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Abstract

Existing Task-Oriented Dialogue (TOD) sys-
tems generally focus on single-session dia-
logues and overlook the study of multi-session
interactions, leading to the inability to track
long-term memory to obtain target-related in-
formation from previous dialogue sessions for
more efficiently personalized interaction in
TOD. To address this challenge, we introduce a
MS-TOD dataset, the first multi-session TOD
dataset designed to retain long-term memory
across sessions, enabling fewer turns and more
efficient task completion. Based on this new
dataset, we propose a Memory-Active Policy
(MAP) that improves multi-session dialogue
efficiency by reducing turns through a two-
stage approach. Specifically, we first introduce
Memory-Guided Dialogue Planning, which re-
trieves relevant history through intent descrip-
tions, utilizes a memory judger to identify key
QA units, and employs a reader to generate re-
sponses based on reconstructed memory. Next,
the Proactive Response Strategy is designed to
detect and correct errors or omissions, ensur-
ing efficient and accurate task completion. We
evaluate MAP on our MS-TOD dataset, focus-
ing on response quality and effectiveness of the
proactive strategy. Experimental results show
that MAP enhances multi-session TOD perfor-
mance by improving turn efficiency and task
success through long-term memory integration
while maintaining comparable performance in
single-session multi-turn tasks.

1 Introduction

Task-oriented dialogue (TOD) systems (Wang et al.,
2021; He et al., 2022; Bang et al., 2023a; Swamy
et al., 2023a) have traditionally focused on single-
session scenarios, overlooking the fact that real
world interactions often span multiple sessions over
extended periods. Although Large Language Mod-
els (LLMs) have been explored to enhance TOD
performance (Xu et al., 2024a,b; Chung et al., 2023;
Heck et al., 2023a), these works mainly focus on
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Figure 1: Task-oriented dialogue, with (right) vs with-
out (left) multi-session memory; the latter demands
more turns of conversation.

single-session conversations and do not adequately
consider personalization and long-term engage-
ment. Moreover, existing TOD datasets (Stacey
et al., 2024; Liu et al., 2024; Budzianowski et al.,
2018; Rastogi et al., 2020a) are confined to single-
session settings, leaving a gap in publicly available
benchmarks for evaluating long-term memory re-
tention across multi-sessions.

To illustrate the limitations of single-session sys-
tems, consider Figure 1, which compares two dia-
logue snippets from a TOD system without multi-
session memory and with multi-session memory.
In the first case, the user must repeatedly restate
details (e.g., flight times, seat preferences) in ev-
ery new session, resulting in inefficiency and user
frustration. By contrast, when multi-session mem-
ory is integrated, the system seamlessly retrieves
itineraries and preferences from earlier sessions,
eliminating redundant interactions and providing a



more personalized experience.

To bridge this gap, we introduce the Multi-
session Task-oriented Dialogue Dataset (MS-TOD),
which consists of hundreds of users, each engaging
in over 20 sessions with diverse task goals sourced
from SGD (Rastogi et al., 2020a). MS-TOD sup-
ports comprehensive evaluation of TOD systems to
retrieve long-term context, maintain consistent task
slots, and adapt responses to individual user prefer-
ences. However, effectively leveraging long-term
memory in multi-session TOD remains challenging.
While existing approaches in open-domain multi-
session conversations focus on retrieving dialogue
history or summaries (Lu et al., 2023; Zhong et al.,
2024; Joko et al., 2024; Li et al., 2024a; Du et al.,
2024), multi-session TOD system face additional
demands: they must recall critical slot-value pairs,
track evolving user intents, and proactively resolve
missing or outdated information while minimizing
redundant user queries.

Therefore, we propose the Memory-Active Pol-
icy (MAP) to incorporate long-term memory in
multi-session TOD tasks. MAP consists of two
core phases: (1) Memory-Guided Dialogue Plan-
ning, where an LLM generates an intent hypoth-
esis and aligns it with structured memory en-
tries to align user goals across sessions. Further-
more, a memory judger assesses relevant memory
units and refines task slot descriptions for precise,
context-aware responses. (2) Proactive Response
Strategy, which iteratively detects missing or mis-
matched slots by comparing predicted responses
with task goals, actively engaging users to resolve
incomplete slots, thereby reducing redundancy and
ensuring smooth, goal-oriented interactions. Exper-
imental results on MS-TOD demonstrate that MAP
effectively improves dialogue coherence, response
quality, task success rate, and dialogue efficiency
in multi-session TOD.

The main contributions include:

¢ We introduce MS-TOD, the first multi-session
task-oriented dialogue dataset for evaluating
dialogue systems in long-term interactions.

* We propose MAP framework, which inte-
grates long-term memory into TOD systems
for efficient task completion in minimal dia-
logue turns.

* Experiments show that MAP outperforms
baselines in most metrics, validating its ac-
tive memory mechanism.

Settings GPT-4 Score Slot Acc.

No Retrieval (Direct Prompting)

Current Session Context 2.60 0.13
Full Conversation Context 4.76 0.61
Retrieval-Augmented Generation

BM?25-Based Retrieval 5.90 0.53
Embedding-Based Retrieval 7.01 0.67
Hybrid Retrieval 7.04 0.68
Oracle (Upper Bound)

Oracle 8.51 0.82

Table 1: Evaluation of confirmation-type response gen-
eration under different prompting and retrieval strate-
gies.

2 Preliminary Experiments

To investigate the effectiveness of different strate-
gies for handling dialogue history in multi-session
task-oriented response generation, We conduct
a preliminary study comparing direct prompting
(Swamy et al., 2023b; Xu et al., 2024a) with
retrieval-augmented generation (RAG) (Huang
et al., 2024; Lu et al., 2023) in multi-session TOD.

Because standard TOD datasets lack multi-
session dependencies, we construct a test set specif-
ically for confirmation-type response generation
(details in Section 3). Our pipeline includes (1)
Retrieval. We explore three strategies for retriev-
ing relevant historical dialogues: sparse retrieval
(BM25 (Robertson and Zaragoza, 2009)), dense
retrieval (text—embedding—small—31), and a hybrid
approach that combines both to leverage their com-
plementary strengths. (2) Response Generation.
GPT-40-mini then generates confirmation-type re-
sponses by incorporating the retrieved dialogue
history and task goal information.

As shown in Table 1, RAG consistently out-
performs direct prompting. For instance, dense
retrieval achieves 0.67 slot accuracy and a 7.01
GPT-4 score, surpassing full-context prompting
(0.61 and 4.76, respectively). Hybrid retrieval fur-
ther improves slot accuracy to 0.68 and the GPT-4
score to 7.04, demonstrating the value in combining
sparse and dense strategies. Oracle retrieval (using
ground-truth context) reaches 0.88 and 8.51, un-
derscoring the need for more accurate retrieval
strategies in multi-session TOD.

