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Abstract

Unsupervised anomaly detection (UAD) is crucial in in-
dustrial and medical applications, offering scalable and
cost-efficient alternatives to manual inspection by detect-
ing abnormal patterns without requiring labeled anoma-
lies. However, real-world anomalies are often scarce and
ambiguous, limiting the effectiveness of conventional meth-
ods. We propose LFQUIAD, a novel UAD framework that
integrates a quantization-driven autoencoder with a modu-
lar Anomaly Generation Module (AGM). AGM generates
diverse and semantically meaningful synthetic anomalies
using prompt-guided, diffusion-based inpainting, providing
pixel-level supervision in few-shot scenarios. This enables
robust model training without actual anomaly data. At the
core of LFQUIAD lies Lookup-Free Quantization (LFQ),
a codebook-free representation learning method that dis-
cretizes features with high precision while improving gen-
eralization and robustness. Our method achieves state-of-
the-art performance on MVTecAD and VisA benchmarks,
excelling in anomaly detection and segmentation under lim-
ited data conditions. The plug-and-play nature of AGM also
allows seamless integration into other detection pipelines,
making LFQUIAD a practical and effective solution for
real-world anomaly detection tasks. GitHub – LFQUIAD

1. Introduction

Unsupervised anomaly detection (UAD) has become indis-
pensable across various industrial and medical applications.
By learning to identify patterns that deviate from normal
data distributions, UAD enables scalable, cost-effective al-
ternatives to manual inspection, eliminating the need for ex-
tensive annotations. However, acquiring real-world anoma-
lous data remains a significant challenge in practice due
to its inherent scarcity, ambiguity, and class imbalance.

Datasets such as MVTecAD [2] and VisA [31] highlight
these issues, with anomalies being vastly outnumbered by
defect-free samples.

To overcome the limitations posed by the lack of di-
verse and labeled anomalies, recent research has explored
synthetic anomaly generation as a promising alternative.
By augmenting training data with generated anomalous im-
ages and Discriminative masks, models can be trained in
a more robust and data-efficient manner. This work pro-
poses a synthetic-guided anomaly detection framework that
leverages recent advances in vision foundation models and
generative modeling. Specifically, we employ Grounding
DINO [17] and the Segment Anything Model (SAM) [12]
for open-set object detection and Discriminative and inte-
grate Stable Diffusion [21] to generate controllable and re-
alistic anomalies with semantic consistency.

Beyond synthetic data generation, we introduce a novel
generative-discriminative architecture designed to effec-
tively localize anomalies with minimal supervision. At
the core of our model lies a quantization-based repre-
sentation learning module, termed Lookup-Free Quanti-
zation (LFQ) [26], which discretizes feature representa-
tions without relying on external codebooks. LFQ en-
ables compact and precise encoding of image features, mit-
igating the ”identical shortcut” problem commonly found
in conventional autoencoders. We further incorporate a
reconstruction-based discriminator, wherein a tailored au-
toencoder contrasts input and output to sharpen anomaly
localization through residual discrepancies.

Our method is evaluated on standard benchmarks, in-
cluding MVTecAD [2] and VisA [31], under few-shot set-
tings. Experimental results demonstrate that our approach
surpasses existing state-of-the-art methods in detection and
Discriminative accuracy and maintains high robustness in
low-data regimes. With strong performance and inter-
pretability, our framework presents a viable solution for
real-world industrial visual inspection tasks where labeled
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anomalies are rare or unavailable. Our key contributions are
summarized as follows:
• We introduce a novel synthetic anomaly generation

pipeline that produces diverse and realistic anoma-
lous samples with corresponding Discriminative masks,
significantly enriching training data for unsupervised
anomaly detection.

• We propose a quantization-driven autoencoding archi-
tecture based on Lookup-Free Quantization (LFQ) [26],
which enables compact and expressive representation
learning while supporting few-shot anomaly detection
scenarios.

• We conduct extensive evaluations on MVTecAD [2] and
VisA [31], where our method consistently outperforms
state-of-the-art approaches in both anomaly detection and
Discriminative, particularly under the few-shot regime.

