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Abstract

Nested entities are prone to obtain similar rep-
resentations in pre-trained language models,
posing challenges for Named Entity Recog-
nition (NER), especially in the few-shot set-
ting where prototype shifts often occur due to
distribution differences between the support
and query sets. In this paper, we regard en-
tity representation as the combination of proto-
type and non-prototype representations. With
a hypothesis that using the prototype repre-
sentation specifically can help mitigate poten-
tial prototype shifts, we propose a Prototype-
Attention mechanism in the Contrastive Learn-
ing framework (PACL) for the few-shot nested
NER. PACL first generates prototype-enhanced
span representations to mitigate the prototype
shift by applying a prototype attention mech-
anism. It then adopts a novel prototype-span
contrastive loss to reduce prototype differences
further and overcome the O-type’s non-unique
prototype limitation by comparing prototype-
enhanced span representations with prototypes
and original semantic representations. Our ex-
periments on three English, German, and Rus-
sian nested NER datasets show that the PACL
outperformed seven baseline models on the
1-shot and 5-shot tasks in terms of F score.
Further analyses indicate that our Prototype-
Attention mechanism has high generality, en-
hancing the performance of two baseline mod-
els, and can serve as a valuable tool for NLP
practitioners facing few-shot nested NER tasks.

1 Introduction

The few-shot Named Entity Recognition (NER)
task has gained a lot of attention in recent years as
it aims to address the limitations of traditional NER
methods that rely on a large number of labeled train-
ing instances, which can be both time-consuming
and experience-dependent. This task deals with the
NER problem using only a few labeled instances.
Researchers have made significant progress on this
task by applying deep learning models, includ-
ing pre-trained-model-based (Florez and Mueller,
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Figure 1: (a) Example of an instance with nested entities
from the GENIA dataset. (b) Illustration of prototype
shifts, where the prototypes differ due to the distribution
difference between the support and query sets.

2019; Hou et al., 2019; Yang et al., 2021; Wang
et al., 2022b), metric-learning-based (Snell et al.,
2017; Hofer et al., 2018; Yang and Katiyar, 2020),
meta-learning-based (Li et al., 2020a; Sung et al.,
2018), prompt-tuning-based (Ma et al., 2022; Hou
et al., 2022), and contrastive-learning-based (Das
et al., 2022) methods.

However, most existing few-shot NER research
has focused on flat entities that do not overlap
(Ming et al., 2022; Wang et al., 2022b). In real-
ity, many entities share the same words and form
nested entities that are part of another entity. This
is where the few-shot nested NER task comes in.
This task deals with nested entities that share words
and are part of another entity. For example, in the
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Figure 2: The Euclidean distance of prototype shift
between the prototypes in the support set and the query
set in the GENIA, GermEval, and NEREL datasets. K-
shot denotes the K number of labeled instances in the
support set for each type.

GENIA dataset (Kim et al., 2003), about 53.9%
of entities are nested. Figure 1 (a) illustrates an
instance, that is, a protein molecule entity "lipoxy-
genase" is nested within a protein family or group
entity "lipoxygenase metabolites". Due to the over-
lapped part, nested entities are more likely to obtain
similar representations, increasing the difficulty of
distinguishing them, especially in the few-shot set-
ting where prototype shifts often occur.

The prototype shift in NER refers to changes
in the prototypes between the few-shot labeled
data set (support set) and unlabeled data (query
set), as exemplified in Figure 1 (b), where a pro-
totype is a representative instance of a specific en-
tity type. The very few labeled data in the sup-
port set could hardly represent the whole distribu-
tion, resulting in prototype shifts. Figure 2 shows
the statistics of prototype shifts in terms of Eu-
clidean distance between the support set and the
query set in three nested datasets (GENIA (Kim
et al., 2003), GermEval(Benikova et al., 2014),
NEREL(Loukachevitch et al., 2021)). We can find
that the prototype shift reveals a consistent pattern
of increasing Euclidean distance between proto-
types as the number of labeled data in the support
set decreases. When employing the prototypes de-
rived from the support set for delineating the deci-
sion boundaries in the query set, a high frequency
of classification errors would be introduced due
to prototype shifts. Despite having distinguished
nested entities within the support set, they may
become interspersed within the query set.

