a given controller is safe or
not?

In the literature, there have been several works that focus on the problem of ensuring safety. Most
of these works incorporate safety constraints in the learning phase to train a controller (policy) to
satisfy certain desired specifications or constraints. However, to achieve this goal, some works make
strict assumptions on the complete or accurate knowledge of the system dynamics (Zheng & Ratliff]
2020; Hasanbeig et al. 2020) which can be difficult to obtain. Further, to incorporate safety during
learning, some works approximate the original problem to represent safety constraints in a tractable
form (Fu et al.;|2018;/Avni et al.,[2019), which reduces the performance of the final trained controller
(Fu et al., [2018; [Eriksson & Dimitrakakis) [2019; Junges et al.| [2016; Konighofer et al., [2020). On
the other hand, some of the works aim at finding a safe controller, under the assumption of a known
baseline safe policy (Hans et al., 2008; |Garcia & Fernandez, 2012; Berkenkamp et al.,[2017; Thomas
et al., 2015} [Laroche et al.l [2019; [Zheng & Ratlitf, 2020), or several known safe policies (Perkins
& Bartol 2002)). However, such safe policies may not be readily available in general. Alternatively,
Akametalu et al.|(2014) used reachability analysis to develop safe model-based controllers, under the
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assumption that the system dynamics can be modeled using Gaussian processes, i.e., an assumption
which is violated by most modern RL methods that make use of neural networks (NN) instead.

While there have been several works proposed to develop safe controllers, some of the assumptions
made in these works may not be possible to realize in practice. In recent years, this limitation has
drawn attention towards developing verification frameworks for RL controllers, which is the focus of
this paper. The safety verification algorithm proposed in this work is a standalone framework which
makes no assumptions on how the model-based RL controller is trained. It works independently of
the training phase to identify the safe initial conditions for any given policy. One advantage of using
a standalone verification framework is that we can deploy potentially unsafe policies on real systems,
without further training, by restricting their initial conditions to only the safe states. Since verifying
safety of an NN based RL controller is also related to verifying the safety of the underlying NN
model (Xiang et al., |2018b}; |Tran et al., 2019b; Xiang et al., |2018a; Tran et al., [2019a)), we provide
an additional review for these methods in Appendix [A.I]

Contributions: In this work, we focus on the problem of determining whether a given controller
is safe or not, with respect to satisfying constraints imposed on the state space. To do so, we pro-
pose a novel safety verification algorithm for model-based RL controllers using forward reachable
tube analysis that can handle NN based learnt dynamics and controllers, while also being robust
against modeling error. The problem of determining the reachable tube is framed as an optimal
control problem using the Hamilton Jacobi (HJ) partial differential equation (PDE), whose solution
is computed using the level set method. The advantage of using the level set method is the fact that
it can represent sets with non-convex boundaries, thereby avoiding approximation errors that most
existing methods suffer from. Additionally, if a controller is deemed unsafe, we take a step further
to identify if there are any starting conditions from which the given controller can be safely exe-
cuted. To achieve this, a backward reachable tube is computed for the learnt model and, to the best
of our knowledge, this is the first work which computes the backward reachable tube over an NN.
Finally, empirical results are presented on two domains inspired by real-world applications where
safety verification is critical.

2 PROBLEM SETTING

Let S C R™ denote the set of states and A C R™ denote the set of feasible actions for the RL agent.
Let Sy C S denote the set of bounded initial states and & := {(s;,a;)}_, represent a trajectory
generated over a finite time 7', as a sequence of state and action tuples, where subscript ¢ denotes
the instantaneous time. Additionaly, let s(-) and a(-) represent a sequence of states and actions,
respectively. The state constraints imposed on the system are represented as unsafe regions using
bounded sets C, = ug;lcfj), where C ¢ S, Vi € {1,2,...p}. The true system dynamics is
given by a non-linear function f : S x A — R" such that, $§ = f(s, a), and is unknown to the agent.

A model-based RL algorithm is used to find an optimal controller 7 : S — A, to reach a set
of target states T C S within some finite time 7', while avoiding constraints C;. An NN model,
fg : S x A — R”™ parameterized by weights 6, is trained to learn the true, but unknown, system
dynamics from the observed state transition data tuples D = {(s;, a;, As; 1)@} ,. However, due
to sampling bias, the learnt model fg may not be accurate. We assume that it is possible to estimate
a bounded set D C R™ such that, at any state s € S, augmenting the learnt dynamics fg with some

d € D results in a closer approximation of the true system dynamics at that particular state. Using
this notation, we now define the problem of safety verification of a given controller 7(s).