2. Related Work

2.1. Anomaly Detection
Detecting anomalies in industrial images is critical for lo-
calizing defects and identifying abnormal samples [4, 15,
16]. Due to anomalies’ inherent rarity and diversity, collect-
ing and annotating real-world anomalous images remains
challenging and labor-intensive. As a result, recent research
has primarily focused on unsupervised anomaly detection
and localization, where models are trained using only nor-
mal, defect-free samples.

Two predominant approaches have emerged in this do-
main: embedding-based and reconstruction-based methods.
Embedding-based methods [3, 6, 9, 22] utilize feature rep-
resentations extracted from pre-trained models to character-
ize normality. For instance, PatchCore [22] builds a coreset
memory bank of normal features and measures deviations at
inference. While effective, these methods often suffer from
false positives in underrepresented or rare regions that were
not sufficiently observed during training.

Reconstruction-based approaches [1, 14, 16, 27, 28] aim
to recover the original image from corrupted inputs, based
on the assumption that anomalies cannot be faithfully re-
constructed. Techniques such as DRÆM [27] use synthetic
defects during training to force the reconstruction of normal
regions while simultaneously segmenting anomalies. How-
ever, this assumption does not always hold—some anoma-
lies may be unintentionally reconstructed with high fidelity,
diminishing detection accuracy.

Self-supervised learning-based methods attempt to by-
pass the need for labeled anomalous data by introducing
proxy tasks. CutPaste [14] synthesizes anomalies by trans-
planting image patches but often suffers from discontinu-
ities in appearance. To enhance visual realism, NSA [29]
improves this by adopting Poisson image editing [18].
DRÆM [27] further integrates textures from DTD [5] to

diversify synthetic anomalies and has shown strong perfor-
mance. However, it struggles to generalize to structural
anomalies, such as partially missing or misplaced compo-
nents. Ultimately, the success of self-supervised anomaly
detection hinges on how well the proxy task mimics real-
world defects.

Despite its importance, anomaly synthesis remains an
under-explored component in the anomaly detection liter-
ature. Most existing methods either generate limited varia-
tions or overlook semantic alignment, leading to insufficient
diversity or overfitting.

To address these limitations, this work introduces a novel
anomaly synthesis framework guided by vision founda-
tion models. Specifically, Grounding DINO [17] is em-
ployed as an open-set object detector to identify candidate
regions, which are then segmented using the Segment Any-
thing Model (SAM) [12]. These regions are subsequently
modified through Stable Diffusion [21], enabling controlled
and context-aware anomaly injection. The proposed ap-
proach augments training data and enhances model gener-
alization without relying on reconstruction-based assump-
tions by synthesizing a wide range of anomaly types with
spatial precision and semantic diversity.

2.2. Vector Quantization
Sparse representation learning encodes signals using sparse
coefficient vectors from a learned dictionary [13], offering
benefits such as noise reduction, robustness, and effective-
ness in tasks like denoising and super-resolution.

Vector quantization discretizes input features using a
codebook and quantization strategy [20, 23, 25, 30], typi-
cally by minimizing the mean squared error (MSE) between
input vectors and codebook entries. This is a form of dis-
crete representation learning, where outputs often resemble
one-hot vectors [26].

Vector Quantized Variational Autoencoder (VQ-
VAE) [23, 24] compresses images into discrete latents
using an encoder E, decoder D, and codebook C. The loss
function is:

L = ∥x− x̂∥22 + ∥sg(h)− z∥22 + β∥h− sg(z)∥22, (1)

where sg(·) denotes the stop-gradient operator. However,
increasing codebook size or reconstruction fidelity does not
always improve generation quality.

To address these limitations, we adopt Lookup-Free
Quantization (LFQ) [26], which deterministically maps
encoder outputs to discrete indices without explicit code-
book lookup. LFQ enables scalable quantization with large
vocabularies, aligning better with token-based modeling
and reducing computation overhead.

In our framework, LFQ acts as a compact bottleneck in
the autoencoder, enabling efficient and expressive latent to-



Figure 1. The overall architecture of our proposed framework: LFQUIAD.

kenization of normal patterns. By jointly training the en-
coder, decoder, and quantizer, LFQ learns meaningful rep-
resentations without the need for external codebook opti-
mization. Empirically, LFQ improves both reconstruction
quality and downstream anomaly detection performance.

