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ABSTRACT

In the face of the growing challenge of information overload online, the ability to
accurately distinguish between genuine information and misinformation has be-
come increasingly critical both from an individual and from a societal point of
view. Methodologies for misinformation detection predominantly rely on super-
vised approaches, which depend heavily on large labeled datasets. However, these
datasets are not only costly and time-consuming to produce, but they are also sus-
ceptible to issues such as labeling bias, time leakage, the inherent subjectivity
of the task, and domain-specific limitations. In this paper, we aim to overcome
the aforementioned challenges by proposing a novel and cost-effective strategy
to enhance the logical reasoning capabilities of Large Language Models (LLMs),
thereby improving their ability to detect misinformation. Our approach, termed
LogicJitter, employs a data augmentation technique during fine-tuning that gener-
ates both correct and incorrect statements within rule-based logic games. These
games are designed to counteract well-known human cognitive biases and logical
fallacies. Hence, the primary contributions of this work include demonstrating
the effectiveness of logical reasoning fine-tuning on LLMs and providing an open
source package for the automatic generation of correct and incorrect logic-based
training data, to ease reproducibility. Experimental results confirm this approach
improves misinformation detection.

1 INTRODUCTION

In an increasingly connected and automated world, where information is generated and dissemi-
nated online at an unprecedented speed and volume, often without reliable oversight, the risk of
information manipulation grows daily (Wardle & Derakhshan, 2017; Wu et al., 2019). As a result,
distinguishing between authentic information and misinformation has become more crucial than
ever. Indeed, falling into misinformation can lead to serious problems both for individuals and for
society as a whole. For example, individuals may make harmful decisions about their health by
following false medical advice. On a broader scale, misinformation can fuel distrust in public in-
stitutions, spread false narratives, and even incite social unrest, destabilizing communities (OECD,
2024).

Most of the approaches used in recent years in the literature for misinformation detection rely on
supervised learning solutions (i.e., classifying information as true or false) (Hu et al., 2022b; Reis
et al., 2019; Viviani & Pasi, 2017). However, these approaches come with several challenges. First,
they require large amounts of labeled data, which is often costly and time-consuming to obtain (Reis
et al., 2019). Second, they struggle to adapt to new types of misinformation, as the specific datasets
they are trained on may be domain-dependent and not generalize well to other domains (Clarke et al.,
2020; D’Ulizia et al., 2021). Lastly, these models can oversimplify the issue, as misinformation is
not always clearly true or false but may exist in gray areas of partial truths or misleading contexts
(Cabitza et al., 2022).

Recently, there has been growing interest in using Large Language Models (LLMs) to address the
problem of misinformation detection (Hu et al., 2024; Papageorgiou et al., 2024). However, several
open challenges remain. One key issue is that LLMs can sometimes generate or amplify misinfor-
mation themselves, as they rely on vast amounts of data from various sources, including unreliable
ones, possibly leading to factual inconsidency and hallucinations (Ji et al., 2023). Furthermore,
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LLMs can also be prone to biases present in their training data, which can affect the accuracy and
fairness of their outputs. Lastly, there are concerns about the interpretability and transparency of
these models (Zhao et al., 2024), making it difficult to understand how they reach their conclusions.

It is in this context that this article proposes a novel approach to circumvent the scarcity of labeled
data for misinformation detection with LLMs. We hypothesize that enhancing the logical reason-
ing abilities of an LLM can significantly improve its capability to detect misinformation. In fact,
misinformation often exploits human cognitive biases and fallacies (French et al., 2023; Stanovich,
2003), which we hypothesize could be more easily identified if an LLM is trained to focus on logical
consistency (Dillehay et al., 1966; Kainz, 1995). Therefore, we propose and evaluate the fine-tuning
of LLMs using carefully designed datasets that encourage logical reasoning, while simultaneously
fine-tuning them for misinformation detection. Since purely natural language datasets are often
ambiguous and domain-dependent, we propose training the models on logic games that are algorith-
mically generated but can be readily explained in natural language. In this logic games, proofs are
presented either with or without errors, and with distractors that model situations where cognitive
biases and fallacies would come into play. The LLM is then trained to detect flaws in the reason-
ing. The objective is to strengthen the model’s logical rigor, thereby enhancing its ability to identify
common human biases and, consequently, misinformation. We therefore focus on addressing the
following two research questions:

RQ1. Can LLM’s ability to reason logically in texts be improved with rule-based logic
games?