Problem 1 (Safety verification): Given a set of initial states Sy, determine if Vsg € Sy, all the
trajectories & executed under () and following the system dynamics f, satisfy the constraints Cg
or not.

The solution to Problemwill only provide a binary yes or no answer to whether 7(s) is safe or not
with respect to Sy. In the case where the policy is unsafe, a stronger result is the identification of safe
initial states Sy, fe C Sg from which 7(s) executes trajectories which always satisfy the constraints
Cs. This problem is stated below.
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Problem 2 (Safe initial states): Given 7(s), find Ssq e, such that, any trajectory £ executed under
7(s) and following the system dynamics f, starting from any sg € Seqye, satisfies the constraints

S-

3 SAFETY VERIFICATION

To address Problems [T] and 2] we use reachability analysis. Reachability analysis is an exhaustive
verification technique which tracks the evolution of the system states over a finite time, known as
the reachable tube, from a given set of initial states Sy (Maler}, 2008). If the evolution is tracked
starting from Sy, then it is called the forward reachable tube and is denoted as Fr(T'). Analogously,
if the evolution is tracked starting from C; to S, then it is called the backward reachable tube and
is denoted as B (7).

In the following sections, we will formulate a reachable tube problem for NN-based models and
controllers, and then propose a verification framework that (a) can determine whether or not a given
policy 7 is safe, and (b) can compute S, f. if 7 is unsafe. To do so, there are two main questions that
need to be answered. First, since the true system dynamics f is unknown, how can we determine a
conservative bound on the modeling error, to augment the learnt model fg and better model the true
system dynamics when evaluating a controller 7? Second, how do we formulate the forward and
backward reachable tube problems over the NN modeled system dynamics?

3.1 MODEL-BASED REINFORCEMENT LEARNING

In this section, we focus on the necessary requirements for the modeled dynamics fg and discuss the
estimation of the modeling error set D. A summary of the model-based RL framework is presented
in Appendix 2| Recall that the learnt model fg is represented using an NN and predicts the change
in states Ag; 11 € R™. To learn fg, an observed data set D = {(s¢, as, As; 1)}, is first split
into a tra1n1ng data set D, and a validation data set D,,. A superv1sed learnlng technlque is then used
to train fy over D; by minimizing the prediction error E = N Z ||A 8, +1 — As; +1|\2 where
A&, is the change predicted by the learnt model, As; 1 is the true observed change in state and
N; = | D;|. With this notation, we now formalize the following necessary assumption for this work.
This assumption is required to ensure boundedness during analysis and is easily satisfied by NNs
that use common activation functions like tanh or sigmoid (Usama & Chang| 2018).

Assumption 1 fg is Lipschitz continuous and ¥j € {1,...,n}, Aé; € [—c, c|, where || < cc.

Modeling error: As mentioned earlier, the accuracy of the learnt model fg depends on the quality
of data and the NN being used, thereby resulting in some modeling error d in the prediction of
the next state. Estimating modeling errors is an active area of research and is required for several
existing works on safe RL (Akametalu et al., 2014; Gillula & Tomlin,2012), and is complementary
to our goal. Since the primary contribution of this work is the development of a reachable tube
formulation for model-based controllers that use NNs, we rely on existing techniques (Moldovan
et al.l [2015) to estimate a conservative modeling error bound. We leverage the error estimates

d = Asgi) 1 Asgi) 1, of fo. for the transition tuples in the validation set D, to construct the upper
conﬁdence bound dt = [dy, da,...d,] and lower confidence bound d~ = [—d;, —ds,... — dy]
for d, for each state dimension. Let a high-confidence bounded error set D be defined such that
D={d:Vie{l,.,n}, d_ <d; <d}. Wethen use D to represent the augmented learnt
system dynamics as

i) = fo(s,a) +d, deD. (1)

