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LUSTER: Link Prediction Utilizing Shared-Latent Space
Representation in Multi-Layer Networks

Anonymous Author(s)

Abstract

Link prediction in multi-layer networks is a longstanding issue that
predicts missing links based on the observed structures across all
layers. Existing link prediction methods in multi-layer network typ-
ically merge the multi-layer network into a single-layer network
and/or perform explicit calculations using intra-layer and inter-
layer similarity metrics. However, these approaches often overlook
the role of coupling in multi-layer networks, specifically the shared
information and latent relationships between layers, which in turn
limits prediction performance. This calls the need for methods that
can extract representations in a shared-latent space to enhance
inter-layer information sharing and prediction performance. In this
paper, we propose a novel end-to-end framework namely: Link pre-
diction Utilizing Shared-laTent spacE Representation (LUSTER) in
multi-layer networks. LUSTER consists of four key modules: the
representation extractor, the latent space learner, the complemen-
tary enhancer, and the link predictor. The representation extractor
focuses on learning the intra-layer representations of each layer,
capturing the data characteristics within the layer. The latent space
learner extracts representations from the shared-latent space across
different network layers through adversarial training. The comple-
mentary enhancer combines the intra-layer representations and
the shared-latent space representations through orthogonal fusion,
providing comprehensive information. Finally, the link predictor
uses the enhanced representations to predict missing links. Exten-
sive experimental analyses demonstrate that LUSTER outperforms
state-of-the-art methods for link prediction in multi-layer networks,
improving the AUC metric by up to 15.87%.

CCS Concepts

• Computing methodologies→ Neural networks.

Keywords

link prediction, multi-layer networks, shared-latent space, adver-
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1 Introduction

In recent years, link prediction for complex networks has attracted
significant research attention [13, 31, 51]. Complex networks refer
to systems with intricate structures, high heterogeneity or rich
hierarchical levels [9], such as social relationships [20], transporta-
tion [26], and Internet structures [52]. These networks may not
necessarily encompass a large number of nodes and edges, however,
the relationships between nodes often exhibit diversity and com-
plexity, making the modeling and analysis of these networks criti-
cally important [42]. Different types of complex networks include:
heterogeneous networks [34], temporal networks [47], and multi-
layer networks [19], each suited for handling complex information
in different scenarios. Amongst them, multi-layer networks are
regarded as an effective approach for processing multi-dimensional
and multi-level information within complex networks [44]. In multi-
layer networks, the overall structure is divided into multiple layers,
each capturing a specific type of relationship, thus providing a
comprehensive representation of the interactions and information
exchange between node entities [8, 12, 23]. For example, in a trans-
portation system, aviation, railways, and highways can be regarded
as distinct layers, each of which describes the connection between
cities through different modes of transportation.

Existing research for link prediction in multi-layer networks
usually focus more on merging the multi-layer network into a
single-layer network [33, 43], and/or extracting structural features
of each layer using multiple similarity metrics [41]. However, these
methods fail to fully incorporate the role of the coupling in multi-
layer networks, i.e., the shared information and latent relationships
between layers [10], which in turn limits the potential of multi-
layer networks for the prediction tasks. Therefore, it is necessary
to develop methods that can better extract representations from a
shared-latent space to enhance inter-layer coupling and improve
prediction performance.

Previous studies [7, 25, 53] have demonstrated there exists a
shared-latent space between different data sources, yet its potential
has not been fully exploited for multi-layer network analysis. To
fully consider the coupling in multi-layer networks, we treat links
from different layers as data originating from different sources in
this work to extract representations from the shared-latent space.
By combining these representations with intra-layer representa-
tions, we capture the complex structures features within each layer,
while identifying and leveraging inter-layer coupling, thus improv-
ing prediction performance. An example illustration in this regard
is shown in Fig. 1, which shows a three-layer transportation net-
work. It highlights that although the interactions between nodes in
the aviation, railway, and highway layers are different, yet these
layers are not completely isolated. For this, by utilizing the inter-
layer coupling, i.e., the mutual influence and connections between
different layers, there may be a high probability link between San

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

SD
SB
LA
LB
AN
PA

SD
SB
LA
LB
AN
PA

SD
SB
LA
LB
AN
PA

intra-layer 
representations

shared-latent space representations

some commonalities

SD
SB
LA
LB
AN
PA

Long Beach

San Diego

Los Angeles

Anaheim

Pasadena

Santa Barbara

Long Beach

San Diego

Los Angeles

Anaheim

Pasadena

Santa Barbara

Long Beach

San Diego

Los Angeles

Anaheim

Pasadena

Santa Barbara

Long Beach

San Diego

Los Angeles

Anaheim

Pasadena

Santa Barbara

Aviation Layer

Railway Layer

Highway Layer

San Diego Los Angeles

Long Beach

AnaheimLos Angeles

prediction

① ②

③

Anaheim

Figure 1: An example of a three-layer transportation net-

work: combining intra-layer representations and shared-

latent space representations for prediction.

Diego and Los Angeles in the railway layer, based on their exist-
ing connections in the aviation layer and similar patterns in the
highway layer.

However, to effectively combine the intra-layer representations
and shared-latent space representations for effective modeling of
multi-layer network, we foresee following key challenges. The first
challenge is to identify the shared-latent space. It is relatively chal-
lenging to track due to the dynamic nature and high-dimensionality
of the shared-latent space. The second challenge is how to com-
bine the intra-layer representations and the shared-latent space
representations for link prediction tasks. The shared-latent space
representations are novel representations derived from multiple
intra-layer representations, which integrates features from different
layers into a higher-level feature expression. There is a need for
effective combination to avoid linear dependencies.

To address these challenges, in this work we propose a novel
framework namely: Link prediction Utilizing Shared-laTent spacE
Representation (LUSTER) for effective modeling of multi-layer net-
works. LUSTER primarily encompasses four key components: (i)
Representation Extractor, (ii) Latent Space Learner, (iii) Complemen-
tary Enhancer, and (iv) Link Predictor. “Representation Extractor” is
responsible for learning the intra-layer representations using the
structural information of each layer. “Latent Space Learner” aims
to extract representations from the shared-latent space through
adversarial training in order to effectively dig-out the inter-layer
coupling. Later, “Complementary Enhancer” uses orthogonal fu-
sion to organically combine the intra-layer representations and the
shared-latent space representations to further improve the qual-
ity of feature representations. Finally, “Link Predictor” performs
the link prediction task based on the enhanced representations
to accurately determine potentially missing links. We argue the
proposed model not only captures the internal details of each layer,
but also improves the ability to capture the latent shared relation-
ships between different layers, thereby improving the prediction
performance of the end-model.

We summarize the key contributions of this work as follows:
• We propose LUSTER, a novel method that integrates intra-

layer representations and shared-latent space representa-
tions to better account for the inter-layer coupling.

