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Abstract

We consider the setting of repeated fair division between two players, denoted Alice
and Bob, with private valuations over a cake. In each round, a new cake arrives,
which is identical to the ones in previous rounds. Alice cuts the cake at a point of her
choice, while Bob chooses the left piece or the right piece, leaving the remainder
for Alice. We consider two versions: sequential, where Bob observes Alice’s cut
point before choosing left/right, and simultaneous, where he only observes her cut
point after making his choice. The simultaneous version was first considered in
Aumann and Maschler (1995).
We observe that if Bob is almost myopic and chooses his favorite piece too often,
then he can be systematically exploited by Alice through a strategy akin to a
binary search. This strategy allows Alice to approximate Bob’s preferences with
increasing precision, thereby securing a disproportionate share of the resource over
time.
We analyze the limits of how much a player can exploit the other one and show
that fair utility profiles are in fact achievable. Specifically, the players can enforce
the equitable utility profile of (1/2, 1/2) in the limit on every trajectory of play, by
keeping the other player’s utility to approximately 1/2 on average while guaran-
teeing they themselves get at least approximately 1/2 on average. We show this
theorem using a connection with Blackwell approachability.
Finally, we analyze a natural dynamic known as fictitious play, where players best
respond to the empirical distribution of the other player. We show that fictitious
play converges to the equitable utility profile of (1/2, 1/2) at a rate of O(1/

√
T ).
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1 Introduction

Cake cutting is a model of fair division Steinhaus (1948), where the cake is a metaphor for a
heterogeneous divisible resource such as land, time, memory in shared computing systems, clean
water, greenhouse gas emissions, fossil fuels, or other natural deposits (Procaccia (2013)). The
problem is to divide the resource among multiple participants so that everyone believes the allocation
is fair. There is an extensive literature on cake cutting in mathematics, political science, economics
(Robertson and Webb (1998); Brams and Taylor (1996); Moulin (2003)) and computer science
(Brandt et al. (2016)), with a number of protocols implemented (Goldman and Procaccia (2014)).

Traditional approaches to cake cutting often consider single instances of division. However, many
real-world scenarios require a repeated division of resources. For instance, consider the recurring task
of allocating classroom space in educational institutions each quarter or that of repeatedly dividing
computational resources (such as CPU and memory) among the members of an organization. These
settings reflect the reality of many social and economic interactions, necessitating a model that not
only addresses the fairness of a single division, but also the dynamics and strategies that emerge
among participants over repeated interactions.

Repeated fair division is a classic problem first considered by Aumann and Maschler (1995), where
two players—denoted Alice and Bob—have private valuations over the cake and interact in the
following environment. Every day a new cake arrives, which is the same as the ones in previous days.
Alice cuts the cake at a point of her choosing, while Bob chooses either the left piece or the right
piece, leaving the remainder to Alice. Aumann and Maschler (1995) considered the simultaneous
setting, where both players take their actions at the same time each day, and analyzed the payoffs
achievable by Bob when he can have one of two types of valuations.

In this paper, we provide the first substantial progress in this classic setting. We further analyze the
simultaneous version from Aumann and Maschler (1995) and also go beyond it, by considering the
sequential version where Bob has the advantage of observing Alice’s chosen cut point before making
his selection. Tactical considerations remain pivotal in the sequential version, which is none other
than the repeated Cut-and-choose protocol with strategic players.

A key observation in our study is the strategic vulnerability inherent in repeated Cut-and-choose. At
a high level, if Bob consistently chooses his preferred piece, then he can be systematically exploited
by Alice through a strategy akin to a binary search. This strategy allows Alice to approximate Bob’s
preferences with increasing precision, thereby securing a disproportionate share of the resource over
time. To fight back Alice’s attempt to exploit him, Bob could deceive her by being unpredictable,
thus hiding his preferences. While this behavior has the potential to reduce Alice’s share of the cake,
it could also come at the price of affecting Bob’s own payoff guarantees in the long term.

Our analysis of the repeated cake cutting game formalizes the intuition that Alice can exploit a (nearly)
myopic Bob that often chooses his favorite piece. This outcome, where Alice gains more value,
is not entirely fair, as it leaves her happier than Bob. The fairness notion of equitability addresses
this imbalance, embodying the idea that players should be equally happy. Formally, it requires that
Alice’s value for her allocation should equal Bob’s value for his allocation. Achieving equitability is
particularly important in scenarios with potential for conflict, such as splitting an inheritance.

We show that achieving equitable outcomes in the repeated interaction is in fact possible. Specifically,
each player has a strategy that guarantees the other player receives no more than approximately 1/2
on average, while securing at least approximately 1/2 for themselves. This approaches the equitable
utility profile of (1/2, 1/2) in the limit. We obtain this result by using a connection with Blackwell
approachability (1956). Moreover, we consider a natural dynamic known as fictitious play (Brown
(1951)), where players best respond to the empirical frequency of the other player’s past actions. We
show that fictitious play converges to the equitable utility profile of (1/2, 1/2) at a rate of O(1/

√
T ).

1.1 Model

Cake cutting model for two players. The cake is modelled as the interval [0, 1]. There are players
N = {A,B}, where A stands for Alice and B for Bob. Each player i has a private value density
function vi : [0, 1] → R+. A piece of cake is a measurable set S ⊆ [0, 1]. The value of player i
for S is Vi(S) =

∫
x∈S

vi(x) dx. Atoms are worth zero and the valuations are normalized so that



Vi([0, 1]) = 1 ∀i ∈ [n]. We require bounded densities, i.e. there exist fixed arbitrary δ,∆ > 0 such
that δ ≤ vi(x) ≤ ∆ for all x ∈ [0, 1].

An allocation Z = (ZA, ZB) is a partition of the cake among the players such that each player i
receives piece Zi, the pieces are disjoint, and

⋃
i∈N Zi = [0, 1]. The valuation (aka utility or payoff)

of player i at an allocation Z is Vi(Zi). An allocation Z is equitable if the players are equally happy
with their pieces, meaning VA(ZA) = VB(ZB).

Let mA be Alice’s midpoint of the cake and mB Bob’s midpoint. Alice’s Stackelberg value, denoted
u∗
A, is the utility she receives when she cuts the cake at mB and Bob chooses his favorite piece,

breaking ties in Alice’s favor. The midpoints and Alice’s Stackelberg value are depicted in Figure 1.

Figure 1: Densities for Alice (blue) and Bob (red). Figure (a) shows Alice’s midpoint mA and Bob’s
midpoint mB . The shaded area in Figure (b) is Alice’s Stackelberg value.

Repeated cake cutting. Each round t = 1, 2, . . . , T , the next steps take place:

• A new cake arrives, which is identical to the ones in previous rounds.

• Alice cuts the cake at a point at ∈ [0, 1] of her choice. Bob chooses either the left piece or
the right piece, then Alice takes the remainder.

We consider two versions: sequential, where Bob observes Alice’s cut point at before choosing
left/right, and simultaneous, where he only observes her cut point after making his choice.

A pure strategy is a map from the history observed by a player to the next action to play. A mixed
strategy is a probability distribution over pure strategies.

1.2 Our Results

Our results will examine how players fare in the repeated game over T rounds. Given a history H ,
Alice’s Stackelberg regret is RegA(H) =

∑T
t=1 [u

∗
A − ut

A(H)], where u∗
A is Alice’s Stackelberg

value and ut
A(H) is Alice’s utility in round t under history H .

Suppose Alice uses a mixed strategy SA and Bob uses a mixed strategy SB . Then SA ensures Alice’s
Stackelberg regret is at most γ against SB if RegA(H) ≤ γ for all T -round histories H that could
have arisen under the strategies (SA, SB). Precise definitions for strategies/regret and the remaining
notation needed for the full proofs can be found in Section 3.

Alice exploiting Bob

We start with an observation about the sequential setting. If Bob chooses his favorite piece in each
round, then Alice can exploit him by running binary search until identifying his midpoint within a
small error and then cutting near it for the rest of time. This will lead to Alice getting essentially her
Stackelberg value in all but O(log T ) rounds, while Bob will get 1/2 in all but O(log T ) rounds.

Proposition 1. If Bob plays myopically in the sequential setting, then Alice has a strategy that
ensures her Stackelberg regret is O(log T ).

This exploitation phenomenon holds more generally: if Bob’s strategy has bounded regret with
respect to the standard of selecting his preferred piece in every round in hindsight, then Alice can
almost get her Stackelberg value in each round. Her Stackelberg regret is a function of Bob’s regret
guarantee, as quantified in the next theorem.
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Theorem 1 (Exploiting a nearly myopic Bob). Let α ∈ [0, 1). Suppose Bob plays a strategy that
ensures his regret is O(Tα) in the sequential setting. Let Bα denote the set of all such Bob strategies.

• If Alice knows α, she has a strategy SA = SA(α) that ensures her Stackelberg regret is
O(T

α+1
2 log T ). The exponent is sharp: Alice’s Stackelberg regret is Ω(T

α+1
2 ) for some Bob

strategy in Bα.

• If Alice does not know α, she has a strategy SA that ensures her Stackelberg regret is O
(

T
log T

)
.

The exponent is sharp: if SA guarantees Alice Stackelberg regret O(T β) against all Bob strategies
in Bα for some β ∈ [0, 1), then SA has Stackelberg regret Ω(T ) for some Bob strategy in Bβ .

In contrast, in the simultaneous setting, Alice may not approach her Stackelberg value on every
trajectory of play. In order to get her Stackelberg value in any given round, Alice needs to cut near
Bob’s midpoint and Bob needs to pick the piece he prefers, say R. However, if Bob deterministically
commits to picking R, he will be completely exploited by an Alice who cuts at 1, breaking any
reasonable regret guarantee he might have. Indeed, any Bob with a deterministic strategy (possibly
using different actions over the rounds) has a corresponding Alice who can completely exploit
him. Therefore, any Bob strategy with a good regret guarantee would behave randomly, making it
impossible for Alice to reliably get her Stackelberg value on every trajectory. For this reason, we
focus on the sequential setting when studying how Alice can exploit Bob.1

Equitable payoffs.

Motivated by Theorem 1, we examine the general limits of how much each player can exploit the
other and whether fair outcomes are achievable, in both the sequential and simultaneous settings.

Given a history H , player i is said to get an average payoff of γ if
(
1
T

)∑T
t=1 u

t
i(H) = γ, where the

left hand side is not expected utility, but rather the observed total utility averaged over T rounds.

We say a utility profile (uA, uB) is equitable if uA = uB . In the single round setting, uA and uB

will naturally represent the utilities of the players at an allocation. In the repeated setting, uA and uB

will represent the time-average utilities of the players.

The next theorems show that each player can keep the other player at 1/2 while guaranteeing 1/2 for
themselves. This type of behavior is reminiscent of spiteful bidding in auctions (Tang and Sandholm
(2012)), where a buyer’s utility diminishes if other bidders are too satisfied.

Theorem 2 (Alice enforcing equitable payoffs; informal). In both the sequential and simultaneous
settings, Alice has a pure strategy SA, such that for every Bob strategy SB:

• on every trajectory of play, Alice’s average payoff is at least 1/2 − o(1), while Bob’s average

payoff is at most 1/2 + o(1). More precisely, uA

T ≥
1
2 −Θ

(
1√
T

)
and uB

T ≤
1
2 +Θ

(
1

lnT

)
,

where ui is the cumulative payoff of player i over the time horizon T .

A key ingredient in the proof of Theorem 2 is a connection with Blackwell’s approachability the-
orem Blackwell (1956). Generally speaking, Blackwell approachability can be used by a player
to limit the payoff of the other player in a certain region of the utility profile. However, the main
challenge is that there are uncountably many types of Bob and so Alice cannot apply the strategy
from Blackwell directly. Instead, Alice’s strategy constructs a countably infinite set of representatives,
which allows us to adapt Blackwell’s argument to this setting.

We show a symmetric theorem for Bob in the sequential setting, while in the simultaneous setting
Bob’s guarantee only holds in expectation.

Theorem 3 (Bob enforcing equitable payoffs; informal).

• In the sequential setting: Bob has a pure strategy SB , such that for every Alice strategy SA, on
every trajectory of play, Bob’s average payoff is at least 1/2− o(1), while Alice’s average

payoff is at most 1/2 + o(1). More precisely, uB

T ≥
1
2 −

1√
T

and uA

T ≤
1
2 +Θ

(
1√
T

)
.

1One may explore a weaker regret benchmark for Bob of always picking the better of left or right in hindsight,
which we believe would be an interesting direction for future work.
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• In the simultaneous setting: Bob has a mixed strategy SB , such that for every Alice strategy SA,
both players have average payoff 1/2 in expectation.

When Alice and Bob play such strategies against each other, they approach an equitable utility profile
of (1/2, 1/2). If just one player follows such a strategy, then the best the other player can do is to
ensure the safety value of 1/2 for themselves, thus achieving the utility profile (1/2, 1/2).

Fictitious play

Fictitious play is a classic learning rule where at each round, each player best responds to the empirical
frequency of play of the other player. Fictitious play was introduced in Brown (1951). Convergence
to Nash equilibria has been shown for zero-sum games (Robinson (1951)) and special cases of
general-sum games (Nachbar (1990); Monderer and Shapley (1996b,a)).

In the cake cutting model, learning rules such as fictitious play are more meaningful in the simul-
taneous setting, where there is uncertainty for both players due to the simultaneous actions. The
precise definition of the fictitious play dynamic is in Section 6, while an example of trajectories for
an instance with random valuations and uniform random tie-breaking can be found in Figure 2.

(a) Alice’s utility. (b) Bob’s utility.

Figure 2: Illustration of Alice’s and Bob’s average payoff in a randomly generated instance of
valuations. The X axis shows the time and the Y axis shows the average payoff up to that round.

The convergence properties of fictitious play can be characterized as follows.

Theorem 4 (Fictitious Play; informal). When both Alice and Bob run fictitious play, the average
payoff of each player converges to 1/2 at a rate of O(1/

√
T ).

Roadmap to the paper. Related work is in Section 2. Formal notation and preliminaries can be
found in Section 3. An overview of how Alice can exploit a nearly myopic Bob can be found in
Section 4, with formal proofs in Appendix A. An overview of how players can enforce equitable
payoffs can be found in Section 5, with formal proofs in Appendix B. Fictitious play can be found in
Section 6, with formal proofs in Appendix C. Concluding remarks can be found in Section 7.

2 Related Work

Cake cutting and fairness notions. The cake cutting model is due to Steinhaus (1948). Standard
fairness notions include proportionality, equitability, envy-freeness (Even and Paz (1984); Dubins
and Spanier (1961); Edward Su (1999); Stromquist (1980); Alon (1987)). For surveys, see Robertson
and Webb (1998); Brams and Taylor (1996); Moulin (2003); Brandt et al. (2016); Procaccia (2013).

In the Robertson-Webb (RW) query model for cake cutting (Woeginger and Sgall (2007)), a mediator
asks the players enough queries about their preferences until it can output a fair allocation. For
studies on the query complexity of cake cutting, see Even and Paz (1984); Woeginger and Sgall
(2007); Edmonds and Pruhs (2006); Procaccia (2009); Aziz and Mackenzie (2016); Amanatidis et al.
(2018); Cheze (2020); Stromquist (2008); Deng et al. (2012); Goldberg et al. (2020a); Filos-Ratsikas
et al. (2022); Segal-Halevi (2018); Deligkas et al. (2021); Goldberg et al. (2020b); Brânzei and Nisan
(2022, 2019); Filos-Ratsikas et al. (2020); Alon and Graur (2020); Filos-Ratsikas et al. (2021).
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Mossel and Tamuz (2010); Branzei and Miltersen (2015) studied truthful cake cutting in the RW
query model, and Chen et al. (2013); Bu et al. (2023); Bei et al. (2022); Tao (2022) in the direct
revelation model. The equilibria of cake cutting protocols were considered in Nicolò and Yu (2008);
Brânzei and Miltersen (2013); Brânzei et al. (2016); Goldberg and Iaru (2021).

Multiple divisible/indivisible goods and chores. The algorithms and complexity of finding fair
allocations in settings with multiple divisible/indivisible goods/bads were considered in Oh et al.
(2021); Plaut and Roughgarden (2020, 2019); Manurangsi and Suksompong (2021); Chaudhury
et al. (2021c); Bilò et al. (2019); Amanatidis et al. (2022); Procaccia (2020); Chaudhury et al. (2020,
2021b); Procaccia and Wang (2014); Kulkarni et al. (2021); Chaudhury et al. (2021a). Tucker-Foltz
and Zeckhauser (2023) analyze how the cutter should act in a single-round cut-and-choose on multiple
goods where the players’ valuations of the goods are drawn from a publicly known distribution.

Ghodsi et al. (2011) studied fairness in cloud computing settings, where there are multiple divisible
goods (e.g. CPU and memory) and the users have to run jobs with different resource requirements.
Kandasamy et al. (2020) studied players who do not know their own resource requirements.

Dynamic fair division. Closest to our setting is the analysis in the book of Aumann and Maschler
(1995) (page 243), where two players are dividing a cake with a cherry. Alice (the cutter) has a
uniform density and so she does not care for the cherry, while Bob (the chooser) may or may not like
the cherry. Alice and Bob declare their actions simultaneously and Alice is only allowed to cut in
one of two locations. Additionally, Alice has a prior over the type of Bob she is facing. Aumann and
Maschler (1995) analyzes the set of payoffs approachable for Bob using Blackwell approachability.
In contrast, we allow arbitrary value densities for the players and do not assume priors and also
consider the sequential version of the game.

Tamuz et al. (2018) introduced exploitability in repeated cut-and-choose protocols, with some cuts
made by a mediator, designing non-exploitable protocols. Online cake cutting was studied by Walsh
(2011), where agents can arrive/depart over time. For dynamic fair division where goods are allocated
irrevocably upon arrival, see Kash et al. (2014); Friedman et al. (2015); Benadè et al. (2022).

Learning in repeated Stackelberg games. The Stackelberg game was introduced by Stackelberg
(1934) to understand the first mover advantage of firms when entering a market. The Stackelberg
equilibrium concept has important applications such as security games Tambe (2011); Balcan et al.
(2015), online strategic classification Dong et al. (2018), and online principal agent problems
Hajiaghayi et al. (2023). Our model can be seen as each player facing an online learning version of a
repeated Stackelberg game.

Kleinberg and Leighton (2003) considered a seller’s problem of designing an efficient repeated posted
price mechanism to buy identical goods when it interacts with a sequence of myopic buyers. Gan et al.
(2019); Birmpas et al. (2020); Zhao et al. (2023) considered a repeated Stackelberg game to study
how the follower or leader can exploit the opponent in a general game with arbitrary payoffs. Their
techniques, however, do not apply to our model as they typically consider the setting of one player
knowing the entire payoff matrix trying to deceive the other player given behavioral assumptions.

Exploiting no-regret agents. Several works considered the extent to which one player can exploit
the knowledge that the other player has a strategy with sublinear regret. The goal is often to approach
the Stackelberg value, the maximum payoff that the exploiter could get by selecting an action first
and allowing the opponent to best-respond. In simultaneous games, Deng et al. (2019) showed the
exploiter can approach their Stackelberg value, assuming knowledge of the other player’s payoff
function. Haghtalab et al. (2022) showed that, for certain types of sequential games, an exploiting
leader can approach their Stackelberg value in the limit. Theorem 1 is a similar statement in our
setting, but we bound the exploited agent’s behavior with an explicit regret guarantee rather than
using discounted future payoffs; also, our setting is not captured by the types of games they consider.

Fictitious play. Fictitious play was introduced in Brown (1951). Convergence to Nash equilibria
has been shown for zero-sum games (Robinson (1951)) and special cases of general-sum games
(Nachbar (1990); Monderer and Shapley (1996b,a)). None of these results directly apply to our
setting, but the most relevant is Berger (2005), which covered non-degenerate 2×n games (i.e. where
every action has a unique best response). Our “2×∞" game is degenerate, as Bob does not have a
unique best response to Alice cutting at mB . Few existing works apply fictitious play to games with
continuous action spaces. An example is Perkins and Leslie (2014), which showed that stochastic
fictitious play does converge in two-player zero-sum games with continuous action spaces.