RQ2. Will LLMs trained to detect cognitive biases and logical fallacies help in addressing
the misinformation detection task?

Our proposed approach, namely LogicJitter, is a form of data augmentation for textual datasets,
named in analogy to ColorJitter (Zini et al., 2023), a data augmentation technique for image datasets.
In LogicJitter, true and false statements based on logic games are interspersed within the training
batches to introduce variability and improve the model’s reasoning capabilities.

Building on the previous premises, our key contributions are as follows:

• We demonstrate that fine-tuning LLMs to identify logical errors in structured logic games,
a method we term LogicJitter, effectively enhances their ability to discern between accurate
information and misinformation;

• To ease reproducibility, we provide both a PyTorch and a HuggingFace package that au-
tomatically generates correct and incorrect logic games, with the flexibility to be extended
with additional logic games.

2 RELATED WORK

Training LLMs to solve Rule-Based Problems. The use of synthetic data generation has been
investigated as a means of providing more data in language modeling and reasoning tasks. For
instance, (Gunasekar et al., 2023) leverage LLM-generated data with notable performance on
reasoning-based tasks. However, when LLMs are trained on rule-based problems, they are usu-
ally tested on the same rule-based problems. Generating synthetic geometric data for pre-training
and fine-tuning the model on auxiliary constructions to address specific theorems was used to tackle
Olympiad-level math problems (Trinh et al., 2024). However, LLMs seem to generalize worse in
out-of-distribution data, assessed by length generalization, compared to graph networks trained on
the same algorithmically generated problems (Veličković et al., 2022; Markeeva et al., 2024). Formal
languages have been used to understand if LLM truly were equally capable of learning languages
that are possible and impossible for humans to learn (Kallini et al., 2024). It would be however
valuable to be able to leverage a rule-based training, to generalize on natural language datasets.

LLMs at Causal and Logical Reasoning. LLMs have been shown to be able to learn to detect
structures in complex causal networks, when trained on simple ones (Vashishtha et al., 2024). Com-
plex self learning loops have can allow LLMs to improve their ability to reason by coming up with
their own rationales (Zelikman et al., 2022). Despite their progress, LLMs still struggle with com-
plex mathematics and external computation libraries and symbolic solvers are becoming standard to
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produce LLMs that are stronger in maths (Gou et al., 2024). Formal benchmarks exist to assess the
causal reasoning abilities of LLMs (Jin et al., 2023; 2024), focusing on the identification of direct
and indirect causal relationships. Their findings underscore the shortcomings of LLMs in executing
accurate causal reasoning.

Cognitive Biases and Fallacies. Datasets and tasks to detect logical fallacies are available, but
usually rely on human annotators that have to classify the errors encounter as a type of fallacy or
as another (Jin et al., 2022). On the other hand, AI systems have been observed to reproduce some
human cognitive biases such as the confirmation bias, the primacy effect, the representativeness bias,
the anchoring bias, and problems related with causality (Martı́nez et al., 2022). Contrary to recent
studies showcasing advanced reasoning abilities in LLMs, randomized controlled trials demonstrate
the existence of anchoring bias in all models tested (Nguyen, 2024).

LLMs and Misinformation Detection. It has been shown that capabilities of LLMs to mislead
humans are already superior to those of humans to mislead humans, and that the best detectors of
LLM lies are LLMs themselves (Chen & Shu, 2024). However, developing datasets for fact checking
is often costly given that it can require experts in the field of interest (Kotonya & Toni, 2020a).
Therefore, datasets for misinformation detection are not only rare but also small (Schlichtkrull et al.,
2024).