• We design adversarial training to obtain shared-latent space
representations across different layers and use orthogonal
fusion to combine these representations with intra-layer
representations, ensuring minimal redundancy.

• We conduct extensive experiments to demonstrate that LUS-
TER outperforms state-of-the-art models for link prediction
in multi-layer networks by improving the AUC metric by
up to 15.87%.1

2 Related Work

We bifurcate the existing work into: (i) Link prediction in multi-
layer networks, (ii) Shared-latent space and (iii) Adversarial neural
networks.

2.1 Link Prediction in Multi-Layer Networks

Many existing link prediction models have been applied to multi-
layer networks. Najari et al. [35] comprehensively considered the
intra-layer similarity and representations extracted from the pre-
diction layer. Abdolhosseini et al. [1] utilized the structural repre-
sentations of other layers for the optimal reconstruction of target
layer structure. In addition, Luo et al. [27] proposed a new multi-
attribute decision making method which defines a layer similarity
measure based on cosine similarity to achieve the weighting of each
layer. Mandal et al. [30] reported that the quality of feature group
selection significantly influences the effect of deep-learning models.
However, the traditional topology calculation methods mentioned
above exhibit limitations in terms of flexibility and efficiency.

In recent years, deep learning models have excelled in various
link prediction tasks owing to their inherent feature extraction
capabilities. Yao et al. [54] proposed a node similarity index based
on layer relevance by utilizing the intra-layer and inter-layer repre-
sentations. Shan et al. [41] extracted a set of elaborate structural
representations of links from all layers. In addition, Mishra et al. [32]
combined information from multiple layers into a single weighted
network, accounting for the relative density of each layer. They
proposed MNERLP algorithm, which first calculates node and edge
relevance based on the summarized graph, and then combines both
these factors to perform link prediction. After that, Mishra et al. [33]
proposed HOPLP algorithm which iteratively calculates link likeli-
hoods taking longer paths between nodes into account. However,
these methods often focus on learning intra-layer local representa-
tions and fail to fully exploit the shared information across layers.
This can result in conflicting predictions for links in different layers.
Therefore, we aim to extract representations from a shared-latent
space to capture cross-layer information, thereby enhancing the
accuracy and consistency of predictions.

2.2 Shared-Latent Space

Shared-latent space is a unified feature space that integrates infor-
mation from diverse data sources to capture potential relationships
1The code is available at an anonymous repository: https://anonymous.4open.science/
r/LUSTER/.
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Figure 2: Overview of the proposed model LUSTER. Representation Extractor learns the intra-layer representations of each

layer. Latent Space Learner consists of a generator and a discriminator to obtain shared-latent space representations through

adversarial training. Complementary Enhancer utilizes orthogonal fusion to combine intra-layer representations and shared-

latent space representations. Link Predictor predicts whether a link is missing based on the enhanced representations.

Table 1: Notations

Symbol Meaning Symbol Meaning

G A multi-layer network G𝑘 The 𝑘-th layer network
V Observed nodes in G V𝑘 Observed nodes in G𝑘
E Observed links in G E𝑘 Observed links in G𝑘
E𝑢 Unobserved links in G E𝑢

𝑘
Unobserved links in G𝑘

Φ𝐿 Intra-layer representations 𝜙𝐿𝑒 Φ𝐿 for link 𝑒
Φ𝑆 Shared-latent space representations 𝜙𝑆𝑒 Φ𝑆 for link 𝑒
Φ Enhanced representations 𝜙𝑒 Φ for link 𝑒

more effectively [46]. In multi-modal learning [40], image process-
ing [37], and natural language processing [3], it has been shown
that effectively utilizing representations extracted from shared-
latent space can improve overall model performance. However,
this concept remains underutilized in link prediction within multi-
layer networks. We aim to leverage a shared-latent space to mine
inter-layer coupling and improve prediction accuracy.

2.3 Adversarial Neural Networks

Since the introduction of Generative Adversarial Networks (GANs)
by Goodfellow et al. [17], the concept of adversarial training has
gained widespread application. Notably, the Event Adversarial Neu-
ral Network proposed by Wang et al. [50] demonstrates effective
transferable feature learning through adversarial training. We lever-
age this idea by integrating adversarial techniques into the construc-
tion of a shared-latent space within multi-layer networks. Through
iterative adversarial training, we maintain cross-layer shared infor-
mation, thereby enhancing the accuracy of link prediction.

More detailed discussions on related work are provided in Ap-
pendix A.1.

3 The Problem

Given a multi-layer network G = (V, E), we aim to compute a
set P = {⟨𝑒, 𝛿⟩ |𝑒 ∈ E𝑢 , 𝛿 ∈ [0, 1]}, where for each unobserved link

𝑒 ∈ E𝑢 is assigned a probability 𝛿 ∈ [0, 1] to quantify its existent
likelihood. The perfect solution to this problem is that 𝛿 = 1 for
unobserved existent links and 𝛿 = 0 for nonexistent links. We
summarize the list of symbols used in this study in Table 1.

4 LUSTER

Overview. The workflow of LUSTER is shown in Fig. 2. It uses the
representation extractor and the latent space learner to extract the
intra-layer representations Φ𝐿 and the shared-latent space repre-
sentations Φ𝑆 . The latent space learner encompasses a generator
and a discriminator. It uses a minimax two-player game, where the
generator attempts to learn the shared-latent space representations
to deceive the discriminator. While, the discriminator attempts
to accurately distinguish the layer sources of links based on the
representations learned by the generator. Then, the complemen-
tary enhancer combines the intra-layer representations Φ𝐿 and the
shared-latent space representations Φ𝑆 via orthogonal fusion to
obtain the enhanced representations Φ. Finally, the link predictor
is used on top of the complementary enhancer to predict missing
links. Further details about the model components are as follows:

4.1 Representation Extractor

The representation extractor of LUSTER utilizes 𝐾 separate Graph
Convolutional Networks (GCN) [22] to learn and/or extract the
intra-layer representations of each individual layer. Specifically, for
𝑘-th layer, we obtain corresponding adjacency matrix 𝐴𝑘 and the
initial matrix 𝐻 (0)

𝑘
from the network graph G𝑘 . The convolution

process for the 𝑘-layer may be denoted as:

𝐻
(𝑙+1)
𝑘

= 𝜎 (�̃�− 1
2

𝑘
�̃�𝑘 �̃�

− 1
2

𝑘
𝐻

(𝑙 )
𝑘
𝑊

(𝑙 )
𝑘

) (1)

where �̃�𝑘 = 𝐴𝑘 + 𝐼 is the adjacency matrix 𝐴𝑘 with added self-
loops, �̃�𝑘 is the degree matrix of �̃�𝑘 ,𝑊𝑘 denotes the weight matrix,
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and 𝜎 (·) is the ReLU activation function. In our case, we use a two-
layered convolutional network. We use 𝑁𝐿