5



Karlin (1959) conjectured that fictitious play converges at a rate of O(T−1/2). Brandt et al. (2013)
found small games where the convergence rate is O(T−1/2), but with very large constants in the
O(). Daskalakis and Pan (2014) disproved Karlin’s conjecture, showing there exist games with
n × n payoff matrices in which convergence takes place at a rate of Ω(T−1/n) using adversarial
tie-breaking rules. Panageas et al. (2023) found examples of even slower convergence.

Harris (1998) showed that fictitious play converges at a rate of O(T−1) in 2 × 2 zero-sum games.
Abernethy et al. (2021) considered diagonal payoff matrices with non-adversarial tie-breaking rules,
showing convergence rates of O(T−1/2). Abernethy et al. (2021) does not give a rate of convergence
in our setting because requiring the payoff matrix to be diagonal would correspond to Alice only
being allowed to cut at 0 or 1. This assumption is not as natural in our setting. In fact, if Alice can
only cut at 0 or 1 the game becomes zero-sum. Furthermore, we allow arbitrary tie-breaking rules.

3 Preliminaries

In this section we formally define the notation used in our proofs. All our notation applies to both the
sequential and simultaneous settings, unless otherwise stated.

History. Recall T is the number of rounds. For each round t ∈ [T ],

• let at ∈ [0, 1] be Alice’s cut at time t and bt ∈ {L,R} be Bob’s choice at time t, where L
stands for the left piece [0, at] and R for the right piece [at, 1].

• let At = (a1, . . . , at) be the history of cuts until the end of round t and Bt = (b1, . . . , bt)
the history of choices made by Bob until the end of round t.

A history H = (AT , BT ) denotes an entire trajectory of play.

Strategies. Let P be the space of integrable value densities over [0, 1]. A pure strategy for Alice at
time t is a function St

A : [0, 1]t−1 × {L,R}t−1 ×P ×N→ [0, 1], such that St
A(At−1, Bt−1, vA, T )

is the next cut point made by Alice as a function of the history At−1 of Alice’s cuts, the history Bt−1

of Bob’s choices, Alice’s valuation vA, and the horizon T .

For Bob, we define pure strategies separately for the sequential and simultaneous settings due to the
different feedback that he gets:

Sequential: A pure Bob strategy at time t is a map St
B : [0, 1]t × {L,R}t−1 × P × N→ {L,R} .

That is, Bob observes Alice’s cut point and then responds.

Simultaneous: A pure Bob strategy at time t is a map St
B : [0, 1]t−1×{L,R}t−1×P×N→ {L,R} .

Thus here Bob chooses L/R before observing Alice’s cut point at time t.

A pure strategy for Alice over the entire time horizon T is denoted SA = (S1
A, . . . , S

T
A) and tells

Alice what cut to make at each time t. A pure strategy for Bob over the entire time horizon T is
denoted SB = (S1

B , . . . , S
T
B) and tells Bob whether to play L/R at each time t.

A mixed strategy is a probability distribution over the set of pure strategies. 2

Rewards and utilities. Suppose Alice has mixed strategy SA and Bob has mixed strategy SB . Let
ut
A and ut

B be the random variables for the utility (payoff) experienced by Alice and Bob, respectively,
at round t. The utility of player i ∈ {A,B} is denoted ui = ui(SA, SB) =

∑T
t=1 u

t
i . The utility of

player i from round t1 to t2 is ui(t1, t2) =
∑t2

t=t1
ut
i.

The expected utility of player i is E[ui] =
∑T

t=1 E[ut
i], where the expectation is taken over the

randomness of the strategies SA and SB .

Given a history H , let ut
i(H) be player i’s utility in round t under H and let ui(H) =

∑T
t=1 u

t
i(H)

be player i’s cumulative utility under H .

2In fact, this is equivalent to the behavior strategy in which the player assigns a probability distribution given
a history, thanks to Kuhn’s theorem Kuhn (1950); Kuhn1 (1953). The original version of Kuhn’s theorem is
restricted to games with finite action space, but can be extended to any action space that is isomorphic to unit
interval by Aumann (1961); Dresher et al. (2016), which contains our setting.
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Midpoints and Stackelberg value. Let mA ∈ [0, 1] be Alice’s midpoint of the cake, with
VA([0,mA]) = 1/2, and mB ∈ [0, 1] be Bob’s midpoint, with VB([0,mB ]) = 1/2. Since the
densities are bounded from below, the midpoint of each player is uniquely defined. Alice’s Stackel-
berg value, denoted u∗

A, is the utility Alice gets when she cuts at mB and Bob chooses his favorite
piece breaking ties in favor of Alice (i.e. taking the piece she prefers less).

4 Alice exploiting Bob

In this section we give an overview of Theorem 1, which considers the sequential setting and quantifies
the extent to which Alice can exploit a Bob that has sub-linear regret with respect to the benchmark
of choosing the best piece in each round. Formal proofs for this section are in Appendix A.

We start by defining the notion of Stackelberg regret (Dong et al. (2018); Haghtalab et al. (2022)).
Definition 1 (Stackelberg regret). Given a history H of the places Alice cut and the pieces Bob chose
in each round, Alice’s Stackelberg regret is RegA(H) =

∑T
t=1 [u

∗
A − ut

A(H)], where u∗
A is Alice’s

Stackelberg value and ut
A(H) is Alice’s utility in round t under history H .

For Bob, we consider the basic notion of static regret, where Bob compares his payoff to what would
have happened if Alice’s actions remained the same but he chose the best piece in each round.
Definition 2 (Regret). Given a history H , Bob’s regret is

RegB(H) =

T∑
t=1

[
max

{
VB([0, at]), VB([at, 1])

}
− ut

B(H)
]
,

recalling that ut
B(H) is Bob’s utility in round t under history H .

Next we provide a proof sketch for Theorem 1, which is divided in the next two propositions,
corresponding to the cases where Alice knows α and does not know α.
Proposition 2. Let α ∈ [0, 1). Suppose Bob plays a strategy that ensures his regret is O(Tα) and
let Bα denote the set of all such Bob strategies. Assume Alice knows α. Then she has a strategy
SA = SA(α) that ensures her Stackelberg regret is O

(
T

α+1
2 log T

)
. The exponent is sharp: Alice’s

Stackelberg regret is Ω
(
T

α+1
2

)
for some Bob strategy in Bα.

Proof sketch. We sketch both the upper and lower bounds.

Sketch for the upper bound. Let SB denote Bob’s strategy, which guarantees his regret is O(Tα).
Suppose Alice knows α. Then Alice initializes an interval I = [0, 1] and uses the following strategy.

Iteratively, for i = 0, 1, . . . ,:

(1) Alice discretizes the interval I = [u,w] in a constant number of sub-intervals (set to 6) of equal
value to her, by cutting at points ai,j for j ∈ [5] such that u < ai,1 < ai,2 < . . . < ai,5 < w.
Denote ai,0 = u and ai,6 = w. An illustration is in Figure 3.

Figure 3: Illustration of step (1) for i = 0. Alice divides the interval [0, 1] in 6 disjoint intervals of
equal value to her, demarcated by points a0,0 = 0 < a0,1 < a0,2 < a0,3 < a0,4 < a0,5 < 1 = a0,6.

(2) Alice selects a number η, which will be set “large enough” as a function of T and α. In the next
5η rounds, Alice cuts an equal number of times at each point ai,j for j ∈ [5]. That is:

• In each of the next η rounds, Alice cuts at ai,1 and observes Bob’s choices there,
computing the majority answer as ci,1 = L if Bob picked the left piece more times than
the right piece, and ci,1 = R otherwise. The next η rounds after that Alice switches to
cutting at ai,2, and so on.

In this fashion, Alice computes ci,j as Bob’s majority answer corresponding to cut point
ai,j for all j ∈ [5]. Also, by default ci,0 = R and ci,6 = L. An illustration is in Figure 4.
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Figure 4: Illustration of step (2) for i = 0. Suppose η = 3. Alice cuts 3 times at each of the points
a0,j and observes Bob’s choices, which are marked near each such cut point. By default, Alice knows
what the answer would be if she cut at 0 or 1, so those are set to R and L, respectively. The truthful
answers (reflecting Bob’s favorite piece according to his actual valuation) are marked with green,
while the lying answers are marked with orange.

(3) The points ai,j for j ∈ {0, . . . , 6} are arranged on a line and each is labelled L or R, with the
leftmost point ai,0 = 0 labelled R and the rightmost point ai,6 = 1 labelled L. Then there
is an index j ∈ {0, . . . , 5} such that ci,j = R and ci,j+1 = L.

Alice computes a smaller interval Ii+1, essentially consisting of [ai,j , ai,j+1] and some extra
space around it to make sure that Ii+1 contains Bob’s midpoint as follows. If j ∈ {1, . . . , 4},
set Ii+1 = [ai,j−1, ai,j+2]. If j = 0, set Ii+1 = [ai,0, ai,3]. If j = 5, set Ii+1 = [ai,3, ai,6].
Then Alice iterates steps (1− 3) on the interval I1. An illustration is in Figure 5.

Figure 5: Illustration of step (3) for i = 0. Alice labels each point a0,j with the majority answer
there. Then she identifies the index j such that the point a0,j is labelled R and the point a0,j+1 is
labelled L. At this stage she is assured that either the interval [a0,j , a0,j+1] or one of the adjacent
ones contains Bob’s midpoint. Alice sets I1 = [a0,3, a0,6] and recurses on it.

The full proof explains why the index j from step 3 is unique and why it is in fact necessary to include
a slightly larger interval than [ai,j , ai,j+1] in the recursion step, due to Bob potentially having lied if
his midpoint was very close to a boundary of [ai,j , ai,j+1] but on the other side.

Sketch for the lower bound. The lower bound of Ω
(
T

α+1
2

)
relies on the observation that rounds

where Alice cuts near mB and Bob picks his less-preferred piece cost Bob very little but cost Alice a
lot. More precisely, suppose mA < mB and Alice cuts at mB−ε. Then compared to his regret bound,
Bob loses Θ(ε) if he picks the wrong piece. On the other hand, Alice loses Θ(mB −mA) = Θ(1)
compared to her Stackelberg value.

Bob can use this asymmetry by acting as if his midpoint were Θ
(
T

α−1
2

)
closer to mA than it really

is. Lying Θ
(
T

α+1
2

)
times costs Bob only Θ(Tα) regret, but costs Alice Θ

(
T

α+1
2

)
regret. To avoid

accumulating more regret than this, Bob can afterwards revert to picking his truly preferred piece; the
damage to Alice’s payoff has already been done.

Proposition 3. Let α ∈ [0, 1). Suppose Bob plays a strategy that ensures his regret is O(Tα). Let
Bα denote the set of all such Bob strategies. If Alice does not know α, she has a strategy SA that
ensures her Stackelberg regret is O

(
T

log T

)
.

The exponent is sharp: if SA guarantees Alice Stackelberg regret O(T β) against all Bob strategies in
Bα for some β ∈ [0, 1), then SA has Stackelberg regret Ω(T ) for some Bob strategy in Bβ .

Proof sketch. Alice’s strategy that achieves O(T/ log T ) regret follows the same template as her
strategy from Proposition 2. The only difference is that she sets η differently (and much larger) to
cover any possible regret bound Bob could have.

The idea of the lower bound is that, if Alice does not know the value of α in Bob’s regret bound, she
cannot know when she has true information about Bob’s preferences. We use this by having a Bob
with O(T β) regret behave exactly like one with O(Tα) regret but a different midpoint. Then Bob can
hide his deception from an Alice with O(T β) regret since he can tolerate more regret than her.

Theorem 1 is implied by Propositions 2 and 3. The players’ value densities must be bounded for
Theorem 1 to hold; see Remark 1 in Appendix A.2 for a counterexample with unbounded densities.
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5 Equitable payoffs

Here we sketch the proofs of Theorems 2 and 3. The formal proofs can be found in Appendix B.

Theorem 2 shows how Alice can get at least 1/2 per round while keeping Bob at 1/2 per round.

Proof sketch of Theorem 2. Alice’s strategy uses Blackwell approachability (1956). A challenge is
that Blackwell’s original version required the number of player types to be finite, but Alice has to be
prepared for an uncountably infinite variety of Bob’s valuation functions. Another difference is that
Alice’s action space is also infinite, which turns out to be necessary.

We get around the infinite-Bob issue in two steps. First, Alice defines a countably infinite set V as a
stand-in for the full variety of Bobs; V includes arbitrarily good approximations to any valuation.

Second, we replace Blackwell’s original finite-dimensional space with a countably-infinite-
dimensional one, where the elements of V are the axes. We define an inner product on this space and
adapt Blackwell’s argument for it. Briefly, Alice’s strategy tracks the average payoff to each type of
Bob in V and defines S to be the region of the space where all of them have payoffs at most 1/2. In
each round, she constructs a cut point which moves the Bobs’ average payoff closer to S , and in the
limit traps them in S.

Under this strategy, Alice’s payoff guarantee is mostly a byproduct of Bob’s. If Bob and Alice have
the same value density, then their payoffs sum to 1, so bounding Bob’s payoff to 1/2 also bounds
Alice’s to 1/2. We achieve the substantially better bound on Alice’s payoff by explicitly including
her value density vA in the set V of Bobs, thus eliminating any approximation error.

Theorem 3 shows how Bob can do the same, albeit only in expectation in the simultaneous setting.

Proof sketch of Theorem 3. We cover the simultaneous setting first because it informs the sequential
setting. In the simultaneous setting, Bob’s algorithm is extremely simple: in each round, randomly
select L or R with equal probability. The expected payoffs to each player follow immediately.

Bob’s strategy for the sequential setting can be seen as a derandomized version of the simultaneous
strategy. The simplest way to derandomize it would be to strictly alternate between L and R, but
if Bob runs that strategy Alice can easily exploit it. Instead, Bob mentally partitions the cake into√
T intervals I1, . . . , I√T of equal value to him. He then treats each interval Ii as a separate cake,

alternating between L and R for the rounds Alice cuts in Ii. Alice can still exploit this strategy
on a single interval Ii, but doing so can only give her an average payoff of 1/2 + O(VA(Ii)) ∈
1/2 +O(1/

√
T ). The full proof shows this bound applies for any Alice strategy.

6 Fictitious play

In this section we include a proof sketch of Theorem 4, which analyzes the fictitious play dynamic.
The formal proof can be found in Appendix C.

Proof sketch of Theorem 4. To analyze the fictitious play dynamic, we define for each t = 0, . . . , T
two quantities called αt and βt. Let αt = rt − ℓt, where rt is the number of times Bob picked R up
to round t and ℓt is the number of times he picked L. Let βt =

∑t
τ=1

(
2VB([0, aτ ])− 1

)
.

The quantities αt and βt control what happens under fictitious play: Alice’s decision in round t+ 1
is based on αt and Bob’s decision in round t+ 1 is based on βt. These decisions in turn affect αt+1

and βt+1, forming a dynamical system that results in a counterclockwise spiral through α-β space.
Figure 6 illustrates the sequences αt and βt for the instance in Figure 2.

We define ρt = |αt| + |βt| and formalize this spiral, by showing that the sequence {ρ}Tt=0 is
non-decreasing and analyzing the change in (αt, βt) from round to round. Figure 6 illustrates the
parameter ρt over time, while Figure 7 illustrates the spiral (associated with the same trajectory as in
Figure 2 and 6), where the spiral is visualized as a scatter plot of the sequence (αt, βt)t≥1.

We first use these dynamics to bound Bob’s payoff. Bob’s payoff can be almost directly read off due
to changes in βt closely matching changes in Bob’s payoff. Bob’s total payoff to round t turns out to
be of the order t/2± ρt, so bounding the rate at which the spiral expands also bounds Bob’s payoff.
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(a) The sequence αt. (b) The sequence βt.

(c) The sequence ρt.

Figure 6: Illustration of the sequences {αt}∞t=1, {βt}∞t=1, and {ρt}∞t=1 for the instance with trajecto-
ries shown in Figure 2. The X axis shows the round number t and the Y axis the variable plotted.

(a) The spiral over the first 100 rounds. (b) The spiral over the first 1000 rounds.

Figure 7: Scatter plot of the sequence (αt, βt)t≥1, illustrating the spiral for the instance with
trajectories shown in Figure 2, where the sequences αt and βt are illustrated separately in Figure 6.

We then use the dynamics to bound the total payoff to Alice and Bob. Alice can only cut in the
interior of the cake when αt = 0, which happens less and less often as the spiral expands. The
players’ total payoff when Alice cuts at one end of the cake is 1, so across T rounds we show the
sum of cumulative payoffs of the players is of the order T ±Θ(

√
T ). Combining the bound on the

total payoff with the bound on Bob’s payoff gives a bound for Alice’s payoff.

7 Concluding remarks

There are several directions for future work. One direction is to consider a wider class of regret
benchmarks and understand how the choice of benchmark influences the outcomes reached. Moreover,
what payoff profiles are attained when the players use randomized algorithms such as exponential
weights to update their strategies? It would also make sense to consider settings where the cake has
both good and bad parts. Finally, studying richer feedback models, e.g., when Alice and Bob takes
turns cutting and choosing, or allowing Alice to divide the cake into any multiple measurable sets
would be intriguing directions.
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A Appendix: Alice exploiting Bob

In this section we present the proofs for Proposition 1, showing how Alice can exploit a myopic Bob
that chooses his favorite piece in each round, and for Theorem 1, where Bob is nearly myopic.

Before giving the proofs, we formally define what we mean for Alice or Bob to ensure themselves a
certain amount of regret.

Definition 3 (Ensuring Alice’s regret). Suppose Bob plays a strategy SB . A mixed strategy SA

for Alice ensures her Stackelberg regret is at most γ against SB if RegA(H) ≤ γ for all T -round
histories H that could have arisen under the strategy pair (SA, SB).

If instead Alice only knows that Bob plays some strategy from a set B of strategies, then a mixed
strategy SA for Alice ensures her Stackelberg regret is at most γ if it ensures her Stackelberg regret is
at most γ against all SB ∈ B.

Definition 4 (Ensuring Bob’s regret). Suppose Alice plays a strategy SA. A mixed strategy SB for
Bob ensures his regret is at most γ against SA if RegB(H) ≤ γ for all T -round histories H that
could have arisen under the strategy pair (SA, SB).

In general, a mixed strategy SB for Bob ensures his regret is at most γ if it ensures his regret is at
most γ against all Alice strategies.

A.1 Appendix: Exploiting a Myopic Bob

Restatement of Proposition 1. If Bob plays myopically in the sequential setting, then Alice has a
strategy that ensures her Stackelberg regret is O(log T ).

Proof. We consider an explore-then-commit type of algorithm for Alice. In the exploration phase,
Alice does binary search to find Bob’s midpoint (within accuracy of 1/T ). In the commitment
(exploitation) phase, Alice repeatedly cuts at Bob’s approximate midpoint. This leads to Alice getting
nearly her Stackelberg value in nearly every round. Figure 8 shows a visualization of a cake instance
with Alice and Bob’s midpoints, respectively, with Alice’s search process.

Figure 8: Alice’s algorithm against myopic Bob in the exploration phase. Alice’s density is shown
with blue and her midpoint is mA, while Bob’s density is shown with red and his midpoint is mB .
The algorithm initialized ℓ1 = 0 and r1 = 1 and then re-computes them iteratively depending on
Bob’s answers. The constructed interval [ℓt, rt] shrinks exponentially and becomes closer to mB as
the time t increases.

Alice’s algorithm is described precisely in Figure 9.
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Alice’s algorithm when Bob is myopic:

Initialization Set ℓ1 = 0, r1 = 1 and τ = ln(T ).