3. Proposed Method: LFQUIAD

3.1. Preliminaries
Segment Anything Model (SAM). SAM [12] is a large-
scale image segmentation model trained on the SA-1B
dataset, offering exceptional generalization capabilities
across interactive segmentation tasks. Its promptable inter-
face and versatility have made it a widely adopted founda-
tion model in various visual applications.
Grounding DINO. Grounding DINO [17] integrates nat-
ural language descriptions into object detection, enabling
open vocabulary and referring-object detection. By lever-
aging textual prompts, it effectively identifies and localizes
arbitrary object categories.
Stable Diffusion. Stable Diffusion [21] is a text-to-image
generative model that learns complex distributions of natu-
ral images. This work is repurposed to control the inpaint-

ing of anomalous regions during anomaly synthesis.

3.2. Synthetic Anomaly Generation Module
To overcome the scarcity of actual anomaly data and sup-
port end-to-end unsupervised training, we introduce a high-
fidelity anomaly synthesis pipeline based on diffusion-
based inpainting guided by prompt conditioning. This mod-
ule generates diverse and semantically plausible pseudo-
anomalies that closely mimic real-world defects while
maintaining domain consistency.

Category-Aware Mask Generation. To synthesize
meaningful anomalies, we propose a category-aware
mask generation framework that adapts to the structural
semantics of different image types. Given a normal image
N from datasets such as MVTecAD [2] and VisA [31],
our approach differentiates between texture-centric and
object-centric categories.

For texture-centric categories (e.g., carpet, grid),
which exhibit repetitive and homogeneous patterns, we sim-
ulate localized defects using Perlin noise [27]. This pro-
duces soft-edged, randomly shaped masks that mimic real-
istic irregularities. We apply dilation, Gaussian noise in-



jection, and alpha blending to diversify the synthetic pat-
terns further and introduce local distortions and boundary
fuzziness. Additionally, we support randomized inpaint-
ing guided by Perlin noise or text-conditioned diffusion, al-
lowing the synthesis of visually diverse and semantically
aligned irregular surface anomalies.

In contrast, for object-centric categories (e.g., screw,
transistor), where semantic object structure is criti-
cal, we utilize the Grounded-SAM pipeline—a combination
of Grounding DINO [17] and SAM [12]. Conditioned on
prompts such as ”a [class name]”, the model extracts
semantically grounded foreground masks M. For struc-
turally complex objects, this process may yield multiple
mask proposals. We randomly sample from these masks
during training to guide the inpainting region, ensuring di-
verse and class-relevant anomaly synthesis.

Prompt-Guided Diffusion Inpainting. To synthesize re-
alistic and semantically coherent anomalies, we adopt a
prompt-conditioned inpainting strategy based on the Sta-
ble Diffusion Masked DiffEdit pipeline [21], which enables
region-specific generation within masked areas. The previ-
ously generated masks serve as spatial constraints, guiding
the inpainting process to focus exclusively on designated
regions.

We employ dual-prompt CLIP-guided [19], condition-
ing to steer the generation semantics. Specifically, pos-
itive prompts (e.g., ”damaged [class name],” ”scratched
[class name]”) are used to encourage the synthesis of plau-
sible visual defects aligned with real-world anomalies,
while negative prompts (e.g., ”perfect [class name]”, ”clean
surface”) function as regularizers to suppress undesired ar-
tifacts and maintain fidelity outside the masked region.

During generation, the normal image is first encoded into
the latent space using Stable Diffusion’s variational autoen-
coder (VAE). The masked region is then iteratively refined
through a denoising process conditioned on the prompt em-
beddings. Finally, the modified latent representation is
decoded into a full-resolution image containing localized,
semantically meaningful anomalies. This design ensures
that the synthetic anomalies remain visually consistent with
the object’s category while introducing diversity for robust
model training.

Compositional Blending. The final synthetic image S is
composed with a pixel-wise blending scheme given by:

S = β(M⊙N) + (1− β)(M⊙A) +M⊙N,

where M is the binary anomaly mask, M its complement,
A the synthesized anomaly content, and β a blending coef-
ficient. This formulation allows smooth transitions between
anomalous and normal regions, increasing realism. ⊙ de-
notes element-wise multiplication.