𝑘
= 𝐻 (2)

𝑘
∈ R |V |×𝑑𝑛 to

denote the intra-layer representations of nodes in the 𝑘-th layer
network, where 𝑑𝑛 denotes the dimension of the intra-layer repre-
sentations of nodes. Subsequently, the intra-layer representations
of all links in the 𝑘-th layer network is represented as:

Φ𝐿
𝑘
= {𝜙𝐿𝑒 |𝜙𝐿𝑒 = 𝑁𝐿

𝑘 (𝑒𝑙 ) ⊕ 𝑁
𝐿
𝑘 (𝑒𝑟 ) }, (2)

where 𝑒𝑙 and 𝑒𝑟 denote the left and right node of a link 𝑒 respectively,
⊕ denotes the concatenation operation, and 𝜙𝐿𝑒 ∈ R𝑑 denotes the
intra-layer representation of the link 𝑒 , with 𝑑 = 2𝑑𝑛 . We use Φ𝐿 =

{Φ𝐿
𝑘
}𝐾
𝑘=1 ∈ R | E∪E𝑢 |×𝑑 to denote the intra-layer representations of

links in all the layers.
We denote the representation extractor as 𝑀𝐿 (G;𝜃𝐿), where

G denotes the original multi-layer network and 𝜃𝐿 denotes all
parameters in the representation extractor.

4.2 Latent Space Learner

The latent space learner of LUSTER uses a generator-discriminator
architecture, where the objective of the generator is to compute
the shared-latent space representations of links across different
layers. At the same time, the discriminator attempts to improve the
ability of the generator by effectively distinguishing the differences
between the link representations provided by the generator from
different layers. Further details are as follows:
Generator. To learn the shared-latent space representations across
different layers, the generator uses Convolutional Neural Network
(CNN) to learn from the intra-layer representations obtained by the
representation extractor. We argue CNN can effectively integrate
information across different layers thus computing shared-latent
space representations indicative of interconnections among differ-
ent layers. The convolution operation of the ℎ consecutive links,
starting from link 𝑒 , can be mathematically expressed as:

𝜙𝑆𝑒 = 𝜎 (
ℎ−1∑︁
𝑖=0

𝑊𝑖 · 𝜙𝐿𝑒+𝑖 ), (3)

where 𝜎 (·) denotes the ReLU activation function and𝑊𝑖 denotes
the weight of the convolution filter. Φ𝑆 = {𝜙𝑆𝑒 |𝑒 ∈ E ∪ E𝑢 } ∈
R | E∪E𝑢 |×𝑑 denotes the shared-latent space representations of links
in the multi-layer network. The dimension of shared-latent space
representations is same as that of intra-layer representations.
Discriminator. Specifically, for a given link sample 𝑒 , the purpose
of the discriminator is to distinguish which layer of the multi-layer
network the link 𝑒 originates from. In our case, the latent space
learner uses a discriminator consisting of a fully connected layer
with softmax activation function, as shown below:

𝑑𝑒 = softmax(𝑊𝑇 · 𝜙𝑆𝑒 + 𝑏), (4)

where𝑊 ∈ R𝑑×𝐾 and 𝑏 ∈ R𝐾×1 denote the weight matrix and the
bias vector of the fully connected layer, respectively.𝑊𝑇 denotes
the transpose of𝑊 and 𝑑𝑒 ∈ R𝐾×1 denotes the probability that the
link originates from each layer. We use cross-entropy loss as the
loss of the discriminator, shown as follows:

L𝑎𝑑𝑣 = −[ E
𝑒∼E

𝐾∑︁
𝑘=1

𝑦𝑒𝑘𝑙𝑜𝑔(𝑑𝑒𝑘 ) + E
𝑒∼E𝑢

𝐾∑︁
𝑘=1

𝑦𝑒𝑘𝑙𝑜𝑔(𝑑𝑒𝑘 )], (5)
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Figure 3: Fusion of the intra-layer representation 𝜙𝐿𝑒 and

shared-latent space representation 𝜙𝑆𝑒 for link 𝑒.

where 𝑦𝑒𝑘 indicates the ground truth label: 1 if link 𝑒 belongs to the
𝑘-th layer, and 0 otherwise. 𝑑𝑒𝑘 represents the predicted probability
by the discriminator for link 𝑒 belonging to the 𝑘-th layer.

A lower loss indicates that the Φ𝑆 helps the discriminator to dis-
tinguish different layers more effectively, while a larger loss reflects
that the Φ𝑆 given by the generator can deceive the discriminator.
For this, a minimax game is established between the generator and
the discriminator, where on one hand, the generator continuously
learns shared-latent space representations to deceive the discrimi-
nator and strives to maximize L𝑎𝑑𝑣 . While, on other hand, in order
to avoid being deceived, the discriminator aims to minimize L𝑎𝑑𝑣 .

We use𝑀𝑆 (Φ𝐿 ;𝜃𝐺 , 𝜃𝐷 ) to denote the latent space learner, where
𝜃𝐺 and 𝜃𝐷 denote all parameter that the generator and the discrim-
inator need to learn, respectively.

4.3 Complementary Enhancer

The complementary enhancer utilizes orthogonal fusion to inte-
grate intra-layer representations and shared-latent space represen-
tations. Since the shared-latent space representations are derived
from multiple intra-layer representations, they may incur linear
dependencies. By removing the overlapping components and retain-
ing the orthogonal parts, we aim to acquire a more effective linear
combination. For this, we apply orthogonal projection between the
intra-layer representations and shared-latent space representations
to extract complementary components, later combine them with
the original intra-layer representations.

In this aspect of projection, we follow existing work by Qin et
al. [39] that proposed orthogonal projection layer (OPL) in order to
map traditional features into a semantic space orthogonal to com-
mon features, yielding “pure representations” in order to improve
the classification performance. Specifically, for link 𝑒 ∈ E ∪ E𝑢 , the
projection of shared-latent space representation 𝜙𝑆𝑒 in a direction
orthogonal to intra-layer representation 𝜙𝐿𝑒 is expressed as:

𝜙𝑆𝑒 = ortho⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ =
∥𝜙𝑆𝑒 × 𝜙𝐿𝑒 ∥2

∥𝜙𝑆𝑒 ∥2 · ∥𝜙𝐿𝑒 ∥2
· 𝜙𝑆𝑒 (6)

where ∥ · ∥2 refers to the L2 norm operator. Then, the complemen-
tary enhancer combines the intra-layer representation 𝜙𝐿𝑒 with the
orthogonal representation 𝜙𝑆𝑒 of link 𝑒 , as follows:

𝜙𝑒 = 𝜙
𝐿
𝑒 [𝑖] + 𝜙𝑆𝑒 [𝑖], 𝑖 = 1, 2, · · · , 𝑑, (7)
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where𝜙𝑒 denotes the enhanced representation of link 𝑒 ,Φ = {𝜙𝑒 |𝑒 ∈
E ∪ E𝑢 } ∈ R | E∪E𝑢 |×𝑑 denotes the enhanced representations of all
the links in the multi-layer network.