This paper addresses the prototype shift in the
few-shot nested NER task. We regard entity repre-
sentation as the combination of prototype and non-
prototype representations. Entities of the same type

should share the same prototype representation.
And the non-prototype representation determines
the dispersion of the entity distribution. If we could
focus more on the prototype representation when
learning the entity representation, entities would
gather closer around the prototype, and the proto-
type shift could be reduced. Therefore, we design
a prototype-attention mechanism to enhance the
prototype representation. Besides, words of the O-
type have miscellaneous semantics and cannot be
represented by a unique prototype. Therefore, we
further design a novel prototype-span contrastive
loss. It compares prototype-enhanced span repre-
sentations with original semantic representations
to guarantee the O-type’s representations are not
enhanced by entity prototypes. It also compares
prototype-enhanced span representations with pro-
totypes to reduce prototype differences further.
Our main contributions are as follows:

* We identify the prototype shift challenge
in the few-shot learning, particularly in the
few-shot nested NER task, and propose
a Prototype-Attention Contrastive Learning
(PACL) framework to tackle it.

* We devise a unique Prototype-Attention mech-
anism to generate the prototype-enhanced rep-
resentation for each span to mitigate the proto-
type shift between the support and query sets.
This mechanism exhibits a high level of gen-
erality in enhancing the performance of two
baseline models.

* We design a novel prototype-span contrastive
loss by comparing prototype-enhanced span
representations with prototypes and original
semantic representations to reduce prototype
differences further and overcome the O-type’s
non-unique prototype limitation.

* We conduct experiments on three nested NER
datasets from three different languages. The
results show improvements in PACL over ex-
isting nested NER and few-shot NER base-
lines in terms of Fj score.

2 Problem Definition

Following the mainstream solutions, we formulate
the few-shot nested NER task as a span-based en-
tity classification problem. That is, given an in-
put sentence x € X with [ tokens, denoted by
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Figure 3: Illustration of our PACL framework and learning procedures. During the training procedure on the source
domain, PACL calculates prototypes based on labeled spans of the support set and then utilizes prototype-attention to
obtain prototype-enhanced representations for the query set. After that, PACL applies the prototype-span contrastive
loss to optimize the representations. During the fine-tuning procedure on the target domain, PACL generates
prototype-enhanced representations for the support set to fine-tune the model. Finally, PACL makes inferences on
the query set of the target domain based on the nearest neighbor strategy.

= {w,...,w;}, we generate an entity span
set containing all possible spans, and each span
Spq is a span of tokens starting from the p" to-
ken and ending at the ¢*" token in x, denoted by
Spg = {wp,...,we} (1 < p < g <1). Then, we
learn a classification model to map each span into
an entity label in the label set Ey. If we set the
task as a K -shot task, then the number of span la-
bels for each entity type used for training is limited
to K. Besides, we also apply the meta-learning
framework. The formal descriptions are as follows.

Let D = {X, )} denote a dataset with X and )
as the sentence set and the corresponding label set,
respectively. DSPt = {xsPt Yspt} and DI =
{X7V, Y9V} are disjoint sets sampled from D for
model training and testing, respectively. They are
also known as the support set and the query set.
Suppose D; = {&;,);} and D; = {X;,Y;} are
the source and target domain datasets, respectively.
The few-shot nested NER task first samples several
subtasks {D;” t DI} from D; = {X;, V;}, where
D = [ Y DI = [ YT
then trains a model on these subtasks. After that,
it makes adaptations on D, i.e., it fine-tunes the
model on D" = {x P t yir "1 and then predicts
the span labels for DY = {X]"’}. For the K-
shot setting, each entity category in X" and X].Spt
contains K entities.

3 Methodology

This section introduces our PACL framework and
then provides details of the prototype-attention
mechanism, the prototype-span contrastive loss,
and target domain adaption procedures.

3.1 PACL Framework

Figure 3 illustrates our Prototype-Attention Con-
trastive Learning (PACL) framework and learning
procedures.

PACL first applies a Pre-trained Language
Model (PLM) to obtain the semantic representation
for each span. It then calculates prototypes on the
support set and utilizes a novel prototype-attention
mechanism to achieve prototype-enhanced repre-
sentations. After that, PACL optimizes representa-
tions by a prototype-span contrastive loss.

During the training procedure on the source
domain, PACL utilizes a bunch of subtasks
(D' DI} to train the model. It generates
prototype-enhanced representations for the query
set to obtain the adjustment ability for prototype
shift. During the fine-tuning procedure on the tar-
get domain, PACL utilizes D" = {x P g i 3t
to fine-tune the model by generating prototype-
enhanced representations for the support set. Fi-
nally, it predicts the labels for Dj" = {X""} by
the nearest neighbor strategy.