Exploration For t = 1, 2, . . . , τ :

• Cut at a point xt ∈ [ℓt, rt] such that VA([ℓt, xt]) = VA([xt, rt]). Then observe
Bob’s action bt.

• If bt = L, then set (ℓt+1, rt+1) = (ℓt, xt).

• Else if bt = R, then set (ℓt+1, rt+1) = (xt, rt).

Exploitation For t = τ + 1, . . . , T :

• If mA ≤ ℓτ , then cut at ℓτ − 1/T .

• If mA ≥ rτ , then cut at rτ + 1/T .

Figure 9: Algorithm A.1

We show that Algorithm A.1 in Figure 9 with τ = Θ(lnT ) gives the desired regret bound in several
steps.

Bob’s midpoint lies in the interval [rt, ℓt] for all t To this end, we first claim that Bob’s midpoint
lies in [ℓt, rt] at each round t. We proceed by induction on t. The base case is t = 1 clearly holds since
ℓ1 = 0 and r1 = 1, so mB ∈ [ℓ1, r1]. Suppose that mB ∈ [ℓt, rt] for some t ≥ 1. Given that Alice
cuts at xt ∈ (ℓt, rt), if bt = L, this implies that mB ∈ [ℓt, xt]. Hence mB ∈ [ℓt, xt] = [ℓt+1, rt+1].
This argument also holds when Bob chooses R. Thus by induction, we conclude that mB ∈ [ℓt, rt]
for every t ∈ [T ].

Alice’s midpoint satisfies mA /∈ (ℓt, rt) for every t ≥ 2 Now, during the execution of the
algorithm, we will next show that Alice’s midpoint mA satisfies either of mA ≤ ℓt and mA ≥ rt,
i.e., mA /∈ (ℓt, rt) for every t ≥ 2. To see this, recall that in the first round, Alice cuts x1 = mA. If
b1 = L, then ℓ2 = 0 and r2 = mA. In this case, [ℓ2, r2] = [0,mA], so mA /∈ (ℓ2, r2). Afterwards, it
still holds since the intervals only shrink, i.e., (ℓt+1, rt+1) ⊂ (ℓt, rt). Similarly, consider the case
that b1 = R. Then, we have ℓ2 = mA and r2 = 1. Thus [ℓ2, r2] = [mA, 1], which implies that
mA /∈ (ℓ2, r2). Again since the intervals (ℓt, rt) only shrink, we conclude that mA /∈ (ℓt, rt) for
every t ≥ 2.

Interval exponentially shrinks We have VA([ℓt, rt]) = VA([ℓt−1, rt−1])/2 for every t ∈ [T ], as
we shrink the interval by cutting a point that equalizes Alice’s value for both parts within the interval.
This implies that VA([ℓτ , rτ ]) = 2−τ+1.

Bounding exploitation phase regret In the exploitation phase, due to the observation above, we
have two cases: (i) mA ≤ ℓτ and (ii) mA ≥ rτ . We will prove that in either case, Alice’s single-round
regret in the exploitation phase is at most 2−τ+1 +∆/T .

• For the first case of mA ≤ ℓτ , Alice keeps cutting at ℓτ − 1/T for the rest of rounds as
per the algorithm’s description. Then, Bob will myopically choose R and Alice will obtain
VA([0, ℓτ − 1/T ]). In this case, we have that mA ≤ mB since mB ∈ [ℓτ , rτ ]. Then, Alice’s
single-round regret in the exploitation phase is bounded by

VA([0,mB ])− VA([0, ℓτ − 1/T ]) = VA([ℓτ ,mB ]) + VA([ℓτ − 1/T, ℓτ ])

≤ VA([ℓτ , rτ ]) +
∆

T

= 2−τ+1 +
∆

T
.

• Otherwise suppose mA ≥ rτ . According to the algorithm, Alice keeps cutting rτ + 1/T
for all the rest of the rounds, and Bob will respond with L. In this case we have mA ≥ mB
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since mB ∈ [ℓτ , rτ ]. Similarly, Alice’s single-round regret can be upper-bounded by

VA([mB , 1])− VA([rτ + 1/T, 1]) = VA([mB , rτ ]) + VA([rτ , rτ + 1/T ])

≤ VA([ℓτ , rτ ]) +
∆

T

= 2−τ+1 +
∆

T
.

Hence in both cases, Alice’s single-round regret in the exploitation phase is at most 2−τ+1 +∆/T .

Final regret bound Overall, by simply upper-bounding Alice’s single-round regret in the explo-
ration phase by 1, we obtain the following upper bound for the total regret:

τ · 1 + (T − τ) ·
(
2−τ+1 +

∆

T

)
.

Plugging τ = ln(T ), we obtain the regret bound of O(lnT ), which completes the proof.3

A.2 Appendix: Exploiting a Nearly Myopic Bob

In this section we prove Theorem 1, which explains the payoffs achievable by Alice when Bob has a
strategy with sub-linear regret. We restate it here for reference.

Restatement of Theorem 1 (Exploiting a nearly myopic Bob). Let α ∈ [0, 1). Suppose Bob plays a
strategy that ensures his regret is O(Tα). Let Bα denote the set of all such Bob strategies.

• If Alice knows α, she has a strategy SA = SA(α) that ensures her Stackelberg regret is
O
(
T

α+1
2 log T

)
. The exponent is sharp: Alice’s Stackelberg regret is Ω

(
T

α+1
2

)
for some Bob

strategy in Bα.

• If Alice does not know α, she has a strategy SA that ensures her Stackelberg regret is O
(

T
log T

)
.

The exponent is sharp: if SA guarantees Alice Stackelberg regret O(T β) against all Bob strategies
in Bα for some β ∈ [0, 1), then SA has Stackelberg regret Ω(T ) for some Bob strategy in Bβ .

Proof of Theorem 1. The known-α upper bound of O
(
T

α+1
2 log T

)
follows from invoking Proposi-

tion 4 with f(T ) = Tα. The Ω
(
T

α+1
2

)
lower bound is Proposition 5.

The lower bound for the case where α is unknown follows from Lemma 3. The upper bound follows
from invoking Proposition 4 with f(T ) = T

(log T )4 .

Both upper bounds follow the same template, which is captured by the following proposition.

Proposition 4. Suppose Bob’s strategy has regret O(f(T )), for f(T ) ∈ o
(

T
(log T )2

)
and f(T ) ≥ 1. If

Alice knows f , then she has a strategy that guarantees her Stackelberg regret is O(
√
T · f(T ) log T ).

In particular, if

• Bob’s strategy has regret at most rf(T ), for some r > 0; and

• T is large enough so that T > exp
(
4r∆
δ

)
and f(T ) < T

(lnT )2 ;

then Alice’s payoff satisfies:

uA ≥ T · u∗
A −

(
5

ln 2
+ 6

)√
f(T ) · T lnT .

Before proving the proposition, we present the algorithm that Alice will run to beat a Bob with a
regret guarantee of O(f(T )).

3We do not optimize over τ .
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Alice’s strategy when Bob’s regret is at most r · f(T ), for some constant r > 0:

Informational assumption: Alice needs to know f and T , but not r.

Initialization Define

x0 = 0; y0 = 1; η = ⌈
√

f(T ) · T ⌉; n = ⌊− log2
(
3
√

f(T )/T lnT
)
⌋ .

Exploration For i = 0, 1, . . . , n− 1:
• Step 1: Set ai,0 = xi and ai,6 = yi. For j ∈ [5], let ai,j be the point with

VA([xi, ai,j ]) =
j

6
VA([xi, yi]) .

• Step 2: For j ∈ [5]:
– Cut at ai,j for η rounds. Define ci,j = L if the majority of Bob’s answers were

left when the cut point was ai,j , and ci,j = R otherwise.
• Step 3:

(3.a): If ci,j = L ∀j ∈ [5], then set xi+1 = xi and yi+1 = ai,3.
(3.b): If ci,j = R ∀j ∈ [5], then set xi+1 = ai,3 and yi+1 = yi.
(3.c): Else, there exists a unique k ∈ [4] such that ci,j = R for all j ≤ k and

ci,j = L for all j > k. Set xi+1 = ai,k−1 and yi+1 = ai,k+2.

Exploitation For the rest of the rounds, Alice cuts at χ based on the following cases:

χ =


xn mA < xn

yn mA > yn
mA mA ∈ [xn, yn].

Figure 10: Algorithm A.2

Proof of Proposition 4. Overall, Alice will use an explore-then-commit style of algorithm:

• In the exploration phase, Alice conducts a variant of binary search to locate Bob’s midpoint
mB within an accuracy of O

(√
f(T )/T log T

)
.

• In the exploitation phase, Alice cuts near the estimated midpoint for the rest of the rounds.

The main difficulty that Alice encounters is to precisely locate Bob’s midpoint in the exploration
phase, since Bob can fool Alice if she cuts sufficiently close to his midpoint. We overcome this
challenge by having Alice’s algorithm stay far enough from mB so that Bob is forced to answer
truthfully most of the time.

Notation. Let w =
√
f(T )/T lnT . Then n = ⌊− log2(3w)⌋. Since f(T ) < T

(lnT )2 by the
assumption in the proposition statement, we have w < 1 and thereby n ≥ 0. Also recall the
proposition statement assumes that Bob’s strategy guarantees him a regret of at most rf(T ) for some
r > 0. Moreover, T was chosen such that T > exp

(
4r∆
δ

)
.

Consider the Alice strategy described in Algorithm A.2 (Fig. 10). By Lemma 1, the exploration
phase in Alice’s strategy is well-defined.

Next we derive some useful observations and then combine them to upper-bound Alice’s regret.

Useful observations. By Lemma 2, we have mB ∈ [xn, yn]. Consider the cut point χ in the
exploitation phase. We write INTV[x, y] to denote the interval [x, y] if y ≥ x and [y, x] if x > y.
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Then, we obtain

VA(INTV[χ,mB ]) ≤ VA([xn, yn]) (By definition of χ)

= 2−n (By property 2 of Lemma 2)

≤ 2log2(3w)+1 (Plugging in n and using −⌊−x⌋ ≤ x+ 1 )

= 6

√
f(T )

T
lnT, (1)

where the last identity in (1) holds by definition of w.

To upper-bound the number of times that Bob chooses the piece he likes less in the exploitation phase,
we consider the following three cases with respect to χ:

(a) If χ = xn then mA < xn. Thus xn ̸= 0, so VB([χ,mB ]) > r
√

f(T )/T by Lemma 2. Since
Bob’s regret is at most rf(T ), it follows that Bob takes the wrong piece at most 1

2

√
f(T ) · T

times.

(b) If χ = yn then mA > yn. Thus yn ̸= 1, so VB([mB , χ]) > r
√
f(T )/T by Lemma 2. Since

Bob’s regret is at most rf(T ), it follows that Bob takes the wrong piece at most 1
2

√
f(T ) · T

times.

(c) If χ = mA, then there is no wrong piece because Alice values both equally. Thus this case does
not increase the count of incorrect decisions.

Putting it all together. In the exploration phase, Alice accumulates regret at most n·5
⌈√

f(T ) · T
⌉

,
since that is the length of the exploration phase. In the exploitation phase, the regret comes from two
sources:

• The gap between χ and mB , which is bounded in equation (1).

• The rounds in the exploitation phase in which Bob chooses his least favorite piece. There
are at most 1

2

√
f(T ) · T such rounds by cases (a-c). Thus Alice’s cumulative regret due to

these rounds is also at most 1
2

√
f(T ) · T .

Then Alice’s overall regret is at most:

n · 5
⌈√

f(T ) · T
⌉
+ T ·6

√
f(T )/T lnT +

1

2

√
f(T ) · T

≤n · 10
√
f(T ) · T + T · 6

√
f(T )/T lnT +

1

2

√
f(T ) · T

(Since ⌈x⌉ ≤ 2x ∀x ≥ 1)

≤
(

5

ln 2
+ 6

)√
f(T ) · T lnT, (Plugging in n and rearranging)

which is O
(√

f(T ) · T lnT
)

. This completes the proof.

The following lemma shows that the exploration phase is well-defined.
Lemma 1. Alice’s strategy from Algorithm A.2 (Fig. 10) has the following properties:

(i) If step (3.c) is executed in Alice’s exploration phase, then there is a unique index k ∈ [4] such
that ci,j = R ∀j ≤ k and ci,j = L ∀j > k.

(ii) For each j ∈ [5], define c̃i,j = L if Bob prefers [0, ai,j ] to [ai,j , 1] and c̃i,j = R otherwise. If
there exists j ∈ [5] such that c̃i,j ̸= ci,j , then mB ∈ (ai,j−1, ai,j+1).

(iii) For all i ∈ {0, . . . , n−1} and j ∈ {0, 1, . . . , 5}, we have VB([ai,j , ai,j+1]) > 2r
√
f(T )/T .

Proof. We prove each of the parts (i− iii) required by the lemma.
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Proof of part (iii). Let j ∈ {0, . . . , 5}. Bob’s valuation for the interval [ai,j , ai,j+1] can be lower
bounded as follows:

VB([ai,j , ai,j+1]) ≥ δ · (ai,j+1 − ai,j) (Since vB(x) ≥ δ ∀x ∈ [0, 1])

≥ δ

∆
VA([ai,j , ai,j+1]) (Since vA(x) ≤ ∆ ∀x ∈ [0, 1])

=
δ

∆
· 1
6
VA([xi, yi]) . (2)

By definition, Alice’s strategy halves the cake interval considered with each iteration
i ∈ {0, . . . , n − 1}, that is: VA([xi, yi]) = 1/2 · VA([xi−1, yi−1]). Thus VA([xi, yi]) = 2−i and
2−i ≥ 2−n for all i ∈ {0, . . . , n}. Combining these observations with inequality (2), we obtain

VB([ai,j , ai,j+1]) ≥ 2 · δ

12∆
2−n . (3)

Let w =
√
f(T )/T lnT . Then n = ⌊− log2(3w)⌋. We have

δ

12∆
2−n =

δ

12∆
2−⌊− log2(3w)⌋ (By definition of n)

≥ δ

12∆
2log2(3w) (Since −⌊−x⌋ ≥ x)

>
δ

4∆
·
√

f(T )

T
· 4r∆

δ
(By definition of w and since T > exp

(
4r∆
δ

)
)

= r
√
f(T )/T . (4)

Combining inequalities (3) and (4), we conclude that

VB([ai,j , ai,j+1]) > 2r

√
f(T )

T
. (5)

This concludes the proof of part (iii).

Proof of parts (i) and (ii). For each i = 0, . . . , n − 1, we will show that at most one of the
majority answers ci,j , for j ∈ [5], is different from Bob’s truthful response.

To be precise, recall from the lemma statement that c̃i,j ∈ {L,R} is Bob’s truthful response that
maximizes his value when Alice cut at ai,j .

Define

Si =
{
j ∈ [5] : ci,j ̸= c̃i,j

}
. (6)

Let INTV[x, y] denote the interval [x, y] if y ≥ x and [y, x] if x > y. If j ∈ Si, it must be the case
that Bob picked the wrong piece in at least 1

2

√
f(T ) · T rounds in which the cut was ai,j . Then Bob

accumulated at least VB(INTV[mB , ai,j ]) regret in each such round. Let ℓ ∈ [4]. We have

1

2

√
f(T ) · T

∑
j∈Si

VB(INTV[mB , ai,j ]) ≤ r · f(T ) (Since Bob’s total regret is at most r · f(T ))

<
1

2
VB([ai,ℓ, ai,ℓ+1])

√
f(T ) · T . (By (5))

Dividing both sides by 1
2

√
f(T ) · T gives:∑

j∈Si

VB(INTV[mB , ai,j ]) < VB([ai,ℓ, ai,ℓ+1]) ∀ℓ ∈ [4] . (7)

We show that |Si| ≤ 1. Suppose towards a contradiction that |Si| > 1, meaning there exist indices
j, ℓ ∈ Si with j ̸= ℓ. Then

INTV[ai,j , ai,ℓ] ⊆ (INTV[mB , ai,j ] ∪ INTV[mB , ai,ℓ]) .
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This implies that

VB(INTV[ai,j , ai,ℓ]) ≤ VB(INTV[mB , ai,j ]) + VB(INTV[mB , ai,ℓ]) ≤
∑
j∈Si

VB(INTV[mB , ai,j ]),

(8)

which contradicts (7). Thus the assumption was false and |Si| ≤ 1.

For any j ∈ Si, we must have either mB ∈ (ai,j−1, ai,j ] or mB ∈ [ai,j , ai,j+1), as otherwise (7)
would be violated. Therefore, if c̃i,j ̸= ci,j for some j ∈ [5], then mB ∈ (ai,j−1, ai,j+1). This is
part (ii) required by the lemma.

Finally, we prove part (i). We will show there exists a unique k ∈ [4] such that ci,j = R ∀j ≤ k and
ci,j = L ∀j > k. The proof considers two cases:

• Case |Si| = 0. Then every ci,j truthfully reflects Bob’s preferences: ci,j = R if ai,j < mB ,
and ci,j = L if ai,j > mB; ci,j ∈ {L,R} if ai,j = mB . An illustration can be seen in
Figure 11. In all cases, there is a single switch from R to L, and so the index k is unique.

(a) (b)

Figure 11: Illustration of Alice’s initial cuts for i = 0. In this example, she cuts 3 times at each of
the points a0,j and observes Bob’s choices, which are marked with L/R near each such cut point.
By default, Alice knows what the answer would be if she cut at 0 or 1, so those are set to R and L,
respectively. In Figure (a), the truthful answers (reflecting Bob’s favorite piece according to his actual
valuation) are marked with green, while the lying answers are marked with orange. The majority
answer at each cut point a0,j , denoted c0,j , is illustrated in Figure (b). In this example, the majority
answer at each cut point is consistent with Bob’s true preference.

• Case |Si| = 1. Then all but one of the ci,j’s truthfully reflect Bob’s preferences. An
illustration can be seen in Figure 12.

(a) (b)

Figure 12: Illustration of Alice’s initial cuts for i = 0. In this example, she cuts 3 times at each of
the points a0,j and observes Bob’s choices, which are marked with L/R near each such cut point.
By default, Alice knows what the answer would be if she cut at 0 or 1, so those are set to R and L,
respectively. In Figure (a), the truthful answers (reflecting Bob’s favorite piece according to his actual
valuation) are marked with green, while the lying answers are marked with orange. The majority
answer at each cut point a0,j , denoted c0,j , is illustrated in Figure (b). In this example, the majority
answer at each cut point is consistent with Bob’s true preference except for cut point a0,4 where Bob
lied every time and so the majority is incorrect as well.

By part (ii) of the lemma, the only exception occurs at an index j with the property
mB ∈ (ai,j−1, ai,j+1). But then ci,ℓ = c̃i,ℓ = R for ℓ ≤ j − 1 and ci,ℓ = c̃i,ℓ = L for
ℓ ≥ j + 1, so regardless of ci,j there will be a single switch from R to L.

This concludes that the conditions for ci,j in Step 3.c hold if the conditions in steps 3.a and 3.b do
not. This concludes the proof of part (i).
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The following lemma further reveals several properties of the constructed intervals during the
execution of the algorithm.

Lemma 2. In the exploration phase of Algorithm A.2 (Fig. 10), Alice constructs a sequence of
intervals

[x0, y0], [x1, y1], . . . , [xn, yn]

such that the following properties hold:

• Property 1: x0 = 0 and y0 = 1,

• Property 2: VA([xi+1, yi+1]) =
1
2VA([xi, yi]) for i = 0, . . . , n− 1,

• Property 3: mB ∈ [xi, yi], for all i,

• Property 4: If xi ̸= 0, then VB([xi,mB ]) > r
√
f(T )/T .

• Property 5: If yi ̸= 1, then VB([mB , yi]) > r
√
f(T )/T .

Proof. Property 1 holds since [x0, y0] = [0, 1] by definition of the algorithm.

Property 2 follows from our choice of xi+1 and yi+1 always ensuring that [xi+1, yi+1] contains 3 of
the 6 intervals of equal value the ai,j divide [xi, yi] into.