For a specific link 𝑒 , the process of combining intra-layer rep-
resentation and shared-latent space representation is illustrated
in Fig. 3. It is evident from Fig. 3 that the enhanced representa-
tion 𝜙𝑒 obtained by Eq. 7 is equivalent to 𝜙𝐿𝑒 + 𝜙𝑆𝑒 − proj⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩,
where proj⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ = ∥𝜙𝑆𝑒 ∥2 · 𝑐𝑜𝑠 ⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ · 𝜙𝐿𝑒 represents the pro-
jection of 𝜙𝑆𝑒 in the direction of 𝜙𝐿𝑒 , 𝑐𝑜𝑠 ⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ =

𝜙𝑆
𝑒 ·𝜙𝐿

𝑒

∥𝜙𝑆
𝑒 ∥2 · ∥𝜙𝐿

𝑒 ∥2
. The

proj⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ represents the overlapping components between the
intra-layer representation 𝜙𝐿𝑒 and shared-latent space representa-
tion 𝜙𝑆𝑒 . Through the above orthogonal fusion, the complemen-
tary enhancer successfully removes the overlapping components
proj⟨𝜙𝑆𝑒 , 𝜙𝐿𝑒 ⟩ while retaining the orthogonal parts 𝜙𝑆𝑒 . This results
in a more reasonable linear combination for the link, thus yielding
the enhanced representation 𝜙𝑒 .

We use𝑀𝐸 (Φ𝐿,Φ𝑆 ;𝜃𝐸 ) to denote the complementary enhancer,
where 𝜃𝐸 denotes all parameters in the module. The representation
extractor and the latent space learner pass Φ𝐿 = {𝜙𝐿𝑒 |𝑒 ∈ E ∪ E𝑢 }
and Φ𝑆 = {𝜙𝑆𝑒 |𝑒 ∈ E ∪ E𝑢 } to the complementary enhancer.

4.4 Link Predictor

The link predictor is built on top of the complementary enhancer.
It uses the enhanced representations Φ = {𝜙𝑒 |𝑒 ∈ E ∪ E𝑢 } ∈
R | E∪E𝑢 |×𝑑 as input and passes them through a fully connected
layer in order to compute the prediction results. Formally, for a
given link sample 𝑒 , we compute the probability of the existence of
link, i.e., 𝑝𝑒 as follows:

𝑝𝑒 = softmax(𝑊𝑇
𝑝 · 𝜙𝑒 + 𝑏𝑝 ), (8)

where𝑊𝑝 ∈ R𝑑×2 and 𝑏𝑝 ∈ R2×1 denote the weight matrix and
the bias vector respectively. We use the cross-entropy function as
the prediction loss, defined as follows:

L𝑐𝑙𝑠 = −[ E
𝑒∼E

𝑙𝑜𝑔(𝑝𝑒 ) + E
𝑒∼E𝑢

𝑙𝑜𝑔(1 − 𝑝𝑒 )] . (9)

We use𝑀𝑃 (Φ;𝜃𝑃 ) to denote the link predictor, where 𝜃𝑃 represents
the parameters of the predictor.

4.5 Model Integration

We define the overall loss function of LUSTER, as follows:

L = L𝑐𝑙𝑠 + L𝑎𝑑𝑣 . (10)

For model training, we employ the Adam algorithm [21] and decay
learning rate [15] for model optimization. The process of updating
parameters is as follows:

𝜃 (𝑡+1) = 𝜃 (𝑡 ) − 𝜂𝑟 (∇𝜃L), (11)

where 𝜃 = {𝜃𝐿, 𝜃𝐷 , 𝜃𝐸 , 𝜃𝑃 } and 𝜂𝑟 denotes the learning rate, which
decays with epochs during the training stage:

𝜂𝑟 =
𝜂0

(1 + 𝛼 × 𝑟 )𝛽
, (12)

where 𝑟 denotes the ratio of the current epoch to the total number
of epochs, 𝜂0 = 0.01 denotes the initial learning rate. 𝛼 = 10 and
𝛽 = 0.75 are hyperparameters, which are the same as those of [15].

During the minimax two-player game between the generator
and the discriminator, the discriminator attempts to update the
parameters 𝜃𝐺 in the direction of gradient descent to minimize
L𝑎𝑑𝑣 , while the generator continuously disturbs the parameters 𝜃𝐺
in the direction of gradient ascent to maximize L𝑎𝑑𝑣 . This dynamic
process helps the model to better capture the shared-latent space
representations across different layers.

Specifically, to implement the adversarial process, a common
basic operation is to introduce a gradient reversal layer (GRL) [49]
that inverts the gradient of 𝜃𝐺 during back-propagation. However,
the loss L𝑎𝑑𝑣 is usually not linear with respect to the parameters
𝜃𝐺 , meaning that there may be some disturbance that can cause
the gradient increase more relative to a direct inverse. For this, we
introduce the projected gradient descent (PGD) [28] with minor
adjustments. The original PGD affects the parameters of the gener-
ator and its preceding modules. We focus on disturbing only the
gradients of the generator during the optimization process, avoid-
ing interference with the preceding module (i.e., the representation
learner) and preventing any negative impact on the extraction of
inter-layer representations. During the back-propagation process,
the parameters 𝜃𝐺 contained in the generator are disturbed 𝑁 times.
The cumulative disturbance up to 𝑛 = {1, 2, · · · , 𝑁 } times is:

𝑐 (𝑛) =
𝑛−1∑︁
𝑖=0

[𝜇 · 𝑠𝑔𝑛(∇
𝜃
(𝑖 )
𝐺

L (𝑖 )
𝑎𝑑𝑣

)], (13)

where 𝜇 denotes the disturbance coefficient and 𝑠𝑔𝑛(·) denotes sign
function. 𝜃 (0)

𝐺
and L (0)

𝑎𝑑𝑣
denote the original states prior to the onset

of disturbances. 𝜃 (𝑛)
𝐺

and L (𝑛)
𝑎𝑑𝑣

denote the states after experiencing
disturbances up to 𝑛 = {1, 2, · · · , 𝑁 } times, respectively. After each
disturbance, if the cumulative disturbance 𝑐 (𝑛) exceeds the space of
disturbance radius 𝜆, it is projected back onto the spherical surface
with a radius of 𝜆 to ensure that the disturbance is not too large.
The process can be formulated as:

𝜃
(𝑛)
𝐺

=

{
𝜃
(0)
𝐺

+ 𝜆

∥𝑐 (𝑛) ∥2
𝑐 (𝑛) , if ∥𝑐 (𝑛) ∥2 > 𝜆

𝜃
(0)
𝐺

+ 𝑐 (𝑛) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(14)

where ∥·∥2 refers to theL2 norm operator. During each disturbance,
the discrimination loss L (𝑛)

