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Abstract

Existing Task-Oriented Dialogue (TOD) sys-001
tems generally focus on single-session dia-002
logues and overlook the study of multi-session003
interactions, leading to the inability to track004
long-term memory to obtain target-related in-005
formation from previous dialogue sessions for006
more efficiently personalized interaction in007
TOD. To address this challenge, we introduce a008
MS-TOD dataset, the first multi-session TOD009
dataset designed to retain long-term memory010
across sessions, enabling fewer turns and more011
efficient task completion. Based on this new012
dataset, we propose a Memory-Active Policy013
(MAP) that improves multi-session dialogue014
efficiency by reducing turns through a two-015
stage approach. Specifically, we first introduce016
Memory-Guided Dialogue Planning, which re-017
trieves relevant history through intent descrip-018
tions, utilizes a memory judger to identify key019
QA units, and employs a reader to generate re-020
sponses based on reconstructed memory. Next,021
the Proactive Response Strategy is designed to022
detect and correct errors or omissions, ensur-023
ing efficient and accurate task completion. We024
evaluate MAP on our MS-TOD dataset, focus-025
ing on response quality and effectiveness of the026
proactive strategy. Experimental results show027
that MAP enhances multi-session TOD perfor-028
mance by improving turn efficiency and task029
success through long-term memory integration030
while maintaining comparable performance in031
single-session multi-turn tasks.032

1 Introduction033

Task-oriented dialogue (TOD) systems (Wang et al.,034

2021; He et al., 2022; Bang et al., 2023a; Swamy035

et al., 2023a) have traditionally focused on single-036

session scenarios, overlooking the fact that real037

world interactions often span multiple sessions over038

extended periods. Although Large Language Mod-039

els (LLMs) have been explored to enhance TOD040

performance (Xu et al., 2024a,b; Chung et al., 2023;041

Heck et al., 2023a), these works mainly focus on042

Can you please 
provide me with the 
details of your flight 
reservation?

Hello. I'm ready to 
finalize the flight 
reservation we 
discussed last time.

Ok, Just to confirm,…

Yes, that's correct.

w/o. multi-session memory
Turn Number: 10

Multi-Session Memory 

Turn Number: 2
w/. multi-session memory

...

When do you …

Hello. I'm ready to 
finalize the flight 
reservation we 
discussed last time.

Ok, Just to confirm,…

Yes, that's correct.

Retriever

...
… March 3rd …

… fly from San 
Francisco to Sydney.

<original city: San Francisco>
<destination city : Sydney >
<airlines : United Airlines>
<seating class : Economy>

Could you help ...

Yes, please tell ...
...

Could you update me on my flight 
reservation?
…finalize your flight reservation from 
San Francisco to Sydney with United 
Airlines. … , in Economy class ... 

Figure 1: Task-oriented dialogue, with (right) vs with-
out (left) multi-session memory; the latter demands
more turns of conversation.

single-session conversations and do not adequately 043

consider personalization and long-term engage- 044

ment. Moreover, existing TOD datasets (Stacey 045

et al., 2024; Liu et al., 2024; Budzianowski et al., 046

2018; Rastogi et al., 2020a) are confined to single- 047

session settings, leaving a gap in publicly available 048

benchmarks for evaluating long-term memory re- 049

tention across multi-sessions. 050

To illustrate the limitations of single-session sys- 051

tems, consider Figure 1, which compares two dia- 052

logue snippets from a TOD system without multi- 053

session memory and with multi-session memory. 054

In the first case, the user must repeatedly restate 055

details (e.g., flight times, seat preferences) in ev- 056

ery new session, resulting in inefficiency and user 057

frustration. By contrast, when multi-session mem- 058

ory is integrated, the system seamlessly retrieves 059

itineraries and preferences from earlier sessions, 060

eliminating redundant interactions and providing a 061
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more personalized experience.062