'OpenAL text-embedding-3-small. 2025. OpenAl, https:
//platform.openai.com/docs/guides/embeddings.
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Figure 2: An Example of MS-TOD dataset.

3 Dataset

To systematically evaluate TOD systems in scenar-
ios requiring multi-session long-term memory inte-
gration, we develop the MS-TOD dataset, derived
from the Schema-Guided Dialogue (SGD) dataset
(Rastogi et al., 2020a). MS-TOD comprises two
subsets: a training subset for training the memory
judger (Section 4.2) and an evaluation subset de-
signed to assess multi-session memory activation
and TOD response generation shown in Figure 2.

3.1 Data Generation

Multi-Session Dialogue Construction. Be-
cause existing TOD corpora typically feature
single-session interactions lacking structured multi-
session dependencies, we create three dialogue
sessions for each task in the SGD dataset. Com-
pared with single-session dialogues, this design
more closely simulates how users revisit and refine
the same task at different times and in different
contexts. We chose three sessions—rather than a
higher number—to strike a balance between captur-
ing realistic user behavior and avoiding repetitive
dialogue data, particularly given that SGD tasks
involve fewer than ten task slots. As a result, three
sessions offer sufficient coverage of task variations
without overpopulating the dataset. More details
can be found in Appendix A.1.
Confirmation-Type Response Annotation. In
the final session of each task, we introduce
confirmation-type annotations to mark utterances
indicating the completion of long-term or recur-
ring tasks. These annotations serve two primary

Attribute Evaluation
Domains 16
Intentions 19
Task goals 956
Dialogues 2,861
Utterances 18,530
Avg. slots per task goal 4.24
Number of individuals 132
Avg. intentions per individual 545
Avg. sessions per individual 21.67
Avg. Utterances per individual 140.38

Table 2: MS-TOD dataset statistics for evaluation.

functions: (1) Guiding Memory Activation: High-
lighting key dialogue points to trigger long-term
memory activation, summaries, or confirmations;
and (2) Supporting System Evaluation: They en-
able evaluation of the system’s ability to recognize
and record cross-session information or long-term
goals during dialogue strategy assessment.

3.2 Individual Memory Bank Construction

Since multi-session interactions occur at the in-
dividual level, we group sessions into Individual
Memory Banks (Figure 2), each storing an individ-
ual’s historical dialogues for maintaining continuity
and adapting responses. Each bank contains over
20 sessions spanning more than six distinct user
intentions (Table 2), plus a dedicated evaluation ses-
sion per intention requiring confirmation responses.
Task goals are also provided to guide system out-
puts, supporting effective memory activation and
task handling in diverse scenarios.

To refine these memory banks, we employ a
GPT-4-based generator that extracts high-level in-
tent descriptions and creates task-specific QA pairs
(Appendix A.2). These structured QA pairs en-
able efficient retrieval of relevant contexts, allow-
ing the system to selectively activate memories and
adapt dynamically to user needs for multi-domain,
intention-aware TOD. More details on the dataset
can be found in Appendix B.

4 Memory-Active Policy

To address the need for long-term memory and
multi-session context in TOD, the Memory-Active
Policy (MAP) combines memory-driven dialogue
planning with a proactive policy strategy as shown
in Figure 3.
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4.1 Definition

The objective of this task is to generate a natural
language response r based on the provided dia-
logue context ¢ and individual memory bank M.
The dialogue context c represents the ongoing in-
teraction, comprising chronologically ordered user
utterances u; and system responses 7. The indi-
vidual memory bank M consists of memory repre-
sentations from multiple dialogue sessions, where
each session provides an intent description k; and
a corresponding set of QA pairs v;. Formally, we
define: M = {(ki,vi)}Ly, v = {(ai5, 0ij)} )=y
Here, k; represents the session’s high-level intent,
while v; stores detailed task-related information.
This structured design facilitates efficient retrieval
and utilization of long-term user-specific memory.

The response 7 is generated by a large language
model LLM that integrates ¢ and M, ensuring
semantic coherence, memory relevance, and task
slot accuracy. Formally, the optimal response is
obtained by maximizing the conditional probability
distribution:

r* = argmax P(r | ¢, M), (1)

reR

where R denotes the set of all possible responses.
This approach emphasizes understanding the dia-
logue context and leveraging individual memory to
produce coherent and relevant responses.

4.2 Memory-Guided Dialogue Planning

Memory-Guided Dialogue Planning consists of two
key steps: (1) Intent Capture and Memory Activa-
tion, where the system identifies and retrieves rele-
vant memories aligned with the user’s intentions;
(2) Memory Judgement and Refinement, which
detects missing task slots, and re-ranks relevant
memories to ensure optimal information recall for
response generation.

Intent Representation and Memory Activa-
tion. Given the dialogue context c;, we use LLM
(GPT40-mini) to generate a high-level intent de-
scription k;, which summarizes the user’s objec-
tive in the current session. The intent description
k; is then used to retrieve relevant memory units
from the long-term memory M, represented as
M = {(kj,v;)}]L,, where k; is an intent-related
key and v; is the corresponding structured informa-
tion, such as paired questions and answers. Using
an embedding model, k; is mapped to a dense repre-
sentation and compared with k; to activate the most
relevant memory units v;. These activated memory
units v;, containing structured information such as
task-related questions and answers, are then used
to guide subsequent dialogue processing.

Memory Judgement. Accurately recognizing
the task goal is crucial for invoking relevant mem-
ory and formulating an effective dialogue policy.
To refine retrieved memories, we employ a Chain-
of-Thought (CoT) (Wei et al., 2022) mechanism,
which identifies the task goal and generates missing



task slot queries. The retrieved QA pairs are then
evaluated by a memory judger, trained on LLaMA
3.1-8B2, to assess their relevance. Given a dialogue
context ¢;, a missing quUery ¢miss, and the relevant
memory QA pairs v;. The output indicates if the
QA pairs under intent k; sufficiently answer gpiss.

Let 7 index memory units and u index QA pairs
within the j-th unit. The memory judger evaluates
each QA pair (gj, aj.,) as:

Siu = Py = 1/(¢i, qmiss: Gju> Gju))  (2)

where y = 1 indicates that the QA pair contributes
to the task goal, while y = 0 indicates irrelevance.
The memory judger LLM)yyj is trained using a cross-
entropy loss function:

c-- ¥

(25,u>05,u)

[ylogsju + (1 —y)log(l —s;.)] (3)

This formulation ensures the judger assigns
higher scores to QA pairs that are more relevant to
the missing query gmiss- Next, all retrieved mem-
ory QA pairs are re-ranked based on updated scores.
For each QA pair, the final score s j,, is calculated
by combining the previous retrieval score Sprey,ju
and the judger’s score s, using a weighted sum:

Stju = - Sprev.ju + (1 — @) - 8ju,  (4)

where « is a weight parameter balances retrieval
relevance and judger evaluation. The top 5 QA
Pairs Vgejected With the highest sfpa jo, scores are
selected to ensure contextual relevance and task
alignment in subsequent dialogue steps.