We will show Properties 3-5 by induction. The base case is i = 0. Then [x0, y0] = [0, 1]. Properties
3-5 are vacuously true for this interval.

Assume that Properties 3-5 hold for i ∈ {0, 1, . . . , n− 1}. For each j ∈ [5], let c̃i,j represent Bob’s
truthful answer when the cut point is ai,j . Formally, we have c̃i,j = L if Bob prefers [0, ai,j ] to
[ai,j , 1] and c̃i,j = R otherwise.

We show Properties 3-5 also hold for i+ 1 by considering the next three cases:

Case ci,j = L for all j. In this case, the majority of Bob’s answers is L at each cut point used by
Alice. An illustration can be seen in Figure 13.

(a) (b)

Figure 13: Illustration of Alice’s initial cuts for i = 0. At each cut point a0,j , the majority of Bob’s
answers is L (i.e. c0,j = L). Then the algorithm recurses in the interval [0, a0,3].

Then the algorithm recurses in the interval [xi+1, yi+1] given by xi+1 = xi and yi+1 = ai,3.
By Lemma 1, we have c̃i,j = ci,j for each of j ∈ {2, 3, 4, 5}, as otherwise Bob’s “true"
preferences would alternate between R and L more than once.

We claim that mB ∈ [xi, ai,2). To see this, consider two cases:

• Case c̃i,1 = ci,1: then mB ∈ [xi, ai,1] since the majority answers are consistent with
Bob’s true preference.

• Case c̃i,1 ̸= ci,1: then mB ∈ (xi, ai,2) by Lemma 1.

Then mB ∈ [xi, ai,2) ⊂ [xi+1, yi+1], which proves Property 3 for i+ 1.

If xi+1 = 0, then Property 4 vacuously follows. Otherwise, we have xi+1 = xi. Then by
the inductive hypothesis we obtain VB([xi+1,mB ]) = VB([xi,mB ]) > r

√
f(T )/T . Thus

Property 4 holds for i+ 1 as well.
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Since mB ∈ [xi, ai,2), we have

VB([mB , yi+1]) ≥ VB([ai,2, ai,3]) > 2r
√

f(T )/T ,

and so Property 5 holds for i+ 1.

Case ci,j = R for all j. In this case, the majority of Bob’s answers is R at each cut point used by
Alice. An illustration can be seen in Figure 14.

(a) (b)

Figure 14: Illustration of Alice’s initial cuts for i = 0. At each cut point a0,j , the majority of Bob’s
answers is R (i.e. c0,j = R). Then the algorithm recurses in the interval [a0,3, 1].

Then the algorithm recurses in the interval [xi+1, yi+1] given by xi+1 = ai,3 and yi+1 = yi.
By Lemma 1, we have c̃i,j = ci,j for each of j ∈ {1, 2, 3, 4}.

We claim that mB ∈ (ai,4, yi]. To see this, consider two cases:

• Case c̃i,5 = ci,5: then mB ∈ [ai,5, yi] since the majority answers are consistent with
Bob’s true preference.

• Case c̃i,5 ̸= ci,5: then mB ∈ (ai,4, yi) by Lemma 1.

Then mB ∈ (ai,4, yi] ⊂ [xi+1, yi+1], which proves Property 3 for i+ 1.

Since mB ∈ (ai,4, yi], we have

VB([xi+1,mB ]) ≥ VB([ai,3, ai,4]) > 2r
√
f(T )/T ,

and so Property 4 holds for i+ 1.

If yi+1 = 1, then Property 5 vacuously follows. Otherwise, we have yi+1 = yi. Then by
the inductive hypothesis we obtain VB([mB , yi+1]) = VB([mB , yi]) > r

√
f(T )/T . Thus

Property 5 holds for i+ 1 as well.

Case where there is a transition from R to L and the last R is ci,k for some k ∈ {1, . . . , 4}. An
illustration can be seen in Figure 15.

(a) (b)

Figure 15: Illustration of Alice’s initial cuts for i = 0. In this example, there is a transition from
R to L in the interval [a0,2, a0,3]. Then the algorithm recurses in the interval [a0,1, a0,4], which is
guaranteed to contain Bob’s midpoint.

In this case, Alice recurses on the interval [xi+1, yi+1] given by

xi+1 = ai,k−1 and yi+1 = ai,k+2 .

If any of the ci,j differ from the c̃i,j , it must be ci,k or ci,k+1 because otherwise Bob’s true
preferences would alternate between R and L more than once, which is impossible. We
consider three sub-cases:
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1. Case c̃i,k ̸= ci,k. Each time Bob picked his less-preferred piece when Alice cut at
ai,k, he lost 2VB(INTV[ai,k,mB ]) in value compared to his regret benchmark. Since
c̃i,k ̸= ci,k, he did so at least 1

2

√
f(T ) · T times. In order to have regret at most rf(T ),

he must have

VB(INTV[ai,k,mB ]) ≤ r

√
f(T )

T
. (9)

By Lemma 1, we have

mB ∈ (ai,k−1, ai,k+1) (10)

and

VB([ai,k−1, ai,k]) > 2r

√
f(T )

T
. (11)

Combining equations (9), (10), and (11) we obtain

VB([xi+1,mB ]) = VB([ai,k−1,mB ]) (Since xi+1 = ai,k−1)
≥ VB([ai,k−1, ai,k])− VB(INTV[ai,k,mB ])

(Since mB > ai,k−1 by (10))

> r
√

f(T )/T . (By (9) and (11))

Thus VB([xi+1,mB ]) > r
√
f(T )/T , so Property 4 holds for i+ 1.

Since mB ∈ (ai,k−1, ai,k+1), we have

VB([mB , yi+1]) ≥ VB([ai,k+1, ai,k+2]) > 2r
√

f(T )/T ,

proving Property 5 for i+ 1.

2. Case c̃i,k+1 ̸= ci,k+1. Each time Bob picked his less-preferred piece when Alice cut
at ai,k+1, he lost 2VB(INTV[ai,k+1,mB ]) in value compared to his regret benchmark.
Since c̃i,k+1 ̸= ci,k+1, he did so at least 1

2

√
f(T ) · T times. In order to have regret at

most rf(T ), he must have

VB(INTV[ai,k+1,mB ]) ≤ r

√
f(T )

T
. (12)

By Lemma 1, we have

mB ∈ (ai,k, ai,k+2) (13)

and

VB([ai,k, ai,k+1]) > 2r

√
f(T )

T
. (14)

Combining equations (12), (13), and (14) we obtain

VB([mB , yi+1]) = VB([mB , ai,k+2]) (Since yi+1 = ai,k+2)
≥ VB([ai,k+1, ai,k+2])− VB(INTV[ai,k+1,mB ])

(Since mB < ai,k+2 by (13))

> r
√
f(T )/T . (By (12) and (14))

Thus VB([mB , yi+1]) > r
√
f(T )/T , so Property 5 holds for i+ 1.

Since mB ∈ (ai,k, ai,k+2), we have

VB([xi+1,mB ]) ≥ VB([ai,k−1, ai,k]) > 2r
√
f(T )/T ,

which proves Property 4 for i+ 1.
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3. Case c̃i,j = ci,j for all j ∈ [5]. Then mB ∈ [ai,k, ai,k+1]. By Lemma 1, we have

VB([xi,mB ]) ≥ VB([xi, ai,k]) = VB([ai,k−1, ai,k]) > 2r
√

f(T )/T (15)

and

VB([mB , yi]) ≥ VB([ai,k+1, yi]) = VB([ai,k+1, ai,k+2]) > 2r
√

f(T )/T . (16)

Inequality (15) implies Property 4 for i+ 1, while inequality (16) implies Property 5
for i+ 1.

In all three cases, mB ∈ [ai,k−1, ai,k+2] = [xi+1, yi+1], showing Property 3 for i+ 1.

Thus, in all three cases, Properties 3-5 hold for i+1. By induction, they hold for all i ∈ {0, 1, . . . , n}.
This completes the proof.

Proposition 5. Let vA be an arbitrary Alice density and α ∈ [0, 1). Then there exists a value density
function ṽB = ṽB(vA) and strategy S̃B = S̃B(vA, α) that ensures Bob’s regret is O(Tα) while

Alice’s Stackelberg regret is Ω
(
T

α+1
2

)
.

Proof. At a high level, the Bob we construct will behave as if his midpoint were at mB − T
α−1
2 .

If Alice calls his bluff, i.e. cuts close to mB “enough” times, then Bob reverts to being honest by
actually selecting his preferred piece.

Formally, let y be an arbitrary point such that y > mA. Define the Bob value density ṽB as follows:

ṽB(x) =

{
1
2y ∀x ∈ [0, y]

1
2(1−y) ∀x ∈ (y, 1] .

(17)

Bob’s value density ṽB is bounded since y is a fixed constant. Moreover, Bob’s midpoint mB is
exactly at y. Let S̃B be Bob’s strategy as defined in Figure 16.

Bob strategy S̃B:

Input: α.
Initialize c = 0. For t ∈ [T ]:

• If mB < at ≤ 1 then play bt = L.

• If 0 ≤ at < mB − T
α−1
2 then play bt = R.

• If mB − T
α−1
2 ≤ at ≤ mB then:

If c ≥ T
α+1
2 then play bt = R; Else, play bt = L.

Update c← c+ 1.

Figure 16: Algorithm A.3

Strategy S̃B ensures that Bob takes his less-favorite piece at most T
α+1
2 times, and this only happens

when Alice cuts in the interval

P = [mB − T
α−1
2 ,mB ] . (18)

Since the density ṽB is bounded from above by a constant, Bob gives up a value of at most O(T
α−1
2 )

in each such round. Thus Bob’s regret is O(Tα).

Now let us compute Alice’s regret with respect to her Stackelberg value. Suppose that T is sufficiently
large, so that mB − T

α−1
2 > mA. There are two cases depending on whether Alice triggers the

switch in Bob’s strategy or not.
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• Alice cuts in P at least T
α+1
2 times. Consider the first T

α+1
2 times Alice cuts in P . Whenever

Alice cuts at some point x ∈ P , her utility will be VA([x, 1]) since Bob plays L. Therefore,
her payoff in that round is maximized when x is minimized, which occurs at the left-hand
endpoint x = mB − T

α−1
2 . However,

mB − T
α−1
2 > mA,

and so

VA

([
mB − T

α−1
2 , 1

])
< 1/2 . (19)

Then her Stackelberg regret over all the rounds in which she cuts in P is at least

T
α+1
2 ·

(
VA([0,mB ])− VA

([
mB − T

α−1
2 , 1

]))
> T

α+1
2 ·

(
VA([0,mA]) + VA([mA,mB ])−

1

2

)
= T

α+1
2 VA([mA,mB ]) ∈ Ω

(
T

α+1
2

)
.

• Alice cuts in P fewer than T
α+1
2 times. In this case, we will show that Alice’s payoff per

round cannot be more than VA

([
0,mB − T

α−1
2

])
. To see this, we consider two sub-cases.

If Alice cuts at a point x < mB − T
α−1
2 , then Bob picks R and Alice’s utility in that round

is

VA([0, x]) < VA

([
0,mB − T

α−1
2

])
. (20)

If Alice cuts at a point x ≥ mB − T
α−1
2 , then Bob picks L and Alice’s utility in that round

is

VA([x, 1]) <
1

2
< VA

([
0,mB − T

α−1
2

])
. (21)

Combining (20) and (21), we obtain that in each round t ∈ [T ], Alice’s utility is

ut
A ≤ VA

([
0,mB − T

α−1
2

])
. (22)

Summing over all rounds t ∈ [T ], we obtain that Alice’s Stackelberg regret is

T∑
t=1

(
u∗
A − ut

A

)
≥

T∑
t=1

(
VA([0,mB ])− VA

([
0,mB − T

α−1
2

]))
(23)

=

T∑
t=1

VA

([
mB − T

α−1
2 ,mB

])
(24)

≥
T∑

t=1

δ · T
α−1
2 ∈ Ω

(
T

α+1
2

)
. (25)

Thus in both cases, Alice’s Stackelberg regret is at least Ω
(
T

α+1
2

)
, which concludes the proof.

Lemma 3. Let α, β ∈ [0, 1). Suppose Alice’s density is vA and her strategy is SA. There exists a
Bob Bob1 = (vB,1, SB,1) that depends on vA and a Bob Bob2 = (vB,2, SB,2) that depends on vA
and SA, such that

• Bob1 has regret O(Tα) (i.e. strategy SB,1 ensures that a player with density vB,1 has regret
O(Tα))

• Bob2 has regret O(T β); and

28



• if SA ensures Alice Stackelberg regret of O(T β) against Bob1, then SA has regret at least
T/6 against Bob2.

Proof. Let x be the cake position such that VA([0, x]) = 2/3, and let y be the cake position such that
VA([0, y]) = 5/6. The first Bob, Bob1, will have a valuation function vB,1 that has midpoint x. We
define Bob1’s strategy SB,1 so that it truthfully picks his preferred piece, i.e.,

SB,1(At, Bt−1) =

{
L if at ∈ (x, 1]

R if at ∈ [0, x] .
(26)

Against Bob1, Alice’s Stackelberg value is 2/3. Suppose SA ensures Alice Stackelberg regret at most
rT β against Bob1 for some r > 0.

Then we define our second Bob, denoted Bob2, having a valuation function vB,2 which has a midpoint
at y. Let k(t) be the number of times Alice cuts in the interval (x, y] in rounds {1, . . . , t}. Then
Bob2’s strategy will be defined as follows:

SB,2(At, Bt−1) =


SB,1(At, Bt−1) if k(t) ≤ 3rT β

L if k(t) > 3rT β and at ∈ (y, 1]

R if k(t) > 3rT β and at ∈ [0, y] .

(27)

Intuitively, SB,2 switches to being honest after Alice cuts in (x, y] sufficiently many times. This
transition gives Bob2 a regret guarantee of O(T β).

When Alice plays SA against Bob1, her total payoff is

uA(SA, SB,1) ≥ 2T/3− rT β . (28)

However, every round she cuts in (x, y], her payoff is less than 1/3. Therefore, against Bob1, her
total payoff can also be bounded by

uA(SA, SB,1) ≤ 2T/3− k(T )/3 . (29)

Combining inequalities (28) and (29), we obtain

k(T ) ≤ 3rT β . (30)

By definition, strategy SB,2 behaves the same as strategy SB,1 when k(T ) ≤ 3rT β . By (30), we
have k(T ) ≤ 3rT β when Alice uses strategy SA. Thus, if Alice uses strategy SA, then Bob1 and
Bob2 behave exactly the same way. Therefore, Alice receives no more than 2/3 per round against
Bob2, so her regret is at least T/6 ∈ Ω(T ).

If Bob’s density is not lower bounded by any constant, then Theorem 1 fails as shown in the next
remark.

Remark 1. Let α ∈ (0, 1). There exist value densities vA and vB , where vA(x) ∈ [δ,∆] ∀x ∈ [0, 1]
and vB(x) ∈ (0,∆] ∀x ∈ [0, 1] such that Bob has a strategy SB which guarantees his regret is at
most Tα and Alice’s Stackelberg regret is at least Ω(T/ log T ), no matter what strategy she uses.

Proof. The specific valuations will be defined in terms of cumulative valuations. Let Alice’s valuation
be:

VA([0, x]) =

{
1
2x if x ∈ [0, 1/2]
3
2x−

1
2 if x ∈ (1/2, 1]

Let Bob’s valuation be:

VB([0, x]) =

{
x if x ∈ [0, 1/2]
1
2 + 2−

1
2x−1 if x ∈ (1/2, 1]

(31)

Intuitively, Alice has a well-behaved piecewise uniform density with midpoint mA = 2/3. Bob’s
density is well-behaved for x ≤ 1/2, but the density rapidly approaches zero just to the right of
x = 1/2.
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Fix an arbitrary α ∈ (0, 1). There exists a point y on the cake such that VB([1/2, y]) = 1
2T

α−1.
Define Bob’s strategy SB as follows:

SB(At, Bt−1, vB , T ) =

{
R if at < y

L if at ≥ y .

This strategy would be honest if Bob’s midpoint were at y rather than 1/2. That means it only differs
from his preferred piece when at ∈ (1/2, y]. The worst outcome for Bob occurs when at = y. But
by construction, even in a round where Alice cuts at y, Bob only loses Tα−1 utility compared to
picking his preferred piece. Since there are T rounds, his overall regret is at most Tα.

Alice, on the other hand, cannot do very well compared to her Stackelberg value. Her Stackelberg
value is 3/4, achieved by cutting at Bob’s midpoint of 1/2 and receiving her preferred piece. But Bob
prevents this payoff by pretending his midpoint is at y. To obtain the exact location of y, note that

VB([1/2, y]) =
1

2
Tα−1.

Plugging (31), this is equivalent to

2−
1

2y−1 =
1

2
Tα−1.

Solving for y, we have

y =
1

2
+

1

(2− 2α) log2 T + 2
.

For sufficiently large T , we have y ∈ (mB ,mA). Alice’s best cut location in each round is then at y
itself, which gives her a per-round payoff of

VA([y, 1]) =
3

4
− 3

(4− 4α) log2 T + 4
.

Adding this up over all T rounds gives a total regret of at least, we obtain

3T

(4− 4α) log2 T + 4
,

which is Ω(T/ log T ) as required. This completes the proof.
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B Appendix: Equitable payoffs

This appendix has two parts. In Appendix B.1, we prove Theorem 2, which shows that Alice can
enforce equitable payoffs. In Appendix B.2, we prove Theorem 3, which shows that Bob can enforce
equitable payoffs.

B.1 Appendix: Alice enforcing equitable payoffs

In this section we prove Theorem 2, the statement of which is included next.
Restatement of Theorem 2 (Alice enforcing equitable payoffs; formal). In both the sequential and
simultaneous settings, Alice has a pure strategy SA, such that for every Bob strategy SB:

• on every trajectory of play, Alice’s average payoff is at least 1/2−o(1), while Bob’s average
payoff is at most 1/2 + o(1). More precisely, for all t ∈ {3, . . . , T}:

uB(1, t)

t
≤ 1

2
+

5∆ + 11

ln(2t/5)
(32)

uA(1, t)

t
≥ 1

2
− 4√

t− 1
, (33)

recalling that ∆ is the upper bound on the players’ value densities.

Moreover, even if Bob’s value density is unbounded, his average payoff will still converge to 1/2.

The proof of the theorem is deferred until additional definitions have been stated and helpful lemmas
have been proved. We first define some notations.
Definition 5 (Set of valuationsWn). For each n ∈ N∗, we define the following set of non-decreasing
piecewise linear functions with n pieces:

Wn =
{
f : [0, 1]→ [0, 1] | f is non-decreasing with f(0) = 0, f(1) = 1, f(i/n) · n ∈ Z≥0, and

f(x) = f
( i

n

)
+
(
x− i

n

)(
f

(
i+ 1

n

)
− f

(
i

n

))
∀i ∈ {0, . . . , n− 1} ∀x ∈

[
i

n
,
i+ 1

n

]}
.

Definition 6 (Set of functions Vn). For each n ∈ N∗, recallWn was given in Definition 5 and define
Vn as the following set of functions:

Vn =

{
Wn if n ̸= 2

W2 ∪ {fA} if n = 2, where fA : [0, 1]→ [0, 1] is the function fA(x) = VA([0, x]).

Definition 7 (The set V). Let V =
⋃∞

n=1 {(n, V ) : V ∈ Vn} , where Vn is given by Definition 6.
Remark 2. By construction, for each n ∈ N∗, every function f ∈ Vn is non-decreasing.

For each n ∈ N∗, Wn contains the nondecreasing piecewise linear functions through a grid with
spacing 1/n. For large n, then,Wn should contain approximations to any given function accurate to
roughly O(1/n).

If Alice bases her strategy on limiting the payoff of the Bobs in eachWn, then she will limit Bob’s
payoff but not necessarily guarantee herself a very good payoff. The inclusion of Alice’s valuation
function in V rectifies this, allowing us to show a much tighter bound on Alice’s payoff.