3 METHODOLOGY

In this section we define the cognitive biases and fallacies we are interested in compensating for
(under the hypothesis that helping LLMs detect them will help them detect misinformation), we
give the details of LogicJitter and the logic games we use in this work, we detail the considered
LLMs, and we discuss the fine-tuning procedure.

3.1 COGNITIVE BIASES

Human cognitive biases are psychological tendencies that often lead to unconsciously distorted
thinking and decision-making. They can be generally regrouped into (Van Eyghen, 2022; Gigeren-
zer, 2002): (i) belief, decision-making and behavioral, (ii) social, and (iii) memory biases. Of the
long list of well-studied biases, we describe those we try to compensate for with LogicJitter.

Belief, decision-making, and behavioral biases. Many biases relate to the unexpected speed and
direction of updates of beliefs in human decisions. In fact, it has been shown that humans update
their beliefs slower than Bayes rule, possibly a consequence of having to deal with noise in the
memory recall and in the evidence acquisition processes (Hilbert, 2012). Therefore a slow belief
update could be Bayes optimal in the presence of memory noise or mistrust in the sources for ex-
ample, which could also be modeled as noise in the evidence acquisition process. Some biases
emphasize belief updates in long-term memories, that could be stored at the synapse level, and some
in short-term memories, possibly stored as spiking activity. The cognitive biases we think can bet-
ter be compensated algorithmically are the tendency to revise beliefs insufficiently when presented
with new evidence (conservatism bias), the tendency to reject evidence that contradicts established
norms (Semmelweis reflex), to ignore the general prevalence, in favor of the information pertaining
only to a specific case (base rate fallacy), to expect a member of a group to have certain characteris-
tics without having actual information about that individual (stereotyping), to misinterpret statistical
experiments involving conditional probabilities (Berkson’s paradox) and the tendency to fail to rec-
ognize that a plan of action is no longer appropriate for a changing situation (plan continuation
bias).

Social biases. Our thinking about other people often follows distorted patterns, leading us to overes-
timate, underestimate, or misjudge them. Some examples are the tendency to trust more the opinion
of an authority figure, regardless of the content (authority bias), for people to seem more attractive
in a group than alone (cheerleading effect), for someone’s positive or negative traits to influence how
others perceive them in unrelated areas (halo effect), the tendency to believe that physically attrac-
tive individuals also have intelligence, good judgment, or other positive personality traits (physical
attractiveness) or the tendency to do and believe as others (bandwagon effect).
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Memory biases. Some cognitive biases can enhance or hinder memory recall or can distort the
content of the recalled memory. Some examples that we tackle by LogicJitter are the tendency to
prefer easily available examples (availability bias), the fact that unusual or strange information is
remembered more effectively than ordinary information (bizarreness effect) or the tendency to recall
better items that are at the beginning or at the end of a list (primacy and recency effects).

3.2 FALLACIES

Fallacies are errors in logical reasoning that affect the validity of arguments, which can be either
intentional or unintentional. While both cognitive biases and fallacies can lead to incorrect conclu-
sions, cognitive biases are more about how we think, and fallacies are about how we argue.

Formal fallacies. They are errors in the argument’s logical form in a formal logical system. One
example is illicit commutativity which takes the form: ‘If A then B. Therefore, if B then A’. Another
example is denying the antecedent, such as: ‘If A then B. Therefore, if not A then not B’. Neither of
the two is generally true, which is why they are considered fallacies;

Informal fallacies. They are false because they rely on false premises. An example of an informal
fallacy that we saw above as a cognitive bias is the authority bias, where an argument is deemed true
only on the premise of the position of the person making the statement.

3.3 LOGICJITTER

To account for the data scarcity in misinformation detection and to compensate for the aforemen-
tioned forms of cognitive biases and fallacies, we introduce a data augmentation technique that we
name LogicJitter, based on logic games, described textually, and distractors that make reasoning
about them more difficult, but still possible in an exact manner.

3.3.1 LOGIC GAMES

We generated algorithmically the following games that are used in the fine-tuning phase to increase
the reasoning ability of LLMs.