To bridge this gap, we introduce the Multi-063

session Task-oriented Dialogue Dataset (MS-TOD),064

which consists of hundreds of users, each engaging065

in over 20 sessions with diverse task goals sourced066

from SGD (Rastogi et al., 2020a). MS-TOD sup-067

ports comprehensive evaluation of TOD systems to068

retrieve long-term context, maintain consistent task069

slots, and adapt responses to individual user prefer-070

ences. However, effectively leveraging long-term071

memory in multi-session TOD remains challenging.072

While existing approaches in open-domain multi-073

session conversations focus on retrieving dialogue074

history or summaries (Lu et al., 2023; Zhong et al.,075

2024; Joko et al., 2024; Li et al., 2024a; Du et al.,076

2024), multi-session TOD system face additional077

demands: they must recall critical slot-value pairs,078

track evolving user intents, and proactively resolve079

missing or outdated information while minimizing080

redundant user queries.081

Therefore, we propose the Memory-Active Pol-082

icy (MAP) to incorporate long-term memory in083

multi-session TOD tasks. MAP consists of two084

core phases: (1) Memory-Guided Dialogue Plan-085

ning, where an LLM generates an intent hypoth-086

esis and aligns it with structured memory en-087

tries to align user goals across sessions. Further-088

more, a memory judger assesses relevant memory089

units and refines task slot descriptions for precise,090

context-aware responses. (2) Proactive Response091

Strategy, which iteratively detects missing or mis-092

matched slots by comparing predicted responses093

with task goals, actively engaging users to resolve094

incomplete slots, thereby reducing redundancy and095

ensuring smooth, goal-oriented interactions. Exper-096

imental results on MS-TOD demonstrate that MAP097

effectively improves dialogue coherence, response098

quality, task success rate, and dialogue efficiency099

in multi-session TOD.100

The main contributions include:101

• We introduce MS-TOD, the first multi-session102

task-oriented dialogue dataset for evaluating103

dialogue systems in long-term interactions.104

• We propose MAP framework, which inte-105

grates long-term memory into TOD systems106

for efficient task completion in minimal dia-107

logue turns.108

• Experiments show that MAP outperforms109

baselines in most metrics, validating its ac-110

tive memory mechanism.111

Settings GPT-4 Score Slot Acc.

No Retrieval (Direct Prompting)
Current Session Context 2.60 0.13
Full Conversation Context 4.76 0.61
Retrieval-Augmented Generation
BM25-Based Retrieval 5.90 0.53
Embedding-Based Retrieval 7.01 0.67
Hybrid Retrieval 7.04 0.68
Oracle (Upper Bound)
Oracle 8.51 0.82

Table 1: Evaluation of confirmation-type response gen-
eration under different prompting and retrieval strate-
gies.

2 Preliminary Experiments 112

To investigate the effectiveness of different strate- 113

gies for handling dialogue history in multi-session 114

task-oriented response generation, We conduct 115

a preliminary study comparing direct prompting 116

(Swamy et al., 2023b; Xu et al., 2024a) with 117

retrieval-augmented generation (RAG) (Huang 118

et al., 2024; Lu et al., 2023) in multi-session TOD. 119

Because standard TOD datasets lack multi- 120

session dependencies, we construct a test set specif- 121

ically for confirmation-type response generation 122

(details in Section 3). Our pipeline includes (1) 123

Retrieval. We explore three strategies for retriev- 124

ing relevant historical dialogues: sparse retrieval 125

(BM25 (Robertson and Zaragoza, 2009)), dense 126

retrieval (text-embedding-small-31), and a hybrid 127

approach that combines both to leverage their com- 128

plementary strengths. (2) Response Generation. 129

GPT-4o-mini then generates confirmation-type re- 130

sponses by incorporating the retrieved dialogue 131

history and task goal information. 132

As shown in Table 1, RAG consistently out- 133

performs direct prompting. For instance, dense 134

retrieval achieves 0.67 slot accuracy and a 7.01 135

GPT-4 score, surpassing full-context prompting 136

(0.61 and 4.76, respectively). Hybrid retrieval fur- 137

ther improves slot accuracy to 0.68 and the GPT-4 138

score to 7.04, demonstrating the value in combining 139

sparse and dense strategies. Oracle retrieval (using 140

ground-truth context) reaches 0.88 and 8.51, un- 141

derscoring the need for more accurate retrieval 142

strategies in multi-session TOD. 143

1OpenAI. text-embedding-3-small. 2025. OpenAI, https:
//platform.openai.com/docs/guides/embeddings.
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Domain: Travel Intent: BookHotel