𝑎𝑑𝑣
is calculated according to Eq.5 after

obtaining 𝜃 (𝑛)
𝐺

. After 𝑁 disturbances, we update the generator
parameters 𝜃𝐺 as follows:

𝜃
(𝑡+1)
𝐺

= 𝜃
(𝑡 )
𝐺

− 𝜂𝑟 (∇𝜃𝐺L + ∇
𝜃
(𝑁 )
𝐺

L (𝑁 )
𝑎𝑑𝑣

) . (15)

Here, we not only consider the gradient of the current loss L with
respect to the generator parameters 𝜃𝐺 , we also incorporate the
gradient of the lossL (𝑁 )

𝑎𝑑𝑣
with respect to 𝜃 (𝑁 )

𝐺
. We claim this update

process combines the effects of both the current loss and the loss
after 𝑁 disturbances, thereby introducing disturbance information
into the parameter updates in order to compute the shared-latent
space representations.
Training Workflow. The detailed training steps of our proposed
LUSTER are summarized in Algorithm 1, and explained below. Ini-
tially, LUSTER takes the multi-layer network graph G, and initial
learning rate 𝜂0 as inputs. It then extract the actual layer labels
of links, i.e., layers corresponding to links, and prediction labels
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Algorithm 1: LUSTER Training Workflow
Input: A multi-layer network graph G and the initial

learning rate 𝜂0.
Output: Predict each unobserved link 𝑒 in E𝑢

1 Obtain the actual layer labels of links;
2 Obtain the actual prediction labels of links;
3 for each epoch do

4 Update the learning rate 𝜂𝑟 by Eq.12;
5 Obtain Φ𝐿 , Φ𝑆 and Φ by Eq.2, Eq.3 and Eq.7;
6 Calculate L𝑎𝑑𝑣 , L𝑐𝑙𝑠 and L by Eq.5, Eq.9 and Eq.10;
7 for each disturbance do
8 Calculate cumulative disturbance 𝑐 (𝑡 ) by Eq.13;
9 Calculate parameter 𝜃 (𝑡 )

𝐺
by Eq.14;

10 Calculate loss L (𝑡 )
𝑎𝑑𝑣

by Eq.5;
11 end

12 Update parameters 𝜃𝐿, 𝜃𝐷 , 𝜃𝐸 , 𝜃𝑃 by Eq.11;
13 Update parameter 𝜃𝐺 by Eq.15;
14 end

15 for each unobserved link 𝑒 in E𝑢 do

16 Calculate 𝑝𝑒 by Eq.8;
17 end

of links, i.e., whether the links exist or not (lines 1-2). For each
training epoch, it recomputes the learning rate as 𝜂𝑟 using Eq. 12
(line-4). Subsequently, the intra-layer representations Φ𝐿 are ob-
tained through the representation extractor; the shared-latent space
representations Φ𝑆 is obtained through the latent space learner; and
the enhanced representations Φ are obtained through the comple-
mentary enhancer (line 5). Next, L𝑎𝑑𝑣 , L𝑐𝑙𝑠 and L are calculated
(line 6). Later, the gradient associated with the generator is dis-
turbed multiple times (lines 8-10), and the model parameters are
updated (lines 12-13). Finally, the probability of existence of each
unobserved link is predicted (line 16).
5 Experimentation

In this Section, we perform a rigorous experimental evaluation
of LUSTER using benchmark datasets compared against existing
state-of-the-art methods as baselines.

5.1 Experimental settings

Datasets. To fairly evaluate the performance of the proposed LUS-
TER, we consider the following real-world multi-layer networks:
(i) Aarhus [29]; (ii) Enron [45]; (iii) Kapferer [11]; (iv) LonRail [11];
(v) TF [18]; and (vi) Reddit [24]. The statistics of these multi-layer
network datasets are shown in Table 2. Detailed description of these
datasets are given in Appendix A.2.
Baselines. To demonstrate the effectiveness of LUSTER, we com-
pare it with the following existing state-of-the-art methods: (i)
Adamic Adar [2]; (ii) Jaccard [43]; (iii) NSILR [54]; (iv) SEAL [55]; (v)
MultiSup [41]; (vi) MADM [27]; (vii) MANE [6]; (viii) MNERLP [32];
and (ix) HOPLP [33]. Further details about these baseline models
are provided in the Appendix A.3.
EvaluationMetrics. For performance evaluation, we use Accuracy
(Acc) and Area under the ROC Curve (AUC) as our evaluation

Table 2: Statistics of several multi-layer network datasets.

Datasets #Nodes #Edges 𝑘 |V𝑘 | |E𝑘 |

Aarhus [29] 61 620

1 60 193
2 32 124
3 25 21
4 47 88
5 60 194

Enron [45] 151 261 1 142 133
2 117 128

Kapferer [11] 39 552

1 39 158
2 39 223
3 35 76
4 37 95

LonRail [11] 369 441
1 271 312
2 83 83
3 45 46

TF [18] 1564 32579 1 1564 14090
2 1508 18471

Reddit [24] 67180 858488 1 54075 571927
2 35776 286561

metrics. Detailed descriptions and mathematical formulations of
these metrics are given in Appendix A.4.
Experimental Setup. In evaluating model performance on these
datasets, we adopt a standard approach where observed links are
considered positive samples, and unobserved links are treated as
negative samples. The data is randomly split into training, vali-
dation, and testing sets in ratio of: 8:1:1 to ensure robust evalua-
tion. For representation extractor, we maintain a consistent hid-
den layer dimension of 64 for all GCNs. The dimension 𝑑𝑛 of the
node intra-layer representations 𝑁𝐿

𝑘
∈ R |V |×𝑑𝑛 is set to 16. Con-

sequently, the dimensions of Φ𝐿 ∈ R | E∪E𝑢 |×𝑑 , Φ𝑆 ∈ R | E∪E𝑢 |×𝑑 ,
and Φ ∈ R | E∪E𝑢 |×𝑑 are all configured to be 𝑑 = 2𝑑𝑛 = 32. For
adversarial training, we set the disturbance coefficient to 𝜇 = 3 and
the disturbance radius to 𝜆 = 7, applying a total of 𝑁 = 4 distur-
bances. Batch size is set to 128, and the training is conducted for a
maximum of 1000 epochs with early stopping [38]. Our framework
is implemented in Python 3.8 and PyTorch 2.1 on an NVIDIA RTX
A100 GPU. For baseline methods, we follow their respective papers
and fine-tune models based on recommended parameter settings.

5.2 Main Results

Table 3 shows the results of LUSTER. Here, we report the Acc and
AUC for the proposed model compared against different baseline
models using different evaluation benchmarks. It is evident that
the proposed model, i.e., LUSTER, outperforms the baseline models
across both metrics, verifying the effectiveness of our method. For
instance, for Aarhus dataset, it improves the Acc and AUC scores
by 4.13% and 15.87% respectively compared to the second best.