Reconstructive Subnetwork. The reconstructive subnet-
work consists of a CNN-based encoder for visual feature ex-
traction, followed by a pre-quantization convolutional layer
to align the feature dimensions for Lookup-Free Quantiza-
tion (LFQ) [26]. After quantization, another convolutional
layer ensures compatibility with the decoder. The decoder
aims to reconstruct a high-fidelity version of the original
image.

Let I denote the original input image, and Ir denote
the reconstructed image produced by the decoder. The re-
construction objective is to minimize both pixel-wise er-
ror and perceptual discrepancy. This is achieved through
a combined loss function consisting of Mean Squared Error
(MSE) and Structural Similarity Index Measure (SSIM).

The reconstruction loss Lrec is defined as:

Lrec = α1Lmse(Ir, I) + β1Lssim(Ir, I), (2)

where
• Lmse(Ir, I) is the Mean Squared Error between Ir and

ground truth I.
• Lssim(Ir, I) is the Structural Similarity Index.
• α1 and β1 satisfy α1 + β1 = 1.

3.3. Discriminative Subnetwork
The discriminative subnetwork incorporates a CNN-based
autoencoder architecture for pixel-wise anomaly classifica-
tion. It takes the same input image I and predicts a binary
anomaly map. Let M denote the ground-truth binary mask,
and M̂ be the predicted anomaly map, where each pixel
value is either 0 (normal) or 1 (anomaly).

We use a hybrid loss combining Dice Loss and Focal
Loss to improve localization accuracy and handle class im-
balance. The discriminative loss Ldis is formulated as:

Ldis = α2Ldice(M̂,M) + β2Lfocal(M̂,M), (3)

where:
• Ldice encourages overlap between prediction and ground

truth.
• Lfocal addresses class imbalance.
• α2 and β2 satisfy α2 + β2 = 1.

3.4. Model: LFQUIAD
This work introduces LFQUIAD, a reconstruction-based
unsupervised anomaly detection (UAD) framework that
synergistically combines a synthetic anomaly genera-
tion module with a Lookup-Free Quantized AutoEncoder.
LFQUIAD learns quantized latent representations that are
both compact and expressive, facilitating adequate distinc-
tion between normal and anomalous content.

Integrating LFQ into the latent space promotes dis-
cretized and structured feature encoding, enhancing gener-
alization and robustness. In parallel, the synthetic anomaly



Figure 2. In our training data, we generated realistic synthetic anomalies using a diffusion-based [21] inpainting process, reducing artifacts
common in prior methods like CutPaste [14]. This approach ensures coherent and diverse anomalies for robust model training.

generation module augments learning by injecting seman-
tically consistent and spatially diverse defects, improving
sensitivity to rare or ambiguous anomalies. Notably, our
framework eliminates the need for real-world abnormal
samples and requires only a small amount of normal train-
ing data. By leveraging high-quality synthetic anomalies,
LFQUIAD achieves competitive performance even in few-
shot settings, making it highly suitable for practical deploy-
ment in data-scarce scenarios.

3.5. Anomaly Scoring and Inference
During inference, LFQUIAD produces both a pixel-

wise anomaly segmentation map and an image-level
anomaly score. The segmentation output is directly ob-
tained from the discriminative subnetwork’s prediction
M̂ ∈ [0, 1]H×W , which estimates the probability of each
pixel being anomalous.

To derive a global anomaly score for image-level
anomaly detection, we compute the mean of the predicted
segmentation logits:

Aimg =
1

H ·W

H∑
x=1

W∑
y=1

M̂x,y, (4)

where a higher Aimg indicates greater likelihood of the
image containing anomalous regions. This Lookup-Free
anomaly score is used to evaluate binary classification met-
rics such as AUROC at the image level.

Additionally, for fine-grained evaluation, we retain the
dense anomaly score map M̂ for pixel-level segmentation
analysis. To improve localization sharpness, the predicted

score map is optionally refined using Gaussian smoothing
post-processing. We also perform bilinear upsampling to
restore M̂ to the original input resolution.

