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ABSTRACT

Contrastive learning have recently produced results comparable to the state-of-
the-art supervised models. Non-contrastive methods do not use negative samples,
but separate samples of different classes by explicitly or implicitly optimizing the
representation space. Although we have some understanding of the core of the
non-contrastive learning method, theoretical analysis of its generalization perfor-
mance is still missing. Thus we present a theoretical analysis of generalizability
of non-contrastive models. We focus on the inter-class distance, show how non-
contrastive methods increase the inter-class distance, and how the distance affects
the generalization performance of the model. We find that the generalization of
non-contrastive methods is affected by the output dimension and the number of
latent classes. Models with much fewer dimensions than the number of latent
classes are not sufficient to generalize well. We demonstrate our findings through
experiments on the CIFAR dataset.

1 INTRODUCTION

Self-Supervised Learning (SSL) is gaining popularity as a result of its competitive performance
comparing to supervised learning, while is free of costly labels. Among SSL models, contrastive
learning has attracted great attention due to its strong generalization performance and wide range
of applications. Contrastive learning generates multiple augmented views from samples, and treats
the views generated from the same sample with the same label, whereas the views from different
samples have different labels. Contrastive models have been widely used in various of scenarios
including but not limited to graph representation (You et al., 2020; Zhu et al., 2020), computer
vision (Chuang et al., 2020; Tian et al., 2020a) and natural language processing (Saeed et al., 2021;
Iter et al., 2020; Chi et al., 2020).

Typical contrastive models like MoCo (He et al., 2020)and SimCLR (Chen et al., 2020) use InfoNCE
loss to attract positive pairs and push negative pairs. However a negative sample of contrastive
learning can be false negative (Huynh et al., 2022). Views of two samples with the same latent will
be treated as negative pairs. This can hurt the performance of the model. There are many works
trying to avoid this disadvantage (Huynh et al., 2022; Kalantidis et al., 2020; Kim et al., 2021).
BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2020) uses an asymmetric network structure,
cancel the use of negative samples, and surprisingly achieves comparable performance. Tian et al.
(2021); Jing et al. (2021) analyse the dynamics of features and networks in BYOL and SimSiam
and explore why they perform well without falling into trivial solutions. However, studies that
quantitatively investigate their generalization performance have yet to emerge.

In this paper, we explore the generalizability of non-contrastive learning. Under appropriate as-
sumptions, we prove that the cross-correlation matrix of output features constrains the upper bound
of generalization error rate. The closer the matrix is to the identity matrix, the smaller this up-
per bound becomes. Moreover, we demonstrate that the cross-correlation matrix is optimized by
non-contrastive methods during training.

The sections of this paper are arranged as follow: In Section 2 we review contrastive learning meth-
ods and the theoretical analysis of contrastive learning. Then in Section 3 we formulate the gener-
alization problem and agree on some notation. In Section 4 the error rate theorem is proposed. It
illustrates how the cross-correlation matrix and the dimensionality of the representation space can
limit the upper bound on the error rate. Then we shows that SimSiam (Chen & He, 2020) and Barlow
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Twins (Zbontar et al., 2021) optimize the cross-correlation matrix during training. At last in Section
5 we conduct experiments on CIFAR-10 and CIFAR-100 to verify the effect of feature dimension
and number of classes on error rate in Section 4.

2 RELATED WORKS

2.1 CONTRASTIVE SELF-SUPERVISED LEARNING

Self-supervised learning methods strive to learn representations using well-designed pretext tasks
that do not require the use of expensive labels. As a kind of self-supervised learning method, con-
trastive learning uses data augmentation to generate multiple augmented samples (views) from an
original sample, and treats the augmented samples generated by the same sample with the same
label, whereas the augmented samples from different samples have different labels. Recent methods
such as MoCo (He et al., 2020)and SimCLR (Chen et al., 2020) have produced results compara-
ble to the state-of-the-art supervised method on ImageNet (Deng et al., 2009) dataset. They use
the InfoNCE loss (Van den Oord et al., 2018) to pull positive sample pair together while pushing
away negative samples, i.e., those augmented views from different samples. However views from
different sample can have the same latent label. Treating them as negative samples will hurts model
performance. To overcome this shortcoming, Hu et al. (2021); Xiao et al. (2020) carefully design the
negative sampling process. Some works like BYOL (Grill et al., 2020), SimSiam (Chen & He, 2020)
and Barlow Twins (Zbontar et al., 2021) directly created models that do not use negative samples at
all. These contrastive models free of negative samples are also called non-contrastive models.

2.2 THEORETICAL ANALYSIS FOR CONTRASTIVE LEARNING

Despite the fact that contrastive learning has shown to be effective in learning usable representations
and has outperformed supervised learning in key downstream transfer learning benchmarks (He
et al., 2020), their underlying mechanism remain opaque and poorly understood. Arora et al. (2019)
provides a theoretical analysis on the explanation why the learned features via contrastive learning
are useful for downstream tasks. Tian et al. (2021); Jing et al. (2021) give theoretical analysis
of dynamics of non-contrastive methods and investigate how these models avoid trivial solutions.
Huang et al. (2021) studies the generalization property of SimCLR and Barlow Twins, however,
methods like BYOL with special optimization procedures are not considered. Tosh et al. (2021)
study the generalization performance in the aspect of the mutual information. Tian et al. (2020b)
propose the optimal views for contrastive learning that reserve relevant task information to ensure
the mutual information among all views are task-relevant.

