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Abstract

The deployment of Multi-Armed Bandits (MAB) has become commonplace in
many economic applications. However, regret guarantees for even state-of-the-art
linear bandit algorithms (such as Optimism in the Face of Uncertainty Linear
bandit (OFUL)) make strong exogeneity assumptions w.r.t. arm covariates. This
assumption is very often violated in many economic contexts and using such
algorithms can lead to sub-optimal decisions. Further, in social science analysis, it
is also important to understand the asymptotic distribution of estimated parameters.
To this end, in this paper, we consider the problem of online learning in linear
stochastic contextual bandit problems with endogenous covariates. We propose
an algorithm we term ϵ-BanditIV, that uses instrumental variables to correct for
this bias, and prove an Õ(k

√
T )1 upper bound for the expected regret of the

algorithm. Further, we demonstrate the asymptotic consistency and normality
of the ϵ-BanditIV estimator. We carry out extensive Monte Carlo simulations
to demonstrate the performance of our algorithms compared to other methods.
We show that ϵ-BanditIV significantly outperforms other existing methods in
endogeneous settings.

1 Introduction

The proliferation of user-level data presents at the same time a unique opportunity and challenge in
front of decision-makers. Decision-makers want to use individual-level data to tailor their decisions
for each user. Further, given the dynamic nature of the platform, decision-makers want to be able
to adopt these decisions with incrementally available data. Woodroofe 1979 first proposed a simple
model to solve such sequential decision-making problems with covariates. Langford and T. Zhang

1where k is the dimension of the instrumental variable and T is the number of rounds in the algorithm.
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2007 later named the model "contextual bandit". Contextual linear bandits have been adopted across
a wide variety of applications from advertising (Tang et al. 2015, Aramayo, Schiappacasse, and
Goic 2022) to healthcare (Durand et al. 2018), dialogue systems (Liu et al. 2018), and personalized
product recommendations (L. Li et al. 2010, Qin, S. Chen, and Zhu 2014). In the setting of a
contextual linear bandit problem, in each round, the decision-maker observes a set of actions with
each action characterized by a set of features. Decision-maker selects an action and observes a reward
corresponding to that action. The objective of the decision-maker is to achieve cumulative reward
close to that of optimal policy in hindsight.

Traditional formulations of contextual bandits make the unconfoundedness assumption i.e., the arm
covariates are exogenous. However, in many economic settings, arm features can be correlated with
the unobserved noise. For instance, consider the problem of generating product recommendations
for consumers. Platform operators would usually run online experiments to uncover the relationship
between product features and consumer demand. Generally in such settings, product observable
features like price are controlled by product owners (different from the platform operator) which
could be set in anticipation of consumer demand and hence be correlated with the demand shocks
unobserved by the platform operator. In such settings, traditional bandit algorithms might lead to
sub-optimal decisions. A common approach to correct the endogeneity bias in the offline setting is to
use instrumental variables. Instruments are correlated with the endogenous variable but are otherwise
not associated with the outcome variable. The method of instrumental variables uses the variation in
the exogenous component of the endogenous variable induced by the variation in the instrumental
variable to make inference of causal effects. Thus, to address the issues induced by endogenous
features in online settings, we propose an online estimator we term BanditIV that uses instrumental
variables to learn the relationship between rewards and features.

Next, literature in contextual linear bandit has also primarily focused on minimizing the expected
regret of the algorithm (Auer 2002, Dani, Hayes, and Kakade 2008, Chu et al. 2011, and Abbasi-
Yadkori, Pál, and Szepesvári 2011). However, in a variety of practical situations, one may also
be interested in the inference of model parameters, and algorithms that minimize regret may not
guarantee the consistency of the model parameter estimator. Further, knowing the asymptotic
distributions, one can easily test the significance of features, and offers a traditional way to select
variables. For instance, in the product recommendation example, an online platform might also be
interested in understanding the effect of various marketing-mix variables (like price, and promotion)
on consumer demand. To this end, we propose a linear bandit algorithm that pursues both regret
minimization and consistent estimation of model parameters in endogenous settings. We use the
martingale central limit theorem to show that our estimator of model parameters is asymptotically
normal.

Finally, we compare our method with existing online algorithms including Optimism in the Face of
Uncertainty Linear bandit (OFUL) and Thompson Sampling (TS) through numerical experiments.
We find significant advantages of our algorithm in both expected regret and parameter inference.

To summarize, our paper makes the following contributions –

• We study the stochastic linear bandit problem with endogenous features. We propose a new
algorithm, we term BanditIV, which incorporates instrumental variables to correct for the
bias induced by endogenous features and show that the total expected regret of the algorithm
is upper bounded by Õ(k

√
T ).

• Next, as in many economic contexts, researchers might not only be interested in minimizing
the regret over the outcomes but also in conducting inference over estimated parameters. To
this end, we propose the ϵ-BanditIV algorithm with the same upper bound and establish the
asymptotic consistency and normality of the estimator.

• Finally, we conduct numerical experiments of BanditIV and ϵ-BanditIV algorithms on
synthetic data. We show BanditIV and ϵ-BanditIV always outperform other existing linear
bandit algorithms including OFUL and TS in terms of both total expected regret and
inference.

To see a complete version of literature review, please refer Appendix A.

Notation. Throughout this paper, we use || · ||p to denote the p-norm of a vector or a matrix. We use
|| · ||F to denote the Frobenius norm for a matrix. For a vector x and positive definite matrix A, we
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denote
√
x′Ax as ||x||A. We use ⟨·, ·⟩ as the inner product. We denote the sequence a0, a1, · · · , a∞

as {at}∞t=0. For a matrix X , the ith column is denoted as X(i) and the jth element of the ith column
is denoted as X(i)(j).

2 Problem setting

Let T be the number of rounds and K the number of arms in each round. In each round t, the learner
observes K feature vectors xt,a ∈ Rd, a ∈ {1, · · · ,K}, with ||xt,a||2 ≤ Lx for samples (one feature
vector for each sample), where the subscript a represents the ath arm or sample from the K-sample
set. Let yt,a ∈ R, s.t. |yt,a| ≤ Ly, be the reward of arm a on round t. After observing the feature
vectors, the learner selects an arm at and receives reward yt,a. Under linear realizability assumption,
we have E[yt,a|xt,a] = x′

t,aβ0 for all t and a, where β0 ∈ Rd is an unknown true coefficient vector.
We assume yt,a are independent random variables with expectation x′

t,aβ0, as the following.

yt,a = β′
0xt,a + et,a (1)

where et,a ∈ R is a 1-subgaussian error term, s.t. E[et,a] = 0. Standard Contextual Linear Bandit
settings have E[et,axt,a] = 0, which assumes that the error term is independent with the feature
vector. However, this assumption can be violated in cases such as when we have omitted variable
in the error term, measurement error in the regressor, simultaneous equation estimation, and etc.
Mathematically, when we have the following holds,

E[et,axt,a] ̸= 0

the endogeneity problem occurs. Ordinary Least Square (OLS) estimator is inconsistent in en-
dogenous settings. Econometrics literature uses Instrumental Variable (IV) method to address the
endogeneity problem. A variable zt,a is a valid instrumental variable if it satisfies following three
conditions (M Wooldridge 2014): (i) it is uncorrelated with the error term et,a, i.e. E[zt,aet,a] = 0,
(ii) it is correlated with the endogenous covariates xt,a, (iii) it has no direct effect on the reward yt,a.
Consider a valid instrumental variable zt,a ∈ Rk, with ||zt,a||2 ≤ Lz , and the minimum eigenvalue
of E[zt,az′t,a] is positive. We assume E[zt,ax′

t,a] ∈ Rk×d has full column rank d.2

xt,a = Γ′
0zt,a + ut,a (2)

where Γ0 ∈ Rk×d is an unknown true coefficient vector, ut,a ∈ Rd is a 1-subgaussian error term
with mean zero and the independency condition E[zt,au′

t,a] = 0 is satisfied by construction. By
plugging the equation of xt,a (Equation 2) into Equation 1, we have yt,a = (Γ0β0)

′zt,a + vt,a where
vt,a = β′

0ut,a + et,a. We denote Γ0β0 as δ0.

Recall that in offline settings, we can use instrumental variables to solve endogeneity problem
through methods like Two-Stage Least-Squares (TSLS). Consider vector Y ∈ RT with yt,a as its
elements, matrix X ∈ RT×d with x′

t,a as its rows, matrix Z ∈ RT×k with z′t,a as its rows, where
t ∈ {1, · · · , T}. We briefly illustrate TSLS estimation procedure in offline settings as the following:
(i) First, regress the set of feature vectors X on the set of instrumental variable vectors Z using OLS
method to obtain an estimated sample features X̂; (ii) Then regress Y on the estimated feature vectors
X̂ to obtain the estimator β̂X̂,Y using OLS method again.