We attribute this performance improvement to multiple different
factors, enumerated as follows: Firstly, LUSTER chooses to retain
the multi-layer network structure rather than merging it into a
weighted single-layer network. This approach maximally preserves
multi-layer structural information, allowing for the accurate ac-
quisition of intra-layer representations while avoiding potential
information loss during the conversion to a single-layer network.
Secondly, LUSTER extracts representations from a shared-latent
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Table 3: Prediction results of several models on real-world datasets in terms of Acc(%) and AUC(%). The boldface scores indicate

the best results, while the underlined scores indicate the second-best results.

Datasets Metrics Adamic Adar [2] Jaccard [43] NSILR [54] SEAL [55] MultiSup [41] MADM [27] MANE [6] MNERLP [32] HOPLP [33] LUSTER (%-Improv.)

Aarhus [29]
Acc 75.65±0.29 72.46±0.18 76.45±1.35 72.86±1.17 75.61±1.85 71.02±1.26 59.79±1.30 81.82±1.67 81.47±1.83 85.20±1.40 (4.13%)
AUC 64.77±0.40 64.52±0.43 78.40±2.63 76.49±2.20 75.65±2.86 71.31±1.77 62.84±1.66 77.98±2.05 76.64±2.25 90.84±1.05 (15.87%)

Enron [45]
Acc 56.67±0.82 56.60±0.69 74.43±1.11 67.33±0.94 71.16±0.64 50.38±2.09 70.57±1.21 73.12±0.54 73.46±0.41 86.12±1.95 (15.71%)
AUC 56.77±0.82 56.49±0.69 60.48±1.11 69.28±1.59 63.98±0.85 50.96±1.96 81.10±0.51 58.86±0.54 59.06±0.42 93.26±1.78 (14.99%)

Kapferer [11]
Acc 64.58±0.23 58.25±0.09 68.98±1.53 69.76±1.34 63.83±1.23 73.53±1.42 54.23±1.44 75.51±1.46 69.88±1.48 82.17±1.63 (8.82%)
AUC 58.25±0.35 57.24±0.39 72.99±2.59 72.37±0.12 63.65±0.40 80.36±1.69 56.46±1.53 73.06±1.22 71.43±2.96 86.28±2.95 (7.37%)

LonRail [11]
Acc 51.81±0.36 51.42±0.13 67.35±0.37 75.58±0.13 80.93±1.48 55.66±1.01 66.67±1.34 68.88±1.49 75.38±1.52 89.54±1.21 (10.64%)
AUC 51.81±0.36 51.42±0.13 60.14±0.37 84.34±1.06 80.35±1.19 55.78±1.01 79.23±0.79 61.33±1.49 61.04±1.51 92.03±2.93 (9.12%)

TF [18]
Acc 75.95±0.29 50.38±0.70 83.72±1.35 86.14±0.21 73.82±0.25 73.67±1.53 52.17±0.40 85.17±2.09 86.05±1.02 91.67±1.20 (6.42%)
AUC 84.06±0.47 83.09±0.38 80.54±2.10 86.23±0.20 75.73±1.82 74.73±1.42 58.17±1.64 85.32±2.93 85.46±2.59 89.31±0.61 (3.57%)

Reddit [24]
Acc 79.93±0.16 50.15±0.13 73.65±0.46 88.17±0.39 73.38±0.36 50.18±0.06 66.42±0.21 74.07±1.18 73.93±1.12 89.10±0.63 (1.05%)
AUC 86.75±0.08 85.29±0.07 88.52±0.49 93.06±0.34 80.10±0.76 86.27±0.59 81.45±0.20 87.98±0.29 88.19±0.53 96.02±0.53 (3.18%)

space across different layers through adversarial training. This pro-
cess enhances the interaction of information between layers and
further improves the understanding of inter-layer coupling in multi-
layer networks. Thirdly, LUSTER introduces an orthogonal fusion
strategy that effectively combines the intra-layer representations
with the shared-latent space representations. This fusion method
preserves the unique features of each layer while minimizing re-
dundancy, thereby increasing the efficiency of shared information
utilization and ultimately enhancing the overall performance.

Comparing the results amongst the baseline models, we observe
SEAL and MNERLP demonstrate comparatively better performance
than other baseline models across several datasets. Specifically,
SEAL effectively avoids the interference of irrelevant information
by extracting local subgraphs, while introducing layer informa-
tion to enable the model to capture the relationship and features
between different layers. On the other hand, MNERLP combines
local and global representations to calculate the node and edge
relevance, thereby achieving more effective link prediction. By com-
prehensively considering these factors, these models demonstrate
relatively good prediction capabilities.

5.3 Ablation Study

We investigate the impact of various model components of the
proposed model, i.e., LUSTER on link prediction. For this, we ablate
different model components in order to understand the contribu-
tion of each individual model component. Specifically, we propose
following different variants of LUSTER:
(i) w/o Latent Space Learner (–S): In this variant, we replace the
latent space learner module with a fully connected layer while
keeping the remaining modules unchanged. This change allows us
to assess the significance of using adversarial training between the
generator and discriminator for extracting representations from a
shared-latent space across different layers..
(ii) w/o Complementary Enhancer (–E): Here, we replace the com-
plementary enhancer module with a simple element-wise addition
operation and leave the remaining modules unchanged. This com-
parison helps evaluate the effectiveness of using orthogonal fusion
technique when integrating two different representations.
(iii)w/o Latent Space Learner and Complementary Enhancer (–S&E):
This variant involves the removal of both the latent space learner

Table 4: Ablation study on several datasets in terms of Acc

(%) and AUC (%). Boldface scores indicate the best results.

Datasets Metrics LUSTER –S –E –S&E

Aarhus [29] Acc 85.20 84.28 82.67 81.63
AUC 90.84 80.87 77.59 69.84

Enron [45] Acc 86.12 83.39 81.30 80.29
AUC 93.26 89.61 86.54 83.55

Kapferer [11] Acc 82.17 80.54 74.95 72.67
AUC 86.28 78.62 74.05 68.17

LonRail [11] Acc 89.54 87.48 86.50 68.10
AUC 92.03 82.83 68.42 66.92

TF [18] Acc 91.67 88.31 87.45 85.73
AUC 89.31 87.29 85.60 84.39

Reddit [24] Acc 89.10 87.98 85.69 84.10
AUC 96.02 95.12 93.28 90.51

and the complementary enhancer modules, while the remaining
modules are left unchanged. This comparison allows us to analyze
the complementary impact of excluding both components on the
overall performance of LUSTER.

We analyze the results of the ablation study from different per-
spectives, with quantitative analysis presented in Section 5.3.1, and
qualitative analysis presented in Section 5.3.2.