Research above explored the learning mechanism of contrastive learning and proposed a number
of methods to modify the generalization performance of the model using loss function, however,
most of which are based on InfoNCE object model with both positive and negative samples. Non-
contrastive method with no negative samples can not be completely explained by theorems based
on mutual information, and the analysis on its generalization performance also remains open. Our
study focus on this open problem, exploring the factors that impact on self-supervised learning
generalization performance, revealing how these factors affect the generalization error rate, and give
out the upper bound of the non-contrastive model error rate.

3 PROBLEM FORMULATION

In this section we formulate the loss of contrastive methods and the generalization error rate in
preparation for the analysis in the next section.

Contrastive learning treats views of the same sample as having the same label. Given an underlying
distribution D = C1 ∪ C2 ∪ · · · ∪ CK . Ci, i ∈ [K] are disjoint latent classes. Each sample x is
independently and identically distributed (i.i.d.) according to D and belongs to a unique Ci. An
augmentation A generate different views x̂ of x. We denote A(x) and A(S) as the set of distorted
views of x and sample set S = (x1, . . . , xm) ∼ D. Typical models (Chen et al., 2020; He et al.,
2020) learn an effective encoder f through pulling augmented views of the same sample together
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Figure 1: The architectures of contrastive learning models.

and push views of all others away. They use the InfoNCE loss (Van den Oord et al., 2018):

LInfoNCE = −Ex∼D,x̂1,x̂2∈A(x) log
exp(f(x̂1)

T , f(x̂2))

exp(f(x̂1)T , f(x̂2)) +
∑

x−∈A(S) exp(f(x̂1)T , f(x̂−))
(1)

where x̂− ∈ A(S) are views from negative samples excluding x. The architecture of SimCLR
(Chen et al., 2020) who use LInfoNCE is shown in Fig. 1(a).

However, since we do not know the latent class of samples during training, some false negative
samples will inevitably appear (Huynh et al., 2022). InfoNCE loss will push one view away from its
false negative samples, that is, the negative samples that actually have the same latent label, which
will have a negative impact on the model.

Non-contrastive learning models are contrastive methods without using negative samples. They
either explicitly forces the cross-correlation matrix between positive samples close to the identity
matrix (Barlow Twins (Zbontar et al., 2021), as shown in Fig. 1(b)), or makes use of asymmetric
networks (BYOL (Grill et al., 2020), SimSiam (Chen & He, 2020), as shown in Fig. 1(c)) in order
to avoid trivial constant features. The loss function of the former is:

LBT =
∑
i∈[d]

(1− Cii)
2 + λ

∑
i∈[d]

∑
j ̸=i

C2
ij , (2)

where d is the dimension of the encoder outputs, C = Ex∼D,x̂1,x̂2∈A(x)(f(x̂1)f(x̂2)
T ) is the cross-

correlation matrix computed between the outputs of the two identical networks along the batch
dimension and λ is a postive trade off parameter.

The latter is represented by SimSiam, whose loss function is:

LSimSiam = −Ex∼D,x̂1,x̂2∈A(x)[sim(h(f(x̂1)), sg(f(x̂2)))], (3)

where sim(x,y) = xTy
∥x∥∥y∥ is the cosine similarity between (x,y) , h is the predictor layer, often a

multi-layer perceptron. sg is the stop-gradient operator, which means the backpropagation does not
go through this path.

As for the generalization, given an encoder f , we consider a nearest neighbor classifier G : D →
[K]:

G(x̂; f) = argmin
k∈[K]

∥f(x̂)− µk∥, (4)

where µk := Ex∼Ck,x̂1∈A(x)[f(x̂1)] is the mean of output features for samples in latent class Ck.
The classifier maps each x ∼ D to a class Ci. Here we denote C(x) as the real latent class of x ∼ D,
the generalization error rate can be formulated as

Er(f) = P[G(x̂; f) ̸= C(x), ∀x ∼ D, ∀x̂ ∈ A(x)]. (5)

3



Under review as a conference paper at ICLR 2023

−1.0
−0.5

0.0
0.5

1.0 −1.0

−0.5
0.0

0.5
1.0
−1.0
−0.5
0.0
0.5
1.0

(a) Distributions minimizing Lcor

−1.0
−0.5

0.0
0.5

1.0 −1.0

−0.5
0.0

0.5
1.0
−1.0
−0.5
0.0
0.5
1.0

(b) Distributions minimizing Luniform

Figure 2: Distributions which minimize (a)Lcor and (b)Luniform. In Fig. (a), the red point is
the origin of the coordinates, and the yellow points are the auxiliary points, which represents the
relationship between the distribution (blue point) and the origin. It means that as long as the points
fall on a set of orthonormal basis in the space on average, Lcor can be minimized, which is totally
different from Fig. (b)

The generalization properties of LInfoNCE have been well studied (Huang et al., 2021). In the fol-
lowing section we focus on Barlow Twins and SimSiam. Exploring the relationship between their
optimization mechanism and generalization error rate.

4 GENERALIZATION ANALYSIS

4.1 ERROR RATE THEOREM

In this section, we study the generalization property of non-contrastive methods, and how the models
improves generalization by optimizing the statistical characteristics of the output features.

Let d be the dimension of output features. For simplicity, we assume ∥f(x)∥2 = r2 = d. Which
means features f(x) are scattered on a sphere with radius r. We assume that views of the same latent
class are close to each other and never transfer to another class, formally:

∃ε > 0, ∀Si ∼ Ci, ∀x̂1, x̂2 ∈ A(Si), i ∈ [K], ∥f(x̂1)− f(x̂2)∥ < rε, (6)
∀Si ∼ Ci, ∀Sj ∼ Cj , i ̸= j,A(Si) ∩ A(Sj) = ∅ (7)

Note the we suppose the encoder f is Lipschitz continuous so that x̂1 and x̂2 close to each other
infers f(x̂1) and f(x̂2) are close.