Definition 1. (Two-Stage Least Squares Estimator)

X̂ = PZX,PZ = Z(Z ′Z)−1Z ′

β̂X̂,Y = (X̂ ′X̂)−1X̂ ′Y

To facilitate further analysis on the TSLS estimator, we also define two related OLS estimators,
Γ̂ = (Z ′Z)−1Z ′X and δ̂ = (Z ′Z)−1Z ′Y where δ̂ = Γ̂β̂X̂,Y (to see this equation, refer Appendix B
for the proof).

It’s known that TSLS estimator is consistent in offline settings, while it remains unknown for the
consistency of the TSLS estimator in online settings. As far as we know, we are the first who combine

2The assumption E[zt,ax′
t,a] ∈ Rk×d has full column rank d implies that k ≥ d
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the contextual linear bandit algorithm with TSLS and prove the consistency of TSLS estimator in
online settings. We provide the asymptotic properties in Section 4.

We aim to design an online decision making algorithm that learns the coefficient of main interest β0

so that we can maximize the total expected reward after pulling arms. We define the total expected
regret of an algorithm A after T rounds as

RT =

T∑
t=1

E[yt,a∗
t
− yt,at

] =

T∑
t=1

E[⟨Γ′
0zt,a∗

t
, β0⟩ − ⟨Γ′

0zt,at
, β0⟩]

where a∗t = argmaxa⟨Γ′
0zt,a, β0⟩ is the best arm at round t according to the true coefficient vectors

β0 and Γ0, and at is the arm selected by the algorithm A at round t.

We relist key assumptions in this paper as the following,
Assumption 1. ||zt,a||2 ≤ Lz , ||xt,a||2 ≤ Lx, ||yt,a||2 ≤ Ly for all t and a.
Assumption 2. The minimum eigenvalue of E[zt,az′t,a] is larger than a positive constant λ.

For the simplicity of notations, we omit the subscript a of zt,a, xt,a, and yt,a from below. By xt, we
mean one sample or arm chosen by the algorithm from the arm set Xt at time t; zt is the instrumental
variable related to xt; yt is the reward generated from the arm xt. By x∗

t , we mean the true optimal
sample or arm from the arm set Xt at time t; z∗t is the instrumental variable related to x∗

t .

3 BanditIV algorithm

To address the endogeneity problem in online settings, we propose the following BanditIV Algorithm
based on existing linear bandit algorithms, especially the OFUL algorithm proposed by Abbasi-
Yadkori, Pál, and Szepesvári 2011.

The BanditIV algorithm3 takes as input initial regularization parameters γz, γx > 0, as well as
confidence interval parameters {Gt}∞t=1, {Bt}∞t=1. We construct two confidence sets C1,s, C2,s,
s ∈ {1, · · · , T} for the first stage estimation and the second stage estimation respectively in each
round. The idea for the confidence sets are to make the estimation optimistic with the condition
that "with high probability" the true coefficients are in the confidence sets (Abbasi-Yadkori, Pál, and
Szepesvári 2011). The best arm generated by the algorithm is a sample xt which is related to an
instrumental variable zt that can maximize the estimated reward jointly with a pair of optimistic
estimates of two-stage coefficients in the confidence sets. If the current time t is after the first round,
we utilize past choices Xt and observations of rewards Yt to estimate the coefficients Γ0 and β0 by
the TSLS estimator in each round. We denote the estimator β̂t used in this algorithm as the BanditIV
estimator. Based on the estimation and confidence sets, we choose the best arm and then observe the
reward.

Taking the BanditIV algorithm as a special case, we further propose the ϵ-BanditIV algorithm (which
we show in Algorithm 1). The ϵ-BanditIV algorithm additionally takes a sequence of non-increasing
exploration parameters {ϵt}∞t=1 as input. In each round, instead of choosing the best arm, we conduct
a stochastic decision with probability ϵt for choosing a random arm and probability 1−ϵt for choosing
the estimated best arm. Notice that when ϵt = 0 for t ∈ {1, 2 · · · ,∞}, the ϵ-BanditIV algorithm
degenerates to the BanditIV. For the simplicity of notations, we omit the subscript a of zt,a, xt,a, and
yt,a from below. By xt, we mean one sample or action chosen from the action set Xt at time t; zt is
the IV related with xt; yt is the reward generated from the action xt.

3.1 Regret analysis

In this section, we give upper bounds on the regret of the BanditIV algorithm and ϵ-BanditIV
algorithm. The proofs can be found in Appendix A. We show an Õ(k

√
T ) upper bound for the total

expected regret of both algorithms with parameters of confidence set by Theorem 1.

3Please refer Appendix A to see more details for the algorithm.
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Algorithm 1 ϵ-BanditIV
Input: γz, γx > 0, {Gt}∞t=1,{Bt}∞t=1, {ϵt}∞t=1

Set U0 = γzI ∈ Rk×k, V0 = 0 ∈ Rk×d,W0 = γxI ∈ Rd×d, Q0 = 0 ∈ Rd×1

Set C1,s = {Γ : ||Γ(i) − Γ̂
(i)
s ||Us ≤ Gs}, C2,s = {β : ||β − β̂s||Ws ≤ Bs}, ∀s ∈ {1, 2, · · · T},

∀i ∈ {1, 2, · · · d}
Nature reveals Z0. We randomly choose z0 ∈ Z0 and set Z0 = z0
Nature reveals X0. From the set X0, we play x0 which is related with z0 and then observe the reward y0. We
set X0 = x0 and Y0 = y0
for t := 1, 2, · · · , T , do

Ut = Ut−1 + zt−1z
′
t−1, Vt = Vt−1 + zt−1x

′
t−1

Γ̂t = U−1
t Vt, X̂t−1 = Zt−1Γ̂t

Wt = W0 + X̂ ′
t−1X̂t−1, Qt = Q0 + X̂ ′

t−1Yt−1

β̂t = W−1
t Qt

Nature reveals Zt. With probability ϵt, we uniformly choose a random zt ∈ Zt. With probability 1− ϵt,
we choose zt = argmaxz∈Zt maxΓ∈C1,t maxβ∈C2,t⟨Γ′z, β⟩ and update Zt = [Z′

t−1 zt]
′

Nature reveals the set of arms Xt. We play xt which is related with zt and observe the reward yt. Update
Xt = [X ′

t−1 xt]
′, Yt = [Y ′

t−1 yt]
′

end for

Theorem 1. The expected cumulative regret of the ϵ-BanditIV at time T, with probability at least
1− δ, is upper-bounded by

RT ≤ BT

√
2Td log(

T + d

d
) + (

2

γx
+ ∥β0∥2)GT

√
2Tk log(

T + k

k
) + 2ϵ0TLy

where BT =
√
γx||β0||2 +

√
2 log(2Tδ ) + d log

(
5TL2

x

d

)
,

GT =
√
γz||Γ(i)

0 ||2 +
√
2 log(2Tδ ) + k log

(
5TL2

y

k

)
.

By setting ϵt = 0, we can derive the upper bound for the BanditIV directly.
Remark 1. Notice that in order to guarantee an Õ(K

√
T ) upper bound for the total expected regret

of the ϵ-BanditIV algorithm, we need a small enough ϵt, such as an ϵt ≤
√

log(t)√
t

. The BanditIV
algorithm which is a special case with ϵt = 0 in ϵ-BanditIV algorithm, naturally satisfies this
condition.

4 Inference: tail inequality and normality

In this section, we show asymptotic properties of the BanditIV estimator following H. Chen, Lu, and
Song 2021 and Bastani and Bayati 2020. We first present the consistency and then the normality
of the BanditIV estimator. The proofs are presented in Appendix A. Additionally, we calculate
confidence intervals and show the results in A due to limited space.
Proposition 1. (Tail bound for the BanditIV estimator) In the online decision-making model with
ϵ-greedy policy, if the Assumptions 1 and 2 are satisfied, and ϵt is non-increasing, then for any
η1, η2 > 0, η2 ̸= λmin(Γ0)

(kd)
1
2

,

P (||β̂t − β0||1 ≤ Cβ) ≥ p1p
d
2

where Cβ =
η1 + η2||β0||1

λmin(Γ0)d
−1
2 − η2(k)

1
2

,

p1 = 1− exp{− tϵt
8
} − k exp{− tϵtλ

32L2
z

} − 2k exp{− tϵ2tλ
2η21

128k2σ2
vL

2
z

}+ 2k2 exp{− tϵ2tλ
2η21 + 4tϵtλk

2σ2
v

128k2σ2
vL

2
z

},

p2 = 1− exp{− tϵt
8
} − k exp{− tϵtλ

32L2
z

} − 2k exp{− tϵ2tλ
2η21

128k2σ2
uL

2
z

}+ 2k2 exp{− tϵ2tλ
2η21 + 4tϵtλk

2σ2
v

128k2σ2
uL

2
z

}
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Remark 2. If tϵ2t → ∞ as t → ∞, then the probability of ||β̂t − β0|| ≤ Cβ goes to 1 for any
η1, η2 > 0, η2 ̸= λmin(Γ0)

(kd)
1
2

. We need carefully choose the value for ϵt in order to guarantee both the

regret bound and the tail bound. For example, an ϵt =

√
log(t)√

t
or ϵt =

√
log log(t)√

t
satisfies both the

conditions for the regret bound and the tail bound.