3.2 Prototype-Attention Mechanism

To mitigate the prototype shift, we propose
a prototype-attention mechanism to generate
prototype-enhanced representations for the query
set based on prototypes obtained from the support
set during training on the source domain. This ap-
proach improves the span representations in the
query set by incorporating more prototype informa-
tion, which aligns the prototypes of the query set
with those of the support set. The detailed proce-
dures are presented below.

We first incorporate a Pre-trained Language
Model (PLM) to obtain original span semantic rep-
resentations. That is, for the sentence x with [
tokens, we get all word embeddings, concatenate
the start and the end token embeddings of each
span, and use a non-linear function to get the span
semantic representation s:

[hl, hz, e 7hl] = PLM([Wl,WQ, e ,W]]) (1)

s = f(hp @ hg) 2)

Where & denotes the concatenation operator, and
f is a non-linear function.

For the support set, we calculate the prototype
¢y, for each entity type k according to span labels
except the O-type:

1
ck = @Zsk 3)

Where |sy| denotes the number of spans in type k.

For spans in the query set, we gain the prototype-
enhanced representation §7Y by calculating the
attention score between the original span represen-
tation s?"Y and prototypes C = [c1, ¢o, . . .] in the
support set:

sty T
Vide

where d is the dimension of prototypes. We also
include s?"Y in the attention representation to ob-
tain §7"Y, excluding the O-type spans which cannot
be represented by prototypes in C. This will be fur-
ther optimized in the next section with prototype-
span contrastive loss.

87Y = softmax <

) C+s  (4)

3.3 Prototype-Span Contrastive Loss

The traditional contrastive loss increases span simi-
larities of the same entity type and decreases span
similarities between different entity types. This pa-
per aims to address the prototype shift. Therefore,

we want to increase the similarity between spans
in the query set and the corresponding prototype in
the support set to let the model obtain the ability
to mitigate the prototype shift. Besides, the O-type
span has miscellaneous semantics and could not be
represented by a unique prototype (Fritzler et al.,
2019). We also want prototype-enhanced repre-
sentations of O-type entities close to their original
semantic representations. Therefore, we design the
following prototype-span contrastive loss based on
the circle loss (Sun et al., 2020).

For each span representation §7'Y in the query
set, the loss Lqry is calculated by:

Loy = log(1 + sim(87Y, c™) * sim(87Y,¢c7))

®
Where ¢ is the corresponding prototype in the
support set with the same type as §9Y, and ¢~
denotes prototypes in the support set with different
types from §77Y. The similarity function sim is
calculated by:

sim(897Y, ¢T) = ¢ T * BTN (g)

Sim(gqry’c—> _ Z eT * #(397Y, e7) (7)
c, €c™

Where ¢(.) denotes the cosine similarity, 7 is the
temperature (Wang and Liu, 2021).

When calculating sim (89, ¢™) for the O-type,
we calculate the cosine similarity between the orig-
inal span representation s?"Y and the prototype-
enhanced representation §9"Y :

H(81Y, cp) = Ax (817, 1Y) (3)
Where ) is a learnable hyperparameter. We cal-
culate the cosine similarity between the prototype-
enhanced representation §9"Y and its corresponding
prototype in the support set for other entity types.

3.4 Target Domain Adaption

After training the model on the source domain, we
make adaptions to the target domain, including fine-
tuning the model on the support set and making
inferences on the query set.

During the fine-tuning procedure, our PACL first
generates prototype-enhanced representations §°7!
for spans in the support set by calculating the atten-
tion score between the original span representation
s°Pt and the prototypes C in the support set. After
that, PACL fine-tunes the model by utilizing the
prototype-span contrastive loss with the input of



3%P! and C. Different from using 89Y as the in-
put in the training procedure, we utilize 8°P* in the
fine-tuning procedure since the labels of the query
set are unknown. Using 3P is to make entities
gather around prototypes, and this does not affect
our PACL to mitigate the prototype shift. This is
because the prototype shift is domain-independent.
It is only related to the sampling strategy. Our
PACL has already learned prototype shift patterns
and acquired the ability to mitigate the prototype
shift during training on the source domain.

During the inference procedure, our PACL ob-
tains prototype-enhanced representations §7"Y for
spans in the query set according to prototypes C
in the support set. It further applies the nearest
neighbor inference for each span according to the
maximum similarity with prototypes or its original
span representation (O-type).