Memory Refinement mainly contains memory
pruning and memory reconstruction. Memory prun-
ing filter activated memory units {v;} by removing
redundant components (e.g., auxiliary questions
qj,.) tied to intent k;, retaining only core answers
Acore = {aj}. We reconstruct answers Agore into
the dialogue context ¢ through concatenation ensur-
ing noise removal prior to contextualization.

4.3 Proactive Response Strategy

The response generation phase synthesizes the di-
alogue context ¢ and pruned memory Ay (from
memory reconstruction) into a confirmation re-
sponse 7. Using LLMgeader, the system evaluates
if integrated memory supports task completion:

7 = LLMReader (¢, Acore) ®)

*Meta. (2024). Llama 3.1: A Family of Open and Efficient
Multilingual Language Models. Meta Al Retrieved from
https://llama.meta.com/

where r serves dual purposes: (1) providing task
guidance and (2) explicitly verifying memory rele-
vance to user goals (see Appendix A.3 for details).

To provide more comprehensive responses to
user queries, we propose a proactive dialogue
policy. Based on the generated response r, we
identify missing or incorrect slots within the dia-
logue. This results in a set of slots, denoted as
L = {i,ls,...,1,}, where each [; represents a
missing or erroneous slot. We design an agent
to simulate the user, explicitly informing it of the
slot set L. The user agent then interacts with our
dialogue model in an interactive conversation to
address the identified slots.

At each dialogue turn, a supervisor (played by
an LLM) evaluates whether the conversation accu-
rately fulfills the slot information requirements. If
a slot s; is successfully resolved during the inter-
action, it is removed from L. Mathematically, the
update to the slot set is expressed as:

S« L {l;} ©6)

The interaction continues for multiple turns until
the slot set becomes empty, L = (), ensuring all
missing or erroneous slots are resolved.

5 Experiments

5.1 Experimental Setups

Evaluation Settings. Our evaluation primarily
focuses on GPT-4 score’, Joint Goal Accuracy
(JGA), Dialogue Turn Efficiency (DTE), and Suc-
cess Rate (S.R.) as key performance metrics. DTE
reflects the system’s efficiency by measuring the
number of turns required to complete a task, where
a lower value indicates more effective interactions.
To assess memory activation, we include Recall@k
to evaluate the retrieval of relevant long-term his-
torical context. Additionally, we conduct human
evaluation to assess response accuracy, informative-
ness, and coherency. For further insights into task
completion accuracy and response quality, we re-
port Slot Accuracy, BLEU (Papineni et al., 2002),
and ROUGE (Lin, 2004)

Baselines We conduct comparisons with state-
of-the-art conversational approaches using differ-
ent large language models, such as LLaMA3-
8B (Touvron et al., 2024), Qwen2.5-7B (Team,
2024c), Mistral-7B (Team, 2024a), and GPT-4o0-
mini (Team, 2024b). Furthermore, we conduct a

3GPT4-as-the-judge prompts can be found in Appendix
A4



Model Setting GPT4

w/o MAP 489 0.64 537 0.82

LLAMASSE W/ MAP 639 063 346 092
Qwen-7B w/o MAP 6.26 0.66 493 0.83
,,,,,,,,, /MAP 681 066 431 087

. w/o MAP 6.20 0.73 252 1.00
MrakTB  MAP 648 080 121 100
GPT4o-mini w/o MAP 693 0.67 6.03 0.88

Table 3: Performance comparison of task-oriented dia-
logue models with and without long-term memory inte-
gration. The w/o MAP setting uses full-context prompt-
ing, feeding the entire dialogue history as input, while
w/ MAP leverages memory active policy to retrieve and
utilize relevant long-term memory.

comparison with task-oriented dialogue methods
in the context of dialogue state tracking (DST),
including BERT-DST (Chao and Lane, 2019), Au-
toTOD (Xu et al., 2024a), and LDST (Feng et al.,
2024), to evaluate the adaptability of our approach
in task-specific dialogue scenarios. To evaluate
the effectiveness of memory activation, we com-
pare our method against various retrieval meth-
ods, including BM25 (Robertson and Zaragoza,
2009), TS5 (Raffel et al., 2020), BERT-base, BERT-
large (Devlin et al., 2018), nv-embed-v2 (Lee et al.,
2024), bge-large-en-v1.5 (Liu et al., 2023), and
text-embedding-3-small (OpenAl, 2023).

5.2 Main Results

Overall Performance. We conduct the experi-
ments comparing full context prompting and our
MAP framework in the metric of GPT4, JGA,
DTE, and S.R. As shown in Table 3, MAP demon-
strates consistent performance gains over baseline
prompting methods. For instance, applying MAP
to Mistral-7B increases JGA from 0.73 to 0.80
and S.R. from 0.83 to 0.87. Notably, LLaMA3-
8B, Qwen-7B, and GPT-40-mini also show signif-
icant improvements in both JGA and S.R. when
integrated with MAP. In terms of response qual-
ity, GPT-4 scores rise notably for all models; for
example, LLaMA3-8B achieves the largest gain,
from 4.89 to 6.39. Regarding DTE, MAP consid-
erably shortens the required turns, with reductions
of 35.6% for LLaMA3-8B, 12.6% for Qwen-7B,
52.0% for Mistral-7B, and 47.1% for GPT-40-mini.
These results demonstrate that integrating long-
term memory enhances both response quality
anHummekEatibiatifficidMeyonduct a human eval-
uation to further assess the effectiveness of the

Model GPT4 JGA DTE S.R.
Bert-DST* - 0.067 - -
LDST* - 0.234 - -
AutoTOD!  6.49 0440 7.80 0.81
MAP 714 0.698 3.19 0.99

Table 4: Performance comparison of traditional TOD
models and MAP. Models marked with * focus on DST,
predicting slot-value pairs without handling dialogue
management or task execution, making them unsuitable
for evaluating S.R., GPT-4 score, and DTE. T indicates
simplified AutoTOD.

Model Confirmation Multi-Turn

w/o MAP w/MAP w/o MAP w/ MAP
LLaMA3-8B 1.64 1.99 1.60 2.03
Qwen-7B 1.46 1.88 1.48 1.77
Mistral-7B 1.79 1.99 2.04 2.18
GPT40-mini 1.86 2.27 1.72 1.85

Table 5: Human evaluation results based on the average
A.LC., which is the mean of Accuracy, Informativeness,
and Coherence. w/ denotes with, w/o denotes without.