Guided Maths. This is a dataset with step-by-step solutions to mathematical equations. We use
the scratchpad technique (Nye et al., 2021; Zelikman et al., 2022) to show the steps necessary to
solve three types of sub-problems: addition, multiplication, and polynomial evaluation. Whenever
we introduce an error, we make sure the mathematical proof we provide in the scratchpad assumes
the mistake was correct and builds on top of it.

Causal Clauses. A dataset where we generate complex graphs of causal links, and ask if a statement
is true within that graph. Each graph has between three and six nodes, one-tenth of the time the net
will be linear, and the rest it will be equally likely Erdos-Renyi, Watts-Strogatz or Barabasi-Albert
(Albert & Barabási, 2002), with randomized edge direction. The two subproblems we propose are:
(i) determining if two random nodes are connected or not, and (ii) determining if a random node is
a fork, a collider, none, or both.

Context-Free Grammars. We build random context-free grammars (Hoperoft & Ullman, 1979),
that are not recurrent and have a maximum of 5 non-terminals and 4 terminals. Then we design two
sub-problems: (i) provided a generation, the LLM is asked if it belongs to the grammar, and (ii)
provided with up to 4 grammars, the LLM is asked which one can produce the most or the least
amount of sentences.

CLEVR and CLEAR. We leverage datasets like CLEVR (Johnson et al., 2017), for visual reasoning
and CLEAR (Abdelnour et al., 2018; 2023), for acoustic question-answering, to provide varied
logical challenges, in this case spatial and temporal logical challenges. We use up to 8 templates, as
sub-problems, to generate a diverse set of complex questions about the scenes.

3.3.2 DISTRACTORS

We previously introduced the first two distractors, i.e., the diversity of games and related
sub-problems, and the diversity of errors we introduced in half of the generations.
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Errors. Usually, datasets algorithmically generated are created without mistakes, and
human-generated textual datasets are likely to have errors but it is difficult to know if this is the
case. Here we introduce mistakes algorithmically, to always know where they are. We do it because
we want to train LLMs to spot subtle mistakes by themselves, and therefore in half of the samples
there is going to be an error.

Random Characters. After presenting the problem, a solution is stated, which may be either correct
or incorrect if we introduce an error. Following this, a set of randomly generated characters provide
their opinions. We use up to five characters, with an equal probability of any number of them being
right or wrong. Consequently, the likelihood of one character being wrong is the same as that of two
being wrong, or all being wrong, with all possible outcomes equally likely.

To have a list of characters is thought to provide an opportunity to compensate for the primacy
and recency biases, since the characters providing the correct answer are placed randomly. Also,
all characters can be wrong, so the available information might be wrong, providing a chance to
compensate for the availability bias.

Characters are generated in the form ‘one adjective + one noun’. The adjective is picked randomly
to describe either a nationality (e.g., Namibian), a similarity description (e.g., like you), a sexual
orientation (e.g., bisexual), a religious affiliation (e.g., Buddhist), an ethnic group (e.g., Pacific Is-
lander), a degree of attractiveness (e.g., good-looking), or a character trait (e.g., disrespectful). The
noun is picked randomly to describe a family relationship (e.g., cousin), an authority figure (e.g.,
ambassador), a generic person (e.g., individual), a political orientation (e.g., libertarian), or a group
(e.g., alliance). This trick gives a chance to compensate for stereotyping, but also for the bizarreness
effect, given that it encourages a disassociation between personal description and being logically
right or wrong. For example, sampling randomly different degrees of attractiveness compensates for
the physical attractiveness bias, and sampling nouns for groups is intended to compensate for the
bandwagon effect. Therefore with the random characters we intend to compensate essentially for all
the social and memory biases we introduced in Section 3.1.

After presenting the problem and the opinions of the characters, the LLM is asked to provide if one
of them was right or wrong, and this time the correct answer is given without error.