5.3.1 Quantitative Analysis. We evaluate the performance of LUS-
TER and its three variants across several real-world datasets, in
terms of Acc and AUC as evaluation metrics, with results presented
in Table 4. The results indicate a significant decline in model per-
formance for the ablation variants, underscoring the importance of
individual components. By comprehensively examining the data in
Table 4, we draw the following conclusions:
(i) Individual Components. Comparing the results of ablating
individual model components, (i.e., –S, –E), we observe that overall
both ablation variants result in a decrease in the model perfor-
mance. This is explained by the fact that on one hand, the latent
space learner utilizes adversarial training to learn robust represen-
tations that are shared across different layers of the multi-layer
networks in order to ensure that LUSTER captures common fea-
tures and structural correlations essential for the prediction task.
On the other hand, the complementary enhancer introduces the
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Figure 4: T-SNE visualizations of the representations before

the link predictor that are learned by LUSTER and its three

variants on the TF dataset.

orthogonal fusion technique to seamlessly combine intra-layer rep-
resentations and shared-latent space representations. This approach
prevents redundancy and enhances predictive capabilities of model
by leveraging diverse aspects of the network structure.
(ii) Multiple Components.We observe that the removing both
the latent space learner and the complementary enhancer (–S&E)
exhibit a complementary effect in performance reduction. For in-
stance, compared to the complete model, –S&E experiences a de-
crease of 23.12%, 10.41%, 20.99%, 27.28%, 5.51%, and 5.74% for the
Aarhus, Enron, Kapferer, LonRail, TF, and Reddit datasets, respec-
tively for the AUC metric. We argue that by excluding both compo-
nents, the model fails to capture essential structural correlations
and comprehensive network representations, resulting in signif-
icantly compromised performance in link prediction tasks. This
underscores the complementary roles of both model components
in maximizing effectiveness of LUSTER.

In conclusion, LUSTER synergistically integrates the latent space
learner and the complementary enhancer to leverage their comple-
mentary strengths. This integration enhances the ability of LUS-
TER to capture and utilize the shared-latent space representations
between layers in multi-layer networks, thereby significantly im-
proving prediction performance across diverse datasets.

5.3.2 Qualitative Analysis. To qualitatively analyze the effective-
ness of LUSTER, we use t-SNE [48] to visualize the representa-
tions before the link predictor that are learned by LUSTER and its
three variants on the TF dataset. From Fig. 4, we observe a clear
distinctive boundary between different label clusters in LUSTER
compared to its variants. This demarcation indicates that the repre-
sentations learned by LUSTER are more separable and informative.
Such enhanced discriminative ability suggests that LUSTER effec-
tively captures and utilizes meaningful features for link prediction
tasks, thereby demonstrating its efficacy.

Overall, this ablation study reinforces the effectiveness of indi-
vidual components of LUSTER. By leveraging several techniques
like adversarial training and orthogonal fusion, LUSTER enhances
the predictive power of multi-layer network analysis. This holistic
approach ensures that LUSTER not only learns robust representa-
tions but also integrates them effectively to improve link prediction
accuracy across diverse real-world datasets.

5.4 Case Study

We observe that active nodes have a significant influence within
network structures, such as active users in social networks, prolific
authors in academic collaboration networks, and frequent traders
on e-commerce platforms. The connections between these nodes
have a greater impact on the overall functionality and structure of
the network. Therefore, focusing on link prediction analysis among
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Figure 5: Prediction results of the active subgraph in the

Reddit dataset.

active nodes allows for a better understanding of the potential rela-
tionships between these key nodes, bringing significant effects and
value in practical applications. To comprehend the performance
of LUSTER for high-impact/active nodes, we conduct a case study.
For this, we use Reddit dataset, and select nodes that have a signifi-
cant impact on the network structure, i.e., active nodes with degrees
greater than or equal to 5 in both layers. Based on these nodes, we
construct an active two-layer subgraph. Since these nodes have
high connectivity in both layers, with more neighbors and richer
connection information, they are more likely to exhibit similar be-
havioral patterns or share information across layers. This coupling
makes these nodes an ideal foundation for learning representations
in the shared-latent space, thereby enabling more effective capture
of cross-layer commonalities.

We plot the prediction score distribution in Fig. 5. Fig. 5a illus-
trates the results of the randomly initialized model before training,
which exhibits extreme randomness, with nearly all link predic-
tion scores close to 0 or 1. At the classification threshold of 0.5,
most classification results are inaccurate, indicating that there is
no clear distinction between positive and negative samples at the
initial stage. In contrast, Fig. 5b shows the prediction results of the
model after training, indicating that negative links are primarily
concentrated in the lower score range with prediction scores gen-
erally approaching 0, while positive links are predominantly found
in the higher score range, with prediction scores approaching 1.
Compared to Fig. 5a, the distribution in Fig. 5b demonstrates the ex-
cellent performance of LUSTER in distinguishing between positive
and negative links. This indicates that LUSTER effectively captures
the key features of links within the active subgraph, showcasing its
ability to accurately identify potential relationships among high-
impact nodes. Overall, the case study demonstrates that LUSTER is
not only effective within the overall network but also further con-
firms its predictive performance concerning core nodes and their
interrelationships, providing significant value for practical applica-
tions such as recommendation systems and collaborative networks
by enhancing recommendation quality and user experience.

6 Conclusion and Future Work

In this research, we propose a novel framework named Link pre-
diction Utilizing Shared-laTent spacE Representation (LUSTER)
in multi-layer networks. Comprehensive experimental evaluation
demonstrates that LUSTER outperforms the baseline models by a
significant margin. In future, we aim to extend this work to dynamic
temporal networks.
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A Appendix

A.1 Supplement to Related Work

A.1.1 Shared-Latent Space. Shared-latent space is a mechanism for
bridging information between multiple modalities and has attracted
much attention in many research fields in recent years [14]. It refers
to a unified feature space that can integrate information from dif-
ferent data sources in order to more effectively capture potential
relationships [46]. In fields such as multi-modal learning [40], image
processing [37], and natural language processing [3], researchers
have found that different types of data can often complement each
other through a shared-latent space, thereby improving the overall
performance of the model. The significance of building a shared-
latent space is that it can help the model overcome the challenges
brought by differences between modalities and data missing [40].
For example, in multi-modal sentiment analysis [36], data from
different modalities such as text, audio, and video can work to-
gether in a shared-latent space to more fully understand emotional
expressions. In the study of graph neural networks [7], building a
shared-latent space also enables the attributes of different nodes to
be effectively fused, improving the performance of node classifica-
tion and link prediction.