MAP structure, as presented in Table 5. The evalu-
ation focuses on confirmation-type responses and
multi-turn dialogues adopting a proactive response
strategy. Accuracy, informativeness, and coherence
serve as evaluation metrics, with their average, de-
noted as A.I.C., representing overall performance.
The results indicate that the MAP structure consis-
tently enhances response quality, reinforcing the
primary experimental findings. Further details are
provided in Appendix C.2.

Comparision with Traditional TOD Models.
Since no dedicated multi-session TOD model is
available, we validate MAP using DST models
as baselines. AutoTOD, which retains a full dia-
logue pipeline, allows evaluation across all four
metrics, while LDST and BERT-DST are limited
to JGA. As shown in Table 4, MAP outperforms
these models, achieving the highest GPT-4 score of
7.14 and a JGA of 0.698, significantly surpassing
AutoTOD at 0.440. Additionally, MAP improves
efficiency, reducing DTE to 3.19 turns compared
to 7.8 for AutoTOD. These results highlight the
advantages of multi-session memory integration
and a proactive response strategy in improving
both accuracy and efficiency.

5.3 Ablation Study

Memory Judger for Improved Retrieval. We
explore the impact of the Memory Judger on Re-
call@k by filtering out irrelevant memory units,
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Figure 4: Impact of memory judger on memory activa-
tion performance across different embedding models.

with k=5. As shown in Figure 4, integrating the
Memory Judger into our Memory Activation mod-
ule improves performance by 9.4%. Specifically,
BM25’s score rises from 0.721 to 0.731, while
text-embedding-3-small improves from 0.792
to 0.832. Retrieval quality improves by 7.7%, with
nv-embed-v2 achieving 0.828. These results un-
derscore Memory Judger’s efficiency in enhancing
retrieval quality with limited memory units.
Memory Judger and Memory Refinement
substantially enhance multi-session dialogue
performance. By integrating Memory Judgement
and Memory Refinement, MAP outperforms the
Hybrid RAG baseline in dialogue state tracking
(JGA) and task completion efficiency (DTE), as
shown in Figure 5. For instance, MAP achieves
a JGA of 0.74 on Qwen2.5-7B, surpassing Hy-
brid RAG at 0.41. Similarly, on Mistral-7B, MAP
reaches 0.64, compared to Hybrid RAG at 0.57
(Figure 5(a)). In terms of DTE, MAP reduces the
the required turns for task completion, achieving
a DTE of 3.19 on GPT-40-mini, compared to 4.30
for Hybrid RAG (Figure 5(b)). These findings
demonstrate the effectiveness of Memory Judger
and Refinement in MAP, enhancing dialogue state
tracking and dialogue efficiency across LLMs.
QA memory improves performance in exist-
ing task-oriented dialogue datasets. To validate
the generalizability of QA memory within MAP,
we evaluate it on two standard dialogue state track-
ing benchmarks: SGD and MultiWOZ2.2. Despite
sharing the same DST task, these datasets differ
in annotation protocols and domain complexity,
leading to distinct sets of published baselines as
shown in Table 6. For SGD evaluation, compared
with fine-tuned LDST (Feng et al., 2023) and the
SGD Baseline (Rastogi et al., 2020b), GOLOMB
(Gulyaev et al., 2020), SGP-DST (Ruan et al.,

JGA Win Rate DTE Win Rate

0.64 0.70 GPT40-mini 3.54 3.19
0.74 0.80 Mistral-7B 1.20 1.17

0.41 0.66 Qwen2.5-7B 4.70 4.30
0.57 0.63 LLaMA3-8B 5.04 3.46

0% 5(;% 100% 0% 50% 100%
Hybrid RAG MAP Hybrid RAG MAP
(@ (b)

Figure 5: Comparison of Hybrid RAG vs. MAP across
four LLMs on two metrics: (a) JGA Win Rate and (b)
DTE Win Rate.

Dataset Methods JGA AGA
SGD Baseline 0.254 0.906
GOLOMB 0.465 0.750
SGP-DST 0.722 0.913
SGD TS-DST 0.786 0.956
LDST 0.845 0.994
NS MAP® 0846 0965
SGD Baseline 0.420 -
TRADE 0.454 -
DS-DST 0.517 -
. TripPy 0.530 -
MultiwOZ 2.2 TOATOD 0638 )
SDP-DST 0.576 0.985
LDST 0.607 0.988
MAP* 0.879 0.976

Table 6: Results of different methods on SGD and Mul-
tiWwOZ 2.2. MAP” is a single-session variant of MAP,
where the Memory Judger is disabled while retaining
the QA memory.

2020), TS-DST (Du et al., 2022), we achieved a
state-of-the-art JGA of 0.846 and achieves com-
parable performance with LDST in the metric of
AGA. For MultiwOZ 2.1 evaluation, compared
with SGD Baseline, TRADE (Wu et al., 2019a),
DS-DST (Zhang et al., 2020), TripPy (Heck et al.,
2020), TOATOD (Bang et al., 2023b), SDP-DST
(Lee et al., 2021), and LDST, MAP* achieves a
JGA of 0.879, substantially outperforming other
methods. We attribute this phenomenon to the
fewer task domains in MultiwOZ, which enables
our QA memory to effectively capture relationships
among task attributes, thereby demonstrating that
QA memory is a powerful method for improving
task-oriented dialogue state tracking.

5.4 Case Study

In our case study, we compared four methods
for generating confirmation responses: (1) Direct
Prompting with the full conversation history, (2)
Hybrid RAG retrieving relevant dialogue history,



Session 23 Evaluation - Intention: The user intends to listen to songs.

Dialogue Context User: Can you play 'Drive' again? Assistant:

Confirmation Response Sure! Just to confirm, you’d like me to play the song
(Direct Prompting "Drive" on the bedroom speaker again. Should I start it
with the Full Conversation now? Also, would you like me to check out some tickets
History) Jor ... (Extra Noise)

Confirmation Response
(Hybrid RAG
with Retrieved History)

Sure! Let me play "Drive" for you once more. By the
way, have you decided on the number of tickets you'd
like to buy for Bill Callahan's concert? It’s coming up on
March 10th in Los Angeles! (Wrong Answer)

Confirmation Response
(Hybrid RAG
with Summary)

Sure! I’ve started playing “Drive” again. Is there
anything else you’d like? (Key Slot Omission)

Confirmation Response
(MAP)

Sure! Just to confirm, you’d like me to play the song
"Drive" on the bedroom speaker again. Should I start it
now? (Right Answer)

Figure 6: Case study.