Following from the Propositions 1, we obtain the consistency of the BanditIV estimator easily.
Corollary 2. (Consistency of the online BanditIV estimator). If Assumptions 1 and 2 are satisfied,
ϵt is non-increasing and tϵ2t → ∞ as t → ∞, then the online BanditIV estimator β̂t is a consistent
estimator for β0.
Theorem 3. (Asymptotic normality of the online BanditIV estimator) If Assumptions 1 and 2 are
satisfied, ϵt is non-increasing and tϵ2t → ∞ as t → ∞. Then

√
t(β̂t − β0)

d−→ Nd(0, S)

where S = E[v2](Γ′
0

∫
zz′dPzΓ0)

−1Γ′
0

∫
zz′dPzΓ0(Γ

′
0

∫
zz′dPzΓ0)

−1

A consistent estimator for S is given by

t∑
s=1

v̂2s(Γ̂
′
t

t∑
s=1

zsz
′
sΓ̂t)

−1Γ̂′
t(

t∑
s=1

zsz
′
s)Γ̂t(Γ̂

′
t

t∑
s=1

zsz
′
sΓ̂t)

−1

where v̂s = ys − (Γ̂sβ̂s)
′zs.

Theorem 3 provides a theoretical guarantee that the BanditIV estimator asymptotically follows a
normal distribution with mean zero and variance S. We can see that this variance depends on the
expectation of the error term vt, which includes the errors in both first stage and the second stage. The
variance also depends on the distribution of the instrumental variable, Pz . Notice that, although we
need the assumption about ϵt to guarantee the consistency of the estimator, the asymptotic variance
of the BanditIV estimator does not depend on ϵt.

5 Numerical Experiments

In this section, we construct synthetic data to further validate our algorithm. Referring the simulation
set up in Bakhitov and Singh 2021, we consider the model as follows, for t = 1, · · · , T ,

Yt = Xtβ0 + etρ+ εt
Xt = ZtΓ0 + et + ut

Suppose that all elements of the instrument Zt ∈ Rk×1 are uniformly distributed on the support
[−3, 3]. The error term et ∈ Rnt×d is the confounder, where nt is the number of arms at time t and
all elements of et follows N(0, 1). The parameter ρ ∈ Rd×1 measures the degree of endogeneity. A
lower ρ implies a less serious endogeneity issue. As an extreme example, when ρ = 0, endogeneity
disappears, which we can see from Equation (3). The additional noise terms ut ∈ Rnt×d, and
εt ∈ Rnt×1 are i.i.d. normally distributed. All elements of ut and εt follow N(0, 0.01) and N(0, 1)
respectively. WLOG, we set nt = 50, for t = 1, · · · , T in this simulation.

E[(etρ+ εt)
′Xt] = E[ρ′e′tXt] = E[ρ′e′tE[Xt|et]] = ρ′E[e′tet] (3)

We have two objectives in the simulation: (i) to achieve the maximum reward through selecting
optimal arms (ii) to obtain an accurate estimation of the causal relation parameter β0. We compare
performance of our algorithm regarding the two objectives, with other existing algorithms including
TS and OFUL under endogeneity. We run T = 2000 time steps for each algorithm and observe
the regret and estimation bias along the time. We use the true cumulative regret which excludes
random error terms to measure the regret and ||β0 − β̂t||2 to measure the estimation bias. Figures
1 and 2 show the results where we consider various endogeneity degrees and dimensions of the
instrumental variable. In Figure 1, we set the dimension of the instrumental variable as k = 1 which
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is equal to the dimension of endogenous variable d = 1. When k = d, we have the same number
of instrumental variables as that of endogenous variables and β0 will be just identified. In Figure 2,
we set the dimension of the instrumental variable as k = 2 which is larger then the dimension of
endogenous variable d = 1. When k > d, we have more instrumental variables than endogenous
variables, which can cause overidentification. Across these two cases regarding the dimensions, we
find quite robust results that our proposed algorithms outperform TS and OFUL both on regret and
inference. This outperformance is more significant under higher endogeneity. In both Figures 1 and 2,
the first, second, third row present results when ρ = 2, 1, 0.5 respectively. We can see that BanditIV
and ϵ-BanditIV can achieve lower bias in inference than TS and OFUL and this difference become
larger when the endogeneity degree increases. Also, BanditIV reaches lower expected regret than
ϵ-BanditIV, but ϵ-BanditIV can obtain a less biased estimation.

6 Conclusion

In this paper, we study the endogeneity problem in online decision making settings where we
formulate the decision making process as a Contextual Linear Bandit model. The existence of
endogeneity can lead to estimation bias and sub-optimal decision. To correct the bias and optimize
the decision, we propose the BanditIV algorithm by utilizing both existing linear bandit algorithms
in computer science literature and TSLS method in econometric literature. We present various
theoretical properties of the algorithm. We first show an upper bound for the total expected regret,
and then show the consistency, asymptotic normality of the estimator in the algorithm. On the applied
side, we conduct simulations on synthetic data. We find that the BanditIV algorithm outperforms
several benchmark linear bandit algorithms, especially when endogeneity problem occurs.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
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(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
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provide the code but we do provide instructions for the data and the parameters we use
in the experiments
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models.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
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information or offensive content? [N/A] We don’t use existing code, data or models.
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A Appendix

Appendix A.1 Figures

(a) Estimation bias (b) Regret variations

(c) Estimation bias (d) Regret variations

(e) Estimation bias (f) Regret variations

Figure 1: Simulation results on synthetic data with endogeneity when k = 1, d = 1

The x-axis shows the number of time steps and the y-axis shows the performance indicator which is either
estimation bias or the regret. Subfigures (a)-(b) present results when ρ = 2, (c)-(d) present results when when
ρ = 1, (e)-(f) present results when when ρ = 0.5

10



(a) Estimation bias (b) Regret variations

(c) Estimation bias (d) Regret variations

(e) Estimation bias (f) Regret variations

Figure 2: Simulation results on synthetic data with endogeneity when k = 2, d = 1

The x-axis shows the number of time steps and the y-axis shows the performance indicator which is either
estimation bias or the regret. Subfigures (a)-(b) present results when ρ = 2, (c)-(d) present results when when
ρ = 1, (e)-(f) present results when when ρ = 0.5

Appendix A.2 Literature review

Our paper contributes to three different strands of literature (i) adaptive experimentation, recommen-
dation engines, and advertising, (ii) interactive learning and inference with MABs, and (iii) machine
learning and econometrics.

Recently, there has been a surge of papers studying adaptive experimentation, recommendation,
and targeted advertising. Adaptive experiments are increasingly used to investigate the effects of
recommendation and targetd advertising. Araman and Caldentey 2022 studied a Bayesian sequential
experimentation problem through dynamic programming and diffusion-asymptotic analysis. K. Misra,
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Schwartz, and Abernethy 2019 proposed a dynamic price experimentation policy which extended
MAB algorithms to include microeconomic choice theory. Gur and Momeni 2022 considered aux-
iliary information between decision epochs into the development of an adaptive policy to improve
experimentation performance. Bertsimas, Korolko, and Weinstein 2019 proposed an online allocation
algorithm in experimental clinical trials using robust mixed-integer optimization to achieve a high
statistical power. Moazeni, Defourny, and Wilczak 2020 modeled the marketing campaign perfor-
mance as a multiplicative advertising exposure problem and proposed a computationally efficient
learning policy through solving sequentially mixed-integer linear optimization problems. Delshad
and Khademi 2022 studied the personalized dose-finding clinical trial problem through a Bayesian
framework by stochastic programming and proposed an adapted one-step look-ahead approximate
policy. Anderer, Bastani, and Silberholz 2022 introduced a Bayesian adaptive clinical trial design
that combined both surrogate and true outcomes to improve trial performance.