User: Hi. Did you find any good 
hotel options for my stay in San 
Francisco?
Assistant: Hi! Yes, I did. The 
first option is Hotel ABC, which 
offers free breakfast and Wi-Fi. 
The second option is Hotel XYZ, 
located near popular tourist 
spots and includes a gym facility. 
Which one sounds better to you.
User: Hotel XYZ sounds better.
Assistant: Just to confirm, you 
would like to book a room at 
Hotel XYZ in San Francisco for 
one adult from March 1st to 
March 8th, correct?

Session #24

User Task_Goal
check_in_date:    March 1st
check_out_date : March 8th
where_to : San Francisco
number_of_adults: one adult

Domain: Travel Intent: BookHotel

User: Hi, I'm looking to book 
a room in San Francisco.
Assistant: Sure! I can help 
with that. When would you 
like to check in?
User: I'd like to check in on 
March 1st.
Assistant: Got it. And when 
will you be checking out?
User: I'll be checking out on 
March 8th.
Assistant: Alright. How 
many adults will be staying?
User: Just one adult.

User Task_Goal
check_in_date:    March 1st
check_out_date : March 8th
where_to : San Francisco
number_of_adults: one adult

Session #1

Task dialog history Task Completion Evaluation

Figure 2: An Example of MS-TOD dataset.

3 Dataset144

To systematically evaluate TOD systems in scenar-145

ios requiring multi-session long-term memory inte-146

gration, we develop the MS-TOD dataset, derived147

from the Schema-Guided Dialogue (SGD) dataset148

(Rastogi et al., 2020a). MS-TOD comprises two149

subsets: a training subset for training the memory150

judger (Section 4.2) and an evaluation subset de-151

signed to assess multi-session memory activation152

and TOD response generation shown in Figure 2.153

3.1 Data Generation154

Multi-Session Dialogue Construction. Be-155

cause existing TOD corpora typically feature156

single-session interactions lacking structured multi-157

session dependencies, we create three dialogue158

sessions for each task in the SGD dataset. Com-159

pared with single-session dialogues, this design160

more closely simulates how users revisit and refine161

the same task at different times and in different162

contexts. We chose three sessions—rather than a163

higher number—to strike a balance between captur-164

ing realistic user behavior and avoiding repetitive165

dialogue data, particularly given that SGD tasks166

involve fewer than ten task slots. As a result, three167

sessions offer sufficient coverage of task variations168

without overpopulating the dataset. More details169

can be found in Appendix A.1.170

Confirmation-Type Response Annotation. In171

the final session of each task, we introduce172

confirmation-type annotations to mark utterances173

indicating the completion of long-term or recur-174

ring tasks. These annotations serve two primary175

Attribute Evaluation

Domains 16
Intentions 19
Task goals 956
Dialogues 2,861
Utterances 18,530
Avg. slots per task goal 4.24

Number of individuals 132
Avg. intentions per individual 5.45
Avg. sessions per individual 21.67
Avg. Utterances per individual 140.38

Table 2: MS-TOD dataset statistics for evaluation.