Note that the support set in the target domain
may be too large to load all spans in a single fine-
tune procedure. Loading all sentences into a single
batch to get prototypes for each type is challenging.
Thus, for each sentence in the support set, we leave
all entity spans and sample 1/|X" *| percentage
of O-type spans during fine-tuning, where | A" g
denotes the number of sentences in the support set.

4 Experiments

In this section, we evaluate PACL in few-shot
nested NER. After introducing datasets and base-
line models, we outline the setup, present results,
and analyze them thoroughly.

4.1 Datasets

To evaluate our proposed PACL framework’s per-
formance and generality across languages, we ex-
periment with the Indo-European language family.
English is chosen as the source language, and three
target languages are selected based on their linguis-
tic proximity to English: English itself, German,
and Russian, as obtaining datasets for these lan-
guages is feasible.

Dataset language  Types  Sentences  Entities/Nest entities

GENIA English 36 18.5k 55.7k /30.0k
GermEval German 12 18.4k 41.1k / 6.1k

NEREL Russian 29 8.9k 56.1k / 18.7k
FewNERD English 66 188.2k 491.7k / -

Table 1: Datasets used in experiments

As shown in Table 1, the target nested NER

datasets are GENIA! in English (Kim et al., 2003),
GermEval? in German (Benikova et al., 2014), and
NEREL? in Russian (Loukachevitch et al., 2021).
We use a flat NER dataset, FewNERD # in English
(Ding et al., 2021), as the source domain dataset
to train the model. All these datasets are publicly
available under the licenses of CC-BY 3.0 for GE-
NIA, CC-BY 4.0 for GermEval, CC-BY 2.5 for
NEREL, and CC-BY-SA 4.0 for FewNERD. We
have manually checked to guarantee these datasets
are without offensive content and identifiers.

For training in the source domain, We randomly
sampled 15,00 5-way 5-shot subtasks from the
FewNERD inter-domain subset, among which 500
subtasks are used for validation. We validated the
model every 1000 subtasks. When fine-tuning in
the target domain, we sampled 32-way, 12-way,
and 29-way support sets under 1-shot and 5-shot
settings from GENIA, GermEval test subset, and
NEREL test subset, respectively. We dropped four
entity types in GENIA due to their number of en-
tities being less than 50. After fine-tuning, we
made inferences on the left instances in GENIA,
GermEval test subset, and NEREL test subset.

4.2 Baselines

We compare our proposed PACL with seven base-
lines which can be categorized into three groups:
1) Rich-resource nested NER methods including
NER-DP (Yu et al., 2020) and TIdentifier (Shen
et al., 2021); 2) Metric-based few-shot NER meth-
ods including ProtoNet (Snell et al., 2017), NNShot
(Yang and Katiyar, 2020), ESD (Wang et al.,
2022c¢), and SpanProto (Wang et al., 2022a); 3)
Contrastive-learning-based few-shot NER method
CONTaiNER (Das et al., 2021). Appendix A de-
tails these baseline models.

4.3 Experimental Settings

We implemented PACL by Huggingface Trans-
former 4.21.1 and PyTorch 1.12.1. The model is
initialized randomly and optimized by AdamW
(Loshchilov and Hutter, 2017). We train and
fine-tune the model with the learning rate Se-
5. For the text encoder, we use the pre-trained
BERTbase_multilingual model since the languages
of target domain datasets are different. The hidden

1http: //www.geniaproject.org/genia-corpus

2https: //sites.google.com/site/
germeval2@14ner/data

*https://github.com/nerel-ds/NEREL

4https: //ningding97.github.io/fewnerd/
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GENIA (32-way) GermEval (12-way) NEREL (29-way) Average

Model/Framework 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 15264278  31.89+4.01 7.1242.61 24.894392  15.86+5.77  42.254+2.42 12.75  33.01
Tldentifier 9.73+5.36 23.90+4.48 12.26 £8.13  41.114+486  30.06+7.44  53.2945.56 17.35 39.43

" CONTaiNER ~  16.764600 17.60+£6.61  29.18+£705 37.05t101 26.61+175 4437+£127 24.18  33.00
ProtoNet 21.834+339  37.18+1.81 33.2049.00 47.95+4.06 38.70+462 50.22+128 31.24  45.12
NNShot 25.72+475 33.77+257  28.58+6.76  41.26+250 38.58+130 46.54+193 3096  40.52
ESD 19.964+3.93 25314317  34.004+8.75  34.75+6.03 28.56+5.18 47.68+220  27.51 35.91
SpanProto 31.394286  43.14+£137 34124664  51.11+£589 44204355  56.16+2.15  36.57  50.14
PACL 37.92+197 49.58+182 53.51+7.70 65.87+1.80 51.76+285 65.12+197 47.73  60.19

Table 2: Fj performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

layer of the non-linear function f in equation 2 for
getting span semantic representations is set to 512,
and the initial value of the learnable hyperparam-
eter A for the O-type is set to 0.5. We set random
seeds ranging from O to 10 to get ten results for

and the generality of the prototype-attention mech-
anism.