At present, many researchers have proposed a variety of meth-
ods to build and utilize a shared-latent space to improve the per-
formance of models when processing complex data. Structural At-
tribute Transformer (SAT) proposed by Chen et al. [7] assumes
that there is a shared-latent space between graph structure and
node attributes, decouples the two through distribution matching
technology, successfully handles link prediction and node attribute
completion tasks, and achieves excellent performance on graph
datasets with missing attributes. Graph Complete Network (GC-
Net) by Lian et al. [25] optimizes complete and incomplete mul-
timodal data in a shared-latent space to address the problem of
incomplete modality in conversations, combining “speaker graph
neural network” and “temporal graph neural network”, and demon-
strates superior performance on multimodal conversation datasets.
Causality-Invariant Interactive Mining (CIIM) proposed by Yan et
al. [53] eliminates modality bias through causal intervention and
learns modality-consistent feature embedding in a shared-latent
space. Experimental results show its superiority on multiple cross-
modal tasks. However, this concept has not been fully applied in
link prediction in multi-layer networks. Therefore, our research
aims to extract representations from a shared-latent space to ef-
fectively mine cross-layer shared information and further improve
prediction performance. Through this exploration, we hope to open
up new directions for the analysis and application of multi-layer
networks.

A.1.2 Adversarial Neural Networks. After the seminal proposal of
Generative Adversarial Networks (GANs) by Goodfellow et al. [17],
the concept of adversarial training gained immense popularity and
has been successfully applied across various domains, including do-
main adaptation [16], semi-supervised classification [4], fake news
detection [50], anomaly detection [5], etc. Among the mentioned
work, the Event Adversarial Neural Network (EANN), proposed
by Wang et al. [50] has garnered attention for its effectiveness in
transferable feature learning. EANN employs adversarial training

between the multi-modal feature extractor and event discriminator
to effectively identify and retain common features that can transfer
across different events, while discarding event-specific features that
cannot transfer. This approach has proven particularly useful for
detecting fake news in emerging events, significantly improving the
adaptability of the model in handling diverse event data. Inspired by
the success of transferable feature learning in event detection, we
pioneer the integration of adversarial techniques into the construc-
tion of a shared-latent space in multi-layer networks, addressing
a major gap in this field. Through iterative adversarial training
between the generator and discriminator, our model reduces its
dependence on any specific layer while preserving inter-layer cou-
pling, leading to improved link prediction accuracy. By constructing
a shared-latent space using adversarial training, the adaptability to
complex structures of multi-layer networks is enhanced.

A.2 Datasets

(i) Aarhus [29] represents a 5-layer network formed among the
employees of the Aarhus computer science department. These five
layers represent different types of relationships among the employ-
ees, including Facebook connections, leisure activities, work-related
interactions, collaborative writing, and lunch interactions.
(ii) Enron [45] represents a 2-layer network between employees,
denoting their relationships with superiors and colleagues, respec-
tively.
(iii) Kapferer [11] represents a 4-layer network observed in a tai-
lor shop over a period of ten months, depicting work, assistance,
friendship, and emotional relationships, respectively.
(iv) LonRail [11] represents a 3-layer network that represents
railway stations in London. The network comprises three layers,
denoting stations connected by the underground, above ground,
and DLR (Docklands Light Railway), respectively.
(v) TF [18] represents a 2-layer network formed between Twitter
and Foursquare. The first layer represents follow relationships on
Twitter, and the second layer represents friendship relationships
on Foursquare.
(vi) Reddit [24] represents a 2-layer network extracted from posts
with hyperlinks between subreddits. The first layer captures hyper-
links in post titles, while the second captures those in post bodies,
each reflecting distinct forms of subreddit interactions.

These datasets encompass a wide range of network types and
relationships, making them a robust benchmark for evaluating the
performance of LUSTER. Their diverse structures and applications
in real-world scenarios enable a comprehensive assessment of the
effectiveness and applicability of LUSTER across various domains.

A.3 Baselines

(i) Adamic Adar [2] uses the Adamic-Adar coefficient to measure
the similarity between two nodes after transforming a multi-layer
network into a weighted single-layer network.
(ii) Jaccard [43] employs the Jaccard coefficient to measure the
similarity between nodes after transforming a multi-layer network
into a weighted single-layer network.
(iii) NSILR [54] proposes a node similarity index based on layer
relevance of the multi-layer network by utilizing intra-layer and
inter-layer representations.
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(iv) SEAL [55] first constructs adjacency subgraphs, and then uses
DGCNN to learn features of these subgraphs. For comparison, we
transform the multi-layer network into a single-layer network, and
use layer information as attribute input.
(v) MultiSup [41] extracts a set of elaborate structural representa-
tions of links from all layers.
(vi) MADM [27] treats the combination of information from dif-
ferent layers in a multi-layer network as a multi-attribute decision-
making problem, utilizing resource allocation metrics to compute
intra-layer similarity and cosine similarity to calculate inter-layer
similarity.
(vii) MANE [6] treats each layer as a distinct "view" and leverages
two core principles, "diversity" and "collaboration," to enhance rep-
resentation learning.
(viii) MNERLP [32] calculates node and edge relevance using the
local and global representations, and combines both factors to per-
form link prediction.
(ix) HOPLP [33] combines the multi-layer network into a single
weighted network while accounting for the relative density of lay-
ers, and then iteratively calculates link likelihoods by considering
longer paths between nodes.

Thesemethods represent a spectrum of approaches inmulti-layer
network analysis, each leveraging different strategies to predict
links across multiple layers. By comparing LUSTER against these
baselines, we aim to demonstrate the efficacy and advancements of
LUSTER for link prediction in multi-layer networks.

A.4 Evaluation Metrics

In this section, we provide detailed explanation and mathematical
formulation about the evaluation metrics.
(i) Accuracy (Acc). Accuracy measures the percentage of correctly
predicted samples out of the total. It provides a straightforward
indication of overall predictive correctness. It is calculated as:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (16)

where TP (True Positive) is the number of true positive predictions.
TN (True Negative) is the number of true negative predictions. FP
(False Positive) is the number of false positive predictions. FN (False
Negative) is the number of false negative predictions.
(ii) Area under the ROC Curve (AUC). AUC refers to the area
under the Receiver Operating Characteristic (ROC) curve. The ROC
curve illustrates the trade-off between the True Positive Rate (TPR)
and the False Positive Rate (FPR) across different classification
thresholds. True Positive Rate (TPR) measures the proportion of
actual positive samples that are correctly identified as positive. The
formula is:

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (17)

False Positive Rate (FPR) measures the proportion of actual negative
samples that are incorrectly identified as positive. The formula is:

FPR =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 (18)

The AUC value ranges from 0 to 1, where 1 indicates a perfect
classifier and 0.5 indicates a model with performance equivalent to
random guessing. This metric is particularly useful for evaluating

binary classification models. A higher AUC value indicates better
discrimination ability between positive and negative samples.

In general, the higher the Accuracy and AUC values, the bet-
ter the model performance. These metrics collectively provide a
comprehensive assessment of how well the models perform in link
prediction tasks across various real-world datasets.
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