(3) Hybrid RAG retrieving a summary of the con-
versation, and (4) MAP with intention-based QA
memory. As shown in Figure 6, Direct Prompting
introduces excessive noise, while both Hybrid RAG
settings often miss key task slots due to retrieval
inaccuracies. In contrast, MAP consistently gen-
erates responses with accurate, task-relevant slots
and fewer errors. These findings indicate that lever-
aging intention-based QA memory within MAP
is more effective in preserving crucial task infor-
mation and minimizing errors in confirmation
response generation compared to other base-
lines. More details are provided in Appendix D.

6 Related Works
6.1 Task-Oriented Dialogue Dataset

To advance research in TOD modeling, numer-
ous datasets have been developed, categorized pri-
marily by how dialogue utterances are curated:
Machine-to-Machine (M2M) (Shah et al., 2018)
and Wizard-of-Oz (WOz) (Kelley, 1984). M2M
datasets like SGD (Rastogi et al., 2020a) define
service schemas with intents, slots, and constraints,
while STAR (Mosig et al., 2020) enhances this
by outlining ideal dialogue flows and incorporat-
ing realistic user behavior. WOz-based datasets
like WOZ (Wen et al., 2017) and FRAMES (Asri
et al., 2017) have demonstrated the effectiveness of
the WOz setup. MultiwOZ (Budzianowski et al.,
2018) stands out for its user-friendly interface for
annotators and well-defined user goals, resulting in
a diverse and semantically complex dataset.
Recent TOD datasets aim to reflect more real-
istic interactions (Zhang et al., 2022; Hu et al.,
2023; Dai et al., 2022). Notable contributions in-
clude an employee-oriented dataset by Xu et al.
(2024b), featuring expert-validated HR schemas
and diverse user profiles, and OB-MultiWOZ by Li

et al. (2024b), which enhances TOD sessions with
QA-style dialogues supported by external knowl-
edge. These datasets expand the scope of TOD
research beyond traditional customer-centric sce-
narios. Despite the progress in developing diverse
TOD datasets, there remains a significant gap in
the availability of multi-session TOD datasets.

6.2 Task-Oriented Dialogue Systems

TOD systems have evolved significantly. Initially,
they followed a modular pipeline with distinct Nat-
ural Language Understanding (NLU), Dialogue
State Tracking (DST), policy learning, and gen-
eration components (Wu et al., 2019b; Peng et al.,
2018). Recently, end-to-end models have emerged,
integrating these modules into a single framework
trained on annotated dialogues (Wen et al., 2017;
Wang et al., 2020). While simplifying structure,
this approach still depends on large datasets and
retains some modular traits.

With LLMs excelling in NLP, interest in their in-
tegration into TOD systems has grown (Raffel et al.,
2020; Ouyang et al., 2022). LLMs enhance NLU
and DST by extracting user intents and entities
(Zhao et al., 2022; Gupta et al., 2022; Madotto et al.,
2021, 2020). While Hudecek and Dusek (2023)
explored direct LLM use without fine-tuning, per-
formance lags behind supervised models. Con-
versely, fine-tuning LLMs for TOD tasks shows
significant gains (Bang et al., 2023a; Hosseini-Asl
et al., 2020). In contrast to existing methods, this
work introduces a memory-active policy that inte-
grates long-term memory into multi-session TOD
systems, dynamically tracking user intents and pre-
serving critical information to improve multi-turn
and long-duration conversations.

7 Conclusion

This study introduces a multi-session TOD task
and presents the MT-TOD dataset which features
diverse multi-session task goals and structured indi-
vidual memory banks. Then, MAP, a multi-session
TOD framework that integrates memory-guided di-
alogue planning and a proactive response strategy,
is designed for efficient task completion in minimal
dialogue turns. Experimental results demonstrate
that our MAP significantly reduces the number of
dialogue turns, enhances response quality, and im-
proves task success rate, outperforming both direct
prompting and other long-term retrieval methods.



Limitation

While our model demonstrates effectiveness on the
current dataset, several limitations remain. First,
our experiments are limited to locally deployable
LLM models, and we have not explored the po-
tential benefits of scaling to larger models, which
may yield further improvements. Second, our ap-
proach does not incorporate external knowledge
bases or internet search functionality, which could
enhance contextual understanding and factual accu-
racy. Lastly, the model’s generalizability to broader
domains and more complex real-world scenarios
remains untested, necessitating further evaluation
across diverse datasets and tasks. Future work will
address these limitations by expanding model scal-
ability, integrating external knowledge sources, and
conducting more comprehensive evaluations.

Ethics Statement

Our research improves multi-session task-oriented
dialogue systems through memory-augmented pro-
cessing while adhering to ethical guidelines. All
datasets are publicly available and free of person-
ally identifiable information, with no collection of
user-sensitive data or involvement of human sub-
jects. To evaluate model responses, three research
assistants with relevant expertise conduct human as-
sessments, each compensated $20 per hour, above
the local average for similar roles. While improv-
ing Al-driven dialogue, we acknowledge risks such
as misinformation and biases, which we address
through rigorous evaluation, emphasizing trans-
parency, fairness, and accountability. We advocate
for responsible deployment and ongoing bias miti-
gation research to ensure ethical and equitable Al
dialogue systems.
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A Prompts

A.1 Prompt of dialogue generation

We designed a multi-session dialogue prompt (as
shown in Figure 7) that generates multi-session di-
alogue data based on input dialogue intent, task
goal, and target session count. Additionally, during
the generation process, we annotate whether each
utterance is a confirmation response. These annota-
tions, after manual verification, will be used in the
main experiment for confirmation-type response
generation.

A.2 Prompt of Task Slot Query Generation

During the evaluation process, we design a prompt
(as shown in Figure 8) that generates a query corre-
sponding to the missing task attributes based on the
current dialogue context and task objectives. The
input to this prompt is the dialogue context history
and the generated task objectives. This query is
then used as input to the memory judger to assist
in selecting QA memory units that align with the
task objectives.
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Attribute Train
Domains 16
Intentions 22
Task goals 4,534
Dialogues 13,441
Utterances 89,152
Avg. slots per task goal 4.49
Number of individuals 565
Avg. intentions per individual 6.24
Avg. sessions per individual 23.79
Avg. Utterances per individual 157.80

Table 7: MS-TOD Subset Statistics for Memory Judger
Training.

A.3 Prompts of Confirmation Response
Generation

In the evaluation process, we employed a
confirmation-type response generation approach to
assess the integration performance of multi-session
memory in task-oriented dialogues. We designed
the prompt as shown in Figure 9, which leverages
the dialogue context, task objectives, and activated
memory units to generate responses.