In the next section, we will show that Barlow Twins and SimSiam optimize the following norm:

Lcor(f) = ∥Ex∼D,x̂∈A(x)[f(x̂)f(x̂)
T ]− Id∥2, (8)

rather than the Gaussian potential based uniformity(Wang & Isola, 2020):
Luniform(p; t) = logEx∼D,x̂1,x̂2∈A(x) [Gt(f(x̂1), f(x̂2))] , t > 0, (9)

where Gt(f(x̂1), f(x̂2)) = exp(−t∥f(x̂1) − f(x̂2)∥22) is the Gaussian potential kernel (Cohn &
Kumar, 2007). These two kinds of optimization lead to different distribution patterns.

The distribution generated by Lcor(f) does not guarantee that each class of samples is separated
from other classes. So the generalization of the model depends on the randomness in training and
the dimension of the entire space and the number of latent classes. In this section, we first investigate
when the model is guaranteed not to misclassify samples, and then derive an upper bound on the
classification error rate in relation to Lcor, d, and K.

As the assumption that views belong to the same latent class are close to each other, it is easy to
think that as long as the inter-class distance between two classes is large enough, they will not be
misclassified from each other. So we have the following theorem of a pair of latent classes. (See
appendix for the proof)
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Theorem 1 If µT
i µj < r2(1− 4ε+ ε2), Si ∼ Ci, Sj ∼ Cj , then

∀x̂1 ∈ A(Si), ∀x̂2 ∈ A(Sj), G(x̂1; f) ̸= j, G(x̂2; f) ̸= i.

This theorem states that as long as µi and µj are far enough apart, views belong to class Ci and Cj

will not be misclassified into each other’s classes. This inspires us to study the constraints on the
inter-class distance between latent classes.

Let Λ = Ex∼D,x̂1∈A(x)[f(x̂1)f(x̂1)
T ]. In the next section, we will show that non-contrastive losses

LBT and LSimSiam minimize Lcor = ∥Λ − Id∥2 explicitly and implicitly, respectively. Before that,
here we prove that ∥Λ− Id∥2 can constrains µT

i µj and thus affects the error rate. (See appendix for
the proof)

Theorem 2 Let pi = Ex∼Ck,x̂∈A(x)[1[x̂∈A(Si)]], then

Ex∼D,x̂1,x̂2∈A(x),C(x̂1 )̸=C(x̂2)[(µ
T
C(x̂1)

µC(x̂2))
2] ≤ 2

∥Λ− Id∥2 + 2r4ε4 +K − d

1−
∑

i p
2
i

,

This is a critical theorem of our study. As we know from Theorem 1, a large distance between
classes ensures that samples of different classes are not misclassified. Theorem 2 gives a lower
bound on the expectation of the inter-class distance, i.e. the upper bound on the cosine distance. We
can reduce the expectation in Theorem 2 by optimizing the upper bound, so that the probability of
the inter-class distance is large enough increases, which can further improve the generalization error
rate.

By Theorem 2, if we can minimize ∥Λ − Id∥, the inter-class distances will be constrained. If the
expectation is constrained, there cannot be a large number of inter-class distances that exceed this
limit. Formally, we have the inequality for a non-negative random variable X:

∀a > 0,P[X > a] <
E[X]

a
. (10)

Combining the above two theorems, we can get the error rate theorem (See appendix for the proof) :

Theorem 3 The error rate satisfies:

Er(f) = P[G(x̂; f) ̸= C(x)] ≤
2
d2 ∥Λ− Id∥2 + 2ε4 + K−d

d2

(1−
∑

i p
2
i )(1− 4ε+ ε2)2

.

Here as we know, ε is related to the strength of data augmentation. The remaining part of the upper
bound shows that, given the dataset and data augmentation, the upper bound of the error rate is
related to the following formula:

Lbound =
2

d2
∥Λ− Id∥2 +

K − d

d2
. (11)

Here we get that minimizing ∥Λ− Id∥2 = Lcor can help reducing the error rate. As for d, if it is too
small, that error rate bound will be larger than 1, thus the upper bound will become meaningless.

In the next section, we look into the loss function of contrastive learning models, and shows how
they optimize Lcor.

4.2 LOSS ANALYSIS

In this section we study the loss of Barlow Twins (Zbontar et al., 2021) and SimSiam (Chen & He,
2020), and explore how they guarantee their generalizability. Specifically, we will demonstrate how
they optimize Lcor(f) = ∥Λ− Id∥2 = ∥Ex∼D,x̂1∈A(x)[f(x̂1)f(x̂1)

T ]− Id∥2.
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For Barlow Twins, the loss is

LBT =
∑
i∈[d]

(1− Cii)2 + λ
∑
i∈[d]

∑
j ̸=i

C2
ij . (12)

Let λ = 1, and by definition of C, it can be inferred that optimizing LBT leads to minimizing
∥Λ− Id∥2 (See appendix for the proof) :

LBT = ∥C − Id∥2 ≥ 1

2
∥Λ− Id∥2 − ε2. (13)

Barlow Twins explicitly minimize the cross-correlation matrix loss, but SimSiam is more compli-
cated:

LSimSiam = −Ex∼D,x̂1,x̂2∈A(x)[sim(h(f(x̂1)), sg(f(x̂2)))]. (14)

Let z1, z2 be the corresponding representations f(x̂1), f(x̂2) of augmented views x̂1, x̂2 in Eqn. 14.
We make the following assumption.