To formalize the ability of the elements of the Vn to approximate arbitrary valuation functions, we
prove the following three lemmas. The first of them (Lemma 4) is somewhat technical, but most
directly shows the richness of the Vn. It will be used to prove Lemmas 5 and 6, which will be used
directly to bound the payoff of an unbounded-density and bounded-density Bob, respectively.
Lemma 4. Let f : [0, 1] → [0, 1] be continuous and increasing with f(0) = 0 and f(1) = 1.
Suppose there exist n ∈ N∗ and ε ∈ (0,∞) such that

|f(x)− f(y)| ≤ ε ∀x, y ∈ [0, 1] with |x− y| ≤ 1/n . (34)

Then there exists Vn ∈ Vn, where Vn is the set of functions from Definition 6, such that
|f(x)− Vn(x)| ≤ ε+ 2/n ∀x ∈ [0, 1].
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Proof. For x ∈ R, let ⌊x⌉ denote the nearest integer to x, breaking ties in favor of ⌈x⌉ when
x = ⌊x⌋+ 1/2.

Recall the set of functionsWn from Definition 5. Let Vn be the function inWn such that:

Vn(i/n) =
⌊n · f(i/n)⌉

n
∀i ∈ [n− 1] . (35)

Then we claim the function Vn approximates well the function f at the points i/n, that is:

|Vn(i/n)− f(i/n)| =
∣∣∣∣⌊n · f(i/n)⌉n

− f(i/n)

∣∣∣∣ ≤ 1

2n
∀i ∈ {0, . . . , n}, (36)

where

• for i ∈ [n− 1] the inequality in (36) follows from (35);

• for i = 0 it follows from Vn(0) = 0 = f(0), and

• for i = n it follows from Vn(1) = 1 = f(1).

Let x ∈ [0, 1]. We show three inequalities next:

1. By inequality (34) from the lemma statement with parameters ⌊xn⌋/n and ⌈xn⌉/n, we get

f

(
⌈xn⌉
n

)
− f

(
⌊xn⌋
n

)
≤ ε . (37)

2. By inequality (36) with i = ⌈xn⌉, we have∣∣∣∣Vn

(
⌈xn⌉
n

)
− f

(
⌈xn⌉
n

)∣∣∣∣ ≤ 1

2n
. (38)

3. By inequality (36) with i = ⌊xn⌋, we have∣∣∣∣f (⌊xn⌋n

)
− Vn

(
⌊xn⌋
n

)∣∣∣∣ ≤ 1

2n
. (39)

Summing up inequalities (37), (38), (39) and applying the triangle inequality, we obtain∣∣∣∣Vn

(
⌈xn⌉
n

)
− Vn

(
⌊xn⌋
n

)∣∣∣∣ ≤ ε+
1

n
. (40)

We obtain

Vn

(
⌊xn⌋
n

)
− 1

2n
≤ f

(
⌊xn⌋
n

)
(By (36) with i = ⌊xn⌋)

≤ f(x) (Since f is non-decreasing)

≤ f

(
⌈xn⌉
n

)
(Since f is non-decreasing)

≤ Vn

(
⌈xn⌉
n

)
+

1

2n
. (By (36) with i = ⌈xn⌉)

Denoting J =
[
Vn

( ⌊xn⌋
n

)
− 1/(2n), Vn

( ⌈xn⌉
n

)
+ 1/(2n)

]
, we conclude that f(x) ∈ J . Since the

function Vn is non-decreasing by Remark 2, we have

Vn

(
⌊xn⌋
n

)
− 1

2n
≤ Vn (x)−

1

2n
< Vn(x) < Vn(x) +

1

2n
≤ Vn

(
⌈xn⌉
n

)
+

1

2n
. (41)
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Thus Vn(x) ∈ J . Since both f(x) ∈ J and Vn(x) ∈ J , we can bound |f(x)− Vn(x)| as follows:

|f(x)− Vn(x)| ≤ |J |

=

(
Vn

(
⌈xn⌉
n

)
+

1

2n

)
−
(
Vn

(
⌊xn⌋
n

)
− 1

2n

)
≤ ε+

2

n
. (Since Vn

( ⌈xn⌉
n

)
− Vn

( ⌊xn⌋
n

)
≤ ε+ 1/n by (40))

Since this holds for all x ∈ [0, 1], the function Vn required by the lemma exists.

Lemma 5. Let f : [0, 1] → [0, 1] be continuous and increasing with f(0) = 0 and f(1) = 1. For
each ε > 0, there exists n ∈ N∗ and a function Vn ∈ Vn such that

|Vn(x)− f(x)| ≤ ε ∀x ∈ [0, 1], (42)

recalling that the set of functions Vn is given by Definition 6.

Proof. Let ϵ > 0. Since f is continuous and increasing, its inverse f−1 is also continuous and
increasing. Since f(0) = 0 and f(1) = 1, we have f−1(0) = 0 and f−1(1) = 1. Consider a
function g : [0, 1− ε/4]→ [0, 1] defined as

g(x) = f−1 (x+ ε/4)− f−1(x) . (43)

Since f−1 is continuous and bounded over a closed interval, so is the function g. Therefore, by the
extreme value theorem, g attains a global minimum value δ∗. Since f−1 is strictly increasing, g is
never zero, so

δ∗ > 0 . (44)

Since we will analyze g(f(x)), it will be useful to define the set of values x for which g(f(x)) is
well defined, that is:

Sε = {x ∈ [0, 1] | f(x) ∈ [0, 1− ε/4]} . (45)

Since δ∗ is a global minimum of g, we have

g(f(x)) ≥ δ∗ ∀x ∈ Sε . (46)

Using the definition of g (equation (43)) in (46) yields

g(f(x)) = f−1 (f(x) + ε/4)− f−1(f(x)) ≥ δ∗ ∀x ∈ Sε . (47)

Since f−1(f(x)) = x, inequality (47) yields f−1 (f(x) + ε/4)− x ≥ δ∗, or equivalently,

f−1 (f(x) + ε/4) ≥ x+ δ∗ ∀x ∈ Sε . (48)

Applying f to both sides of (48) and using monotonicity of f , we obtain f(x) + ε/4 ≥ f(x+ δ∗)
for all x ∈ Sε, or equivalently

f (x+ δ∗)− f(x) ≤ ε/4 ∀x ∈ Sε . (49)

Since ε > 0 and δ∗ > 0 by (44), there exists n ∈ N such that

n > 1/δ∗ and n > 4/ε . (50)

Note that because the range of f−1 is [0, 1], the left side of (48) is at most 1. Therefore, from (48)
and the fact that δ∗ > 1/n by (50):

1 ≥ x+ δ∗ > x+ 1/n ∀x ∈ Sε (51)

Consider an arbitrary x, y ∈ [0, 1] with x ≤ y ≤ x+ 1/n. We consider two cases:

• Case x ∈ Sε: Since f is strictly increasing and x+ δ∗ ≤ 1 by (51), we have:

f(y) ≤ f(x+ 1/n) < f(x+ δ∗) (52)

Subtracting f(x) from both sides of (52) and applying (49), we obtain

f(y)− f(x) < ε/4 (53)
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• Case x ̸∈ Sε: Then f(x) > 1− ε/4. Since f(y) ≤ 1, we have:

f(y)− f(x) < 1− (1− ε/4) = ε/4 . (54)

Combining cases x ∈ Sε and x ̸∈ Sε gives f(y)−f(x) < ε/4 ∀x, y ∈ [0, 1] with x ≤ y ≤ x+1/n .
Since f is strictly increasing, we have f(x) ≤ f(y) when x ≤ y, and so

|f(x)− f(y)| < ε/4 ∀x, y ∈ [0, 1] with |x− y| ≤ 1/n . (55)

By Lemma 4, there exists a function Vn ∈ Vn such that:

|f(x)− Vn(x)| ≤ ε/4 + 2/n ∀x ∈ [0, 1] . (56)

Since n > 4/ε by (50), inequality (56) gives

|f(x)− Vn(x)| ≤ ε/4 + 2/n < ε/4 + ε/2 < ε ∀x ∈ [0, 1] . (57)

This completes the proof.

Lemma 6. Suppose vB is a value density function for Bob with vB(x) ≤ ∆ for some ∆ > 0 and all
x ∈ [0, 1]. Then for all n ∈ N∗, there exists a function Vn ∈ Vn such that∣∣∣Vn(x)− VB([0, x])

∣∣∣ ≤ ∆+ 2

n
∀x ∈ [0, 1] .

Proof. Let n ∈ N∗. Since Bob’s density is upper bounded by ∆, we have

|VB([0, x])− VB([0, y])| ≤ ∆|x− y| ∀x, y ∈ [0, 1] . (58)

When |x− y| ≤ 1/n, we get |VB([0, x])− VB([0, y])| ≤ ∆|x− y| ≤ D/n.

By Lemma 4 applied to the function f : [0, 1] → [0, 1] given by f(x) = VB([0, x]), there exists
Vn ∈ Vn with |Vn(x)− VB([0, x])| ≤ ∆/n+ 2/n for all x ∈ [0, 1] . This completes the proof.

The set of functions Vn will be used to construct a strategy for Alice. Next we bound the size of Vn
as a function of n, as this rate of growth will influence the error bounds on the players’ utilities.

Lemma 7. |Vn| ≤ 4n−1 ∀n ∈ N∗.

Proof. We first estimate the size of each setWn, and then will infer the bound for the size of Vn.
Consider the density function corresponding to any particular V ∈ Wn. Because V is piecewise linear,
its density is piecewise constant. Each V is then uniquely determined by a sequence d1, d2, . . . , dn,
where di is the value density between i−1

n and i
n . Each di must be a non-negative integer, because

each of these intervals has width 1/n and sees V rise by an integer multiple of 1/n. More strongly,
because V (0) = 0 and V (1) = 1, we must have the next relation between the di’s:

n∑
i=1

di
n

= 1 ⇐⇒
n∑

i=1

di = n . (59)

Thus, the size |Wn| is the number of possible partitions of n into n parts with nonnegative integer
sizes. The size ofWn can then be counted by a standard combinatorics technique. Represent each
choice of d1, d2, . . . , dn with a sequence of n “stars" and n− 1 “bars": d1 stars, then a bar, then d2
stars, then another bar, and so on. Each choice of d1, . . . , dn corresponds to a unique arrangement of
stars and bars. The opposite is also true: given an arrangement, the number of stars between each
pair of bars can be read off as d1, . . . , dn. The size of Vn is then the number of arrangements, which
is
(
2n−1

n

)
.

The upper bound can then be shown by induction. As a base case,
(
2·1−1

1

)
=
(
1
1

)
= 1 ≤ 41−1.
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Now assume
(
2n−1

n

)
≤ 4n−1 for an arbitrary n ≥ 1. We have(

2(n+ 1)− 1

n+ 1

)
=

(2n+ 1)!

(n+ 1)! · n!
=

(2n− 1)! · 2n · (2n+ 1)

n! · (n− 1)! · n(n+ 1)
=

(
2n− 1

n

)
· 2n(2n+ 1)

n(n+ 1)

≤ 4n−1 · 4
n+ 1

2

n+ 1
(By the inductive hypothesis)

≤ 4n−1 · 4 = 4(n+1)−1

So by induction, the bound holds for all n ≥ 1.

Because Vn =Wn for all n ̸= 2, the only case left to verify is n = 2. By calculation, |W2| =
(
3
2

)
= 3,

so including the extra function makes |V2| = 4 = 42−1.

Some other technical lemmas are necessary. The first two relate to the following function, which acts
like an infinite-dimensional inner product.

Definition 8. Let X be the collection of all functions X : V → [−1, 1]. For each pair of functions
X,Y : V → [−1, 1] , define P : X × X → R as follows:

P (X,Y ) =

∞∑
n=1

1

2n |Vn|
∑

V ∈Vn

X(n, V )Y (n, V ) .

Lemma 8. The function P has the properties of an inner product. In particular, for all functions
X,Y, Z : V → [−1, 1] and all constants c ∈ [−1, 1], the following holds:

(1) P (X,Y ) exists, and the infinite sum converges absolutely

(2) P (X,Y ) = P (Y,X)

(3) |P (X,Y )| ≤ 1

(4) P (cX, Y ) = cP (X,Y )

(5) P (X + Z, Y ) = P (X,Y ) + P (Z, Y ), assuming X + Z is in the domain of P

(6) P (X,X) = 0 if X(n, V ) = 0 for all n and all V , and P (X,X) > 0 otherwise

Proof. We separately prove each of the properties.

For the first property, note that the individual terms go to zero

lim
n→∞

∣∣∣∣∣ 1

2n|Vn|
∑

V ∈Vn

X(n, V )Y (n, V )

∣∣∣∣∣ ≤ lim
n→∞

1

2n|Vn|
∑

V ∈Vn

|X(n, V )Y (n, V )|

≤ lim
n→∞

1

2n|Vn|
∑

V ∈Vn

1 (By the bounds on X and Y )

= lim
n→∞

1

2n|Vn|
|Vn| = lim

n→∞

1

2n

= 0 .

Using the above upper bound for individual terms, the sum of the absolute values does not diverge as
follows

∞∑
n=1

∣∣∣∣∣ 1

2n|Vn|
∑

V ∈Vn

X(n, V )Y (n, V )

∣∣∣∣∣ ≤
∞∑

n=1

1

2n
= 1 .

So P (X,Y ) exists and the infinite sum converges absolutely.

The existence is enough for property (2), which follows directly from the product X(n, V )Y (n, V )
being commutative. This calculation directly verifies property (3).

35



The absolute convergence allows for the linear operations in properties (4) and (5) to factor through
the sum.

First, for property (4) we obtain

P (cX, Y ) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

cX(n, V )Y (n, V )

= c

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

X(n, V )Y (n, V )

= cP (A,B) .

For property (5) observe that:

P (X + Z, Y ) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

(X(n, V ) + Z(n, V ))Y (n, V )

=

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

X(n, V )Y (n, V ) + Z(n, V )Y (n, V )

=

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

X(n, V )Y (n, V ) +

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

Z(n, V )Y (n, V )

= P (X,Y ) + P (Z, Y ) .

For property (6), observe that the expression can be rewritten as:

P (X,X) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

X(n, V )2 .

This is a sum of squares, which will be zero if all the included X(n, V ) are zero and positive
otherwise.

Lemma 9. For each x ∈ [0, 1], let Gx : V → [−1/2,−1/2] be given by Gx(n, V ) = V (x) − 1
2 .

Then, for all Z : V → [−1, 1], the following function is continuous in x:

P (Gx, Z) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

(
V (x)− 1

2

)
Z(n, V ).

Proof. Alice’s valuation function in V2 needs to be handled separately. Accordingly, write:

P (Gx, Z) =
∞∑

n=1

1

2n|Vn|
∑

V ∈Vn

(
V (x)− 1

2

)
Z(n, V )

=
1

22|V2|

(
VA([0, x])−

1

2

)
Z(n, VA) +

∞∑
n=1

1

2n|Vn|
∑

V ∈Wn

(
V (x)− 1

2

)
Z(n, V ) .

As long as each of these two parts is continuous, the sum will be too. The first part is continuous
because VA([0, x]) is continuous. To prove the second part, for notational simplicity, define

P ′(Gx, Z) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Wn

(
V (x)− 1

2

)
Z(n, V )

The continuity of P ′ will be shown by directly appealing to the definition of a limit. First, note that
each V ∈ Wn is made of n linear segments, each of width 1

n and height at most 1. Therefore, if
V ∈ Wn, for all x, y ∈ [0, 1]:

|V (y)− V (x)| ≤ |y − x|n (60)
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Fix an arbitrary ε > 0 and x ∈ [0, 1]. Choose δ = ε/2. For any y such that |y − x| < δ:

|P ′(Gy, Z)− P ′(Gx, Z)| = |P ′(Gy −Gx, Z)| (By property (5))

=

∣∣∣∣∣
∞∑

n=1

1

2n|Vn|
∑

V ∈Wn

(V (y)− V (x))Z(n, V )

∣∣∣∣∣
≤

∞∑
n=1

1

2n|Vn|
∑

V ∈Wn

|V (y)− V (x)| · |Z(n, V )| (Triangle inequality)

≤
∞∑

n=1

1

2n|Vn|
∑

V ∈Wn

n|y − x| · 1 (By ineq (60) and Z ≤ 1)

≤ |y − x|
∞∑

n=1

n

2n
(Since |Wn| ≤ |Vn|)

= |y − x| · 2
< 2δ (By choice of δ)
= ε .

Therefore, for all x ∈ [0, 1]:
lim
y→x

P ′(Gy, Z) = P ′(Gx, Z),

which is the definition of P ′(Gx, Z) being continuous in x. This concludes that P (Gx, Z) is
continuous in x.

Finally, the last one is a strengthening of Lemma 1 from Blackwell (1956), under stronger hypotheses.

Lemma 10. Suppose a sequence of nonnegative values δ1, δ2, . . . satisfies, for all t ≥ 1:

δt+1 ≤
1

(t+ 1)2
+

(
t− 1

t+ 1

)
δt .

Then limt→∞ δt = 0. In particular, for all t ≥ 2:

δt ≤
1

t(t− 1)

t∑
i=2

i− 1

i
≤ 1

t
.

Proof. The latter bound will be shown by induction. As a base case, consider t = 2. The condition
for t = 1 gives:

δ2 ≤
1

(1 + 1)2
+

(
1− 1

1 + 1

)
δ1 =

1

4
=

1

2(2− 1)

2∑
i=2

i− 1

i
. (61)

So the base case holds. Now suppose the conclusion holds for some t ≥ 2. Assume that the claim
holds for δt. We can expand the upper bound of δt+1 as follows.

δt+1 ≤
1

(t+ 1)2
+

(
t− 1

t+ 1

)
δt (62)

≤ 1

(t+ 1)2
+

(
t− 1

t+ 1

)
1

t(t− 1)

t∑
i=2

i− 1

i
(By the induction hypothesis)

=
1

(t+ 1)2
+

1

t(t+ 1)

t∑
i=2

i− 1

i
(63)

=
1

(t+ 1)t

t+1∑
i=2

i− 1

i
. (64)
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Now it suffices to show that the last term in (64) is upper bounded by 1/t, which follows from the
following inequality:

1

t(t− 1)

t∑
i=2

i− 1

i
≤ 1

t(t− 1)

t∑
i=2

1 =
1

t(t− 1)
· (t− 1) =

1

t
. (65)

Thus δt+1 ≤ 1/t, which completes the proof.

Now the groundwork is laid to prove Theorem 2. The idea is to limit every strategy and every
valuation in every Vn to an average payoff of 1/2, which is sufficient to limit Bob equipped with
arbitrary valuation as well.

Proof of Theorem 2. We first define the Alice’s strategy in an analytical manner, and then prove that
it is well-defined. Then we will show that this strategy will force Bob’s payoff to be at most 1/2
on average, by showing both that Bob’s valuation can be well-approximated by functions in V and
that such valuation functions are limited to a payoff of 1/2 on average. Finally, we establish explicit
convergence rates for Bob’s payoff if his valuation is bounded, as well as the convergence of Alice’s
payoff to 1/2.

Defining Alice’s strategy SA Consider Alice’s decision in round T . In each round t < T , let
the payoff to Bob whose cumulative valuation function is V be ut,V . For each x ∈ [0, 1], let
Gx : V → [−1, 1] be a function defined as Gx(n, V ) = V (x)− 1/2. Let Ut(n, V ) = ut,V − 1/2 for
t = 1, . . . , T − 1, and let U t(n, V ) =

∑t
i=1 Ui(n, V )/t. Let Wt(n, V ) = max{0, U t(n, V )} for

t = 1, . . . , T − 1. In round T , Alice’s strategy SA is to cut at a point x such that P (Gx,WT−1) = 0.