In order to optimize the reward from experimentation, it if of great importance that we learn the causal
effect of a treatment accurately. As a result, a stream of literature in online advertising focuses on how
to estimate the causal effect of advertisements. Gordon, Jerath, et al. 2021 reviewed literature in ad
effect measurement in digital advertising market. They pointed out several problems with experiments
on ad effect, including small ad effects require large sample size to reach a reasonable statistical power,
and experimental cost is extremely high. Gordon, Zettelmeyer, et al. 2019 empirically compared
multiple observational models for causal effects of digital advertising and suggested that common
observational approaches fail to accurately measure the true causal effect. Bumbaca, S. Misra, and
Rossi 2020 proposed an algorithm to efficiently estimate Bayesian hierarchical models for inferences
under conditions where researchers have limited number of observations per consumer in online
target marketing.

At the framework level, several studies formulated adaptive experimentation, recommendation, and
targeted advertising problems as MAB. Aramayo, Schiappacasse, and Goic 2022 studied complete
collections of ads and nonstationary rewards in house ads recommendation problem by using a MAB
scheme. L. Li et al. 2010 applied a contextual bandit framework to model personalized news article
recommendation. Tang et al. 2015 presented implementations of contextual bandit algorithms on a
news recommendation problem and an online advertising problem. Aramayo, Schiappacasse, and
Goic 2022 studied a contextual bandit approach to dynamically exhibit house ads to customers.
Especially, this paper is closely related with CMAB approach, which is a popular branch of models
in MAB. We focus on sequential decision making under the linear contextual bandit framework.
Auer 2002 first introduced the contextual bandit setting through the Linear Reinforcement Learning
(LinRel) algorithm with linear value functions. Subsequently, the contextual framework was improved
by Dani, Hayes, and Kakade 2008 and Chu et al. 2011 through Upper Confidence Bound (UCB) type
algorithms. Abbasi-Yadkori, Pál, and Szepesvári 2011 further modified the analysis of the linear
bandit problem and improved the regret bound by a logarithmic factor. More recently, Bastani, Bayati,
and Khosravi 2021 studied performance of exploration-free policies in contextual bandit settings and
proposed the Greedy-First algorithm which only utilizes observed contexts and rewards to decide
whether to follow a greedy algorithm or to explore. This literature often requires independency
between contexts and the random error term, which however cannot be always satisfied in the reality.
We consider a setting which allows the dependency between contexts and error term. This more
general setting is well suited to real-world applications where endogeneity problems happen.

In online settings, data arrives sequentially. This adaptive nature complicates causal inference. Nie et
al. 2018 showed that estimates of arm-specific expected rewards in UCB and TS algorithms are biased
downwards. This downward bias is due to that arms with random upward fluctuation are sampled
more, while those arms with downward fluctuation are sampled less (Hadad et al. 2021). Bibaut et al.
2021 presented that standard estimators no longer follow normal distribution asymptotically so that
classic confidence interval fail to provide correct coverage. To address the inference problem in online
settings, H. Chen, Lu, and Song 2021 studied the consistency and asymptotic distribution of the online
ordinary least square estimator under epsilon-greedy policy. We extend their approach to two stage
least square estimation in online settings and contribute to the literature by proving the consistency of
our estimator which addresses endogeneity problem in online settings. lattimore2016causal studied
the bandit problem on a causal graph and proposed new algorithms to learn good interventions in
stochastic online settings. There are two significant differences between their work and ours. First,
we focus on a single linear model of the features and rewards, while they studied causal graph of
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features and rewards. Second, they did not consider the endogeneity problem, which our work mainly
contributes to.

This paper is also closely related to the stream of literature in instrumental variable methods for
endogeneity problems. Griliches 1977, Hausman 1983, Angrist and G. Imbens 1995, and X. Chen,
Hong, and Tamer 2005 provided theoretical analysis of instrumental variables in linear models, while
Hansen 1982, Ai and X. Chen 2003, Newey and Powell 2003 and Chernozhukov, G. W. Imbens, and
Newey 2007 studied instrumental variables in nonlinear models. G. Imbens 2014 reviewed work on
instrumental variable methods and discussed applications and restrictions. Different from the standard
data analysis framework in offline settings, the endogeneity problem can be exacerbated during the
dynamic interaction between data generation and data analysis in online settings (J. Li, Luo, and
X. Zhang 2021). This paper builds on existing instrumental variable methods in offline settings and
considers the dynamic interaction by utilizing the CMAB framework. For these reasons, the paper
contributes to the literature by combining both CMAB models and instrumental variable methods
to improve the estimation of causal effect of ad exposure and hence achieve better performance of
decision policies.

Appendix A.3 Further explanation for algorithm

Estimation: The algorithm maintains four matrices Ut, Vt,Wt, Qt to calculate estimated parameters
in each round as described in the pseudo code of Algorithm 2. If the current time t is after the first
round, the algorithm utilizes past-choice-related instrumental variables Zt and past choices Xt to
estimate Γ0 through OLS and obtain an estimated Xt, which is X̂t. Then, based on X̂t and past
observations of rewards Yt, the algorithm estimates β0 by OLS again. We denote the estimator for
β0, which is β̂t, in the BanditIV algorithm as the BanditIV estimator.

Confidence Sets: Following the Optimisim in the Face of Uncertainty principle (OFU), we need
maintain confidence sets for all unknown parameters in the model. As described in Section 2, we
have two unknown parameters, Γ0 and β0. Thus, we construct two confidence sets C1,s, C2,s,
s ∈ {1, · · · , T} for the first and the second stage estimation respectively in each round. The idea
for the confidence sets are to make the estimation optimistic with the conditions that "with high
probability" the true coefficients are in the confidence sets and we can calculate the confidence sets
from the past chosen arms Xt, related instrumental variables Zt, and rewards Yt.

Execution: The best arm generated by the algorithm is a sample xt which is related to an instrumental
variable zt that can maximize the estimated reward jointly with a pair of optimistic estimates of
two-stage coefficients in the confidence sets. After an arm is chosen, we observe the reward yt as
stated in Equation (1).

Algorithm 2 BanditIV
Input: γz, γx, {Gt}∞t=1,{Bt}∞t=1

Set U0 = γzI ∈ Rk×k, V0 = 0 ∈ Rk×d,W0 = γxI ∈ Rd×d, Q0 = 0 ∈ Rd×1

Set C1,s = {Γ : ||Γ(i) − Γ̂
(i)
s ||Us ≤ Gs}, C2,s = {β : ||β − β̂s||Ws ≤ Bs}, ∀s ∈ {1, 2, · · · T},

∀i ∈ {1, 2, · · · d}
Nature reveals Z0. We randomly choose z0 ∈ Z0 and set Z0 = z0
Nature reveals X0. From the set X0, we play x0 which is related with z0 and then observe the reward y0. We
set X0 = x0 and Y0 = y0
for t := 1, 2, · · · , T , do

Ut = Ut−1 + zt−1z
′
t−1, Vt = Vt−1 + zt−1x

′
t−1

Γ̂t = U−1
t Vt, X̂t−1 = Zt−1Γ̂t

Wt = W0 + X̂ ′
t−1X̂t−1, Qt = Q0 + X̂ ′

t−1Yt−1

β̂t = W−1
t Qt

Nature reveals Zt. We choose zt = argmaxz∈Zt maxΓ∈C1,t maxβ∈C2,t⟨Γ′z, β⟩ and update Zt =

[Z′
t−1 zt]

′

Nature reveals the set of arms Xt. We play xt which is related with zt and observe the reward yt. Update
Xt = [X ′

t−1 xt]
′, Yt = [Y ′

t−1 yt]
′

end for
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Appendix A.4 Confidence intervals

To compute confidence intervals of our estimate of β0 post running our bandits, we use a re-
randomization test similar to that of Bojinov, Simchi-Levi, and Zhao 2020 and Farias et al. 2022. For
the estimate β̂, we test the sharp null hypothesis that the β0 = τ for all t. The sharp null hypothesis
implies that the new outcome is yt + τ ′(xH

t − xt) where xH
t is a newly pulled arm and xt is a pulled

arm by our bandit algorithm.

We conduct exact tests by using the known assignment mechanism to simulate new assignment paths.
Algorithm 3 provides the details of how to implement it. In particular, we propose τ by a downward
search method based on the estimate from the bandit algorithm. Under the sharp null hypothesis of
β0 = τ , a new arm assignment path 1 : T leads to a sequence of observed outcomes yt+ τ ′(xH

t −xt)
for t ∈ {1, · · · , T}. To obtain a confidence interval, we invert a sequence of exact hypothesis tests to
identify the region outside where the null hypothesis is violated at the prespecified significance level
(G. W. Imbens and Rubin 2015, Bojinov, Simchi-Levi, and Zhao 2020).