A4 Prompts of GPT4 Evaluation

During the evaluation process, we employed a GPT-
4 prompt (as shown in Figure 11) to assess the qual-
ity of confirmation-type responses. This prompt
evaluates the response holistically from four per-
spectives: requirement alignment, content accuracy,
language quality, and comparison to the reference
answer. The input to this prompt includes the di-
alogue history, task objectives, the reference re-
sponse, and the model-generated response. This
design ensures that the evaluation of the response
is not solely based on the dataset’s reference reply
but also takes into account multiple factors such as
whether the task objectives are met and the over-
all quality of the response. Such an evaluation
approach is more comprehensive.

A.5 Prompts of Dialogue State Tracking

we used a prompt modified from (Heck et al.,
2023b) (as shown in Figure 10) that generates the
dialogue state for each user turn in the dialogue.
Let

Ay = P @ system : My @ user : Uy

Ay = Ay_1®system : Myduser : U, YVt € [2,T]
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where P is the task description which provides the
model with instructions for how to process a dia-
logue between a system M and a user U. In con-
trast to (Heck et al., 2023b), P does not include
the detailed description for slots to challenge Chat-
GPT’s ability to understand the meaning of the
slots. Apart from that, ChatGPT often generated
answers with excessively detailed explanations, de-
viating from the expected response format. To ad-
dress this issue, a prompt that includes "No explana-
tion!" as an instruction to ChatGPT not to provide
detailed explanations was introduced (Feng et al.,
2023) and we added this to our prompt.

B Dataset

B.1 Dataset for Memory Judger

To ensure that the memory judger generalizes
across different domains and scenarios, we gen-
erated the training dataset(as shown in Table 7)
using the same method described in the main text.
The dataset spans 16 domains, 4,534 task goals,
and 13,411 dialogues, involving a total of 565 in-
dividuals, each with an average of 6.24 intentions.
Beyond training the memory judger, this dataset
can also serve as an alternative evaluation set for
broader benchmarking.

B.2 Dataset Structure

MS-TOD encompasses multiple individual task-
oriented dialogue datasets, each consisting of sev-
eral sessions. We present an example of one ses-
sion (as shown in Figure 12) from an individ-
ual. This session includes a session_id, where
a larger value indicates a more recent timestamp.
The domain represents the specific field or area
of the dialogue. The re ference_dialogue_id cor-
responds to the dialogue_id in the original SGD
dataset that shares the same task objective. The
exist_con firmation indicates whether the ses-
sion contains a confirmation-type response and
whether it is an evaluation target. The intent rep-
resents the specific purpose or goal of the dia-
logue. The content stores the actual dialogue text.
The task_goal includes task slots and their cor-
responding attribute values. Each individual con-
tains dozens of session data structured as described
above.

B.3 Intent-driven QA Memory

For each historical session, we generated an intent
description and the corresponding QA memory (as
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Activation Module Recall@3 Recall@5 Recall@10
bm25 0.642 0.721 0.842
t5-base 0.443 0.575 0.773
bert-base 0.463 0.584 0.785
bert-large 0.401 0.530 0.730
nv-embed-v2 0.668 0.769 0.896
bge-large-en-v1.5 0.681 0.761 0.888
text-embed3-small 0.702 0.792 0.905

Table 8: Performance evaluation of activation modules
on memory retrieval

shown in Figure 13) for the objectives of that intent
description. The QA memory consists of multiple
QA pairs, where each query is a question about a
task attribute under that intent, and the answer is
the slot value corresponding to that task attribute.

C Supplementary Experimental Results

C1

Table 8 compares the performance of different
activation modules on memory retrieval. text-
embed3-small achieves the highest recall across
all thresholds, with 0.702 at Recall@3, 0.792 at
Recall@5, and 0.905 at Recall@ 10, demonstrating
superior retrieval capability. Among other models,
nv-embed-v2 and bge-large-en-v1.5 also perform
well, while traditional retrieval methods like BM25
remain competitive at Recall@10 but lag behind
embedding-based methods at lower recall levels.
TS-base and BERT-based models exhibit lower
recall, suggesting that general pre-trained models
are less effective for specialized memory retrieval.
These results highlight text-embed3-small as the
most effective choice for long-term memory activa-
tion in multi-session dialogues.

Memory Activation Comparision

C.2 Human Evaluation Details

Table 11 presents the results of human evaluation,
including accuracy, informativeness, and coherency
scores. Accuracy is rated on a scale of 0 to 1, while
informativeness and coherency are rated from O
to 3. The average scores in 5 are computed using
a weighted sum with weights of 1, 1/3, and 1/3.
All evaluations were conducted in a blind review
manner to compare the response quality of w/o
MAP and w/ MAP. Additionally, the Confirmation-
type Response type assesses the response quality
after memory-guided dialogue planning, while the
multi-turn evaluation focuses on dialogues under
the proactive response strategy, continuing until
task completion or forced termination.



Model Setting  Slot Accuracy BLEU ROUGE
w/o MAP 0.62 1047 28.59
LLaMA3-8B
w/ MAP 0.56 9.86  30.39
w/o MAP 0.48 10.33  29.77
Qwen-7B
w/ MAP 0.55 10.90 31.28
. w/o MAP 0.59 10.09 2842
Mistral-7B
w/ MAP 0.56 6.66  24.64
. . w/o MAP 0.61 20.30 43.49
GPT40-mini
w/ MAP 0.68 13.6  35.20

Table 9: Performance comparison of task-oriented dia-
logue models with and without long-term memory inte-
gration: Slot Accuracy, BLEU, and ROUGE metrics.

Model Slot Accuracy BLEU ROUGE
AutoTOD 0.61 3.34 24.07
MAP 0.68 5.47 25.03

Table 10: Performance comparison on Slot Accuracy,
BLEU, and ROUGE.

C.3 Additional Evaluation Metrics

Table 9 compares the performance of task-oriented
dialogue models with and without memory-
augmented processing (MAP) across Slot Accu-
racy, BLEU, and ROUGE metrics. The results
reveal a trade-off between structured slot accu-
racy and response fluency. In most models, MAP
slightly reduces slot accuracy, as seen in LLaMA3-
8B, which drops from 0.62 to 0.56, and Mistral-
7B, which decreases from 0.59 to 0.56. However,
GPT40-mini benefits from MAP, achieving the
highest slot accuracy of 0.68. BLEU scores gener-
ally decline, suggesting that MAP shifts responses
away from verbatim accuracy towards greater con-
textual adaptability. Mistral-7B drops from 10.90
to 6.66, and LLaMA?3-8B decreases from 10.47 to
9.86. Conversely, ROUGE scores improve with
MAP in several cases. LLaMA3-8B increases from
28.59 to 30.39, and Qwen-7B rises from 29.77 to
31.28, indicating enhanced informativeness and co-
herence. However, Mistral-7B experiences a slight
decrease in ROUGE from 28.42 to 24.64. Overall,
the results suggest that MAP enhances response
informativeness while slightly compromising slot
accuracy and BLEU, highlighting a trade-off be-
tween structured information retention and more
natural, contextually aware responses.