We then show that SA is well-defined. It suffices to prove that such an x always exists. To this end,
observe that

P (G0,WT−1) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

(
V (0)− 1

2

)
WT−1(n, V )

=

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

−1

2
WT−1(n, V )

≤
∞∑

n=1

1

2n|Vn|
∑

V ∈Vn

0 (Since WT−1(·) is nonnegative)

= 0 .

Using similar algebra for P (G1,WT−1), we obtain

P (G1,WT−1) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

(
V (1)− 1

2

)
WT−1(n, V )

=

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

1

2
WT−1(n, V )

≥
∞∑

n=1

1

2n|Vn|
∑

V ∈Vn

0 (Since WT−1(·) is nonnegative)

= 0

By Lemma 9, P (Gx,WT−1) is continuous in x, so by the Intermediate Value Theorem there exists x
such that P (Gx,WT−1) = 0.

Bounding Bob’s payoff Define

S =

{
X : −1

2
≤ X(n, V ) ≤ 0 for all (n, V ) ∈ V

}
.
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For each round t, let δt be the distance from S to U t, defined as:

δt = inf
X∈S

P (U t −X,U t −X). (66)

For t < T , let Yt : V → [−1/2, 1/2] be the function defined by:

Yt(n, V ) = min{0, U t(n, V )}

By Claim 3, we have δt ≤ 1/t for all t ≥ 2.

Now we will show that this strategy guarantees that, for any Bob’s valuation function vB and any
strategy SB Bob employs, his average payoff is at most 1/2. Consider an arbitrary ε > 0. It will be
shown that, for some sufficiently large T , Bob’s average payoff up to any point after round T is at
most 1/2 + ε.

In the general case, this convergence can be established from Lemma 5. Consider N,T ∈ N∗ such
that

• N is such that there exists V ′ ∈ VN with |V ′(x)− VB([0, x])| < ε/2 for all x ∈ [0, 1].

• T is sufficiently large so that

δt <
ε2

4 · 2N |VN |
∀t ≥ T . (67)

For example, taking T =
⌈ 4·2N |VN |

ε2

⌉
would suffice.

We will show that for each t ≥ T , we have U t(N,V ′) < ε/2. This trivially holds if U t(N,V ′) ≤ 0,
so assume U t(N,V ′) > 0. We then obtain

U t(N,V ′) =

√
2N |VN | ·

1

2N |VN |
U t(N,V ′)2

=

√
2N |VN | ·

1

2N |VN |
(
U t(N,V ′)− Yt(N,V ′)

)2
, (68)

where (68) follows from the fact that Yt(N,V ′) = min{0, U t(N,V ′)} = 0. Using (68), we can
upper bound U t(N,V ′) as follows:

U t(N,V ′) ≤

√√√√2N |VN |
∞∑

n=1

1

2n|Vn|
∑

V ∈Vn

(
U t(n, V )− Yt(n, V )

)2
=

√
2N |VN |P (U t − Yt, U t − Yt)

=
√
2N |VN |δt (69)

<

√
2N |VN | ·

ε2

4 · 2N |VN |
=

ε

2
. (By (67))

Therefore, we have U t(N,V ′) < ε/2 for all t ≥ T . Translating back into payoffs, this gives a Bob
whose cumulative valuation function is V ′ an average payoff of less than 1/2 + ε/2. By the choice
of V ′, we have

|V ′(x)− VB([0, x])| < ε/2 for all x ∈ [0, 1] . (70)

so the average payoff to a Bob whose valuation function is vB is less than 1/2 + ε. Since this
construction works for all ε > 0, Bob’s average payoff satisfies the following inequality as required:

uB(1, t)

t
≤ 1

2
+ o(1) .
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Explicit bounds It remains to prove inequality (32) when Bob’s density is upper bounded by ∆,
and prove Alice’s explicit payoff in inequality (33). Choose an integer N large enough that

∆+ 2

N
<

ε

2
.

For instance, taking N = ⌈2(∆ + 2)/ε⌉ is sufficient. By Lemma 6, there exists V ′ ∈ VN such that

|V ′(x)− VB([0, x])| < (∆ + 2)/N for all x ∈ [0, 1] .

Choose T in exactly the same way as the general case, i.e. T = ⌈4 · 2N |VN |/ε2⌉. By exactly the
same algebra as the general case, we can conclude that U t(N,V ′) < ε/2 for all t ≥ T . By the choice
of V ′, we have

|V ′(x)− VB([0, x])| < ε/2 for all x ∈ [0, 1] , (71)

so the average payoff to Bob is at most 1
2 + ε.

In this case, Bob’s average payoff will be within ε of 1/2 by time

Tε =

⌈
4 · 2N |VN |

ε2

⌉
, where N = ⌈2(∆ + 2)/ε⌉ . (72)

Hence, for such Tε, we have

Tε ≤
⌈
4 · 2N · 4N−1

ε2

⌉
.

Since ⌈x⌉ ≤ 2x for x ≥ 1/2, this implies

Tε ≤ 2
8N

ε2
.

Due to our choice of N , we can further obtain

Tε ≤ 2 · 8
2(∆+2)

ε +1

ε2
. (73)

Taking the natural logarithm of both sides in (73), we have

ln(Tε) ≤ ln(16) +
2(∆ + 2)

ε
ln(8) + 2 ln

(
1

ε

)
.

Using the fact that ln(x) ≤ x− 1 for every x > 0, it follows that

ln(Tε) ≤ ln(16) +
2(∆ + 2)

ε
ln(8) + 2

(
1

ε
− 1

)
. (74)

Rearranging (74), we finally obtain

ε ≤ 2 ln(8)(∆ + 2) + 2

ln(Tε)− ln(16) + 2
.

Note that this requires the step of dividing by ln(Tε)− ln(16) + 2 and it needs this quantity to be
positive, which is indeed positive for T ≥ 3. Rounding the terms gives the desired regret bound for
Bob.

To provide Alice’s payoff bound in inequality (33), consider a hypothetical Bob whose valuation
function ṽB is exactly the same as Alice’s valuation function vA. For all rounds τ , the payoff ũτ

B to
this Bob then satisfies:

uτ
A + ũτ

B = VA([0, aτ ]) + VA([aτ , 1])
(One player gets VA([0, aτ ]) and the other gets VA([aτ , 1]))
= 1 (75)

For any t, summing uτ
A + ũτ

B over τ ∈ [t] and dividing by t then gives:

uA(1, t)

t
+

ũB(1, t)

t
= 1 (76)
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So it suffices to upper-bound this particular Bob’s payoff to lower-bound Alice’s payoff.

Choose an arbitrary ε > 0. Let Tε =
⌈ 22|V2|

ε2

⌉
, ensuring δt <

ε2

22|V2| for all t ≥ Tε. By construction,
Alice’s valuation function VA([0, x]) ∈ V2. Taking N = 2 and V ′ = VA, we can then use identical
algebra as the general-Bob case up to (69) to conclude that, for t ≥ Tε:

U t(2, VA) ≤
√

22|V2|δt (Copying over (69))

<

√
22|V2| ·

ε2

22|V2|
= ε (77)

So this Bob’s payoff is upper-bounded by 1/2+ ε, and so by (76) Alice’s payoff is lower-bounded by
1/2− ε. To solve for ε, observe that Tε ≤ 16/ε2 + 1. Solving this bound on Tε for ε gives

ε ≤ 4√
Tε − 1

,

and it finishes the proof.

We finally provide the claims and their proofs used throughout the main proof.

Claim 1. In the setting of Theorem 2, if U t /∈ S, then argminX∈S P (U t − X,U t − X) exists.
Furthermore:

argmin
X∈S

P (U t −X,U t −X) = Yt = min{0, U t(n, V )}

Proof of the claim. Let Yt = min{0, U t(n, V )} ∈ S . For any X ∈ S,

P (U t −X,U t −X) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

(
U t(n, V )−X(n, V )

)2

=

∞∑
n=1

1

2n|Vn|

 ∑
V ∈Vn

Ut(n,V )>0

(
U t(n, V )−X(n, V )

)2
+

∑
V ∈Vn

Ut(n,V )≤0

(
U t(n, V )−X(n, V )

)2


(78)

Since X ∈ S, we have that X(n, V ) ≤ 0 for every n and V , due to our construction of S.

Therefore, replacing them with 0 brings them closer to any positive value and so decreases the first
sum of squares. The second sum of squares is nonnegative, so it can be reduced by replacing it with
0. Applying these simplifications, we obtain

∞∑
n=1

1

2n|Vn|

 ∑
V ∈Vn

Ut(n,V )>0

(
U t(n, V )−X(n, V )

)2
+

∑
V ∈Vn

Ut(n,V )≤0

(
U t(n, V )−X(n, V )

)2


≥
∞∑

n=1

1

2n|Vn|

 ∑
V ∈Vn

Ut(n,V )>0

(
U t(n, V )− 0

)2
+ 0


=D(U t − Yt, U t − Yt), (Only the U(n, V ) > 0 terms remain)

and it proves the claim.

Claim 2. In the setting of Theorem 2, the following properties hold when U t /∈ S.

1. P (Yt,Wt) = 0

2. P (Ut+1,Wt) = 0

41



3. P (U t,Wt) > 0

4. P (X,Wt) ≤ 0 for all X ∈ S

Proof of the claim. All of these properties can be explained by expanding the dot product P and
referring to the strategy SA. The first one is the most straightforward: Yt and Wt are never nonzero
in the same coordinate, so P (Yt,Wt) = 0. For the second one, by definition, in round t+ 1 Alice
cuts at a point x such that P (Gx,Wt) = 0. If Bob selects the left piece, Ut+1 = Gx. If Bob instead
selects the right piece:

Ut+1(n, V ) = (1− V (x))− 1

2

=
1

2
− V (x)

= −Gx(n, V ) .

So by property 4 of Lemma 8, we have P (Ut+1,Wt) = −P (Gx,Wt) = 0. Because P is linear as per
property 5 in Lemma 8, any mixed strategy over these outcomes must also satisfy P (Ut+1,Wt) = 0.

For part (3) of the lemma, expanding the dot product gives:

P (X,Wt) =

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn

X(n, V ) ·max{0, U t(n, V )}

=

∞∑
n=1

1

2n|Vn|
∑

V ∈Vn,Ut(n,V )>0

X(n, V )U t(n, V ) .

As there exists (n, V ) such that U t(n, V ) > 0, this sum is strictly positive when X = U t(n, V ), and
so P (U t,Wt) > 0. Similarly, for X ∈ S, we have X(n, V ) ≤ 0 for all (n, V ), so P (X,Wt) ≤
0.

Claim 3. In the setting of Theorem 2, the sequence {δt}∞t=1 defined in (66) satisfies the inequality
δt ≤ 1/t for all t ≥ 2.

Proof. We will show that our construction of δt satisfies the recursion formula defined in Lemma 10.
We first focus on the case such that δt > 0, which is equivalent to U t /∈ S , and then prove that it also
holds for δt = 0. Given that δt > 0, we observe that

δt+1 = inf
X∈S

P (U t+1 −X,U t+1 −X) ≤ P (U t+1 − Yt, U t+1 − Yt) . (79)

By rewriting the right hand side of (79), we obtain

δt+1 ≤ P ((U t+1 − U t) + (U t − Yt), (U t+1 − U t) + (U t − Yt)) (80)

Distributing over P in the expression on the right hand side of (80), we get that (80) is equivalent to

δt+1 ≤ P (U t+1 − U t, U t+1 − U t) + 2P (U t+1 − U t, U t − Yt) + P (U t − Yt, U t − Yt)

= P (U t+1 − U t, U t+1 − U t) + 2P (U t+1 − U t, U t − Yt) + δt, (81)

where the inequality follows from Claim 1.

Noting that U t+1 − U t = (Ut+1 − U t)/(t+ 1), we have

P (U t+1 − U t, U t − Yt) =
1

t+ 1
P (Ut+1 − U t, U t − Yt)

=
1

t+ 1
P ((Ut+1 − Yt) + (Yt − U t), U t − Yt)

=
1

t+ 1

(
P (Ut+1 − Yt, U t − Yt) + P (Yt − U t, U t − Yt)

)
.
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By using U t = Wt + Yt, we can expand it by

P (U t+1 − U t, U t − Yt) =
1

t+ 1

(
P (Ut+1,Wt)− P (Yt,Wt)− P (Yt − U t, U t − Yt)

)
.

=
1

t+ 1
(P (Ut+1,Wt)− P (Yt,Wt)− δt) (By Claim 1)

=
1

t+ 1
(0− 0− δt) (By Claim 2)

= − 1

t+ 1
· δt. (82)

Further, observe that

P (U t+1 − U t, U t+1 − U t) =
1

(t+ 1)2
P (Ut+1 − U t, Ut+1 − U t)

≤ 1

(t+ 1)2
, (83)

where the inequality follows from Property (3) in Lemma 8.

Putting (81), (82) and (83) together, we obtain the following inequality for δt > 0:

δt+1 ≤ P (U t+1 − U t, U t+1 − U t) + 2P (U t+1 − U t, U t − Yt) + δt

≤ 1

(t+ 1)2
− 2

t+ 1
δt + δt

=
1

(t+ 1)2
+

(
1− 2

t+ 1

)
δt .

Now, we show that the same inequality holds for the case such that δt = 0 too. Since U t ∈ S, we
obtain

δt+1 = inf
X∈S

P (U t+1 −X,U t+1 −X)

≤ P (U t+1 − U t, U t+1 − U t)

≤ 1

(t+ 1)2
(By (83))

=
1

(t+ 1)2
+

(
1− 2

t+ 1

)
δt.

By Lemma 10, we therefore have that δt ≤ 1/t for t ≥ 2.

B.2 Appendix: Bob enforcing equitable payoffs

In this section, we prove Theorem 3, which shows how Bob can enforce equitable payoffs.
Restatement of Theorem 3 (Bob enforcing equitable payoffs; formal).

• In the sequential setting: Bob has a pure strategy SB , such that for every Alice strategy
SA, on every trajectory of play, Bob’s average payoff is at least 1/2− o(1), while Alice’s
average payoff is at most 1/2 + o(1). More precisely,

uB

T
≥ 1

2
− 1√

T
and

uB

T
≤ 1

2
+

(
∆

2δ
+ 2

)
1√
T
,

recalling that δ and ∆ are, respectively, the lower and upper bounds on the players’ value
densities.

• In the simultaneous setting: Bob has a mixed strategy SB , such that for every Alice strategy
SA, both players have average payoff 1/2 in expectation.
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Proof of Theorem 3. Bob’s strategy for the simultaneous setting follows from Proposition 6. His
strategy for the sequential setting follows from Proposition 7.

Proposition 6. In the simultaneous setting, Bob has a mixed strategy SB such that, for every Alice
strategy SA:

E[uA]

T
=

E[uB ]

T
=

1

2
.

Proof. Bob’s strategy is very simple: in each round, randomly pick L or R with equal probability.

To analyze the expected payoffs, consider an arbitrary player i ∈ {A,B} and arbitrary round t. Bob
is equally likely to pick L or R in round t, so each player is equally likely to receive [0, at] or [at, 1]
in round t. Therefore, their expected payoff is:

E[ut
i] =

1

2
Vi([0, at]) +

1

2
Vi([at, 1])

=
1

2
Vi([0, 1]) (Since valuations are additive)

=
1

2
. (84)

Summing (84) over the T rounds gives the desired expected payoffs for each player.

Proposition 7. Bob has a pure strategy SB , such that for every Alice strategy SA, the cumulative
utilities in the sequential game are bounded by:

uA(SA, SB) ≤ T/2 +

(
∆

2δ
+ 2

)
·
√
T and uB(SA, SB) ≥ T/2−

√
T .

Proof. Bob devises his strategy SB by considering a division of the cake into P = ⌈
√
T ⌉ consecutive

intervals I1, . . . , IP of equal value to him. That is, Bob chooses points 0 = z0 ≤ z1 . . . ≤ zP = 1
such that

Ij =

{
[zj−1, zj) if 1 ≤ j ≤ P − 1;

[zP−1, zP ] if j = P ;
and VB(Ij) = 1/P ∀j ∈ [P ] . (85)

An illustration of the division into intervals used by Bob can be seen in Figure 17.

𝒛𝟐
𝟎 𝟏

𝒛𝟏 𝒛𝟑 𝒛𝟒

Figure 17: Example of a Bob density and the discretization used by Bob when T = 10. The number
of intervals is P = ⌈

√
T ⌉ = 4. The intervals are Ij = [zj−1, zj) for j ∈ [3] and I4 = [z3, z4], with

VB(Ij) = 1/4 ∀j ∈ [4].

Bob’s strategy SB is defined as follows. Bob keeps a counter j associated with each interval Ij , such
that the value of the counter at time t, denoted cj,t, represents how many times Alice has cut inside
the interval Ij in the first t rounds (including round t). For each time t ∈ [T ]:
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• Let Ij be the interval that contains Alice’s cut at time t (that is, at ∈ Ij), for j ∈ [P ].

• If cj,t is even then Bob plays L; if cj,t is odd, then Bob plays R.

Informally, Bob alternates between L and R inside each interval Ij . We argue that this Bob strategy
ensures his payoff is at least 1/2− o(1) per round, while Alice cannot get more than 1/2 + o(1) per
round.

For each i ∈ [P ] and j ∈ [ci,T ], let ri,j be the first time when the number of cuts in Ii reached j.
That is,

ri,j = min{t ∈ N | ci,t = j and at ∈ Ii} .

By definition of the sequence {ri,ℓ}, for each i, j ∈ N with 2j ≤ ci,T :

• Alice cut in the interval Ii in both rounds ri,2j−1 and ri,2j (meaning ari,2j−1
, ari,2j ∈ Ii);

• Bob played different actions in the rounds ri,2j−1 and ri,2j .

We view rounds ri,2j−1 and ri,2j as a pair. For each i ∈ [P ], there is at most one round ri,j that does
not have a pair, namely round ri,ci,T : the last round Alice cut in Ii. However, this loss only represents
at most P rounds in total, which will translate to a sub-linear loss for either Alice’s or Bob’s utility
estimates.

Now we can bound the cumulative utility of each player.

Bob’s payoff. For each i, j ∈ N with 2j ≤ ci,T , Bob’s payoff across the two rounds ri,2j−1 and
ri,2j is bounded by

u
ri,2j−1

B + u
ri,2j
B ≥ 1− VB(Ii) = 1− 1

P
. (86)

Since the rounds ri,j with i ∈ [P ] and 2j ≤ ci,T represent a subset of the total set of rounds
[T ], Bob’s cumulative payoff is at least

T∑
t=1

ut
B ≥

P∑
i=1

 ∑
j∈N:2j≤ci,T

u
ri,2j−1

B + u
ri,2j
B


≥

P∑
i=1

 ∑
j∈N:2j≤ci,T

(
1− 1

P

) (By (86))

≥
(
1− 1

P

)
T − P

2
(Since the sum is over at least T−P

2 pairs of rounds)

Since P = ⌈
√
T ⌉ ≥

√
T , we get

uB =

T∑
t=1

ut
B ≥

(
1− 1

P

)
T − P

2
=

T

2
− ⌈
√
T ⌉
2
− T

2⌈
√
T ⌉

+
1

2

≥ T

2
−
√
T + 1

2
−
√
T

2
+

1

2

=
T

2
−
√
T . (87)

Alice’s payoff. For each i, j ∈ N with 2j ≤ ci,T , Alice’s payoff across rounds ri,2j−1 and ri,2j is

u
ri,2j−1

A + u
ri,2j
A ≤ 1 + VA(Ii) ≤ 1 +

∆

δ
VB(Ii) = 1 +

∆

δ
· 1
P

. (88)
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There is at most one round without a pair for each interval Ii, namely round ri,ci,T : the last
time Alice cut in Ii. For each such round without a pair, we upper bound Alice’s payoff by
1. Then we can upper bound Alice’s cumulative utility by

T∑
t=1

ut
A ≤ P +

P∑
i=1

 ∑
j∈N:2j≤ci,T

u
ri,2j−1

A + u
ri,2j
A


≤ P +

P∑
i=1

 ∑
j∈N:2j≤ci,T

(
1 +

∆

δ
· 1
P

) (By (88))

≤ P +
T

2

(
1 +

∆

Pδ

)
(Since the sum is over at most T/2 pairs)

=
T

2
+

T

P
· ∆
2δ

+ P

≤ T

2
+
√
T

(
∆

2δ
+ 2

)
(P = ⌈

√
T ⌉ ≤ 2

√
T )

This completes the proof.