Problem Revision. After that, a modification in the initial problem statement is provided, such as
new connections in the causal net, or objects removed from the CLEVR scene. The same characters
appear again, to provide an opinion on the problem, and they are assigned again randomly a correct
or an incorrect answer, independently from the first round. The revision is designed to compensate
for the belief biases, and make the LLM take into account new evidence to revise beliefs against
the conservativism bias, or changing the truths that condition the replies against Berkson’s paradox,
for example. Also revising the initial problem statement is a ‘not A’ statement, A being the initial
problem, therefore providing by default ‘not B’ as an answer would be incorrect, which is designed
to compensate for the denying the antecendent fallacy. We did not target directly the illicit commu-
tativity, given that logically, the statement ‘if B then A’ is true if and only if ‘not A then not B’ is
true, and we assume compensating denying the antecendent will automatically compensate for illicit
commutativity.

The convenience of this approach is, among other things, that it should not be subject to labeling
bias, time leakage, the inherent subjectivity of the task nor domain-specific limitations. For example
in the case of time leakage, LogicJitter is not dependent on fine-tuning information that is potentially
in the future of the misinformation that we are trying to classify. For those focused on explainability,
it would be relatively straightforward to generate an explanation for the occurrence of an error within
a logic game. However, given the already extensive nature of our problem descriptions, we opted
not to incorporate the explainability component to avoid further complexity.

Examples of the logic games and distractors contained in LogicJitter are illustrated in Table 1. In
green are highlighted the random characters that compensate for social and memory biases, that
could be used stereotypically by LLMs. Given that being right or wrong is assigned randomly to the
characters in the games, our goal is to train the model not to use that information to evaluate their
answer, and only evaluate them within the context of the game. In blue, is highlighted the problem
revision, designed to modify the content of the initial problem, and ask the LLM to reevaluate the
new answers of the characters, and to reevaluate its own understanding of the scene, to compensate
for belief biases and fallacies.
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Table 1: LogicJitter presents textual logic games with errors and distractors, but the truth value
remains exact. We highlight in green the random characters that compensate for social and memory
biases, that could be used stereotypically by LLMs. We highlight in blue the problem revision,
designed to compensate for belief biases and fallacies.

Logic Games
Guided maths
Input: 7x3 for x = 7 Target: < scratch >, 7x3 = 7 ∗ (7)3 = (7) ∗ (343) = 770, 770,
< /scratch >, 770. A quaint crew says it’s fine. Is the quaint crew correct? False. At a
second try it is shown that Input: 7x3 for x = 7 Target: < scratch > 7x3 = 7 ∗ (7)3 =
(7) ∗ (343) = 2401, 2401, < /scratch >, 2365. A quaint crew says it’s not ok. Is the quaint
crew correct? True.

Causal Clauses
Visualize that A fixes B, B fixes C, D fixes A, D fixes C. For this reason, C fixes A. A clique
from your country says it’s correct, a woman from your region says it’s wrong, a socialist
from another region says there’s no error, a queer club says it’s fine, a queer crew says it’s
not good. Is the woman from your region correct? True. It was later brought to the attention
that A does not fix B. Hence C fixes A. A socialist from another region says C doesn’t fix
A, a woman from your region says it’s not correct, a queer crew says it’s not ok, a clique
from your country says it’s right, a queer club says C doesn’t fix A. Is the queer crew correct?
True.

Context-Free Grammars
Given grammar 0, [...], grammar 1, [...], grammar 2, [...] Which grammar produces the
largest number of sentences? Grammar 2. A heterosexual provost says it’s not correct, a
native american liberal says it’s not correct, a pansexual community says grammar 1. Is the
pansexual community correct? False. Grammar 0 was changed for [...] Which grammar
produces the smallest number of sentences? Grammar 1. A pansexual community says it’s
not correct, a native american liberal says it’s not correct, a heterosexual provost says there is
an error. Is the heterosexual provost correct? True.

CLEVR and CLEAR
There is a very large metal tourmaline tetrahedron at (-0.44, -1.46), a small glass aquamarine
calendar at (-0.51, 1.03), a small amber gray remote control at (-1.67, -1.44), a small amber
tourmaline remote control at (-1.32, -0.87), a very large amber apatite printer at (1.45, -1.46),
and a small amber labradorite pen at (-1.08, -1.18). Is the number of labradorite amber pens
right of the glass calendar greater than the number of tiny tourmaline remote controls that are
in front of the tourmaline amber remote control? no. A sikh brother says it’s fine, a sister
from a different city says it’s correct. Is the sister from a different city correct? True. The
last object has been removed. Are there more small tourmaline amber things right of the
tourmaline remote control than gray things in front of the very large amber printer? no. A
sikh brother says yes, a sister from a different city says there’s no error. Is the sister from a
different city correct? True.