Thresholding. For both image-level and pixel-level pre-
dictions, a threshold τ is applied to convert soft scores into
binary decisions:

M̂bin(x, y) =

{
1, if M̂(x, y) > τ

0, otherwise
(5)

The threshold τ is selected via a validation set or deter-
mined heuristically using the maximum F1 score criterion.
In practice, our model is robust across a wide range of τ due
to the calibrated nature of synthetic supervision.

4. Experiment
We evaluate LFQUIAD under the few-shot anomaly

detection (FSAD) setting, where only a small number of
normal samples are used for training. To compensate for
the absence of real anomalies, our synthetic anomaly gen-
eration module produces diverse and semantically coher-
ent pseudo-defects. Experiments are conducted on the
MVTecAD[2] and VisA[31] industrial benchmarks, with
models trained solely on normal data and evaluated for
anomaly detection and segmentation performance.

4.1. Dataset
MVTec AD [2] is a widely adopted benchmark for eval-
uating visual anomaly detection in industrial settings. It
consists of 15 categories, including 10 object classes (e.g.,



bottle, screw) and 5 texture classes (e.g., carpet,
grid), each with high-resolution images and pixel-level
anomaly annotations. VisA [31] complements this by of-
fering 12 object-centric categories with a broader range of
real-world defect types, such as scratches, dents, and con-
taminations, making it well-suited for testing the general-
ization and robustness of anomaly detection models in more
complex scenarios.

4.2. Evaluation Metrics

Following standard protocols [2], we report AUROC at both
image-level (I) and pixel-level (P).

Image-level AUROC evaluates the model’s ability to dis-
tinguish between normal and anomalous samples. At the
same time, pixel-level AUROC assesses spatial localization
by comparing the predicted anomaly map M̂ against the
ground truth M.

We also include the Per-Region Overlap (PRO) score [3,
7], which averages the region-wise overlap and is suited for
evaluating fine-grained segmentation performance.

Together, these metrics (I, P, PRO) provide a comprehen-
sive view of both detection and localization effectiveness.

4.3. Implementation Details

Synthetic Anomaly Generation. We utilize a pipeline
comprising Grounding DINO, SAM, and Stable Diffusion
to generate synthetic anomalies. We adopt the official im-
plementation of Grounding DINO [17] and SAM [12], pro-
vided by Meta AI Research. For object-centric datasets,
Grounding DINO is used to detect object bounding boxes
conditioned on category prompts (e.g., ”a screw”). De-
tected boxes are passed to SAM to generate high-resolution
binary segmentation masks.

SAM is initialized with the pre-trained weights1 while
Grounding DINO uses the2 checkpoint. Once segmentation
masks are obtained, we perform text-guided inpainting us-
ing the Stable Diffusion masked diffusion pipeline via the
Hugging Face Diffusers API3.

To synthesize meaningful anomalies, we configure the
positive inpainting prompt as:

"broken {class name} with defect"

and its inverse (negative prompt) as:

"perfect {class name}"

This dual-prompt setup ensures semantic consistency while
encouraging localized deviations during inpainting.

1sam vit h 4b8939.pth
2groundingdino swint ogc.pth
3CompVis/stable-diffusion-v1-4

Training Settings. We train LFQUIAD using the
AdamW optimizer with a learning rate of 1 × 10−4 for the
discriminative subnetwork and 3× 10−4 for the reconstruc-
tive quantized autoencoder. The model is trained for 800
epochs with a batch size of 1. A MultiStepLR scheduler
is applied, with decay steps at 80% and 90% of the total
training epochs. All experiments are conducted on a single
NVIDIA RTX 4090 GPU with 24 GB VRAM. Input im-
ages are resized to 256×256, and training employs an early
stopping mechanism based on validation AUROC, with a
patience of 50 epochs.

Quantization Settings. For the Lookup-Free Quantized
AutoEncoder, we adopt a codebook size of 216, an entropy
regularization coefficient of 0.02, and a diversity scaling
factor γ = 1.0. Quantization is applied after the encoder
via straight-through estimation without codebook lookup.
Entropy-aware auxiliary loss is incorporated to encourage
high code utilization and reduce code collapse.