Algorithm 3 Sharp Null Hypothesis Test

Require: Fix NH , total number of samples drawn; Given Γ̂, X , and Y from the bandit algorithm;
Given a prespecified significance level α
for i in 1 : NH do

Sample a new assignment path, xH
t , for t ∈ {1, · · · , T} according to the assignment mechanism

under the null hypothesis β0 = τ
Change the sequence of original outcomes yt to yt + ⟨τ, (xH

t − xt)⟩ for t ∈ {1, · · · , T}
Compute τ̂ [i] as the original algorithm does, i.e.

X̂H = ZH Γ̂

τ̂ [i] = γI + ((X̂H)′X̂H)−1(X̂H)′Y H

end for
Compute p̂ = N−1

H

∑NH

i=1 1{|τ̂ [i]| > |β̂|}
Reject the null hypothesis if p̂ < α

All of these experiments are run on synthetic data constructed as in Section 5. We run 50 rounds
in total. In each round, we propose 20 hypotheses for β0 based on the estimated coefficient of our
main interest, β̂ from a pre-run BanditIV or ϵ-greedy BanditIV and construct confidence intervals
for all dimensions of β0. For each hypothesis of β0, we run the sharp null hypothesis test where we
set NH as 200. We choose the significance level to be α = 0.05. Under BanditIV, the coverage of
the test for each dimension of the estimate is listed as follows: 94%, 96%, 96% ; Under ϵ-greedy
BanditIV, the coverage of the test for each dimension of the estimate is listed as follows: 96%, 92%,
94%. We can see that, given the significance level as 0.05, the coverage of the test is close to ideal
across both BanditIV and ϵ-greedy BanditIV. Thus, the re-randomization tests and corresponding
confidence intervals reported here are adequate for inference of the main treatment effect.

Appendix A.5 Proof of Main Results

Proof for Theorem 1

Proof. This regret can be decomposed into

RT =

T∑
t=1

(1− ϵt)Eut [⟨x∗
t , β0⟩ − ⟨xt, β0⟩]1[xt = Γ′

0zt] +

T∑
t=1

ϵtEut [⟨x∗
t , β0⟩ − ⟨xt, β0⟩]1[xt ̸= Γ′

0zt]

≤
T∑

t=1

⟨Γ′
0z

∗
t , β0⟩ − ⟨Γ′

0zt, β0⟩+ 2ϵ0TLy
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Next we will upper bound the first term. Let (Γ̃t, β̃t) = argmaxΓ∈Gt−1,β∈Ct−1⟨Γ′zt, β⟩. By using
the two-stage optimism we can decompose our regret as follows,

T∑
t=1

⟨Γ′
0z

∗
t , β0⟩ − ⟨Γ′

0zt, β0⟩

≤
T∑

t=1

max
Γ∈C2,t−1

max
β∈C2,t−1

⟨Γ′z∗t , β⟩ − ⟨Γ′
0zt, β0⟩

≤
T∑

t=1

⟨Γ̃′
tzt, β̃t⟩ − ⟨Γ′

0zt, β0⟩

=

T∑
t=1

⟨(Γ̃t − Γ0)
′zt, (β̃t − β0) + β0⟩+ ⟨x̂t + (Γ0 − Γ̂t)

′zt, β̃t − β0⟩

≤
T∑

t=1

||x̂t||W−1
t−1

∥β̃t − β0∥Wt−1 +

T∑
t=1

||(Γ0 − Γ̂t)
′zt||2∥β̃t − β0∥2

+ ∥β0∥2
T∑

t=1

∥(Γ̃t − Γ0)
′zt∥2 +

T∑
t=1

∥(Γ̃t − Γ0)
′zt∥2∥β̃t − β0∥2

=

T∑
t=1

||x̂t||W−1
t−1

∥β̃t − β0∥Wt−1 + ∥β0∥2
T∑

t=1

∥(Γ̃t − Γ0)
′zt∥2 + 2

T∑
t=1

||(Γ0 − Γ̂t)
′zt||2∥β̃t − β0∥2

where the first inequality comes from the Lemma 1, 2 that Γ0 ∈ C2,t, β0 ∈ C1,t for all t, the second
inequality comes from the definition of zt, the second equality comes from the definition of x̂t and
some careful decomposition, and the last inequality comes from cauchy-swartz inequality.

Now our goal is to upper bounded these three terms, which mainly comes form the estimation error of
Γ0 in the first stage and the estimation error of β0 in the second stage. For the first term, by applying
Cauchy-Schwartz inequality and the standard elliptical potential lemma in Carpentier, Vernade, and
Abbasi-Yadkori 2020, we have

T∑
t=1

||x̂t||W−1
t−1

∥β̃t − β0∥Wt−1
≤ max

t
∥β̃t − β0∥Wt−1

T∑
t=1

||x̂t||W−1
t−1

≤ max
t

∥β̃t − β0∥Wt−1

√
2Td log(

T + d

d
)

For the second term, by using similar arguments, we have that

∥β0∥2
T∑

t=1

∥(Γ̃t − Γ0)
′zt∥2 ≤ ∥β0∥2

T∑
t=1

d∑
i=1

| (Γ̃(i)
t − Γ

(i)
0 )′zt |

≤ ∥β0∥2
T∑

t=1

d∑
i=1

∥Γ̃(i)
t − Γ

(i)
0 )∥Ut−1

∥zt∥U−1
t−1

≤ ∥β0∥2d max
t∈[T ],i∈[d]

∥Γ̃(i)
t − Γ

(i)
0 )∥Ut−1

T∑
t=1

∥zt∥U−1
t−1

≤ ∥β0∥2d max
t∈[T ],i∈[d]

∥Γ̃(i)
t − Γ

(i)
0 )∥Ut−1

√
2Tk log(

T + k

k
)

where the last inequality again comes from standard ellipse potential lemma.
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Finally, for the third term, by the definition of Wt, we have ∥β̃t−β0∥2 ≤ 1
γ ∥β̃t−β0∥Wt−1 . Therefore,

by repeating the proof in the second term, we have that,

2

T∑
t=1

||(Γ0 − Γ̂t)
′zt||2∥β̃t − β0∥2

≤ 2

γx
max

t
∥β̃t − β0∥Wt−1 max

t∈[T ],i∈[d]
∥Γ̃(i)

t − Γ
(i)
0 )∥Ut−1

√
2Tk log(

T + k

k
)

Therefore, by combing these three terms and the definition of C1,t, C2,t, we can upper bound our
regret as

RT ≤ BT

√
2Td log(

T + d

d
) + (

2

γx
+ ∥β0∥2)GT

√
2Tk log(

T + k

k
)

Lemma 1 (Optimistic estimation of β0). With high prob 1− δ/2, for all t ∈ [T ],

||β̂t − β0||Wt
≤ Bt

where Bt =
√
γx||β0||2 +

√
2 log(2Tδ ) + d log

(
5TL2

x

d

)
,

Proof. At any fixed time t, we denote x̂t
s = Γ′

tzs for all s ≤ t, so the X̂t defined in the algorithm is a
collection of all {x̂t

s}s≤t. For convenience, we drop the superscript t here. We also denote et ∈ Rt

as a collection of {es}s≤t. Now we get the closed-form for β̂t by ridge 2SLS estimator as follows,

β̂t = W−1
t Qt

= W−1
t X̂ ′

t(Xtβ0 + et)

= (X ′
tPZt

Xt + γxI)
−1X ′

tPZt
Xtβ0 +W−1

t X̂ ′
tet

= β0 − γxW
−1
t β0 +W−1

t X̂ ′
tet

where we denote Zt(Z
′
tZt)

−1Zt as PZt
. The third equality comes from the definition of Ŵt and the

upper bound of X̂t in Lemma 8 Therefore, we can write the estimation error of β̂ compared to β0 as

||β̂t − β0||Wt
= ||W−1

t X̂ ′
tet − γxW

−1
t β0||Wt

= ||X̂ ′
tet − γxβ0||W−1

t

≤ ||X̂ ′
tet||W−1

t
+ γx||β0||W−1

t

≤ ||X̂ ′
tet||W−1

t
+ γx||β0||(γxI)−1

= ||X̂ ′
tet||W−1

t
+

√
γx||β0||2

Finally, by noticing that et is 1-subgaussian and the that exp(⟨q, X̂ ′
tet⟩ −

||q||2
X̂′

tX̂
′
t

2 ) for all q ∈ Rd is
a supermartingale, according to the Section 20.1 in Lattimore and Szepesvári 2020, we have that,
with probability 1− δ/2T ,

||X̂ ′
tet||W−1

t
≤

√
2 log(

2T

δ
) + log(

det(Wt)

γd
x

)) ≤ Bt.

where the last inequality comes from the explicit calculation of Wt detailed in Lemma 8.