3.4 FINE-TUNING MODELS

We fine-tune two pre-trained language models to enhance their logical reasoning and misinforma-
tion detection capabilities: i) GPT-2 (small), a model with 125M parameters (Radford et al., 2019),
fine-tuned using Low-Rank Adaptation of Large Language Models (LoRA) (Hu et al., 2022a), a
Parameter-Efficient Fine-Tuning (PEFT) technique; ii) LlaMA 3.2 (small), a model with 1B param-
eters (Meta Llama Team, 2024), fine-tuned with AdaLoRA (Zhang et al., 2023), which dynamically
adjusts parameter importance during fine-tuning. Both models are trained using a language modeling
objective (next-step prediction with cross-entropy loss) and early stopping based on validation loss.
To address misinformation detection, we introduce an additional binary classification loss, weighted
ten times more heavily than the language modeling loss. This binary loss determines whether the
model can correctly classify a sentence as truthful or not. For input, we use a prompt like: ”Is the
previous text truthful? Reply with True or False.” We then assess whether the predicted probability
for the True token exceeds that of the False token. To further improve robustness, we add noise to
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the embedding vectors using NEFTune (Jain et al., 2024), a technique designed to enhance model
performance by introducing controlled perturbations.

4 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation conducted to assess the effectiveness of the
proposed data augmentation approach w.r.t. the considered misinformation detection task. We begin
by introducing the datasets used in the evaluation, followed by a discussion of the results obtained.

4.1 MISINFORMATION DATASETS

In order to improve the logical abilities of LLMs, we propose augmenting a Target Task Dataset
(TTD) with data generated using LogicJitter. We evaluate our approach on three datasets used as
TTDs: PubHealth (Kotonya & Toni, 2020b), VitaminC (Schuster et al., 2021) and ISOT (Ahmed
et al., 2017). PubHealth comprises 11,832 claims for fact-checking across a wide range of
health-related topics, including biomedical subjects and government healthcare policies. VitaminC
is a multi-domain fact-verification dataset based on Wikipedia edits, containing 488,904 data points.
ISOT consists of 25,200 articles categorized as either fake or real news. The truthful articles were
obtained by crawling Reuters.com while the fake news were collected from websites flagged by Poli-
tifact. To evaluate the effectiveness of our data augmentation technique, we compare it against two
baselines: fine-tuning directly on the TTD and augmenting the TTD using an existing human-labeled
misinformation dataset, VitaminC in our case. For consistency, we limit the augmented TTD size to
no more than twice the original TTD size. In our pipeline, we first augment the dataset, for example
ISOT, by adding an extra amount of data points generated using either LogicJitter or VitaminC. The
resulting dataset is then shuffled to ensure randomness before training the model.

Both PubHealth and VitaminC provide claims along with a corresponding piece of evidence that
either supports or rejects the claim for each data point. For a data point consisting of evidence x,
claim y, and label z, we format the input to the LLM as: ‘Evidence: x. Claim: y. Does the evidence
support the claim? Reply with True or False: z’. This structure ensures clarity for the model
and directly addresses the task of evaluating the relationship between the claim and its evidence.
In contrast, ISOT provides longer claims x, with corresponding labels z, but without associated
evidence. For this dataset, we format the input as: ‘x. Is the preceeding text likely truthful and not
fake news? reply with True or False: z’.