3.2 REACHABLE TUBE FORMULATION

For an exhaustive verification technique on a continuous state and action space, it is infeasible to
sample trajectories from every point in the given initial state and further, to verify whether all these
trajectories satisfy the safety constraints. Therefore, reachable sets are usually (approximately) rep-
resented as convex polyhedrons and their evolution is tracked by pushing the boundaries of this
polyhedron according to the system dynamics. However, as convex polyhedrons can lead to large
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Figure 1: Flowchart of the proposed safety verification algorithm. The rectangle on the left repre-
sents the flow for computing the forward reachable tube (FRT), which can only state if 7(s) is safe
or unsafe for Sy. The rectangle on the right presents the flow for computing the backward reachable
tube (BRT), which is invoked if 7(s) is unsafe. The BRT analysis can compute the subset of safe
initial states Sy, re for 7(s), if such a set exists.

approximation errors, we leverage the level set method (Mitchell et al.,2005) to compute the bound-
aries of the reachable tube for NN-based models and controllers at every time instant. With the
level set method, even non-convex boundaries of the reachable tube can be represented, thereby en-
suring an accurate computation of the reachable tube (Mitchell et al., 2005). Since the non-linear,
non-convex structure of NN is not suitable for analytical verification techniques, the reachability
analysis gives an efficient, simulation-based approach to analyze the safety of the controller. There-
fore, in this subsection, we formulate the reachable tube for a NN modeled system dynamics fg, but
first we formally define the forward reachable tube and backward reachable tube for a policy 7 (s).

Forward reachable tube (FRT): It is the set of all states that can be reached from an initial set Sy,

when the trajectories £ are executed under policy 7(s) and system dynamics fér) (s,a,d). The FRT
is computed over a finite length of time 7" and is formally defined as

Fr(T) :={s:Vd € D, s(-) satisfies $ = fér) (s,a,d), where a = 7(s), sy, € So,ty =T}, (2)

where t( and t; denote the initial and final time of the trajectory &, respectively.
Backward reachable tube (BRT): It is the set of all states which can reach a given bounded tar-
get set T C R™, when the trajectories ¢ are executed under policy 7(s) and system dynamics

Aér) (s,a,d). The BRT is also computed for a finite length of time, with the trajectories starting at
time ¢y = —71" and ending at time ¢y = 0. It is denoted as

Br(—T) := {so : Vd € D, s(-) satisfies § = Aér)(s,a, d), where a = 7(s)

3
with sy, = s_7; 8¢, € T, ty € [-T,0]}. )

The key difference between the FRT and BRT is that, for the former, the initial set of states are
known, whereas for the latter, the final set of states are known.
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Outline: The flowchart of the safety verification framework proposed in this work is presented
in Fig. |1l Given a model-based policy 7(s), the set of initial states Sp and the set of constrained
states Cg, the first step is to estimate the bounded set of modeling error D, as discussed in Section

3.1. Using f (r), the FRT is constructed from the initial set S¢ and it contains all the states reachable
by 7(s) over a finite time T'. Thus, if the FRT contains any state from the unsafe region Cy, 7(s)
is deemed unsafe. Therefore, the solution to Problem [I] is determined by analyzing the set of
intersection of the FRT with C; as

[ safe if Fr(T)NC, =0,
"= unsafe if Fr(T)NCs # 0.

If (s) is classified as safe for the entire set Sy, then no further analysis is required. However, if
m(s) is classified as unsafe, we proceed to compute the subset Sgyre C Sp of initial states for which
7(s) generates safe trajectories. S,q s is the solution to Problem and allows an unsafe policy to be
deployed on a real system, with restrictions on the starting states. To this end, the BRT is computed
from the unsafe region Cg, to determine the set of trajectories (and states) which terminate in Cj.
The intersection of the BRT with Sy determines the set of unsafe initial states S, sq fe. To determine
Ssafe. we utilize the following properties, (a) Ssqfe U Sunsafe = So, and (b) Ssq e N Sunsafe = 0,
and compute

“4)

Ssafe = gunsafe N SO- (5)
If Sgafe # (), then we have identified the safe initial states for 7(s), otherwise, it is concluded that
there are no initial states in Sy from which 7(s) can generate safe trajectories.

Mathematical Formulation: This section presents the mathematical formulation to compute the
BRT. The FRT can be computed with a slight modification to the BRT formulation and this is dis-
cussed in the end of this section.