Lemma 2 (Optimistic estimation of Γ0). With high prob 1− δ/2, for all t ∈ [T ] and all i ∈ [d],

||Γ̂(i)
t − Γ

(i)
0 ||Ut

≤ Gt

where Gt =
√
γz||Γ(i)

0 ||2 +
√
2 log(2Tδ ) + k log

(
5TL2

y

k

)
.
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Proof. The proof steps are similar to the previous lemma. At any fixed time t and dimension i ∈ [d],
we denote ui

t ∈ Rt as a collection of {es}s≤t. We again get the closed-form of Γ̂t as

Γ̂t = U−1
t Vt = U−1

t (Ut − γzI)Γ0 + U−1
t Z ′

tu
i
t = Γ0 − γzU

−1
t Γ0 + U−1

t Z ′
tu

i
t

And therefore, ||Γ̂(i)
t − Γ

(i)
0 ||Ut

≤ ∥Z ′
tu

i
t∥U−1

t
+

√
γz||Γ(i)

0 ||2.

Finally, again by noticing that ui
t is 1-subgaussian and the that exp(⟨q, X̂ ′

tu
i
t⟩ −

||q||2
X̂′

tX̂
′
t

2 ) for all
q ∈ Rd is a supermartingale, we have that, with probability 1− δ/2T ,

||Γ̂(i)
t − Γ

(i)
0 ||Ut

≤ √
γz||Γ(i)

0 ||2 +

√
2 log(

2T

δ
) + log(

det(Ut)

γk
z

) ≤ Gt

where the last inequality comes from the explicit calculation of Ut detailed in Lemma 8 and the union
bound over all t ∈ [T ].

Lemma 3. Suppose {Ft : t = 1, · · · , T} is an increasing filtration of σ-fields. Let {Wt : t =
1, · · · , T} be a sequence of variables such that Wt is Ft−1 measurable and |Wt| ≤ Lw almost surely
for all t. Let {vt : t = 1, · · · , T} be independent σv-subgaussian, and vt ⊥ Ft−1 for all t. Let
S = {s1, · · · , s|S|} ⊆ {1, · · · , T} be an index set where |S| is the number of elements in S. Then
for κ > 0,

P (
∑
s∈S

Wsvs ≥ κ) ≤ exp{− κ2

2|S|σ2
vL

2
w

}

The proof of this lemma is provided in Lemma 1 of H. Chen, Lu, and Song 2021.

Lemma 4. (Dependent OLS Tail Inequality). For the online decision making model, if all realizations
of zt satisfy ||zt||∞ ≤ Lz for all t, and Σ̂ = 1

t

∑t
s=1 zsz

′
s has minimum eigenvalue λmin(Σ̂) > λ

for some λ > 0 almost surely. Then for any η > 0,

P (||δ̂t − δ0||1 ≤ η) ≥ 1− 2k exp (− tλ2η2

2k2σ2
vL

2
z

)

Proof. Based on the proofs provided by H. Chen, Lu, and Song 2021 and Bastani and Bayati 2020,
we make some minor changes. The relation between eigenvalue and l2 norm of symmetric matrix
gives ||Σ̂−1||2 = λmax(Σ̂

−1) = (λmin(Σ̂))
−1. Therefore,

||δ̂t − δ0||2 = ||Σ̂−1(
1

t

t∑
s=1

zsvs)||2 ≤ 1

t
||Σ̂−1||2||

t∑
s=1

zsvs||2 ≤ 1

tλ
||

t∑
s=1

zsvs||2

Hence, we have

P (||δ̂t − δ0||2 ≤ η) ≥ P (||
t∑

s=1

zsvs||2 ≤ tλη)

≥ P (|
t∑

s=1

Zj,svs| ≤
tλη√
k
, · · · , |

t∑
s=1

Zk,svs| ≤
tλη√
k
)

= 1− P (

k⋃
j=1

{|
t∑

s=1

Zj,svs| >
tλη√
k
})

≥ 1−
k∑

j=1

P (|
t∑

s=1

Zj,svs| >
tλη√
k
)
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Because we know that vs in the above inequality are i.i.d. subgaussian and vs ⊥ zs, we can apply
Lemma 3 and have the following

P (|
t∑

s=1

Zj,svs| >
tλη√
k
) ≤ 2 exp{− tλ2η2

2kσ2
vL

2
z

}

Thus,

P (||δ̂t − δ0||1 ≤ η) ≥ P (||δ̂t − δ0||2 ≤ η√
k
) ≥ 1− 2k exp{− tλ2η2

2k2σ2
vL

2
z

}

Lemma 5. Let {zt : t = 1, · · · , T} be a sequence of i.i.d. k-dimension random vectors such that
all realizations of zt satisfy ||zt||∞ ≤ Lz for all t. Denote Σ̂ = 1

T

∑T
t=1 ztz

′
t. If Σ = E[ztz′t] has

minimum eigenvalue λmin(Σ) > λ for some λ > 0, then

P (λmin(Σ̂) ≤
λ

2
) ≤ k exp{− Tλ

8L2
z

}

Proof. This proof is based on the proof of Lemma 3 in H. Chen, Lu, and Song 2021 with minor
changes. First, we have

λmax(
ztz

′
t

T
) = max

||a||2=1
a′(

ztz
′
t

T
)a =

1

T
max

||a||2=1
(a′zt)

2 ≤ L2
z

T

µmin ≡ λmin(EΣ̂) = λmin(
1

T

t∑
t=1

E[ztz′t]) = λmin(Σ) > λ

Then, using the Matrix Chernoff bound,

P (λmin(Σ̂) ≤
λ

2
) ≤ P (λmin(Σ̂) ≤

µmin

2
) ≤ k exp{−Tµmin

8L2
z

} ≤ k exp{− Tλ

8L2
z

}

Lemma 6.

||Γ̂(β̂ − β0)||1 ≥ λmin(Γ̂)√
d

||β̂ − β0||1

where λmin(Γ̂) is the smallest magnitude of a singular value of this matrix.

Proof. By doing Singular Value Decomposition for Γ̂, we have the following, where the second
equality is due to that U is orthonormal.

||Γ̂(β̂ − β0)||2 = ||UΣV ′(β̂ − β0)||2 = ||ΣV ′(β̂ − β0)||2

We assume rank(Γ̂) = min{k, d} = d. Using matrix form, we have
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ΣV ′(β̂ − β0) =



σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σd

0 0 · · · 0
...

...
...

...
0 0 · · · 0




V (1)(1) V (2)(1) · · · V (d)(1)

V (1)(2) V (2)(2) · · · V (d)(2)

...
...

...
...

V (1)(d) V (2)(d) · · · V (d)(d)



β̂(1) − β

(1)
0

β̂(2) − β
(2)
0

...
β̂(d) − β

(d)
0



=



σ1

∑d
i=1 V

(i)(1)(β̂(i) − β
(i)
0 )

σ2

∑d
i=1 V

(i)(2)(β̂(i) − β
(i)
0 )

...
σd

∑d
i=1 V

(i)(d)(β̂(i) − β
(i)
0 )

0
...
0


Hence,

||ΣV ′(β̂ − β0)||1 ≥ ||ΣV ′(β̂ − β0)||2 =

√√√√ d∑
j=1

|σj

d∑
i=1

V (i)(j)(β̂(i) − β
(i)
0 )|2

≥ λmin(Γ̂)

√√√√ d∑
j=1

|
d∑

i=1

V (i)(j)(β̂(i) − β
(i)
0 )|2

= λmin(Γ̂)||V ′(β̂ − β0)||2
= λmin(Γ̂)||(β̂ − β0)||2 (4)

where the last equality is due to that V is orthonormal.

Applying Cauchy–Schwarz inequality, we obtain

||(β̂ − β0)||2 ≥ 1√
d
||(β̂ − β0)||1 (5)

Combing inequalities (4) and (5), we complete the proof.

Lemma 7.

λmin(Γ̂) ≥ λmin(Γ0)− η2(kd)
1
2 (6)

Proof. On the event that ||Γ̂− Γ0|| ≤ η2, we can rewrite the equation for each element in Γ̂ using a
newly defined matrix A ∈ Rk×d : |A(i)(l)| ≤ 1,∀i ∈ i ∈ {1, 2, · · · , d},∀l ∈ {1, 2, · · · , k}.

Γ̂(i)(l) = Γ
(i)(l)
0 + η2A

(i)(l) (7)

We know that all singular values are non-negative. Here, we assume the singular values of Γ0

are strictly positive. We can write the singular values of Γ0 and Γ̂ as two increasing sequences,
0 < σ

(1)
Γ ≤ σ

(2)
Γ ≤ · · · ≤ σ

(d)
Γ and σ(1) ≤ σ(2) ≤ · · · ≤ σ(d), respectively.