4.5.1 Ablation Study

each setting and report the average and standard PACL wio PA
deviation values to evaluate all models. We run all GENIA - 1-shot 37.924197 34.71+1.82
the experiments on a single NVIDIA A10 GPU. S-shot 49.58+182 48.30+£2.37
Germbval 1oL 3515770 49745761
4.4 Experimental Results 5-shot 65.87+1.80 62.2942.86
1-shot 51.76+2.85 48.10+3.69
To evaluate the effectiveness of our PACL, we com- NEREL - 5.shot  65.124197  64.25+121

pare it against state-of-the-art baseline models in-
troduced in 4.2. Table 2 shows their average I}
results on GENIA, GermEval, and NEREL NER
datasets with 1-shot and 5-shot settings over 10
times repeated experiments.

Our PACL achieves superior results compared
to other models on 1-shot and 5-shot settings on
the GENIA dataset, with F} scores of 37.92%
and 49.58%, respectively, outperforming the best-
performing baseline model, SpanProto, which
scored 31.39% and 43.14%, respectively.

Our PACL also demonstrates superior perfor-
mance on the GermEval dataset, scoring 53.51%
on 1-shot and 65.87% on 5-shot, compared to the
best-performing baseline model SpanProto on 1-
shot with 34.12% and on 5-shot with 51.11%.

Finally, on the NEREL dataset, our PACL again
outperforms the other models, scoring 51.76% on
1-shot and 65.12% on 5-shot, compared to the best-
performing baseline model SpanProto on 1-shot
SpanProto with 44.20% and on 5-shot Tldentifier
with 56.16%.

Overall, these results demonstrate the effective-
ness of our proposed PACL framework compared
to the state-of-the-art baseline models.

4.5 Experimental Analysis

This section presents ablation studies, results on
nested and flat entities separately in test datasets,

Table 3: Ablation study of F} performance on three
datasets (%). “w/o PA” means removing the Prototype-
Attention mechanism.

To evaluate the contribution of the designed
Prototype-Attention (PA) mechanism to the over-
all performance of PACL, we conduct the ablation
study by removing PA from the PACL. The results
in Table 3 suggest that the PA mechanism positively
impacts the F; score for the GENIA, GermEval,
and NEREL datasets. To be specific, the PA mech-
anism improves the Fj score by 3.21%, 3.77%,
and 3.66% on the GENIA, GermEval, and NEREL
datasets with the 1-shot setting, respectively. It also
leads to 1.28%, 3.58%, and 0.87% increases on the
GENIA, GermEval, and NEREL datasets with the
5-shot setting, respectively.

Opverall, the results of this ablation study demon-
strate that the PA mechanism enhances perfor-
mance on various datasets with a particularly pro-
nounced impact in 1-shot settings, as 1-shot set-
tings exhibits larger prototype shifts than 5-shot
settings. Appendix B shows how our PACL miti-
gates the prototype shift.

Note we did not explore the influence of the
prototype-span contrastive loss by replacing it with
a classical contrastive loss. This is because the clas-
sical contrastive loss performs similarity measure-
ment between span and span. In PACL, the span



representations for the query set are enhanced by
the PA mechanism while the span representations
for the support set are not enhanced. Comparing
these two different types of span representations is
inappropriate. Therefore, we just study the effec-
tiveness of the PA mechanism.