Table 10 presents the performance comparison
between AutoTOD and MAP on Slot Accuracy,
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BLEU, and ROUGE. The results indicate that
MAP consistently outperforms AutoTOD across
all three metrics, demonstrating its effectiveness
in enhancing dialogue quality. Slot Accuracy im-
proves from 0.61 to 0.68, indicating better track-
ing of task-specific information. BLEU increases
from 3.34 to 5.47, reflecting more precise and flu-
ent responses. ROUGE also shows a slight im-
provement, rising from 24.07 to 25.03, suggesting
that MAP enhances informativeness and coherence.
These results highlight the advantages of memory-
augmented processing, which enables more accu-
rate and contextually relevant dialogue generation.

D Case Study Detail

Figure 14 presents four different configurations of
conversation contexts not shown in the main paper.
Specifically, (1) Full conversation history includes
every session from the dialogue history as prompt
input to the reader. (2) Retrieval-based methods
retrieve the dialogue sessions most relevant to the
current session (Session 23) and append them to the
reader’s context (3) Retrieving a summary compiles
a summary of past sessions (Sessions 1 to 22) for
inclusion alongside the current context. Finally,
(4) MAP integrates QA memory with the Session
23 context to generate responses. By illustrating
these detailed contexts, Figure 14 provides further
insights into how each approach manages multi-
session dialogue.



Model Setting Confirmation-type Response Multi-Turn

Accuracy Informativeness Coherency Accuracy Informativeness Coherency

.. w/oMAP 0.62 1.83 1.90 0.81 1.92 2.44
GPT40-mini

w/ MAP 0.65 2.38 2.48 0.87 1.93 2.74

LLaMA w/o MAP 0.56 1.47 1.74 0.78 1.64 2.36

w/ MAP 0.61 1.98 2.16 0.88 2.51 2.71

Qwen w/o MAP 0.43 1.24 1.85 0.82 1.60 2.02

w/ MAP 0.54 1.70 2.30 0.92 1.93 2.47

. w/o MAP 0.58 1.63 1.99 0.89 2.49 2.72

Mistral
w/ MAP 0.61 2.06 2.08 0.93 2.74 2.85

Table 11: Comparison of different models on human evaluation metrics: accuracy, informativeness, and coherence.
The results are presented for both confirmation-type responses and multi-turn dialogue settings, comparing standard
inference (‘w/o MAP*) with memory-augmented processing (‘w/ MAP®).
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Prompts of the Dataset Generation

User Prompt:

Help me generate an English conversation under the {dialogue_intent} intent, where {task_goal}.
The conversation should be between a user and an assistant, and it should be split into
{task_goal_length} sessions at different points in time, with continuity and connection between the
sessions and each session should not less than 6 turns. Additionally, the final session must include
a assistant response containing a complete confirmation-type utterance before the user confirms,
and this utterance should be marked with ‘is_confirmation‘ set to “True‘. and the user must provide
a final confirmation response at the end of the final session. For all other sessions, the conversation
should end with an assistant’s polite declarative statement.

System Prompt:

""" You are dialogue generator assistant.

The sessions should be clearly separated, and the conversation should be formatted as follows:
Each turn should be a dictionary entry.

The conversation should be in the format of a list of sessions, where each session is a list of
dictionaries representing each turn.

Each dictionary entry should have two keys: speaker (either "user’ or ’assistant’) and text (the
spoken dialogue).

Except for final session, each session should be a seperate dialogue and include a complete
dialogue structure, beginning with a greeting from the user and ending with an assistant’s polite
declarative statement.

Feel free to expand the dialogue with additional relevant details, but avoid redundant expressions
or repeating the same phrases.

Reponse me with a json format

{
"sessions ": [
[
{
"speaker": "xx",
"text": "xx"
!,
{
"speaker": "xx",
"text": "xx"
}
]
]
}

nnn

Figure 7: Prompts of the Dataset Generation
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Prompts of the Task Slot Querying Generation

Please help me generate questions, based on the provided {conversation history}, that correspond
to unanswered attributes in the task goal {task_attributes}.

1. The questions should start with *What,” *"When,” *Why,” "How,” or *Where.’

2. Ensure that the generated questions are in third person.

fill the following json: { [Question], }

nnn

Figure 8: Prompts of the Task Slot Querying Generation

Prompts of Confirmation Response Generation

""" You are an dialogue assistant.

Generate a confirmation response based on the user§ utterance. Include any relevant task goals
[TASK GOALS] identified in the dialogue or related memory [MEMORY]. If [MEMORY]
is unavailable, construct your response accurately and comprehensively using the provided
conversation details. Ensure your reply acknowledges the users request clearly and incorporates
relevant information from both the dialogue and the related memory units [MEMORY].

[TASK GOAL]

{task_goal}

[MEMORY]
{memory}

Figure 9: Prompt of Confirmation Response Generation
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Prompt of Dialogue State Tracking on MultiWOZ 2.2

"""Consider the following list of concepts, called "slots" provided to you as a json list.

"slots": {
"attraction-area",
"attraction-name",
"attraction-type",
"bus-day",
"bus-departure”,
"bus-destination",
"bus-leaveat",
"hospital-department",
"hotel-area",
"hotel-bookday",
"hotel-bookpeople”,
"hotel-bookstay",
"hotel-internet",
"hotel-name",
"hotel-parking",
"hotel-pricerange”,
"hotel-stars",
"hotel-type",
"restaurant-area",
"restaurant-bookday",
"restaurant-bookpeople”,
"restaurant-booktime",
"restaurant-food",
"restaurant-name",
"restaurant-pricerange",
"taxi-arriveby",
"taxi-departure",
"taxi-destination",
"taxi-leaveat",
"train-arriveby",
"train-bookpeople",
"train-day",
"train-departure",
"train-destination",
"train-leaveat",

}

Now consider the following dialogue between two parties called the "system" and "user". Can
you tell me which of the "slots" were updated by the "user" in its latest response to the "system"?
Present the updates in JSON format. If no "slots" were updated, return an empty JSON list. If you
encounter "slots" that were requested by the "user" then fill them with "?". If the user informed
that he did not care about a "slot", fill it with "dontcare". Return the output in JSON format and no
explanation!