(1) A linear bias-free network serve as the projection layer. That is p1 = h(z1) = Wpz1 in Eqn. 14 .

(2) Representation z is updated via backpropagation.

Let g(z1, z2) =
zTWpz1

∥Z2∥∥Wpz1∥ = sim(p1, z2). The loss function of SimSiam is

LSimSiam = −Ez1,z2 [g(z1, sg(z2))] (15)

Because Cor(z) = zzT is symmetric, ∃U ∈ Rn×n, s.t.UUT = UTU = Id, U diagonalizes
Cor(z). That is

Λ = UTCor(z)U = diag{λ1, λ2, ..., λn} (16)

The column of U , i.e.ui, is an orthonormal basis of Rn×n. αz = UT z is the coordinate of z ∈ Sn−1

under U . Then, we have the following:

Λ = UTE[Uαzα
T
z U

T ]U = E[αzα
T
z ] (17)

Lemma 1 If A ∈ Mn(C([a, b])) is Hermitian with the property that the eigenvalues of A(t) are
distinct for all t ∈ [a, b], then A is diagonalizable in Mn(C([a, b])) (Grove & Pedersen, 1984)

Here Mn(C([a, b])) is the set of n × n matrices whose elements are continuous in C[a, b]. A
diagonalizable A in Mn(C([a, b])) means that there is a unitary element U ∈ Mn(C[a, b]), such
that for each t ∈ [a, b], U(t)∗A(t)U(t) is diagonal.

According to Lemma 1, the correlation matrix Cor(z) = zzT is real-valued and symmetrical, and
thus a Hermitian.

During training there exists continuous U(t) that diagonalizes Cor(z(t)). Moreover, because
Cor(z(t)) is a real-valued symmetric, U(t) must be real-valued too. That is, we have a contin-
uous basis {ui(t)}ni=1 fir the training step t It also allow us to consider the local change of Λ by
assuming that U is locally constant.

By denoting Λp = UTWpU , we have the following:

Theorem 4 According to Lemma 1, the local dynamics of SimSiam is

dΛp = r1
∥z∥
∥p∥

E[∆α̃T
z1 ] = r1

∥z∥
∥p∥

[(I − cΛ̃p)Λ + ϵ],

dΛ = r2
1

∥p∥ · ∥z∥
(ΛT

p E[∆α̃T
z1 ] + E[∆α̃T

z1 ]
TΛp),

where Λ̃p = ∥z∥
∥p∥Λp, ∆ = α̃z2 − α̃T

z2 α̃p1
· α̃p1

, ϵ ≜ E[(α̃z2 − α̃z1)α̃
T
z1 ] ≪ 1,c ≜ z2

T p1 is close to 1
and r1, r2 are learning rate of Wp, z1, respectively.
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Table 1: k-nearest neighbors accuracy on pretrained simplified SimSiam model and Barlow Twins
model with different output dimension d. Dimensionality reduction has a more significant impact
on datasets with more categories.

Dimension Barlow Twins Simsiam
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

2048 85.61 53.30 88.15 55.01
1024 84.60 52.54 88.18 54.50
512 82.79 48.75 87.63 54.74
256 81.05 45.22 85.99 54.12
128 78.94 40.67 85.78 53.84
64 77.19 36.25 85.05 52.91
32 72.73 33.34 84.56 51.63
16 67.94 29.62 83.20 48.14
8 62.49 25.17 82.14 44.45
4 57.16 21.13 76.05 28.30

Tian et al. (2021) shows that during training, the eigenspaces of Wp and Λ gradually aligns, that is,
they can be diagonalized by the same matrix U . Thus we can assume Wp = diag(λ1

p, . . . , λ
d
p) are

diagonal, and then derive the element-wise form :

dλp = r1
∥z∥
∥p∥

[(1− cλ̃i
p)λ

i + ϵi], (18)

dλ =
2r2λ

i
p

∥z∥ · ∥p∥
[(1− cλ̃i

p)λ
i + ϵi] =

2r2λ
i
p

∥z∥2
[(1− cλ̃i

p)λ
i + ϵi], (19)

There is a clear intuitive understanding of how uniformity is optimized with this local dynamics. If
λi is close to each other, then the output representation distribution will be uniform. We begin by
examining the simplest version. By definition, λi ¿ 0 always holds. Accordingly, there are three
cases for Eqn. 18 and 19 ignoring ϵi.

(1) When λ̃i
p ≤ 0,(1− cλ̃i

p)λ
i ≥ 0,dλi ≤ 0 and dλi

p ≥ 0.

(2) When 0 ≤ λ̃i
p ≤ 1

c , (1− cλ̃i
p)λ

i ≥ 0,dλi ≥ 0 and dλi
p ≥ 0.

(3) When λ̃i
p ≥ 1

c ,(1− cλ̃i
p)λ

i ≤ 0,dλi ≤ 0 and dλi
p ≤ 0.

The equality holds only if λ̃i
p = 0, λ̃i

p = 1
c or λi = 0.

In conclusion, if λ̃i
p > 1

c or λ̃i
p < 0, λi deceases and λi

p moves to boundary 0 or 1
c . If λ̃i

p ∈ (0, 1
c ) or

λ̃i
p < 0, λi deceases and λi

p moves to boundary 0 or 1
c , resulting in λi close to each other or λi = 0.