4.5.2 Nested-Flat Separate Results

In order to more comprehensively demonstrate the
efficacy of the outcomes pertaining to nested enti-
ties across these datasets, we undertook a process
of splitting and filtering exclusively for nested enti-
ties. Our proposed PACL framework outperforms
all other models in both 1-shot and 5-shot settings
on all three datasets. For the nested-only part of
three test datasets, PACL achieves an Fj score of
35.06% in 1-shot and 45.93% in 5-shot on GE-
NIA, 32.82% in 1-shot and 48.52% in 5-shot on
GermEval, and 36.70% in 1-shot and 50.89% in 5-
shot on NEREL. The other baseline models achieve
lower F7 scores compared to PACL. For the nested
part of the query set, our proposed PACL frame-
work could achieve a 6.57% and 9.57% increase
in terms of F} score in 1-shot and 5-shot settings,
respectively. And For the flat part of the query set,
our proposed PACL framework could achieve a
9.37% and 8.97% increase in terms of F} score in
1-shot and 5-shot settings, respectively. The more
specific results are presented in Appendix C.

4.5.3 Generality of Prototype-Attention
Mechanism

As the Prototype-Attention (PA) mechanism ad-
dresses the fundamental property of the prototype
shift phenomenon, we believe it has a high level
of generality and can enhance the performance of
various models.

SpanProto  SpanProto w PA
1-shot  31.39+2.86 33.07+4.47
GENIA - 5 G0t~ 43144137 ~ “44.604i09 ~
GermEval 1-shot 34.12+6.64 44.03+9.26
TMEVAL - 5 shot ~ ST1T4580 ~ 54.90%i99
1-shot  44.20+3.55 49.04+3.03
NEREL - 5 4Gt~ 36164215 ~ 6417215

Table 4: [ performance before and after integrating
the Prototype-Attention (PA) mechanism to SpanProto
on three datasets (%).

To assess the generality of the PA mechanism,
we conduct experiments by integrating it into the
SpanProto and ESD models and comparing the per-
formance before and after integration. As shown in

ESD ESD w PA
1-shot  19.96+3.93 25.08+4.32
GENIA - 5 ot ~ 2537T43.07 ~ 35904394
GermEval 1-shot  34.00+8.75 36.08+6.89
e " 5.ghot T 34754603 41954753
1-shot  28.56+5.18 41.38+4.93
NEREL - 35 ot = 47.68432.50 ~ 56.034247

Table 5: F) performance before and after integrating
the Prototype-Attention (PA) mechanism to ESD on
three datasets (%).

Table 4 and Table 5, the experiment results demon-
strate that integrating the PA mechanism into Span-
Proto and ESD notably improves the F1 score on
GENIA, GermEval, and NEREL datasets in both
1-shot and 5-shot settings.

These findings suggest that the PA mechanism
has high generality and can serve as a valuable tool
for NLP practitioners looking to improve their mod-
els’ performance in few-shot nested NER tasks.

5 Related Work

This section discusses related works on rich-
resource nested NER, few-shot NER, and distri-
bution shifts.

5.1 Rich-resource Nested NER

Nested NER aims to recognize entities with nested
structures. Most of the current methods for nested
NER are established on rich-resource datasets.
These methods could be categorized into span-
based, hypergraph-based, and layered-based (Wan
et al., 2022).

Span-based methods treat sequences of tokens
as spans and then label all possible spans by classi-
fication models (Shen et al., 2021; Li et al., 2020b;
Tan et al., 2021). Hypergraph-based methods an-
alyze the dependence of words in a sentence and
then construct a dependency tree (Yu et al., 2020)
or other structures (Wang and Lu, 2018; Katiyar
and Cardie, 2018) to help identify nested entities.
And layered-based methods capture the depth of
entity nesting and apply multi-level sequence label-
ing strategies to recognize nested entities (Wang
et al., 2021; Shibuya and Hovy, 2020).

These methods may be stuck in overfitting due
to sophisticated models and the limited number of
instances for training in the few-shot setting.

5.2 Few-shot NER

Few-shot NER requires recognizing entities with
the support of very few labeled instances (Hofer



et al., 2018; Fritzler et al., 2019). Due to limited
information contained in the support set, methods
for few-shot NER mainly resort to a rich-resource
source domain to help train models, resulting in
transfer-learning and meta-learning frameworks.

Transfer-learning-based methods train models
on a source domain and then transfer models or
features to the few-labeled target domain (Yang
etal., 2021; Liu et al., 2021). Meta-learning-based
methods train models on adequate subtasks to make
the model acquire the learning ability on few-shot
tasks (de Lichy et al., 2021; Li et al., 2020a). Com-
paratively speaking, meta-learning-based methods
are more widely used in few-shot NER due to their
easy adaption to new tasks.