{dialogue}

Figure 10: Prompt of Dialogue State Tracking on MultiWwOZ 2.2
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Prompts of GPT4 Evaluation

""" You are a strict and objective evaluator. Your task is to assess the quality of the final predicted
response using the provided conversation context, the user’s target goal attributes, and a reference
answer. Your evaluation should be fair, professional, and reflect an expert judgment of the
response’s quality.

[Dialogue Context]

{{conversationyistory}}

[Task Goal]

{{task_goal}}

[reference_answer]

{{reference_anwser}}

[predict_answer]

{{predict_answer}}

Evaluation Criteria:

Requirement Alignment: Does the final predict_answer meet the user’s task goal?

Content Accuracy: Is the information in the final response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?

Comparison to Reference Answer: Compared to the reference answer, how does the final response
differ in terms of completeness, professionalism, and clarity?

Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation must be structured in the following JSON format:
“‘json

{

"Rationale": "<Explain the rationale of your score.>",

"Score": <An integer score from 1 to 10.>

}

e nnn

Figure 11: Prompts of GPT4 Evaluation
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MS-TOD dialogue session structure

{
"session_id": 9,
"domain": "Travel”,
"reference_dialogue_id": "66_00101",
"exist_confirmation"”: true,
"intent": "ReserveHotel”,
"content": [
{
"speaker": "user",
"utterance”: "Hi again, I’m ready to finalize the booking for Aloft
Portland Airport At Cascade Station.”,
"is_confirmation”: false
3,
{
"speaker": "assistant”,
"utterance”: "Just to confirm, you are booking 1 room at Aloft Portland
Airport At Cascade Station, Portland, from March 5th to March 7th.
The room is a standard king room with free Wi-Fi and a 24-hour
cancellation policy. Is that correct?”,
"is_confirmation"”: true
3,
{
"speaker"”: "user",
"utterance”: "Yes, that is correct.”,
"is_confirmation”: false
}!
{
"speaker": "assistant”,
"utterance”: "Excellent! Your room has been successfully booked. You
will receive a confirmation email shortly.",
"is_confirmation”: false
}!
{
"speaker": "user"”,
"utterance”: "Thank you so much for your help!"”,
"is_confirmation”: false
}!
{
"speaker”: "assistant",
"utterance”: "You’re welcome! Have a great stay in Portland.”,
"is_confirmation”: false
}
:ly
"task_goal"”: {
"hotel_name"”: "Aloft Portland Airport At Cascade Station”,
"location”: "Portland”,
"check_in_date": "March 5th",
"check_out_date”: "March 7th",
"number_of_rooms": 1
}
}

Figure 12: MS-TOD Session Structure.
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MS-TOD Intent Description and QA Memory

{
"9": {

"intent_description”: "The user’s intent is to finalize and confirm a
hotel booking for a specific room at Aloft Portland Airport At Cascade
Station, including details about the stay dates and room type.",

"ga_summary": [

{
"Question"”: "What type of room did the user book?",
"Answer”: "The user booked a standard king room.”

}!

{
"Question”: "When is the user’s reservation?"”,
"Answer": "The user’s reservation is from March 5th to March 7th.”

}’

{
"Question": "Where is the user’s reservation located?”,
"Answer"”: "The user’s reservation is located at Aloft Portland Airport

At Cascade Station.”

}7

{
"Question”: "What amenities are included in the user’s reservation?”,
"Answer"”: "The user’s reservation includes free Wi-Fi."

}7

{
"Question”: "What is the cancellation policy for the user’s booking?",
"Answer"”: "The cancellation policy for the user’s booking is 24 hours

}

1
}
}

Figure 13: Intent description and QA Memory in MT-TOD.
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Session ID Dialogue History Summary Intention-driven QA Memory

Session 1 User:Hi there! I'd like to The user wants to book an Intention Description: The user
book an appointment at appointment at Blow Dry Bar intends to book a specific
Blow Dry Bar. on March 3rd at 3:15 pm. The appointment.

Assistant : Sure! When assistant confirms the date
would you like to and is  checking  the "Question": "What type of
schedule your availability for the requested appointment is the user looking to
appointment? time. book?",
"Answer": "The user is looking to
book an appointment at Blow Dry
Bar.”

Session 3 User:Hey, can you play  The user requested to play the Intention Description: The user

the song 'Drive' onthe  song \"Drive\" on the intends to listen to the song.
? . The assistant

Assistant:Sure, I can confirmed and started the "Question": "Where was the song
play 'Drive' for you. Do  song, asking if the user 'Drive' played?",
you want me to start the needed anything else. The "Answer": "The song 'Drive' was
song now? user declined further played on the a

assistance and expressed

gratitude.

Session 12 User:Hi there! I'm The user expresses interest in  Intention Description: The user's
interested in buying a buying a ticket for the Bill intent is to purchase a single
ticket for the Bill Callahan concert on March ticket
Callahan concert? 10th in Los Angeles. They
Assistant:Great choice!  request one ticket, and the "Question": "Where will the
The Bill Callahan assistant confirms availability concert be held?",
concert is happening on  and asks if the user would "Answer": "The concert will be
March 10th in Los like to proceed with the held in Los Angeles."

Angeles. How many purchase.
tickets would you like to
purchase? ...

Session 16 User:Hi, I need to book  The user wants to book a ride Intention Description: The user's
aride. to 1580 Clayton Road #1 for intent is to arrange a shared
Assistant:Sure, I can three  people and  has transportation service.
help with that. Where requested a shared ride.
would you like to go? ...

Session 23 User: Can you play Intention Guess: The user

Evaluation 'Drive' again? intends to listen to songs.

Assistant:

Confirmation Response
(Direct Prompting

with the Full
Conversation History)

Sure! Just to confirm, you’d like me to play the song "Drive" on the

again. Should I start it now? Also, would you like me to check out some tickets for the Bill
Callahan concert on March 10th in Los Angeles, or are you planning to book a ride
somewhere else? Let me know! (Extra Noise)

Confirmation Response
(Hybrid RAG
with Retrieved History)

Sure! Let me play "Drive" for you once more. By the way, have you decided on the number
of tickets you'd like to buy for Bill Callahan's concert? It’s coming up on March 10th in Los

Angeles! (Wrong Answer)

Confirmation Response
(Hybrid RAG
with Summary)

Sure! I've started playing “Drive” again. Is there anything else you’d like? (Wrong Answer)

Confirmation Response
(MAP)

Sure! Just to confirm, you’d like me to play the song "Drive" on the
again. Should I start it now? (Right Answer)

Figure 14: Comparison of confirmation response generation across four approaches: (1) Direct Prompting with
the full conversation history, (2) Hybrid RAG retrieving relevant dialogue history, (3) Hybrid RAG retrieving a
summary of the conversation, and (4) MAP with intention-based QA memory.
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