That is, some dimensions collapse and others tend to have equivalent λi. So in those dimensions
that do not collapse, the model optimize ∥Λ− Id∥.

Taking ϵi and weight decay into consideration, similar conclusion can be obtained. (See Appendix
for the proof)

5 EXPERIMENTS

In this section, we experimentally study the relationship between the upper bound of error rate and
the actual generalization performance, indicating that the upper bound we obtained is a relatively
tight bound, which has practical significance, and also explores the representation space dimension
and the number of latent classes.

We conduct experiments on the CIFAR-10 and CIFAR-100 dataset (Krizhevsky et al., 2009) with
classification as downstream tasks. We choose two independent augmentations of the same image
as positive pairs, following the standard practice. We use the Barlow Twins model and simplified
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(a) Barlow Twins on CIFAR-10
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(b) Barlow Twins on CIFAR-100
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(c) Simsiam on CIFAR-10
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(d) Simsiam on CIFAR-100

Figure 3: The relation between Lbound and knn accuracy of Barlow Twins and SimSiam model
with different output dimensions. The blue dots are recorded Lbound and KNN accuracy with cor-
responding output dimension d aside, the solid red line is a linear function obtained by fitting the
recorded data satisfying d > K with the least squares method, and the dashed red line is the exten-
sion of the fitting linear function. Cases dimension = 4, 8 in the CIFAR-100 experiment are hidden
to demonstrate the plot better.

SimSiam model whose projector and predictor layer is set to be a linear network Wp to conduct
the experiment. The simplified predictor layer maintains the optimization properties of the model
while reducing the impact of additional factors such as batch normalization. We use ResNet-18
(He et al., 2016) as the encoder, run Barlow Twins model for 800 epochs and Simsiam models for
600 epochs and record the k-nearest neighbors(KNN) accuracy and Lbound in the minibatch. The
code is modified on the basis of https://github.com/facebookresearch/simsiam
and https://github.com/IgorSusmelj/barlowtwins . The results are recorded in Ta-
ble 1. Note that in Theorem 3, except the dataset property pi’s, the dimension d and number of
classes K plays a key role. If K is very large and d is relatively small, for example K = 100 and
d = 4, then K−d

d2 = 6. the upper bound

2
d2 ∥Λ− Id∥2 + 2ε4 + K−d

d2

(1−
∑

i p
2
i )(1− 4ε+ ε2)2

>
0 + 0 + K−d

d2

1× 1
=

K − d

d2
≫ 1, (20)

so that it could no longer give a meaningful bound of Er(f) ∈ [0, 1].

Let V (d) = K−d
d2 achieves its minimum value at d = 2K, limd→0 V (d) = ∞ and limd→∞ V (d) =

0. It induces that while d > 2K, the generalization performance does not hurt too much, but if d
gets smaller, especially d < K, the model can no longer maintain its generalizability. In Table 1,
CIFAR-10 and CIFAR-100 have 10 and 100 classes respectively, i.e. K = 10, 100 respectively.
the minimum points are d = 20, 200. When d > K for CIFAR-100, the KNN accuracy remains
around 43%. When d gets lower, the accuracy drops quickly. As for CIFAR-10, a 32− dim model
performs as well as hundreds of dimensions. The accuracy drops when d < 2K = 20, this matches
our prediction.

In Fig. 3 and Fig. 4, we did scatter plots of knn accuracy and Lbound on CIFAR-10 and CIFAR-100
datasets. The points in Fig. 3 correspond to the models in Table 1. Although it is not strict, there
is still a clear correlation between knn accuracy and Lbound in the figure. The smaller Lbound is,

8
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Figure 4: The relation between Lbound and knn accuracy of Barlow Twins and SimSiam models
with different output dimensions in training epochs. The blue dots are Lbound and KNN accuracy
recorded every 10 epoch in the training process and connected in chronological order, the red line
is a linear function obtained by fitting the recorded data after 50 epochs for Barlow Twins and 150
epochs for Simsiam with the least squares method, due to uniformity metric at the initial stage of
training not conforming to the assumption that positive sample pairs are close to each other.

the larger knn accuracy is. Note that by Theorem 3, Lbound upper bounds the generalization error
rate. If Lbound becomes smaller, then the error rate will also become smaller, which means that the
accuracy increases. If this upper bound is too loose, its value will not be so significantly related to
the knn accuracy. So the theorem agrees with the experiment, the relationship between the upper
bound and the knn accuracy is significant.

In Fig. 4, the linear relationship among the sample points is significant, and the closer the sample
points are to the end of training (upper left), the closer they are to the fitted line. This shows that
Theorem 3 can accurately estimate the generalization error, and the upper bound of the error rate we
proposed can determine the actual error rate to some extent. On the other hand, as training progresses
proceeding, sample points determined by Lbound and KNN accuracy move from right to left along
the fitting line, Lbound decreases and K-nearest neighbor accuracy increases (corresponding to a
decrease in error rate). The optimization process described in Section 4.2 for Lbound is validated.
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6 CONCLUSION

In this paper we study the generalization of non-contrastive learning methods represented by Bar-
low Twins and SimSiam. We give an upper bound on the generalization error rate to illustrate the
effect of inter-class distance on generalization performance. We demonstrate the relationship be-
tween the cross-correlation matrix of output features and inter-class distance. Then we analyze how
non-contrastive learning methods optimize correlation so that they are sufficient to produce good
generalization. Moreover, we find that the dimension of feature space and the number of latent
classes also affect the generalizability. We conduct an experiment on CIFAR-10 and CIFAR-100
dataset to verify our theoretical results.
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7 APPENDIX

A PROOF OF THEOREM 1

Proof 1 Without loss of generality, we only prove that if µT
i µj < r2(1− 4ε+ ε2), Si ∼ Ci, ∀x̂ ∈

A(Si), G(x̂; f) ̸= j.