Within the meta-learning framework, various
kinds of models are designed. For example, metric-
based methods, including ProtoNet (Snell et al.,
2017), NNShot (Yang and Katiyar, 2020), and
SpanProto (Wang et al., 2022a), measure distances
between prototypes in the support set and instances
in the query set. Optimization-based methods, such
as MAML (Finn et al., 2017) and FEWNER (Li
etal., 2020a), train the model by a special optimizer.
Model-based methods, such as SNAIL (Mishra
et al., 2017) and CNPs (Garnelo et al., 2018), learn
the hidden representation of instances on the sup-
port set and the query set to make inferences in an
end-to-end manner. Contrastive-learning methods,
such as CONTaiNER (Das et al., 2022), aims to
maximize similarities of the same type and mini-
mize similarities between different types.

These few-shot NER methods mostly focus on
flat entities. Few works have discussed the few-
shot nested NER setting. Wang converted sequence
labeling to span-level matching for the few-shot flat
NER and showed their method could handle nested
entities (Wang et al., 2022b). However, it is not
designed for the few-shot nested NER specifically.

5.3 Distribution Shifts

Distribution shift is a problem of training and test-
ing data following two different distributions. It
affects the generalization ability of supervised deep-
learning models as the fundamental that these mod-
els could work is that training and testing data come
from the same distribution. Inspired by real-world
challenges, Wiles et al. summarized three distri-
bution shifts: spurious correlation, low-data drift,
and unseen data shift (Wiles et al., 2022). There
have been some researches aiming to address dis-

tribution shifts in computer vision and general nat-
ural language processing tasks (Fang et al., 2020;
Tu et al., 2022). To the best of our knowledge,
researchers seldom discuss the distribution shift
problem in the few-shot NER task. In this paper,
we aim to tackle the few-shot nested NER task.
Therefore, we rethink the distribution shift prob-
lem from the perspective of entity representation
distribution and identify the prototype shift since it
directly affects entity classification.

6 Conclusion

This paper first identifies the phenomenon of pro-
totype shift that arises when there is a difference
in prototypes between the support and query sets.
Within the context of few-shot learning tasks, pro-
totype shift is prone to occur since the few labeled
instances in the support set could hardly represent
the query set. To mitigate this issue in the few-
shot nested NER task, we propose the Prototype-
Attention Contrastive Learning (PACL) framework
combining a prototype-attention mechanism and
a prototype-span contrastive loss to enhance pro-
totype representations. The experiments on three
English, German, and Russian nested NER datasets
demonstrated that PACL outperformed baseline
models on the 1-shot and 5-shot settings. Future
studies could explore the generality of PACL to
other few-shot learning tasks.

7 Limitations

This paper still has several limitations. The first one
is about the prototype shift adjustment. It is hard to
completely address the prototype shift, while our
PACL makes this attempt and achieves inspiring
improvement. The second one is about other distri-
bution shifts. Prototype shift is just one kind of dis-
tribution shift. Other distribution shifts also need
to be identified and addressed to improve the accu-
racy of the few-shot nested NER task. The third
one is about the language used for training. The
results validate the performance of PACL across
different languages, while the three languages used
in this paper belong to the Indo-European family.
This may introduce language bias to this language
family and cause potential risk.
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NER-DP (Yu et al., 2020) is a rich-resource-
based nested NER method. It applies a bi-
affine model to score pairs of start and end
tokens for each span to establish dependency
parsing for identifying nested entities.

TIdentifier (Shen et al., 2021) is also a rich-
resource-based nested NER method. It applies
a Two-stage Identifier (Tldentifier), including
a seed span generation module for locating
entities and a span proposal module for classi-
fying entities.

CONTaiNER (Das et al, 2021) is a
contrastive-learning-based few-shot NER
method. It first obtains entities’ Gaussian-
distributed embeddings and then optimizes
a generalized objective of differentiating be-
tween entity types by a contrastive loss func-
tion. We adapt it to handle nested entities with
the entity span formulation.

ProtoNet (Snell et al., 2017) is a metric-
learning-based few-shot NER method. It ap-
plies prototypical networks to learn a metric
space for obtaining prototype representations.
We also adapt it to handle nested entities with
the entity span formulation.

NNShot (Yang and Katiyar, 2020) is also a
metric-learning-based few-shot NER method.
It applies structured decoding and nearest-
neighbor learning to identify entities. We uti-
lize the entity span formulation to make it
handle nested entities.

ESD (Wang et al., 2022c) is a metric-learning-
based few-shot NER method. It formulates
the task as a span-level matching problem. To
identify entities, it performs span-level pro-
cedures, including enhanced span represen-
tation, class prototype aggregation, and span
conflict resolution.