Using the min-max principle for singular values, we have

σ
(1)
Γ = min

S:dim(S)=1
max
a∈S

||a||2=1

||Γ0a||2 = min
a∈Rd

||a||2=1

||Γ0a||2
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where the first equality is directly derived by applying the min-max theorem. The second equality is
from the two facts. First, a should be of an order d× 1 to fit the order of Γ0. Second, there are only
two unique vectors fitting the constraint ||a||2 = 1 in the given space S and they generate the same
objective values ||Γ0a||2.

Similarly, we can rewrite the smallest singular value of Γ̂ as the following

σ(1) = min
a∈Rd

||a||2=1

||Γ̂a||2 (8)

min
a∈Rd

||a||2=1

||Γ̂a||2 ≥ min
a∈Rd

||a||2=1

||Γ0a||2 − η2||Aa||2

≥ min
a∈Rd

||a||2=1

||Γ0a||2 − η2||A||2||a||2

= min
a∈Rd

||a||2=1

||Γ0a||2 − η2||A||2

≥ min
a∈Rd

||a||2=1

||Γ0a||2 − η2(kd)
1
2

= σ
(1)
Γ − η2(kd)

1
2

where the first inequality is derived from the equation (7) and triangle inequality. The third equality
is from the constraint that ||a||2 = 1. The fourth inequality is from the property of Frobenius norm,
which we illustrate as the following

||A||2 ≤ ||A||F = (

d∑
i=1

k∑
l=1

|A(i)(l)|2) 1
2 ≤ (

d∑
i=1

k∑
l=1

1)
1
2 = (kd)

1
2

Proposition 2. (Tail bounds for the online OLS estimators). In the online decision making model
with the ϵ-greedy policy, if Assumptions 1 and 2 are satisfied, and ϵt is non-increasing, then for any
η1, η2 > 0, any i ∈ {1, · · · , d},

P (||δ̂t − δ0||1 ≤ η1) ≥ 1− exp{− tϵt
8
} − k exp{− tϵtλ

32L2
z

} − 2k exp{− tϵ2tλ
2η21

128k2σ2
vL

2
z

}

+ 2k2 exp{− tϵ2tλ
2η21 + 4tϵtλk

2σ2
v

128k2σ2
vL

2
z

}

P (||Γ̂(i)
t − Γ

(i)
0 ||1 ≤ η2) ≥ 1− exp{− tϵt

8
} − k exp{− tϵtλ

32L2
z

} − 2k exp{− tϵ2tλ
2η22

128k2σ2
uL

2
z

}

+ 2k2 exp{− tϵ2tλ
2η22 + 4tϵtλk

2σ2
u

128k2σ2
uL

2
z

}

Proof for Proposition 2

Proof. Following the proof of Proposition 3.1 in H. Chen, Lu, and Song 2021, we provide this
proof adapting to our setting. Denote St = {1, · · · , t} and define Σ̂(I) = |I|−1

∑
s∈I zsz

′
s for any

I ⊆ St, where |I| is the number of element in the set I and |St| = t. We have

δ̂t − δ0 = (
1

t

t∑
s=1

zsz
′
s)

−1 1

t

t∑
s=1

zsvs = {Σ̂(St)}−1 1

t

t∑
s=1

zsvs
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Under ϵ-greedy policy, we pull the estimated optimal arm with probability ϵs at each time point s.
We denote the collection of time points up to time t when the estimated optimal arm is chosen as
Rt. We will first bound the minimum eigenvalue of Σ̂(Rt) and then use it to infer the bound of the
minimum eigenvalue of Σ̂(St).

We denote the following event,

E := {λmin(Σ̂(Rt)) >
λ

4
}

Applying Lemma 5, if λmin(Σ) > λ, then we have

P (E) ≥ 1− k exp{−|Rt|λ
16L2

z

}

Meanwhile, we know that

Σ̂(St) =
|Rt|
|St|

Σ̂(Rt) +
|St| − |Rt|

|St|
Σ̂(St\Rt)

By Weyl’s inequality, on event E,

λmin(Σ̂(St)) ≥ λmin(
|Rt|
|St|

Σ̂(Rt))+λmin(
|St| − |Rt|

|St|
Σ̂(St\Rt)) ≥

|Rt|
|St|

λmin(Σ̂(Rt)) ≥
λ|Rt|
4t

Applying Lemma 4, we have

P (||δ̂t − δ0||1 ≤ η|E) ≥ 1− 2k exp (− |Rt|2λ2η2

32tk2σ2
vL

2
z

)

Hence,

P (||δ̂t − δ0||1 ≤ η) ≥ P (||δ̂t − δ0||1 ≤ η|E)P (E)

≥ 1− 2k exp (− |Rt|2λ2η2

32tk2σ2
vL

2
z

)− k exp{−|Rt|λ
16L2

z

}+ 2k2 exp{−|Rt|λ
16L2

z

− |Rt|2λ2η2

32tk2σ2
vL

2
z

}

The checking step for that |Rt| is large enough is exactly the same as that in H. Chen, Lu, and Song
2021. We complete the proof by combining all the results above,

P (||δ̂t − δ0||1 ≤ η) ≥ 1− exp{− tϵt
8
} − k exp{− tϵtλ

32L2
z

} − 2k exp{− tϵ2tλ
2η2

128k2σ2
vL

2
z

}

+ 2k2 exp{− tϵ2tλ
2η2 + 4tϵtλk

2σ2
v

128k2σ2
vL

2
z

}

We can prove the inequality for P (||Γ̂(i)
t − Γ

(i)
0 ||1 ≤ η2) by similar steps.

Following from the Proposition 2, we can easily obtain the following corollary.
Corollary 4. (Consistency of the online OLS estimators). If Assumptions 1 and 2 are satisfied, ϵt is
non-increasing and tϵ2t → ∞ as t → ∞, then the online OLS estimators Γ̂t is a consistent estimator
for Γ0 and δ̂t is a consistent estimator for δ0.

Proof for Proposition 1

Proof. By Proposition 2, we have ||Γ̂− Γ0||1 = max1≤i≤d ||Γ̂(i) − Γ
(i)
0 ||1 ≤ η2 with a probability

larger than p2 and ||δ̂−δ0||1 ≤ η1 with a probability larger than p1. On the events that ||Γ̂−Γ0||1 ≤ η2
and ||δ̂ − δ0||1 ≤ η1, we can prove the upper bound of ||β̂ − β0||1 as the following by utilizing
triangle inequalities.

||Γ̂(β̂ − β0)||1 − ||(Γ̂− Γ0)β0||1 ≤ ||Γ̂(β̂ − β0) + (Γ̂− Γ0)β0||1 = ||Γ̂β̂ − Γ0β0||1 = ||δ̂ − δ0||1 ≤ η1

Hence,

||Γ̂(β̂ − β0)||1 ≤ η1 + ||(Γ̂− Γ0)β0||1 ≤ η1 + ||Γ̂− Γ0||1||β0||1 ≤ η1 + η2||β0||1 (9)

Combining inequality (9), Lemma 6 and Lemma 7, we complete the proof.
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Theorem 5. (Asymptotic normality of the online OLS estimator) If Assumptions 1 and 2 are satisfied,
ϵt is non-increasing and tϵ2t → ∞ as t → ∞, then

√
t(δ̂t − δ0)

d−→ Nk(0,E[v2t ](
∫

zz′dPz)
−1)

Proof. In this proof, we mainly use martingale central limit theorem.

By definition of the OLS estimator δ̂t, we have

√
t(δ̂t − δ0) = (

1

t

t∑
s=1

zsz
′
s)

−1(
1√
t

t∑
s=1

zsvs)

We define for 1 ≤ j ≤ t, t ≥ 1, and any q ∈ Rk, the σ-field Ftj as Fj ,

Htj =
1√
t

j∑
s=1

q′zsvs.

We have E[q′zsvs|Fs−1] = 0. We also notice that {Htj ,Ftj , 1 ≤ j ≤ t, t ≥ 1} is a martingale array.
Hence we are going to prove the convergence of Htt.