4.2 RESULTS

Table 2 illustrates the results in terms of accuracy of misinformation detection (i.e., classifying
claims into true and fake). As it emerges from the table, augmenting the TTD both with LogicJitter
and with human-labeled data, such as VitaminC, improves the validation and the test results over the
PubHealth dataset. Surprisingly, LogicJitter achieves this without the need for human-labeled data.
When the TTD is VitaminC instead, can see that the best performance is achieved with LogicJitter
with errors and random characters, but without problem revision.
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Table 2: Ablation study to understand which parts of LogicJitter contribute the most. The full
LogicJitter is composed by four parts: G stands for game description, E for including generations
with errors, C for including random characters, and full stands for GECR, with R for revisions.
We compare also to augmenting with the human labelled dataset VitaminC. We show results on the
PubHealth and VitaminC datasets using the GPT2 model and fine-tuning with LoRA.

PubHealth VitaminC
augmentation val test val test

TTD 54.8% 54.9% 55.0% 55.5%
TTD + VitaminC 69.8% 68.2%
TTD + LogicJitter (G) 42.7% 42.1% 74.5% 74.4%
TTD + LogicJitter (GE) 67.4% 66.2% 74.9% 74.8%
TTD + LogicJitter (GEC) 66.5% 64.8% 75.0% 75.1%
TTD + LogicJitter (full) 68.1% 66.2% 59.9% 59.7%

We can also observe in Table 3, that both adding and removing data from the PubHealth with the
augmentation data were effective in improving generalization of the classification model in terms of
test accuracy. Instead, when the TTD were VitaminC and ISOT, and using both GPT2 and Llama,
and both LoRA and AdaLoRA, increasing the amount of data was generally better.

Table 3: Test accuracy for different augmentation strategies on the PubHealth, VitaminC and ISOT
datasets using GPT2 125M parameters and LLama3.2 1B parameters. We show how much addi-
tional data we add to (+) or remove from (−) the TTD with augmentation. Almost any amount of
data augmentation improves performance. LogicJitter (LJ) achieves it without the need of human
annotated data.

dataset PubHealth VitaminC ISOT
model GPT2 GPT2 Llama
PEFT LoRA LoRA AdaLoRA
augm. +LJ +VitC +LJ +LJ

+100% 66.2% 68.2% 59.7% 75.0%
+75% 68.6% 73.2% 54.8%
+50% 62.0% 66.5% 65.5% 71.4%
+25% 50.2% 65.1% 93.0% 58.1%
TTD 54.9% 55.5% 65.3%
-25% 74.2% 70.4% 53.7% 74.0%
-50% 79.9% 69.9% 50.8% 51.9%
-75% 78.9% 74.9% 63.6%
-100% 55.9% 79.1% 51.4% 19.5%

5 DISCUSSION AND CONCLUSIONS

We have introduced LogicJitter, a data augmentation technique for misinformation detection that
is generated algorithmically and therefore does not require human labelled data. We showed that
it successfully improved the generalization ability of the model compared to fine-tuning only on
the target dataset, or augmenting with existing human labeled data on misinformation. It therefore
turns an expensive task, expert labeling, into a cheap task, algorithmic generation. Being able to
generate a dataset algorithmically comes with a few convenient factors, such as the fact that is
completely balanced in terms of number of true and false statements, and stereotyping biases are
completely absent since it is coded in such way. Somewhat ironically, we use the often considered
old school rule-based AI, such as context-free grammars and causal networks, to compensate for the
shortcomings of the new wave of Deep Learning based AI. We believe our evidence supports RQ1
and RQ2 in the positive: rule-based games, inspired by the attempt to compensate for cognitive
biases and fallacies, can improve LLMs logical reasoning, shown by their improved ability to detect
misinformation.
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Another possibility to what we presented would be to use existing human datasets such as GLUE
(Wang et al., 2018), and present the wrong label to ask the LLM to estimate the veracity of the
answer. We decided however to stick to a purely rule-based approach, to cleanly verify its effective-
ness. As a possible future direction, it is interesting to consider fuzzy logic statements, to provide
the games with more flexibility to deal with uncertainties. It will also be interesting to attempt at
compensating for more cognitive biases and fallacies. Moreover, a rule-based approach such as
LogicJitter, could be used to produce an algorithmically generated explanation on why an answer is
right or wrong, and could therefore be useful for those interested in explainability.
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