Recall, for the BRT problem, there exists a target set T C R™ which the agent has to reach in
finite time, i.e., the condition on the final state is given as s, € T. Conventionally, for the BRT
formulation, the final time ¢y = 0 and the starting time ¢ty = —7', where 0 < T" < oo. When
evaluating a policy 7 (), the controller input is computed by the given policy as a = 7(s). However,

following the system dynamics f‘(f) in , the modeling error d is now included in the system as
an adversarial input, whose value at each state is determined so as to maximize the controller’s
cost function. We use the HJ PDE to formulate the effect of the modeling error on the system for
computing the BRT, but first we briefly review the formulation of the HJ PDE with an NN modeled

system dynamics fg in the following.

For an optimal controller, we first define the cost function which the controller has to minimize. Let
C(s¢, a;) denote the running cost of the agent, which is dependent on the state and action taken at
time ¢t € [~T,0]. Let g(s;,) denote the cost at the final state s;,. Then, the goal of the optimal
controller is to find a series of optimal actions such that

min </O C(STaG’T)dT+g<stf))

a- (") -T

(6)
subject to § = fg(s, a), sy €T,

where a, € A and fy is the NN modeled system dynamics. The above optimization problem is
solved using the dynamic programming approach (Smith & Smith, |1991), which is based on the
Principle of Optimality (Troutman, [2012)). Let V' (s, t) denote the value function of a state s at time
t € [T, 0], such that

t+0

0
V(s t) = Hll(% {/ C(sr,a.)dr + g(stf)} = min C(sr,a.)dr + V(stys5,t +0)|, (7)
a,(- t

a- (")
where 0 > 0. V(s;,t) is a quantitative measure of being at a state s, described in terms of the cost
required to reach the goal state from s. Then, using the Taylor series expansion, V (s;45,t + 0) is
approximated around V' (s, t) in (7)) to derive the HJ PDE as

t

av . ;
g +min [VV - fo(s,a)+ C(s, a)} =0, ®)

V(Stf7tf) = g(stf)7
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where VV € R" is the spatial derivative of V. Additionally, the time index has been dropped above
and the dynamics constraint in (6) has been included in the PDE. Equation (8] is a terminal value
PDE, and by solving , we can compute the value of a state V (s, t) at any time ¢.

We now discuss how the formulation in (8) can be modified to obtain the BRT. It is noted that
along with computing the value function, the formulation in (8) also computes the optimal action a.
However, in Problems and the optimal policy 7 (s) is already provided. Therefore, the constraint
a = 7(s) should be included in problem @, thereby avoiding the need of minimizing over actions

acAin . Additionally, as discussed in Section 3.1, the NN modeled system dynamics fg may
not be a good approximation of the true system dynamics f. Instead, the augmented learnt system

dynamics fg') in (1) is used in place of fg in lai , since it better models the true dynamics at a given

state. However, by including f(gT) in @i the modeling error d is now included in the formulation.
The modeling error d € D is treated as an adversarial input which is trying to drive the system
away from it’s goal state by taking a value which maximizes the cost function at each state. Thus,
to account for this adversarial input, the formulation in (8] is now maximized over d.

Lastly, the BRT problem is posed for a set of states and not an individual state. Hence, an efficient
representation of the target set is required to propagate an entire set of trajectories at a time, as
opposed to propagating individual trajectories.

Assumption 2 The target set T C R"™ is closed and can be represented as the zero sublevel set of a
bounded and Lipschitz continuous function l : R™ — R, such that, T = {s : I(s) < 0}.

The above assumption defines a function [/ to check whether a state lies inside or outside the target
set. If T is represented using a regular, well-defined geometric shape (like a sphere, rectangle,
cylinder, etc.), then deriving the level set function [(s) is straight forward, whereas, an irregularly
shaped T can be represented as a union of several well-defined geometric shapes to derive I(s).

For the BRT problem, the goal is to determine all the states which can reach T within a finite time.
The path taken by the controller is irrelevant and only the value of the final state is used to determine
if any state s € Br(—71"). From Assumption [2| the terminal condition s;, € T can be restated as
I(s¢;) < 0. Thus, to prevent the system from reaching T, the adversarial input d tries to maximize
I(s¢, ), thereby pushing s;, as far away from T as possible. Therefore, the cost function in @ is
modified to J = I(s;,). Additionally, any state which can reach T within a finite time interval 7" is
included in the BRT. Therefore, if any trajectory reaches T at some t; < 0, it shouldn’t be allowed
to leave the set. Keeping this in mind, the BRT optimization problem can be posed as

in [
e (i, o)
subject to: § = fer)(s,a,d)7 a=m(s), I(s:) <0,

where the inner minimization over time prevents the trajectory from leaving the target set. Then, the
value function for the above problem is defined as