We first check the Linderberg condition as follows, for each fixed ζ > 0,
t∑

s=1

E[
1

t
(q′zs)

2v2sI{|q′zsvs| > ζ
√
t}|Ft,s−1]

≤ ||q||22L2
z

t

t∑
s=1

E[v2sI{v2s >
ζ2t

||q||22L2
z

}|Fs−1]

≤ ||q||22L2
zE[v21I{v21 >

ζ2t

||q||22L2
z

}]

where vs, s = 1, · · · , t are i.i.d. from Pv. Notice that v21I{v21 > ζ2t
||q||22L2

z
} is dominated by v21 with

E[v21 ] ≤ ||β0||22 + 1. Also, v21I{v21 > ζ2t
||q||22L2

z
} converges to 0 almost surely when t → ∞. Thus,

applying dominated convergence theorem, we can get, as t → ∞,
t∑

s=1

E[
1

t
(q′zs)

2v2sI{|q′zsvs| > ζ
√
t}|Ft,s−1] → 0

Then we are to find the limit of the conditional variance for Htt. Notice that

E[(q′zs)2|Fs−1] =

∫
q′zsz

′
sqdPz

and q′E[zsz′s]q ≤ ||q||22L2
z . Therefore,

t∑
s=1

E[
1

t
(q′zs)

2v2s |Ft,s−1]

=
E[v21 ]
t

t∑
s=1

E[(q′zs)2|Fs−1]

p−→ E[v21 ]q′(
∫

zsz
′
sdPz)q (10)

Applying Martingale Limit Theorem, we have

1√
t

t∑
s=1

zsvs
d−→ Nk(0,E[v21 ]

∫
zsz

′
sdPz) (11)
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Now we are to find the limit of 1
t

∑t
s=1 q

′zsz
′
sq for any q ∈ Rk. We know that q′zsz′sq is Fs-

measurable for each s and E[q′zsz′sq] ≤ q′11′qL2
z < ∞. Thus, by Theorem 2.19 in Hall and Heyde

2014, we have

1

t

t∑
s=1

(q′zsz
′
sq − E[q′zsz′sq|Fs−1])

p−→ 0 (12)

From the result in (10) and (12), we have 1
t

∑t
s=1 q

′zsz
′
sq

p−→ q′(
∫
zsz

′
sdPz)q. Applying Lemma 6

in H. Chen, Lu, and Song 2021 and Continuous Mapping Theorem, we obtain

(
1

t

t∑
s=1

zsz
′
s)

−1 p−→ (

∫
zsz

′
sdPz)

−1 (13)

Combining the results in (11) and (13), we complete the proof.

Proof for Theorem 3: Combining the Theorem 5 and Corollary 4, we derive the normality of the
BanditIV estimator by applying Slutsky Theorem directly. Now, for the consistency of the variance
estimator, we want to show that

t∑
s=1

v̂2s(Γ̂
′
t

t∑
s=1

zsz
′
sΓ̂t)

−1Γ̂′
t(

t∑
s=1

zsz
′
s)Γ̂t(Γ̂

′
t

t∑
s=1

zsz
′
sΓ̂t)

−1 p→ S (14)

By rewriting the squared error term in (14), we have

1

t

t∑
s=1

v̂2s =
1

t

t∑
s=1

((δ0 − δ̂t)
′zs + vs)

2 =
1

t

t∑
s=1

((δ0 − δ̂t)
′zs)

2 +
2

t

t∑
s=1

(δ0 − δ̂t)
′zsvs +

1

t

t∑
s=1

v2s

(15)

Now we analyze the asymptotic properties for the three terms in (15). Notice that by Proposition 2,
the first term in (15) can be written as

(δ0 − δ̂t)
′ 1

t

t∑
s=1

(zsz
′
s)(δ0 − δ̂t) ≤ L2

z||δ0 − δ̂t||21
p→ 0

For the second term, by Proposition 2 and Lemma 11,

(δ0 − δ̂t)
′ 2

t

t∑
s=1

zsvs
p→ 0

For the third term, we apply the weak law of large numbers and obtain

1

t

t∑
s=1

v2s
p→ E[v2s ]

Combining the results above and Proposition 2 with continuous mapping theorem, we complete the
proof.

Appendix B. Auxiliary Lemmas

Lemma 8. For each t, we can explicitly upper bound the following terms,

Wt ≤ X ′
tZ

′
t(Z

′
tZt)

−1ZtXt, log(det(Wt)) ≤ d log

(
5TL2

x

d

)
Ut ≤ Z ′

tZt + γzI, log(det(Ut)) ≤ k log

(
5TL2

y

k

)
X̂t ≤ PZt

Xt
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Proof. For the first inequality,

X̂t = ZtΓ̂t = Zt(Z
′
tZt + γzI)

−1Z ′
tXt ≤ Zt(Z

′
tZt)

−1Z ′
tXt.

Then for the second inequality,

Wt = X̂ ′
tX̂t

= (ZtΓ̂t)
′(ZtΓ̂t)

= (Zt(Z
′
tZt + γzI)

−1Z ′
tXt)

′(Zt(Z
′
tZt + γzI)

−1Z ′
tXt)

= X ′
tZt(Z

′
tZt + γzI)

−1Z ′
tZt(Z

′
tZt + γzI)

−1Z ′
tXt

≤ X ′
tZt(Z

′
tZt)

−1Z ′
tXt

Recall that PZt
= Z ′

t(Z
′
tZt)

−1Zt, we finish the upper bound of Wt.Then we have

log(det(Wt)) ≤ d log

(
1

d
trace(Wt)

)
≤ d log

(
1

d
trace((Z ′

tZt)
−1Z ′

tXtX
′
tZt)

)
= d log

(
1

d
trace((Z ′

tZt)
−1Z ′

t(ZtΓ0 + ut)(ZtΓ0 + ut)
′Zt)

)
= d log

(
1

d
(trace(Γ0Γ

′
0Z

′
tZt) + trace(Γ0Γ

′
0Z

′
tutu

′
tZt) + 2trace(Z ′

tuΓ
′
0))

)
Now because ut is 1-subgaussian, then we have with high probability, utu

′
t < 2I . Then the above is

upper bounded by

d log

(
1

d

(
3∥ZtΓ0∥2F + 2∥ZtΓ0∥F ∥ut∥F

))
≤ d log

(
5TL2

x

d

)
and similarly

log(det(Ut)) ≤ k log

(
5TL2

y

k

)

Lemma 9. Consider a sequence of vectors (xt)
T
t=1, xt ∈ Rd, and assume that ||xt||2 ≤ a for all t.

Let Vt = λI +
∑t

s=1 xsx
′
s for some λ > 0. Then, we will have that ||xt||V −1

t−1
> b at most

d log(1 + a2T/λ)/ log(1 + b)

times.

Lemma 9 is directly from lemma 6.2 in Wagenmaker et al. 2021.
Lemma 10. a1, a2, · · · ∈ Rd is Ft adapted and E[at|Ft−1] = 0 and let Lt ∈ Rd×d be a predictable
sequence such that for any λ ∈ Rd,

E[exp (⟨λ, at⟩)|Ft−1] ≤ exp (||λ||2Lt
/2)

Let Ht =
∑t

s=1 as, Jt =
∑t

s=1 Lt.

Kt(λ) = exp (⟨λ,Ht⟩ − ||λ||2Jt
/2)

is a super martingale. Moreover, we have that

P(∃t : ||Ht||(Jt+γxI)−1 ≥

√
2 log(1/δ) + log(

det(Jt + γxI)

γd
x

)) ≤ δ

Lemma 10 is from the lemma for vector-valued martingale in Kevin’s lecture notes (Proposition 3 in
Section 3.3.5).

Proof for "v(i) is (||β0||22 + 1)-subgaussian"
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Proof.

E[exp(λv(i))] = E[exp(λ(
d∑

l=1

u(i)(l)β
(l)
0 + e(i)))]

=

d∏
l=1

E[exp(λu(i)(l)β
(l)
0 )]E[exp(λe(i))]

≤
d∏

l=1

E[exp(
λ2β

(l)2

0

2
)]E[exp(

λ2

2
)]

= exp(
λ2

2
(

d∑
l=1

β
(l)2

0 + 1))

= exp(
λ2

2
(||β0||22 + 1))

where the second equality is due to the independency of distributions of u(i)(l) and e(i). The third
inequality is because that u(i)(l) and e(i) are 1-subgaussian with mean zero.

Lemma 11. Suppose {Ft : t = 1, . . . , T} is an increasing filtration of σ-fields. Let {W̃t : t =

1, . . . , T} be a sequence of random variables such that W̃t is Ft−1 measurable and |W̃t| ≤ Lw̃

almost surely for all t. Let {ẽt : t = 1, . . . , T} be independent σẽ-subgaussian, and ẽt ⊥ Ft−1 for
all t. Let S̃ = {s1, . . . , s|S̃|} ⊆ {1, . . . , T} be an index set where |S̃| is the number of elements in S̃.
Then for κ > 0,

P (
∑
s∈S̃

W̃sẽs) ≤ exp{− κ2

2|S̃|σ2
ẽ

L2
w̃} (16)

Lemma 11 is from Lemma 1 in H. Chen, Lu, and Song 2021.

25


	Introduction
	Problem setting
	BanditIV algorithm
	Regret analysis

	Inference: tail inequality and normality
	Numerical Experiments
	Conclusion
	Appendix
	Appendix A
	Appendix B