∀k ∈ [K],

∥µk∥ = ∥Ex̂∈A(Sk)[f(x)]∥
= ∥f(x0) + Ex̂∈A(Sk)[f(x)− f(x0)]∥
≥ ∥f(x0)∥ − rε

= r(1− ε)

(21)

∥f(x̂)− µi∥2 − ∥f(x̂)− µj∥2

=2f(x̂)Tµj − 2f(x̂)Tµi + ∥µi∥2 − ∥µj∥2

=2(f(x̂)T − µT
i + µT

i )(µj − µi) + ∥µi∥2 − ∥µj∥2

=2(f(x̂)T − µT
i )(µj − µi) + 2µT

i µj − ∥µi∥2 − ∥µj∥2

≤2rε∥µj − µi∥+ 2µT
i µj − 2r2(1− ε)2

≤2µT
i µj + 4r2ε− 2r2(1− ε)2

≤2µT
i µj + 4r2ε− 2r2(1− ε)2

<0

(22)

That is, ∥f(x̂)− µi∥2 < ∥f(x̂)− µj∥2, so we have for x̂ ∈ A(Si), G(x̂; f) ̸= j

B PROOF OF THEOREM 2

Proof 2 First we have:

Ex∼D,x̂1,x̂2∈A(x),C(x̂1) ̸=C(x̂2)[(µ
T
C(x̂1)

µC(x̂2))
2] =

1

1−
∑

i p
2
i

K∑
i=1

∑
j ̸=i

pipj(µiµj)
2 (23)

As for ∥Λ− Id∥2:

∥Λ− Id∥2 = ∥Ex∼D,x̂1∈A(x)[f(x̂)f(x̂)
T ]− Id∥2

= ∥
∑
i∈[K]

piEx∼Ci,x̂1∈A(x)[f(x̂)f(x̂)
T ]− Id∥2

= ∥
∑
i∈[K]

piEx∼Ci,x̂1∈A(x)[(µi + f(x̂)− µi)(µi + f(x̂)− µi)
T ]− Id∥2

= ∥
∑
i∈[K]

piµiµ
T
i +

∑
i∈[K]

piEx∼Ci,x̂1∈A(x)(f(x̂)− µi)(f(x̂)− µi)
T − Id∥2

≥ 1

2
∥
∑
i∈[K]

piµiµ
T
i − Id∥2 − r4ε4

(24)

The last inequality is because for any A,B,

∥A+B∥2 ≥ 1

2
∥A∥2 − ∥B∥2 (25)

12
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Let A = (
√
p1µ1, . . . ,

√
pKµK), we have

∥
∑
i∈[K]

piµiµ
T
i − Id∥2 = ∥AAT − Id∥2

= tr((AAT − Id)(AAT − Id)
T )

= tr(AATAAT − 2AAT + Id)

= tr(ATAATA− 2ATA+ IK)− tr(IK) + tr(Id)

= ∥ATA− IK∥2 −K + d

≥
∑
i∈[K]

∑
j ̸=i

pipj(µ
T
i µj)

2 −K + d

(26)

Finally, it is obvious that:∑
i∈[K]

∑
j ̸=i

pipj(µ
T
i µj)

2 ≤ ∥
∑
i∈[K]

piµiµ
T
i − Id∥2 +K − d

≤ 2∥Λ− Id∥2 + 2r4ε4 +K − d

(27)

C PROOF OF THEOREM 3

Proof 3
Er(f) = P[G(x; f) ̸= C(x)]

= P[G(x̂) = j, C(x̂) = i ̸= j]

≤ P[(µT
i µj)

2 ≥ r4(1− 4ε+ ε2)2]

≤ E[(µT
i µj)

2]

r4(1− 4ε+ ε2)2

≤
2
d2 ∥Λ− Id∥2 + 2ε4 + K−d

d2

(1−
∑

i p
2
i )(1− 4ε+ ε2)2

(28)

D PROOF OF EQUATION 13

Proof 4

LBT = ∥C − Id∥2

= ∥Ex∼D,x̂1,x̂2∈A(x)[f(x̂1)f(x̂2)
T ]− Id∥2

= ∥Ex∼D,x̂1,x̂2∈A(x)[f(x̂1)f(x̂1)
T + f(x̂1)(f(x̂2)− f(x̂1))

T ]− Id∥2

≥ 1

2
∥Ex∼D,x̂∈A(x)[f(x̂)f(x̂)

T ]− Id∥2 − ∥Ex∼D,x̂1,x̂2∈A(x)[f(x̂1)(f(x̂2)− f(x̂1))
T ]∥2

≥ 1

2
∥Ex∼D,x̂∈A(x)[f(x̂)f(x̂)

T ]− Id∥2 − ε2

=
1

2
∥Λ− Id∥2 − ε2

(29)

E LOCAL DYNAMICS ANALYSIS OF SIMSIAM

E.1 PROVE OF LOCAL DYNAMICS ANALYSIS OF SIMSIAM

Proof 5 First we note three basic formula:

13
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(1) Derivation of the unit vector: ∀x ∈ Rn, dx̃ = dx−x̃T dx·x̃
∥x∥ = I−x̃x̃T

∥x∥ ⇒

∂x̃

∂x
=

I − x̃x̃T

∥x∥
(30)

(2) Chain rule: ∀vector x, y, f(y(x)), df = (∂f∂y )
T dy = (∂f∂y )

T ( ∂y∂x )
T dx ⇒

∂f

∂x
=

∂f

∂y

∂y

∂x
(31)

(3) AXB type: ∀f(Y ) ∈ R, Y = AXB, df = tr(( ∂f
∂Y )T dY ) = tr(( ∂f

∂Y )TAdXB) =

tr((B ∂f
∂Y )TAdX) ⇒

∂f

∂X
= AT ∂f

∂Y
BT (32)

Through the formulas above we have

∂g

∂p1
=

∂g

∂p̃1

∂p̃1
∂p1

=
I − p̃1p̃

T
1

∥p1∥
z̃2

=
1

∥p1∥
(z̃2 − z̃T2 p̃1 · p̃1)

(33)

Because p1 = Wpz1, We have ∂g
∂z1

= WT
p

∂g
∂p1

and ∂g
∂Wp

= ∂g
∂pi

zT1 , thus

∂g

∂z1
=

∥z1∥
∥p1∥

(z̃2 − z̃T2 p̃1 · p̃1)z̃T1 (34)

∂g

∂Wp
=

∥WT
p ∥

∥p1∥
(z̃2 − z̃T2 p̃1 · p̃1) (35)

Λp and αzi update via:

dΛp = r1E[UT ∂g

∂Wp
U ]

= r1E[
∥αz1∥
∥αp1

∥
(α̃z2 − α̃T

z2 α̃p1
· α̃p1

)α̃T
z1 ]

= r1E[
∥αz1∥
∥αp1

∥
∆α̃T

z1 ]

(36)

dαz1 = r2U
T ∂g

∂z1

= r2
ΛT
p

∥αp1
∥
(α̃z2 − α̃T

z2 α̃p1
· α̃p1

)

= r2
ΛT
p

∥αp1
∥
∆

(37)

where ∆ = α̃z2 − α̃T
z2 α̃p1

· α̃p1
and r1, r2 are learning rate of Wp, z1, respectively. As for Λ, we

need the dynamic of α̃z1 . For any vector x, d∥x∥
dx = x

∥x∥ ,
d x

∥x∥
dx = ∥x∥2I−xxT

∥x∥3 . So

dα̃z1 = (
dα̃z1

dαz1

)T dαz1 = r2(I − α̃z1 α̃
T
z1)

ΛT
p

∥αz1∥∥αp1∥
∆ (38)

dΛ = E[d(α̃z1)α̃
T
z1 ] + E[α̃z1d(α̃

T
z1)] (39)
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E[d(α̃z1)α̃
T
z1 ] = r2E[(I − α̃z1 α̃

T
z1)

ΛT
p

∥αz1∥∥αp1
∥
∆α̃T

z1 ]

= r2E[
ΛT
p

∥αz1∥∥αp1
∥
∆α̃T

z1 ]

(40)

The last equality in Eqn. 40 is due to:

α̃z1 α̃
T
z1

ΛT
p

∥αz1∥2∥αp1∥
∆α̃T

z1 = α̃z1

αz1Λ
T
p

∥αz1∥∥αp1
∥
∆α̃T

z1

=
α̃z1

∥α̃z1∥2
α̃T
p1
(α̃z2 − α̃T

z2 α̃p1 · α̃p1)α̃
T
z1

=
α̃z1

∥α̃z1∥2
α̃T
p1
α̃z2 − α̃T

z2 α̃p1 · α̃T
p1
α̃p1 α̃

T
z1

= 0

(41)

The function ∆α̃T
z1 = (α̃z2 − α̃T

z2 α̃p1
· α̃p1

)α̃T
z1 is formally independent of ∥z1∥ and ∥p1∥. So we

assume the distribution of ∆α̃T
z1 is independent of ∥z1∥ and ∥p1∥. So we have

dΛp = r1E∥z1∥,∥p1∥[
∥z1∥
∥p1∥

]E[∆α̃T
z1 ] (42)

E[d(α̃z1)α̃
T
z1 ] = r2E∥z1∥,∥p1∥[

ΛT
p

∥z1∥∥p1∥
]E[∆α̃T

z1 ] (43)

For simplicity, we ignore E∥z1∥,∥p1∥[·] and denote ∥z1∥ = ∥z∥, ∥p1∥ = ∥p∥ in the following. It
seems to be a strong assumption, but this can be regarded to analyze the dynamics of the part of
points whose ∥z∥ and ∥p∥ are certain values. Under previous assumption that ∆α̃T

z1 is independent
of ∥z1∥ and ∥p1∥, it is a natural simplification. Eqn. 36 and 40 become:

dΛp = r1E[
∥z1∥
∥p1∥

∆α̃T
z1 ] (44)

E[d(α̃z1)α̃
T
z1 ] = r2E[

ΛT
p

∥z1∥∥p1∥
∆α̃T

z1 ] (45)

Both of them have the term E[∆α̃T
z1 ], which is crucial for the dynamics. We examine it closely:

E[∆α̃T
z1 ] = E[α̃z2 α̃

T
z1 − z̃T2 p̃1 · α̃p1

α̃T
z1 ] = E[α̃z2 α̃

t
z1 ]− E[z̃T2 p̃1 · α̃p1

α̃T
z1 ] (46)