Vr(st, t) := 132§<l(s(tf)). (10)

9

Comparing this with (7), it is observed that the value of a state s is no longer dependent on the
running cost C(s, a). This doesn’t imply that the generated trajectories are not optimal w.r.t. action
a, because the running cost is equivalent to the negative reward function, for which 7(s) is already
optimized. Instead, Vg solely depends on whether the final state of the trajectory lies within the
target set or not, i.e., whether or not s; ; € T. Thus, the value function Vg for any state s is equal
to I(s¢,), where s;, is the final state of the trajectory originating at s. Then, the HJ PDE for the
problem in (9) is stated as

% + min{0, H*(s, VVg(s:, t),t)} =0,
Vr(st,,ty) = 1(st,), (11)
where H* = max (VVR . fér)(s,ﬂ'(s),d)) )
where H* represents the optimal Hamiltonian. Since we are computing the BRT,

min{0, H*(s, VVR(st,t),t)} in the PDE above ensures that the tube grows only in the backward
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Figure 2: (Left) The environment for the safe land navigation problem. (Middle) The FRTs for both
the augmented learnt model dynamics and true system dynamics classify the controller as unsafe.
(Right) The BRT computed from obstacles 1 and 2 for the given controller. Sy, . computed by the
proposed BRT algorithm is compared with the ground truth (G.T.) data for the safe initial states,
marked in green.

direction, thereby preventing a trajectory which has reached T from leaving. In Problem (IT)), the
optimal action has been substituted by 7(s) and the augmented learnt dynamics is used instead of
fg. The Hamiltonian optimization problem can be further simplified to derive an analytical solution
for the modeling error. By substituting the augmented dynamics from (I}, the optimization problem
can be re-written as .

H* ZVVR'fe(S,(I)—FIHgXVVR'd. (12)

Expanding VVz = [p1,p2,...,pn]T € R”, the vector product VVz-d = pydy +pada+. . .+ppd,.
Therefore, to maximize VVx - d, the disturbance control is chosen as

d; ifp, >0 .
d; = ) NVi=1,...n. 13
{—di ifp; <0 ! " (13)
With this analytical solution, the final PDE representing the BRT is stated as

dVr

el min{0, H* (s, VVr(ss,1),t)} =0,

Vi(se, tr) = U(sq,), (14)
where H* = VVpg - fg(& a)—l—(\pl\dl + |p2|d2 +...+ |pn|dn).

The value function Vz(s¢,t) in (14) represents the evolution of the target level set function back-
wards in time. By finding the solution to Vy in the above PDE, the level set function is determined at
any time instant ¢ € [—T, 0], thereby determining the BRT. From the result of Theorem 2 in Mitchell
et al.| (2005), it is proved that the solution of Vy in at any time t gives the zero sublevel set for
the BRT. Thus,

BR(_T) = {S : VR(Stvt) < 0; te [_Tv 0]} (15)
The solution to Vi can be computed numerically by using existing solvers for the level set method.
A brief note on the implementation of the algorithm is included in subsection A.3 in the Appendix.

There are a few things to note about the formulation in (14). First, Equation assumes that T is a
desired goal state. However, the formulation can be modified if T is an unsafe set, in which case, the
adversarial modeling error tries to minimize the Hamiltonian. Similarly, the input d can represent
any other disturbance in the system, either adversarial or cooperative. Second, to compute the FRT,
the formulation in (I4) is modified from a final value PDE to an initial value PDE.

4 EXPERIMENTS

In our experiments, we aim to answer the following questions: (a) Can safety verification be done

for an NN-based 7 and fg using FRT?, and (b) Can Sg, be identified using BRT if 7 is deemed un-
safe? To answer these two questions, we demonstrate results on the following domains inspired by
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real world safety-critical problems, where RL controllers developed using a learnt model can be ap-
pealing, as they can adapt to transition dynamics involving friction, air-drag, wind, etc., which might
be hard to explicitly model otherwise. It is noted that since the proposed verification framework is
developed for control-oriented tasks for physical systems, the state representation of such systems
comprises of position, velocity and orientation data. Therefore, the state dimensions of such class
of problems are typically not as large as the popular image-based OpenAl or Deepmind domains.
Instead, the results are demonstrated on experimental domains which are similar to the ones in prior
works on safety verification of NN controllers for physical systems (Xiang et al.l [2018bj |Xiang &
Johnson, 2018} |Akintunde et al.,[2018};2019).