SpanProto (Wang et al., 2022a) is a metric-
learning-based few-shot NER method. It also
applies entity spans to formulate the problem.
For identifying entities, it first utilizes a span
extractor to recognize candidate entity spans
and then applies a mention classifier to deter-
mine entity types.
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Figure 4: Illustration of the change of the prototype
similarity during training.

B Prototype Shift Mitigation by PACL

This paper aims to mitigate prototype shifts, and
section 1 has already validated the existence of the
prototype shift phenomenon. This section exam-
ines how the prototype shift changes by applying
our PACL.

We utilize the cosine similarity to denote the pro-
totype differences between the support and query
sets to measure the prototype shift. Figure 4 illus-
trates the change of the prototype similarity with
the increase of iteration numbers during training.
We could find a consistently increasing trend in
prototype similarity, which means the prototype
shift is consistently decreasing. This validates the
effectiveness of our PACL in mitigating prototype
shifts.

C Results on Nested/Flat-Only Entities

We split the query set of each dataset into two sub-
sets: one only contains nested entities and the other
one only contains flat entities. We then evaluate
the model over 10 times repeated experiments. Ta-
ble 6 and table 7 show the average Fj results of
nested-only and flat-only entities on GENIA, Ger-
mEval, and NEREL NER datasets with 1-shot and
5-shot settings. In the nested part of the query set,
our proposed PACL framework achieves a 6.57%
and 9.57% increase in terms of I score in the 1-
shot and 5-shot settings, respectively. Similarly, in
the flat part of the query set, our proposed PACL
framework achieves a 9.37% and 8.97% increase in
terms of F} score in the 1-shot and 5-shot settings,
respectively.

Compared to the baseline models, our proposed
PACL model achieves the best results not only in



GENIA (32-way) GermEval (12-way) NEREL (29-way) Average

Model/Framework 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 13.944396 28.16+243  5.84+3.11 8.12+4.30 4.834+2.71 19.87+3.92 8.20 18.72
TIdentifier 9.194536  25.154550  9.2246.56  27.7943.54  20.13+728 39.93+563  12.85 30.96

" CONTaiNER ~  16.194365 12.5248.11 15.844470 15214492 20.714394 30.03+204 1758 1925
ProtoNet 18.994329 32.534224 21.62+5.85 33.66+3.23 26.194+7.67 40.93+236  22.27 35.71
NNShot 24.84+555  30.71+260 27.36+695 28.30+747 28.69+842 42.92+517 2696  33.98
ESD 18.084+2.99  22.9+2.13 19.86+5.62 22.33+5.00 24.23+529 30.85+826 20.72  25.36
SpanProto 30.24+2.77  40.50+2.04 24.11+757 34.06+343 30.51+586 42.07+129 2829  38.88
PACL 35.06+£352 45.93+193  32.8249.39 48.52+190 36.70+488 50.89+2.99 34.86 48.45

Table 6: nested [} performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

GENIA (32-way) GermEval (12-way) NEREL (29-way) Average

Model/Framework 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot  5-shot
NER-DP 12.7343.94  26.87+3.13  6.7443.65 15.61+6.14 9214382  34.03+3.74 9.56 25.50
Tldentifier 14.07+£848 26.81+3.54 12.53+844  42.19+5.15 32454788 55.184620 19.68  41.39

" CONTaiNER ~  16.10+231 12.12+783 25.444877  27.7049.05 35.71+287 45.08+267 2575 28.30
ProtoNet 19.424386 34.214+205 35.79+4807 50.45+335 39.81+639 56.62+291 31.67  47.09
NNShot 22.614+5.06 29.73+294 50.42+6.92 44.23+14.07 44.974+568 57.57+601 3933  43.84
ESD 17274441 21.64+338 31.46+846 35434642  38.40+4.08 43.42+4994 29.04  33.50
SpanProto 29.164335 40.734+1.49  38.974+9.63  53.66+3.75  47.514+3.08 59.154175  38.55  51.18
PACL 35.96+2.16 46.62+2.16 55.77+7.73  67.63+205 54.38+2.85 66.19+206 48.70  60.15

Table 7: flat F} performance on GENIA, GermEval, and NEREL datasets with 1-shot and 5-shot settings (%).

the 1-shot and 5-shot experimental settings but also
in both the nested and flat settings. This indicates
that our proposed model can effectively classify
nested entities compared to other baseline models.
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