46



C Appendix: Fictitious play

In this section, we analyze the fictitious play dynamics. We first formally define fictitious play in
terms of the empirical frequency and empirical distribution:

• The empirical frequency of Alice’s play up to (but not including) time t is:

ϕt
A(x) =

t−1∑
τ=1

1{aτ=x} ∀x ∈ [0, 1] .

• The empirical frequency of Bob’s play up to (but not including) time t is:

ϕt
B(x) =

t−1∑
τ=1

1{bτ=x} ∀x ∈ {L,R} .

• The empirical distribution of player i’s play up to (but not including) time t is:

pti(x) =
ϕt
i(x)

(t− 1)
,

Where x ∈ [0, 1] for Alice and x ∈ {L,R} for Bob.

Definition 9. (Fictitious play) In round t = 1, each player simultaneously selects an arbitrary action.
In every round t = 2, . . . , T , each player simultaneously best responds to the empirical distribution of
the other player up to time t. If there are multiple best responses, the player chooses one arbitrarily.

We now give the proof of Theorem 4 using lemmas that will be presented later, and then prove the
required lemmas.
Restatement of Theorem 4. When both Alice and Bob run fictitious play, regardless of tie-breaking
rules, their average payoff will converge to 1/2 at a rate of O(1/

√
T ). Formally:∣∣∣∣uA

T
− 1

2

∣∣∣∣ ≤ 2
√
10√
T

and
∣∣∣∣uB

T
− 1

2

∣∣∣∣ ≤ √10√T ∀T ≥ 5 . (89)

Proof. The bounds on Bob’s payoff follow immediately from Lemma 21, which states that

T

2
−
√
10T ≤

T∑
t=1

ut
B ≤

T

2
+
√
10T . (90)

By Lemma 22,

T −
√
10T ≤

T∑
t=1

(
ut
A + ut

B

)
≤ T +

√
10T . (91)

Subtracting equation (90) from (91) gives

T

2
− 2
√
10T ≤

T∑
t=1

ut
A ≤

T

2
+ 2
√
10T . (92)

Since uA =
∑T

t=1 u
t
A and uB =

∑T
t=1 u

t
B , both players’ utilities are bounded as required, which

completes the proof.

To prove the required lemmas, we first introduce several notations. For ease of exposition, we often
use round t = 0 as a fake round in which nothing actually happens and all the defined quantities are
zero.
Definition 10. For t ∈ {0, 1, . . . , T}:

• Let rt be the number of rounds in which Bob has picked R, up to and including round t.

47



• Let ℓt be the number of rounds in which Bob has picked L up to and including round t.

• Let αt = rt − ℓt.

• Let βt =
∑t

i=1(2VB([0, ai])− 1).

• Let ρt = |αt|+ |βt|, which we call the radius.

We remark that in the fake round of t = 0, all these variables have the value zero. Alice’s action
under fictitious play entirely depends on the variable αt while Bob’s action entirely depends on βt.
Overall, we will bound the payoffs using the growth of the radius ρt over t = 0, 1, . . . , T . To this
end, we introduce two lemmas that will play an essential role throughout the proof.

First, the following lemma formally argues that the action taken by each player is guided by their
corresponding variable α and βt, respectively.
Lemma 11. Let t ∈ {0, 1, . . . , T − 1}. Then the following hold for round t+ 1:

• Alice’s action with respect to αt:

– If αt > 0, Alice will cut at 1.
– If αt < 0, Alice will cut at 0.
– If αt = 0, any action would incur the same payoff, so she could cut anywhere.

• Bob’s action with respect to βt:

– If βt > 0, Bob will pick L.
– If βt < 0, Bob will pick R.
– If βt = 0, any action would incur the same payoff, so he could pick either L or R.

Proof. First, consider Alice’s choice. For t = 0, there is no history, so any choice has the same value
to her; accordingly, α0 = 0. For t ≥ 1, the expected value she assigns to any particular cut location x
is:

1

t
(rtVA([0, x]) + ℓtVA([x, 1])) =

1

t
(rtVA([0, x]) + ℓt(1− VA([0, x]))

=
rt − ℓt

t
VA([0, x]) +

ℓt
t

=
αt

t
VA([0, x]) +

ℓt
t
. (93)

From (93), we get that Alice’s cut decision is entirely based on αt. If αt < 0, she will minimize
VA([0, x]), which means she cuts at 0. If αt > 0, she will maximize VA([0, x]), which means she
cuts at 1. If αt = 0, then her choice of x doesn’t affect her expected value.

Now consider Bob’s choice. For t = 0, there is no history, so Bob is indifferent between L and R;
accordingly, β0 = 0. For t ≥ 1, the expected value he assigns to choosing L is:

EL =
1

t

t∑
i=1

VB([0, ai]) . (94)

The expected value he assigns to choosing R is:

ER =
1

t

t∑
i=1

VB([ai, 1]) . (95)

Combining (94) and (95), the difference between his expected value for choosing L and R is:

EL − ER =

(
1

t

t∑
i=1

VB([0, ai])

)
−

(
1

t

t∑
i=1

VB([ai, 1])

)
=

1

t

t∑
i=1

(2VB([0, ai])− 1) =
βt

t
.

(96)

From (96), we get that Bob’s decision is entirely based on βt. If βt < 0, he values R more than L, so
he picks R. If βt > 0, he values L more than R, so he picks L. If βt = 0, he values each equally.
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The following lemma further describes the evolution of αt and βt given the actions taken by the
players.

Lemma 12. For each round t ∈ [T ]:

• Alice’s action affects βt as follows:

– If Alice cuts at 0 in round t, then βt = βt−1 − 1.
– If Alice cuts at 1 in round t, then βt = βt−1 + 1.
– If she cuts at x ∈ (0, 1), then |βt − βt−1| < 1.

• Bob’s action affects αt as follows:

– If Bob picks L in round t, then αt = αt−1 − 1.
– If Bob picks R in round t, then αt = αt−1 + 1.

Proof. First, we consider the impact of Alice’s cut point at on βt. Explicitly writing out the difference
βt − βt−1 gives:

βt − βt−1 =

t∑
i=1

(2VB([0, ai])− 1)−
t−1∑
i=1

(2VB([0, ai])− 1) = 2VB([0, at])− 1 . (97)

If at = 0, then VB([0, at]) = VB([0, 0]) = 0, so by (97) we have βt − βt−1 = −1 as desired.

If at = 1, then VB([0, at]) = VB([0, 1]) = 1, so by (97) we have βt − βt−1 = 1.

If at ∈ (0, 1), then there is at least some cake on each side of at, so we have VB([0, at]) ∈ (0, 1). By
(97), we have βt − βt−1 ∈ (−1, 1), so |βt − βt−1| < 1 as stated by the lemma.

Second, we consider the impact of Bob’s choice on αt. Explicitly writing out the difference αt−αt−1,
we obtain the following:

αt − αt−1 = (rt − ℓt)− (rt−1 − ℓt−1) = (rt − rt−1)− (ℓt − ℓt−1) =

{
1 bt = R

−1 bt = L
(98)

This completes the proof.

Let us elaborate more the dynamics of each player based on Lemma 11 and 12. If either of αt or βt

is exactly 0, the corresponding player will use their tie-breaking rules. Ignoring these cases, these
choices lead to movement through (αt, βt) space that spirals counter-clockwise around the origin at
exactly 45 degree angles. Figure 18-(a) describes the overall dynamics of the variables (αt, βt).

The following lemma shows a symmetry that will help reduce the number of cases in the subsequent
analysis. Figure 18-(b) depicts the rotational symmetry of fictitious play dynamics in the α-β-plane
shown by the lemma. Specifically, the symmetry will allow us to assume αt ≥ 0 without loss of
generality when analyzing ρt and ut

B .

Lemma 13. Consider an arbitrary pair of tie-breaking rules for both players. Consider the resulting
sequence for the variables αt, βt and ut

B for t = 0, . . . , T . Then, there exists another choice of
tie-breaking rules that would result in the sequence of variables α̃t, β̃t, and ũt

B for t = 0, . . . , T such
that

α̃t = −αt; β̃t = −βt; ũt
B = ut

B . (99)

Proof. The proof will proceed by induction.

Base case All of α0, α̃0, β0, β̃0, u0
B , and ũ0

B are zero, so (99) trivially holds.

Inductive hypothesis Assume that (99) holds for some t ≥ 0.
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(b) Reflected dynamics by Lemma 13

Figure 18: Figure (a) represents the overall illustration of the dynamics of the action quantities αt

and βt for t = 0, 1, . . . , T . The x-axis denotes the quantity of αt and the y-axis denotes that of βt.
Blue circles represent the sequence of points in the plane, where the number inside the circle denotes
the index t. Note that αt only takes integer values, while βt possibly takes noninteger values at some
rounds. Figure (b) also depicts an overall dynamics implemented by another pair of tiebreaking
rules guaranteed by Lemma 13. Note that each point is reflected with respect to the origin point.
Importantly, Lemma 13 guarantees that ρt and ut

B for t = 0, 1, . . . , T remain exactly the same for
both dynamics.

Inductive step We show that (99) holds for t+ 1. Suppose that, under the original tie-breaking
rules, Alice cut at at+1 and Bob picked bt+1 ∈ {L,R} in round t+ 1. First, we analyze for Alice.
Let a′t+1 ∈ [0, 1] be the unique point for which

VB([0, at+1]) = VB([a
′
t+1, 1]) . (100)

The point a′t+1 is uniquely defined since Bob’s density is strictly positive.

We show that there exists another choice of tie-breaking rules under which, starting from α̃t and β̃t,
Alice cuts at a′t+1 in round t+ 1. We split into cases based on αt:

(αt > 0): Then at+1 = 1 by Lemma 11. Since VB([0, at+1]) = VB([0, 1]), we have a′t+1 = 0 by
definition. By the inductive hypothesis, we have α̃t = −αt, and so α̃t < 0. Then, regardless
of tie-breaking rules, Alice cuts at 0 = a′t+1.

(αt < 0): Then at+1 = 0 by Lemma 11. Since VB([0, at+1] = 0 = VB([1, 1]), we have a′t+1 = 1
by definition. By the inductive hypothesis, α̃t = −αt, and so α̃t > 0. Then, regardless of
tie-breaking rules, Alice cuts at 1 = a′t+1.

(αt = 0): Then Alice can break ties any way she likes by Lemma 11. However, α̃t = −αt = 0,
so any cut point is a valid choice for her new tie-breaking rule. In particular, she can cut at
a′t+1.

Second, we analyze for Bob. Let b′t+1 ∈ {L,R} be such that b′t+1 ̸= bt+1. We show that there exist
tie-breaking rules under which, starting from α̃t and β̃t, Bob chooses b′t+1. We split into cases based
on βt:

(βt > 0): Then bt+1 = L by Lemma 11; therefore, b′t+1 = R. By the inductive hypothesis,
β̃t = −βt, so β̃t < 0. Then, regardless of tie-breaking rules, Bob picks R = b′t+1.

(βt < 0): Then bt+1 = R by Lemma 11; therefore, b′t+1 = L. By the inductive hypothesis,
β̃t = −βt, so β̃t > 0. Then, regardless of tie-breaking rules, Bob picks L = b′t+1.
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(βt = 0): Then Bob can break ties any way he likes by Lemma 11. However, β̃t = −βt = 0, so
either L or R is a valid choice for his new tie-breaking rule. In particular, he can choose
b′t+1.

Finally, we show that these opposite choices have exactly the desired effect on α̃t+1, β̃t+1, and ũt+1
B .

Covering each in turn:

• Since Bob picks the opposite side under the trajectory associated with α̃ and β̃, the change
from αt to αt+1 is in the opposite direction as the change from α̃t to α̃t+1 by Lemma 12.
By the inductive hypothesis, we have α̃t = −αt, and so α̃t+1 = −αt+1.

• Since Alice picks the mirror image of her cut point under the trajectory associated with
α̃ and β̃, the change from βt to βt+1 is exactly opposite to the change from β̃t to β̃t+1.
Specifically,

βt+1 = βt +
(
2VB([0, at+1])− 1

)
, (101)

while

β̃t+1 = β̃t +
(
2VB([0, a

′
t+1])− 1

)
= β̃t + 2(1− VB([a

′
t+1, 1]))− 1

= β̃t + 2(1− VB([0, at+1]))− 1

= β̃t −
(
2VB([0, at+1])− 1

)
. (102)

By the inductive hypothesis, we have β̃t = −βt. Using equations (101) and (102), we obtain
β̃t+1 = −βt+1.

• Under Alice’s new cut point a′t+1, Bob’s valuation of the left and right sides of the cake
swap, i.e., VB([0, a

′
t+1]) = VB([at+1, 1]). But he also chooses the opposite side, so he gets

exactly the same payoff as under the original tie-breaking rules in round t+ 1. Therefore,
ũt+1
B = ut+1

B .

By induction, the claim holds for all t, which completes the proof.

In addition, it is helpful to distinguish between the rounds that cross an axis in the α-β plane and
those that do not. The following formalizes the definition of such rounds, which are depicted in
Figure 19-(a).

Definition 11. An axis-crossing round is a round t where at least one of the following occurs:

• αt = 0

• βt+1 > 0, but βt ≤ 0

• βt+1 < 0, but βt ≥ 0.

Importantly, we will show that ρt can strictly increase only if the current round is axis-crossing, while
it is non-decreasing over the entire game. The following lemma formalizes this observation. We
provide an example in Figure 19-(b).

Lemma 14. Let t ∈ {0, 1, . . . , T}. The radius ρt satisfies the following properties:

(a) ρt = ρt+1 if t is not axis-crossing

(b) ρt ≤ ρt+1 ≤ 2 + ρt if t is axis-crossing

(c) ρ0 = 0

(d) ρt ≥ 1 for t ≥ 1.
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(b) Non-decreasing radius ρt over rounds

Figure 19: Overall dynamics of αt and βt with non axis-crossing rounds (blue circles) and axis-
crossing rounds (red circles). Figure (b) shows that the radius ρt = |αt|+ |βt| is nondecreasing in t
as shown by Lemma 14. In particular, ρt remains the same for non axis-crossing rounds but possibly
increases for axis-crossing rounds.

In particular, the radius ρt is non-decreasing in t.

Proof. First, we will show (a) and (b). Consider an arbitrary round t ∈ {0, . . . , T}. By Lemma 12,
we have |αt+1 − αt| ≤ 1 and |βt+1 − βt| ≤ 1, so by the triangle inequality∣∣∣ρt+1 − ρt

∣∣∣ = ∣∣∣|αt+1|+ |βt+1| − |αt| − |βt|
∣∣∣ ≤ 2 . (103)

Therefore, ρt+1 ≤ 2 + ρt, as required by (b). Thus for (a) and (b) it remains to show that ρt+1 ≥ ρt
∀t ∈ {0, . . . , T} and that ρt+1 = ρt if t is not axis-crossing.

By Lemma 13, it suffices to consider αt ≥ 0. More precisely, this is because if αt ≤ 0, then there
exists a tie-breaking rule with associated α̃t satisfying α̃t = −αt for every t = 0, 1, . . . , T , so α̃t ≥ 0.
Crucially, the lemma ensures the sequences α̃t and αt have the same radius ρt.

We consider a few cases based on αt and βt, considering only αt ≥ 0. Since αt is an integer, also
divide into αt ≥ 1 and αt = 0:

(αt ≥ 1 and βt > 0): By Lemma 11 Alice will cut at 1 and Bob will pick L. Then by Lemma 12,
we have αt+1 = αt − 1 and βt+1 = βt + 1. Therefore:

ρt+1 = |αt+1|+ |βt+1| = αt − 1 + βt + 1 (Since αt+1 ≥ 0)
= |αt|+ |βt| (Because αt, βt ≥ 0)
= ρt . (104)

(αt ≥ 1 and βt = 0): Then Alice will cut at 1 and Bob will pick whichever piece he likes. There-
fore αt+1 = αt ± 1 and βt+1 = βt + 1 = 1. Since βt ≤ 0 but βt+1 > 0, round t is
axis-crossing. What remains is to show that ρt+1 ≥ ρt in this case:

ρt+1 = |αt+1|+ |βt+1| ≥ |αt| − 1 + 1 (Because |x± y| ≥ |x| − |y| for all x, y)
= |αt|+ |βt| (Since βt = 0)
= ρt . (105)

(αt ≥ 1 and −1 < βt < 0): Then Alice will cut at 1 and Bob will pick R. Therefore, αt+1 =
αt + 1 and βt+1 = βt + 1. Since βt < 0 but βt+1 > 0, round t is axis-crossing. What
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remains is to show that ρt+1 ≥ ρt:

ρt+1 = |αt+1|+ |βt+1| = αt + 1 + |βt + 1|
≥ αt + 1 + |βt| − 1 (Since |x+ y| ≥ |x| − |y| for all x, y)
= ρt . (106)

(αt ≥ 1 and βt ≤ −1): Then Alice will cut at 1 and Bob will pick R. Therefore, αt+1 = αt + 1
and βt+1 = βt + 1. In this case, ρt+1 = ρt:

ρt+1 = |αt+1|+ |βt+1| = αt + 1− (βt + 1) (Because βt + 1 ≤ 0)
= |αt|+ |βt| (Since βt ≤ 0)
= ρt . (107)

(αt = 0 and βt ≥ 0): Then t is an axis-crossing round. Bob could pick either L or R, but either
way |αt+1| = 1. Alice could cut anywhere, but since |βt+1 − βt| ≤ 1 we can still conclude
|βt| − |βt+1| ≤ 1. Therefore:

ρt+1 = |αt+1|+ |βt+1| ≥ 1 + |βt| − 1

= |αt|+ |βt| (Since αt = 0)
= ρt . (108)

(αt = 0 and βt < 0): Then we can use the symmetry of Lemma 13 to consider βt > 0 instead,
which has already been covered.

In all cases, properties (a) and (b) must hold.

Now we show that the properties (c) and (d) hold. Property (c) follows from α0 = β0 = 0. Because
ρt+1 ≥ ρt for all t, property (d) would follow from showing ρ1 ≥ 1, which can be seen true from the
following inequality:

ρ1 = |α1|+ |β1| = 1 + |β1| (Since α0 = 0, so α1 = ±1)
≥ 1 . (109)

This finishes the proof.

Lemma 15. Suppose t− 1 is an axis-crossing round and τ > t− 1 is the next axis-crossing round
after t− 1. Then, there exists at least ρt − 2 and at most ρt rounds between them, i.e.,

ρt − 2 ≤ τ − t ≤ ρt . (110)

Proof. By Lemma 13, we can assume αt−1 ≥ 0. Then it suffices to consider only four types that the
axis-crossing round t− 1 could have:

(i) αt−1 ≥ 1, βt−1 ≤ 0, and βt > 0;

(ii) αt−1 ≥ 1, βt−1 ≥ 0, and βt < 0;

(iii) αt−1 = 0 and βt−1 ≥ 1;

(iv) αt−1 = 0 and 0 ≤ βt−1 < 1.

We show separately for each of the types (i)-(iv).