Safe land navigation: Navigation of a ground robot in an indoor environment is a common ap-
plication which requires the satisfaction of safety constraints by 7 to avoid collision with obstacles.
For this setting, we simulate a ground robot which has continuous states and actions. The initial
configuration of the domain is shown in Fig. [2] The set of initial and goal states are represented by
circles and the obstacles with rectangles.

Safe aerial navigation: This domain simulates a navigation problem in an urban environment
for an unmanned aerial vehicle (UAV). Constraints are incorporated while training 7 to ensure that
collision is avoided with potential obstacles in its path. States and actions are both continuous and
the initial configuration of the domain is shown in Fig 3] The set of initial and goal states are
represented using cuboids, and the obstacles with cylinders.

Analysis: To address the questions with respect to the above mentioned domains, we first train a

NN based fg to estimate the dynamics using sampled transitions. This fg is then also used to learn
a NN based controller 7 which is trained with a cost function designed to mitigate collisions. For
brevity, only the representative results for this 7 are discussed here; implementation details and more

experimental results are available in Appendix [A.2] [A.3] [A.4]and[A.3]

To address the first question, the FRT is computed for both the domains over the augmented learnt

dynamics f(gr) as shown in Fig. and Fig. |3l Additionally, for land navigation we also compute the
FRT over the true system dynamics f, which serves as a way to validate the safety verification result
of m from the proposed framework. It is observed that for both the domains, FRTs deem the given
policy 7 as unsafe, since the FRTs intersect with one of the obstacles. Even when 7 is learnt using a
cost function designed to avoid collisions, the proposed safety verification framework successfully
brings out the limitations of 7, which may have resulted due to the use of function approximations,
ill-specified hyper-parameters, convergence to a local optimum, etc.

For the second question, the BRT is computed from both the obstacles for the given controller 7,
as shown in Fig. [2]and Fig. 3] To estimate the accuracy of the BRT computation, we compare the
computed Sy psafe and Sy, fe sets with the ground truth (G.T.) data generated using random samples
of possible trajectories. It is observed that the BRT from obstacle 1 does not intersect with Sy,
implying that all trajectories are safe w.r.t. obstacle 1. However, the BRT from obstacle 2 intersects
with Sy and identifies the subset of initial states which are unsafe. The set of unsafe initial states
computed by the BRT algorithm may not be exact, as is seen in Fig. [3 where the BRT computation
over approximates Synsafe. Such an information can be critical to safely deploy even an unsafe
controller just by restricting its starting conditions.

5 CONCLUSION

In this paper, we have presented a novel framework using forward and backward reachable tubes
for safety verification and determination of the subset of initial states for which a given model-
based RL controller always satisfies the state constraints. The main contribution of this work is
the formulation of the reachability problem for a neural network modeled system dynamics and the
use of level set method to compute an exact reachable tube by solving the Hamilton-Jacobi partial
differential equation, for the reinforcement learning framework, thereby minimizing approximation
errors that other existing reachability methods suffer. Additionally, the proposed framework can
identify the set of safe initial sets for a given policy, thereby determining the initial conditions for
which even a sub-optimal, unsafe policy satisfies the safety constraints.
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Figure 3: (Left) The safe aerial navigation domain. (Middle) The FRT is computed for the aug-
mented learnt dynamics. For clarity in 3D, FRT with true dynamics is not plotted; instead the
approximation quality can be better visualized in BRT. (Right) Comparison of Sy, ¢. computed by
the proposed BRT algorithm with the ground truth data of the safe initial states, marked in green
(and unsafe states marked in red), it is observed that the BRT over approximates Sy sq fe-

While the results from the proposed framework are promising, there is still room for improvement.
One of the drawbacks of using the level set method is the fact that it scales poorly with the increasing
dimension of the state space. Recent progress in addressing the scalability issue includes decompo-
sition of system dynamics into subsystems which can later be coupled via common states or controls
(Bansal et al] [2017; [Margellos & Lygeros| 2011}, [Chen et al] 2018). Additionally, the application
of reachability analysis in developing safe learning based controllers is also a promising direction
(Akametalu et al.|, 2014} [Fisac et al,[2018).
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