In the training phase, we pull z̃2 and p̃1 together. z̃2p̃1 approaches 1 at the very beginning and
remains close to 1 during the whole training phase. So we assume that zT2 p1 = c is close to 1. For
the term E[α̃z2 α̃

T
z1 ], z1, z2 are the representations of different views of the same image through the

same model, We assume that α̃z2 = α̃z1 + ε and ∥ε∥ ≪ 1 is related to the intensity of the data
augmentation. Moreover, α̃p1 =

Λpαz1

∥p∥ = ∥z∥
∥p∥Λpα̃z1 . Denoting Λ̃p ≜ ∥z∥

∥p∥Λp, ϵ ≜ E[εα̃T
z1 ], we

have
E[α̃T

z1 ] = Λ− cΛ̃pΛ + E[εα̃z1 ] = (I − cΛ̃p)Λ + ϵ (47)

Substituting Eqn. 47 to Eqn. 19 and 18, we finally get the local dynamics of Λp and Λ

E.2 TAKING ϵi AND WEIGHT DECAY INTO CONSIDERATION

In the preceding section, we present an intuitive description of how Λ and Λp change, without
addressing ϵ. SimSiam use weight decay during training, which has an impact on the models’
performance. In this section, we take them into consideration and come up with similar results. We
can obtain the similar local dynamics when there is weight decay η.

dλp = r1
∥z∥
∥p∥

[(1− cλ̃i
p)λ

i + ϵi]− r1η
∥p∥
∥z∥

λ̃i
p

= r1
∥z∥
∥p∥

[(1− cλ̃i
p)λ

i + ϵi − η
∥p∥2

∥z∥2
λ̃i
p],

(48)
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dλ = r2
λi
p

∥z∥ · ∥p∥
[(1− cλ̃i

p)λ
i + ϵi]− 2r2ηλ

i

= 2r2λ
i[

λi
p

∥z∥2
[(1− cλ̃i

p) +
ϵi

λi
]− η],

(49)

Proof 6 With weight decay η, similar to the previous section, we have

dΛp = r1E[
∥αz1∥
∥αp1

∥
∆α̃T

z1 ]− r1ηΛp (50)

dαz1 = r2
ΛT
p

∥αp1
∥
∆− r2ηαz1 (51)

Note that

(I − α̃z1 α̃
T
z1)α̃z1 α̃

T
z1 = α̃z1 α̃

T
z1 − α̃z1(α̃

T
z1 α̃z1)α̃

T
z1

= α̃z1 α̃
T
z1 − α̃z1 α̃

T
z1 = 0

(52)

Then, by Eqn. 41, α̃z1 α̃
T
z1

ΛT
p

∥αz1
∥2∥αp1

∥∆α̃T
z1 , so we have

E[d(α̃z1)α̃
T
z1 ] = E[

∂α̃z1

∂αz1

dαz1 α̃
T
z1 ]

= r2E[
I − α̃z1 α̃

T
z1

∥αz1∥
(

ΛT
p

∥αz1∥∥αp1∥
∆α̃T

z1 − ηα̃z1 α̃
T
z1)]

(53)

Similar to the previous section, the local dynamics can be obtained:

dΛp = r1
∥z∥
∥p∥

[(I − cΛ̃p)Λ + ϵ]− r1ηΛp (54)

dΛ =
r2

∥z∥∥p∥
(ΛT

p [(I − cΛ̃p)Λ + ϵ] + [(I − cΛ̃p)Λ + ϵ]TΛp)− 2r2ηΛ (55)

Similarly assuming Λp = diag(λ1
p, ..., λ

n
p ) as in Sec 4.2. Eqn. 48 and 49 can be obtained.

Note that ϵ = E[εα̃T
z1 ], ε = α̃z2 − α̃z1 is generated by the output of the model on the disturbed sam-

ples, and randomness operates on the samples rather than directly on α̃z1 . However, the significance
of each component varies depending on the model. Thus, we may assume that ϵi will be smaller
than λi specifically ∃e > 0, | ϵ

i

λi | < e ≪ 1. New terms affect the boundaries of different phases, but
the intuitive understanding remains unchanged. We have

dλi
p > 0 ⇔ (1− cλ̃i

p +
ϵi

λi
)λi > η

∥p∥2

∥z∥2
λ̃i
p (56)

dλi > 0 ⇔
λ̃i
p

∥z∥2
(1− cλ̃i

p +
ϵi

λi
) > η (57)

Similarly, there are three cases for Eqn. 48 and 49:

(1) When λ̃i
p ≤ 0, Eqn. 56 holds and Eqn. 57 fails. dλi ≤ 0 and dλi

p ≥ 0.

(2) When 0 ≤ λ̃i
p ≤ 1

c , dλi
p > 0 ⇔ λi > η ∥p∥2

∥z∥2 /(
1+ ϵi

λi

λ̃i
p

− c), which more likely holds when λ̃i
p is

near 0. dλi > 0 more likely holds when λ̃i
p is not too close to the boundary 0 and

1+ ϵi

λi

c .

(3) When λ̃i
p ≥ 1

c , both Eqn. 56 and 57 fail. dλi ≤ 0 and dλi
p ≤ 0.

E.3 VISUALIZATION OF THE CORRELATION MATRIX OF SIMSIAM REPRESENTATIONS
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Figure 5: Visualization of the correlation matrix of SimSiam representations with 2048 output di-
mensions trained in different batches on 600 epoch. The correlation matrixes are close to identity
matrix.
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