5. Experimental Results
We evaluate LFQUIAD under the few-shot anomaly

detection (FSAD) setting, where only limited normal sam-
ples are available. Unlike prior methods that overfit to
small datasets or rely on scarce real anomalies, LFQUIAD
employs prompt-guided synthetic anomaly generation to
produce diverse and semantically meaningful defects with
pixel-level supervision—effectively mitigating data scarcity
in FSAD.

Our synthesis pipeline, built upon foundation models
(SAM, Grounding DINO, and Stable Diffusion), enables
high-fidelity anomaly inpainting without requiring manual
annotations, providing a rich self-supervised training signal.

Compared to recent unsupervised SoTA methods,
LFQUIAD achieves competitive performance across most
metrics, and notably surpasses prior approaches in key in-
dicators such as pixel-level segmentation and localization.
Ablation studies further highlight the contributions of syn-
thetic supervision and Lookup-Free Quantization (LFQ) in
enhancing anomaly representation.

5.1. Anomaly Detection and Localization on
MVTecAD and VisA

Few-shot anomaly detection and localization: We compare
our LFQUIAD with prior methods designed explicitly for
few-shot settings. In Table 1, we illustrate the average ex-
perimental results for MVTecAD [2] and ViSA [31]. The
experimental results of few-shot anomaly detection and seg-
mentation on the MVTecAD [2] and VisA [31] datasets are
summarized in Table 1. Across all shot settings (1, 2, and
4), our proposed LFQUIAD method consistently outper-
forms prior few-shot SOTA methods in image- and pixel-
level AUROC.



1-shot 2-shot 4-shot
Dataset Method I P O I P O I P O
MVTecAD RegAD [10] - - - 85.7 94.6 - 88.2 95.8 -

PatchCore [22] 83.4 92.0 79.7 86.3 93.3 82.3 88.8 94.3 84.3
WinCLIP [11] 93.1 95.2 87.1 94.4 96.0 88.4 95.2 96.2 89.0
AnomalyGPT [8] 94.1 95.3 - 95.5 95.6 - 96.3 96.2 -
Ours 94.9 95.7 90.4 97.9 96.9 93.1 97.8 98.2 93.5

VisA PatchCore 79.9 95.4 80.5 81.6 96.1 82.6 85.3 96.8 84.9
WinCLIP 83.8 96.4 85.1 84.6 96.8 86.2 87.3 97.2 87.6
AnomalyGPT 87.4 96.2 - 88.6 96.4 - 96.6 96.7 -
Ours 88.8 96.4 82.7 90.4 97.0 85.4 93.3 97.6 92.0

Table 1. Performance comparison on MVTecAD [2] and VisA [31] under few-shot settings. ”I”, ”P”, and ”O” refer to image-level AUROC,
pixel-level AUROC, and PRO score, respectively. The best performance in each column is highlighted in bold.

On MVTecAD, LFQUIAD improves upon Anoma-
lyGPT [8] in image-level AUROC by +0.8%, +2.4%, and
+1.5% in the 1-shot, 2-shot, and 4-shot settings, respec-
tively. Similarly, for pixel-level AUROC, our method
achieves gains of +0.4%, +1.3%, and +2.0%, demonstrat-
ing enhanced spatial anomaly localization capabilities.

For the VisA dataset, LFQUIAD maintains competitive
performance. It outperforms AnomalyGPT [8] in image-
level AUROC by +1.4% and +1.8% in the 1-shot and 2-shot
settings while showing a slight drop (-2.7%) in the 4-shot
case. In pixel-level AUROC, LFQUIAD achieves marginal
improvements of +0.2%, +0.6%, and +0.9% across the three
shot scenarios.

These results highlight the effectiveness of our synthetic
anomaly generation module and quantized representation
learning, which together enable LFQUIAD to deliver ro-
bust performance under low-data regimes while achieving
or exceeding state-of-the-art results in both detection and
segmentation tasks.

5.2. Qualitative comparisons
Figure 3 showcases a qualitative comparison of anomaly
localization results on representative samples from the
MVTecAD and VisA datasets. From left to right, each row
displays the original test image, its reconstructed output, the
corresponding anomaly heatmap, and the pixel-level ground
truth annotation.