(i) αt−1 ≥ 1, βt−1 ≤ 0, and βt > 0. Because αt−1 > 0, Alice will cut at 1 in round t by Lemma 11,
so βt = βt−1 + 1. Since βt−1 and βt have different signs, it must be that −1 < βt−1 ≤ 0
and 0 < βt ≤ 1. As long as α remains positive, Alice will keep cutting at 1 and increasing
β by Lemma 11 and Lemma 12, so the next axis-crossing round τ cannot be one where β
changes sign. Thus, it must be the one satisfying ατ = 0. Until then, Bob will keep picking
L, so α will decrease by 1 every round. Therefore, this implies that τ = t+ αt. To show
τ − t ≤ ρt as required by (110), we have

τ − t = αt ≤ |αt|+ |βt| ≤ ρt.
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To prove ρt − 2 ≤ τ − t, observe that αt ≥ αt−1 − 1. Since αt−1 ≥ 1, we have αt ≥ 0.
Thus

τ − t = αt

≥ |αt|+ |βt| − 1 (Since 0 < βt ≤ 1 and αt ≥ 0)
= ρt − 1 > ρt − 2 . (111)

(ii) αt−1 ≥ 1, βt−1 ≥ 0, and βt < 0. Because αt−1 > 0, Alice will cut at 1 in round t, so βt =
βt−1 + 1. But then βt > βt−1 ≥ 0, contradicting βt < 0. Therefore, this case cannot
happen.

(iii) αt−1 = 0 and βt−1 ≥ 1. By Lemma 11, Alice can cut wherever she likes, but Bob will pick L.
Wherever Alice cuts, we will have αt = −1 and βt ≥ 0. In order to return to α = 0, Bob
must start picking R, but he cannot do so until β ≤ 0 by Lemma 11. Therefore, the next
axis-crossing round τ will be the one where βτ+1 < 0 and βτ ≥ 0. Until then, Alice will
keep cutting at 0, so β will decrease by 1 every round. Therefore, τ = t+ ⌊βt⌋, and this
implies that

τ − t = ⌊βt⌋ ≤ |αt|+ |βt| = ρt .

Again to show ρt − 2 ≤ τ − t, observe that

τ − t = ⌊βt⌋
≥ |αt| − 1 + |βt| − 1 (Since αt = −1 and βt ≥ 0)
= ρt − 2 .

(iv) αt−1 = 0 and 0 ≤ βt−1 < 1. Under these constraints, we have ρt−1 = |αt−1| + |βt−1| < 1,
so part (d) of Lemma 14 implies that t − 1 = 0. Therefore, we have αt−1 = βt−1 = 0.
Accounting for all possible choices Alice and Bob can make, it must be the case that
αt = ±1 and −1 ≤ βt ≤ 1, which implies that 1 ≤ ρt ≤ 2. Thus it suffices to show that
τ − t ≤ 1. We have a few cases:

• If αt = 1 and βt > 0, then Bob will pick L in round t+ 1 by Lemma 11. Therefore,
αt+1 = 0, so τ = t+ 1.

• If αt = 1 and −1 < βt ≤ 0, then Alice will cut at 1 in round t + 1 by Lemma 11.
Therefore, βt+1 > 0, so round t is axis-crossing and τ − t = 0.

• If αt = 1 and βt = −1, then Alice will cut at 1 and Bob will pick R in round t+ 1 by
Lemma 11. That will lead to αt+1 = 2 and βt+1 = 0, so round t+ 1 is axis-crossing.
Therefore, τ − t = 1.

• If αt = −1, we can reduce to the αt = 1 case by Lemma 13.

Thus for all types (i)-(iv), it follows that ρt − 2 ≤ τ − t ≤ ρt as desired.

The next two lemmas show different conditions under which ρ must increase. The first (Lemma 16)
is more technical in nature, while the second (Lemma 17) is key to bounding the players’ total payoff.

Lemma 16. Suppose there exists a round t such that βt ̸∈ Z. Let τ > t be the first round after t such
that βtβτ ≤ 0, i.e., βτ is zero or has the opposite sign of βt. Then the following inequality holds:

ρτ ≥ ⌊ρt⌋+ 1.

Proof. Again by Lemma 13, we can assume without loss of generality that βt ≥ 0. Since βt ̸∈ Z, we
can further assume βt > 0.

Suppose that βτ ̸∈ Z. Because τ > t is the first round after t with βτ ≤ 0, we must have βτ−1 > 0.
Since βτ ̸∈ Z, we also have βτ < 0. Combining |βτ − βτ−1| ≤ 1 and βτ < 0 yields 0 < βτ−1 < 1.
Since βτ−1 > 0, Bob picked L in round τ by Lemma 11, so we have ατ = ατ−1− 1. As βτ < βτ−1,
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Alice must have not cut at 1 in round τ by Lemma 12. This implies that ατ−1 ≤ 0. Finally, we obtain

ρτ = |ατ |+ |βτ | ≥ |ατ−1 − 1|+ 0 (Since ατ = ατ−1 − 1)
= 1− ατ−1 (Since ατ−1 ≤ 0)
= 1 + |ατ−1|+ ⌊|βτ−1|⌋ (Since ατ−1 ≤ 0 and 0 < βτ−1 < 1)
= 1 + ⌊ρτ−1⌋ (Since ατ−1 ∈ Z)
≥ 1 + ⌊ρt⌋ . (By Lemma 14)

On the other hand, suppose βτ ∈ Z. By Lemma 14, we have ρτ ≥ ρt. Since βt ̸∈ Z but αt ∈ Z and
ατ ∈ Z, we have ρτ ∈ Z but ρt ̸∈ Z. Therefore, ⌊ρt⌋ < ρt ≤ ρτ . Since both ⌊ρt⌋ ∈ Z and ρτ ∈ Z,
we have ρτ ≥ ⌊ρt⌋+ 1.

Lemma 17. Let t be a round in which Alice cuts at at ∈ (0, 1). Let τ − 1 be the first axis-crossing
round strictly after t− 1. Then ρτ ≥ ⌊ρt−1⌋+ 1.

Proof. By Lemma 11, Alice will cut at 0 or 1 if αt−1 ̸= 0. As Alice does not cut at 0 or 1 in
round t, this implies that αt−1 = 0. First, if βt−1 = 0, then Lemma 14 implies t − 1 = 0, so
ρτ ≥ 1 = ⌊ρt−1⌋+ 1 as required.

Otherwise, by Lemma 13, we can assume without loss of generality that βt−1 > 0. Because
ρt−1 ≥ |βt−1| > 0, Lemma 14 implies t− 1 ≥ 1. By part (d) of Lemma 14, we further have

1 ≤ ρt−1 = |αt−1|+ |βt−1| = βt−1 .

Since Alice does not cut at 0 in round t, we have βt > βt−1 − 1 by Lemma 11, which implies
that βt > 0. As βt−1 > 0, Bob picked L in round t by Lemma 11, so we have αt < 0. Again
by Lemma 11, for α to return to 0, Bob would have to start picking R, but he won’t until β stops
being positive. Therefore, the next axis-crossing round after t will be one where β crosses into being
non-positive from positive, so βτ < 0.

Let s > t − 1 be the first round after t − 1 such that βs ≤ 0. Because βτ < 0, we have s ≤ τ .
Because βt > 0, we have s > t.

If βt−1 ̸∈ Z, then applying Lemma 16 to t − 1 yields ρs ≥ ⌊ρt−1⌋ + 1. By Lemma 14, we have
ρτ ≥ ρs, and so ρτ ≥ ρs ≥ ⌊ρt−1⌋+ 1 as required.

If βt ̸∈ Z, then applying Lemma 16 to t yields ρs ≥ ⌊ρt⌋+ 1. By Lemma 14, we have ρτ ≥ ρs and
ρt ≥ ρt−1, and so ρτ ≥ ρs ≥ ⌊ρt⌋+ 1 ≥ ⌊ρt−1⌋+ 1 as required.

Else, we have βt−1, βt ∈ Z. Since Alice did not cut at 0 or 1 in round t, by Lemma 12 we have
|βt − βt−1| < 1. Since βt, βt−1 ∈ Z, we get βt−1 = βt. Moreover, since αt−1 = 0, we have
|αt| = |αt−1 ± 1| = 1. This implies that

ρτ ≥ ρt (By Lemma 14)
= ρt−1 + 1 (Since βt = βt−1 and |αt| = |αt−1|+ 1)
≥ ⌊ρt−1⌋+ 1 .

This completes the proof.

The following lemma bounds Bob’s total payoff using the radius ρt.
Lemma 18. For every round t ≥ 0, the following inequalities hold:

−ρt ≤
t∑

i=1

(2ui
B − 1) ≤ ρt. (112)

Proof. We will first show the following stronger set of inequalities by induction on t:

0 ≤ |αt|+
t∑

i=1

(2ui
B − 1) ≤ ρt. (113)

As a base case, consider t = 0. Before anything has happened, all three sides of (113) are zero, so the
inequalities trivially hold.
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Now assume that (113) holds for some t ≥ 0, and we will prove that it still holds for round t + 1.
We consider three cases separately in what follows, depending on the values of αt and βt. Note that
again by Lemma 13, it suffices to only consider cases where αt ≥ 0.

• If αt > 0, Alice will cut at 1 in round t + 1 by Lemma 11. If Bob picks L, then he will
receive a payoff of 1 and αt will decrease by 1 due to Lemma 12. If Bob picks R, then he
will receive a payoff of 0 and αt will increase by 1 due to Lemma 12. In either case, the
changes to |αt|+

∑t
i=1(2uB(i)− 1) cancel out, which implies that

|αt|+
t∑

i=1

(2ui
B − 1) = |αt+1|+

t+1∑
i=1

(2ui
B − 1). (114)

Further, by Lemma 14 we have ρt+1 ≥ ρt. Together with the induction hypothesis (113),
this concludes

0 ≤ |αt+1|+
t+1∑
i=1

(2ui
B − 1) ≤ ρt+1,

and thus the induction holds for the first case.

• If αt = 0 and βt ≥ 0, then regardless of whether Bob picks L or R in round t+ 1 we have
|αt+1| = |0± 1| = 1 as α necessarily changes by 1. Therefore, we have(

|αt+1|+
t+1∑
i=1

(2ui
B − 1)

)
−

(
|αt|+

t∑
i=1

(2ui
B − 1)

)
= 1 + 2ut+1

B − 1

= 2ut+1
B (115)

Also, the change in ρ can be bounded as follows:

ρt+1 − ρt = |αt+1|+ |βt+1| − |αt| − |βt|

= 1 +

∣∣∣∣∣
t+1∑
i=1

(2VB([0, ai])− 1)

∣∣∣∣∣− 0− βt (βt ≥ 0)

= 1 + |(2VB([0, at+1])− 1) + βt| − βt

≥ 1 + 2VB([0, at+1])− 1 (Removing the absolute value)
= 2VB([0, at+1]) (116)

If Bob picked L in round t+ 1, this is exactly the same as (115). If Bob picked R, then by
Lemma 11 and the assumption that βt ≥ 0 we must have βt = 0. The change in the radius
can be bounded as follows:

ρt+1 − ρt = |αt+1|+ |βt+1| − |αt| − |βt|
= 1 + |2VB([0, at+1])− 1| − 0− 0 (βt = 0)
= 1 + |1− 2VB([at+1, 1])| (VB([0, at+1]) + VB([at+1, 1]) = 1)
= 1 + |− (1− 2VB([at+1, 1]))|
≥ 1− 1 + 2VB([at+1, 1]) (Removing the absolute value)

= 2ut+1
B (Since Bob picked R)

In either case, the radius increased by at least as much as the middle of (113). More precisely,
by the induction hypothesis (113), we obtain

|αt+1|+
t∑

i=1

(2ui
B − 1) = |αt|+

t∑
i=1

(2ui
B − 1) + 2ut+1

B − 1 + |αt+1| − |αt|

≥ 0 + 2ut+1
B (αt = 0 and |αt+1| = 1)

≥ 0. (ut+1
B ≥ 0)
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Note further that

|αt+1|+
t∑

i=1

(2ui
B − 1) = |αt|+

t∑
i=1

(2ui
B − 1) + 2ut+1

B − 1 + |αt+1| − |αt|

≤ ρt + 2ut+1
B (By the induction hypothesis)

= ρt+1. (ρt+1 − ρt = 2ut+1
B )

This finishes the proof of the induction for the second case.

• If αt = 0 and βt < 0, then by Lemma 13 we can consider αt = 0 and βt > 0 instead,
which has already been shown above.

In all cases, the inductive step holds. Therefore, by induction principle, (113) holds for all t.
Subtracting |αt| from all three sides of it, we obtain

−|αt| ≤
t∑

i=1

(2ui
B − 1) ≤ |βt|.

Since ρt = |αt|+ |βt|, this immediately implies the desired bounds.

Now that we have bounds on the relevant events in terms of α, β, and ρ, we can bound them as
functions of T to obtain our final result.
Lemma 19. Let n ≥ 7. Let t1, t2, . . . , tn be a sequence of rounds such that for all i ∈ [n− 1] the
following inequality holds:

ρti+1 ≥ ⌊ρti⌋+ 1. (117)

Then tn − t1 > 1
10n

2.

Proof. First, we will show by induction that, for i ∈ [n], we have ρti ≥ i − 1. For the base case,
ρt1 ≥ ρ0 = 0, so the inequality trivially holds.

Now assume ρti ≥ i− 1 for some i ∈ [n− 1] and we will prove that the induction step holds for the
case i+ 1. By (117), observe that

ρti+1 ≥ ⌊ρti⌋+ 1

≥ ⌊i− 1⌋+ 1

= (i+ 1)− 1.

Thus, by the induction principle we have

ρti ≥ i− 1 for i = 1, . . . , n (118)

Now consider an arbitrary i ∈ [n− 1]. Note that ρti+1
≥ ⌊ρti⌋+ 1 implies ρti+1

> ρti . Therefore,
by Lemma 14, there must be an axis-crossing round ci among the interval [ti, ti+1). This is because
if this is not true, we have ρti+1

= ρti which contradicts ρti+1
> ρti . Repeating the same argument

for each i, we conclude that there exists a sequence of rounds c1, c2, . . . , cn−1 each of which is
axis-crossing, and satisfies the following inequality for every i ∈ [n− 1]:

ti ≤ ci < ti+1 (119)

In addition, for any i ∈ [n− 1], we observe that

ci+1 − (ci + 1) ≥ ρci+1 − 2 (By Lemma 15, with τ = ci+1 and t = ci + 1)
≥ ρti − 2 (By (119))
≥ i− 3 (By (118))

Slightly rearranging, we obtain

ci+1 − ci ≥ i− 2 ∀i ∈ [n− 1] . (120)
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Combining (119) and (120), we finally obtain

tn − t1 > cn−1 − c1 (By (119))

=

n−2∑
i=1

(ci+1 − ci)

≥
n−2∑
i=1

(i− 2) (By (120))

=
1

2
n2 − 7

2
n+ 5.

For n ≥ 7, we have 1
2n

2 − 7
2n+ 5 ≥ 1

10n
2,4 and so tn − t1 > n2/10, as required.

The following lemma will finally be combined with Lemma 18 to obtain the desired bound for Bob’s
payoff.

Lemma 20. For T ≥ 5, the final radius ρT satisfies the following:

ρT ≤ 2
√
10T .

Proof. Let t1 = 0, and for i ≥ 2 recursively define ti be the first round after ti−1 satisfying
ρti ≥ ⌊ρti−1

⌋+ 1. Let n be the last index of such ti given the time horizon T .

As an immediate corollary of Lemma 19, we have

n ≤ max{7,
√
10T}.

For T ≥ 5, this implies that
n ≤
√
10T (121)

By Lemma 14, we also know that ρ can increase by at most 2 per round. Furthermore, since tn is the
last element in the sequence {ti}i∈[n], we have ρT < ⌊ρtn⌋+ 1. Relaxing this slightly, we have

ρT ≤ ρtn + 2 (122)

Therefore, we obtain the following inequalities:

ρT ≤ 2 + ρtn (By (122))

= 2 +

n−1∑
i=1

(ρi+1 − ρi)

≤ 2 + 2(n− 1) (By Lemma 14)
= 2n (123)

Putting (121) and (123) together, we obtain

ρT ≤ 2
√
10T ,

which finishes the proof of the lemma.

Using the above bound on the radius together with Lemma 18, Bob’s payoff can now be bounded as
follows.

Lemma 21. For T ≥ 5, Bob’s total payoff satisfies:

T

2
−
√
10T ≤

T∑
t=1

ut
B ≤

T

2
+
√
10T .

4We omit the elementary calculus.
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Proof. We start from the inequality (112). Halving all three sides of (112) for t = T and adding
T/2, we obtain

T

2
− 1

2
ρT ≤

T∑
t=1

ut
B ≤

T

2
+

1

2
ρT .

Using the upper bound ρT ≤ 2
√
10T from Lemma 20 gives the desired bounds.

Combined with Lemma 21, Alice’s payoff can eventually be bounded using the following lemma,
which effectively bounds the summation of Alice and Bob’s total payoff.
Lemma 22. For T ≥ 5, the summation of total payoff to Alice and Bob satisfies the following:

T −
√
10T ≤

T∑
t=1

(
ut
A + ut

B

)
≤ T +

√
10T .

Proof. Given the time horizon T , let s1, s2, . . . , sk be the rounds in which Alice cuts at a point other
than 0 or 1, where k denotes the number of such rounds. These are the only rounds in which the total
payoff ut

A + ut
B is not necessarily 1. The total payoff in these rounds can be bounded as

0 ≤ usi
A + usi

B ≤ 2,

for any i ∈ [k]. Thus, we obtain

T − k ≤
T∑

t=1

ut
A + ut

B ≤ T + k.

Therefore, it suffices to prove that k ≤
√
10T .

If k < 7, the proof follows as k < 7 ≤
√
10T .

Otherwise, we have k ≥ 7. For each si, let τi be the round after the next axis-crossing round after
si − 1. Consider si for an arbitrary i ∈ [k]. Due to Lemma 11, if αsi−1 ̸= 0 then Alice cuts at 0 or 1
in round si, which contradicts our definition of round si. Thus we have αsi−1 = 0. This argument
holds for arbitrary i ∈ [k], so both si − 1 and si+1 − 1 are axis-crossing rounds. Moreover, since
both αsi−1 = 0 and αsi+1−1 = 0, there must have been some rounds between si − 1 and si+1 − 1
where Bob picked L and some where he picked R. Therefore, β must have changed sign at least
once, so there is another axis-crossing round in between si − 1 and si+1 − 1 where β changed sign.
This implies that for every i = 1, . . . , k − 1, the next axis crossing round τi after si − 1 should exist
at least before si+1 − 1, i.e.,

τi ≤ si+1 − 1 . (124)
Due to the monotonicity of ρ by Lemma 14, for any i ∈ {1, . . . , k − 1} we have

ρsi+1−1 ≥ ρτi (By (124))
≥ ⌊ρsi−1⌋+ 1 . (By Lemma 17)

By Lemma 19, we have:

(sk − 1)− (s1 − 1) >
1

10
k2 . (125)

Re-arranging (125) and using the fact that sk − s1 ≤ T , we obtain k <
√
10T . This finishes the

proof of the case k ≥ 7, which completes the lemma.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We prove all the theorems and propositions that are summarized in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The paper clearly states the modelling assumptions under which the theorems
and propositions hold. We also suggest a few directions for future work in Concluding
Remarks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main body of the paper has our model, theorem statements, and proof
sketches. The formal proofs are in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We included a few example trajectories from the fictitious play dynamic. The
code is included with the submission. All our results are proved mathematically and the
experimental data is purely illustrative.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: This is a theoretical paper, so the paper provides all the proofs for the stated
theorems. We also include the code for the fictitious play dynamic, which we illustrate an
example trajectory of in the main file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: As mentioned above, we just included one example trajectory for visualization
purposes. Code which generates similar trajectories is included. Our results are not based
on experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: The code we included is a very simple dynamical system that can be run on
any laptop in a minute or two.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not propose a model, use a dataset, or involve human participants. Our
theoretical results do not have immediate possibilities for misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not propose a concrete technology. Our idealized setting does not have
any immediate societal applications.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: We wrote the paper and the simulation of fictitious play, which is a very
standard type of dynamic. There is no license or asset used from other sources. We cite all
the related papers in the literature that we are aware of.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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