Our proposed model, incorporating the Lookup-Free
Quantization (LFQ) mechanism, demonstrates significantly
improved localization precision and boundary sharpness
compared to existing methods. By enforcing a discretized
latent space through LFQ, the model imposes more substan-
tial representational constraints on the autoencoder, mak-
ing it inherently more difficult to reconstruct semantically
inconsistent regions. This mitigates the common issue

Table 2. Effect of our Anomaly Generation Module (AGM) on
anomaly detection performance. AGM enhances both image-level
(I) and pixel-level (P) AUROC across texture and object cate-
gories by generating semantically aligned, diffusion-based syn-
thetic anomalies.

Model Texture Object

I P I P

DRÆM 99.3 98.2 96.8 96.0
+Our AGM 99.4 98.5 97.7 96.9

of over-adaptation in reconstruction-based models, where
synthetic anomalies are often unintentionally reconstructed
with high fidelity.

The predicted heatmaps exhibit better spatial alignment
with ground-truth anomaly regions, particularly in chal-
lenging cases with fine-grained textures or small object-
level defects. These results qualitatively confirm the ef-
fectiveness of combining prompt-guided synthetic supervi-
sion and quantized representation learning, enhancing the
model’s sensitivity to subtle deviations while preserving
structural consistency.

5.3. Ablation
Table 2 presents the performance improvements obtained
by integrating our Anomaly Generation Module (AGM)
into the DRÆM [27] framework under the full-data set-
ting. The original DRÆM synthesizes irregular anoma-
lies without incorporating semantic awareness, which of-
ten leads to the placement of anomalies in background
regions—especially in object-centric images—this lack of
contextual grounding results in suboptimal supervision
signals during training. In contrast, our approach ex-
plicitly distinguishes between texture-centric and object-



Figure 3. Our LFQUIAD model demonstrates superior reconstruction quality and anomaly localization accuracy. From left to right: testing
data, reconstructed images, heatmap, and ground truth. Best viewed by zooming in.

centric categories and separates foreground from back-
ground. Leveraging segmentation masks generated by vi-
sion foundation models (e.g., SAM and Grounding DINO),
our pipeline applies prompt-guided diffusion-based inpaint-
ing to inject anomalies into semantically meaningful re-
gions. We use randomized inpainting guided by Perlin noise
or text-conditioned diffusion for texture categories, simulat-
ing irregular surface defects. For object categories, we con-
strain the inpainting within foreground regions, resulting in
visually realistic and structurally consistent anomalies.

Quantitatively, AGM improves object-category AUROC
by +0.9% (I: 96.8 → 97.7, P: 96.0 → 96.9), and texture-
category AUROC by +0.1% (I: 99.3 → 99.4) and +0.3%
(P: 98.2 → 98.5), demonstrating its effectiveness in boost-
ing robustness and localization accuracy under few-shot
constraints.

6. Conclusion

In this paper, we proposed the Lookup-Free Quantized-
based Unsupervised Industrial Anomaly Detection
(LFQUIAD) method, demonstrating significant advance-
ment in unsupervised anomaly detection. By leveraging
innovative techniques such as Lookup-Free Quantization
(LFQ) and our proposed Anomaly Generation Module
(AGM), LFQUIAD achieves remarkable precision in
anomaly localization and segmentation tasks.

The AGM is critical in bridging the data scarcity gap by

generating diverse, semantically aligned, high-fidelity syn-
thetic anomalies, particularly under few-shot settings. This
enriched supervision significantly boosts the model’s ro-
bustness and generalization. Moreover, AGM is designed as
modular, allowing it to be easily integrated into a wide range
of models that benefit from synthetic supervision. Its plug-
and-play nature promotes flexibility and scalability, mak-
ing it applicable to broader anomaly detection frameworks
beyond LFQUIAD. Our experiments demonstrate superior
results across various datasets, highlighting the efficacy of
LFQUIAD in real-world industrial scenarios. Furthermore,
our model maintains strong performance even with limited
training data, outperforming existing methods. These find-
ings underscore the potential of LFQUIAD—with its syn-
ergy of synthetic anomaly generation module and quantized
encoding—to deliver cost-effective, accurate solutions for
industrial anomaly detection.
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