functions: (1) Guiding Memory Activation: High- 176

lighting key dialogue points to trigger long-term 177

memory activation, summaries, or confirmations; 178

and (2) Supporting System Evaluation: They en- 179

able evaluation of the system’s ability to recognize 180

and record cross-session information or long-term 181

goals during dialogue strategy assessment. 182

3.2 Individual Memory Bank Construction 183

Since multi-session interactions occur at the in- 184

dividual level, we group sessions into Individual 185

Memory Banks (Figure 2), each storing an individ- 186

ual’s historical dialogues for maintaining continuity 187

and adapting responses. Each bank contains over 188

20 sessions spanning more than six distinct user 189

intentions (Table 2), plus a dedicated evaluation ses- 190

sion per intention requiring confirmation responses. 191

Task goals are also provided to guide system out- 192

puts, supporting effective memory activation and 193

task handling in diverse scenarios. 194

To refine these memory banks, we employ a 195

GPT-4-based generator that extracts high-level in- 196

tent descriptions and creates task-specific QA pairs 197

(Appendix A.2). These structured QA pairs en- 198

able efficient retrieval of relevant contexts, allow- 199

ing the system to selectively activate memories and 200

adapt dynamically to user needs for multi-domain, 201

intention-aware TOD. More details on the dataset 202

can be found in Appendix B. 203

4 Memory-Active Policy 204

To address the need for long-term memory and 205

multi-session context in TOD, the Memory-Active 206

Policy (MAP) combines memory-driven dialogue 207

planning with a proactive policy strategy as shown 208

in Figure 3. 209
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Yes, that's correct.

Current Session
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Alright, playing Black Widow on the bedroom speaker now. Enjoy your music!ResponseLLM-Reader

Historical Sessions

······

Retriever

Figure 3: Overflow of our MAP framework, which comprises Memory-Guided Dialogue Planning and Proactive
Response Strategy.

4.1 Definition210

The objective of this task is to generate a natural211

language response r based on the provided dia-212

logue context c and individual memory bank M .213

The dialogue context c represents the ongoing in-214

teraction, comprising chronologically ordered user215

utterances uj and system responses rj . The indi-216

vidual memory bank M consists of memory repre-217

sentations from multiple dialogue sessions, where218

each session provides an intent description ki and219

a corresponding set of QA pairs vi. Formally, we220

define: M = {(ki, vi)}Ni=1, vi = {(qij , aij)}nj=1.221

Here, ki represents the session’s high-level intent,222

while vi stores detailed task-related information.223

This structured design facilitates efficient retrieval224

and utilization of long-term user-specific memory.225

The response r is generated by a large language226

model LLM that integrates c and M , ensuring227

semantic coherence, memory relevance, and task228

slot accuracy. Formally, the optimal response is229

obtained by maximizing the conditional probability230

distribution:231

r∗ = argmax
r∈R

P (r | c,M), (1)232

whereR denotes the set of all possible responses.233

This approach emphasizes understanding the dia-234

logue context and leveraging individual memory to235

produce coherent and relevant responses.236

4.2 Memory-Guided Dialogue Planning 237

Memory-Guided Dialogue Planning consists of two 238

key steps: (1) Intent Capture and Memory Activa- 239

tion, where the system identifies and retrieves rele- 240

vant memories aligned with the user’s intentions; 241

(2) Memory Judgement and Refinement, which 242

detects missing task slots, and re-ranks relevant 243

memories to ensure optimal information recall for 244

response generation. 245

Intent Representation and Memory Activa- 246

tion. Given the dialogue context ci, we use LLM 247

(GPT4o-mini) to generate a high-level intent de- 248

scription ki, which summarizes the user’s objec- 249

tive in the current session. The intent description 250

ki is then used to retrieve relevant memory units 251

from the long-term memory M , represented as 252

M = {(kj , vj)}mj=1, where kj is an intent-related 253

key and vj is the corresponding structured informa- 254

tion, such as paired questions and answers. Using 255

an embedding model, ki is mapped to a dense repre- 256

sentation and compared with kj to activate the most 257

relevant memory units vi. These activated memory 258

units vi, containing structured information such as 259

task-related questions and answers, are then used 260

to guide subsequent dialogue processing. 261

Memory Judgement. Accurately recognizing 262

the task goal is crucial for invoking relevant mem- 263

ory and formulating an effective dialogue policy. 264

To refine retrieved memories, we employ a Chain- 265

of-Thought (CoT) (Wei et al., 2022) mechanism, 266

which identifies the task goal and generates missing 267
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task slot queries. The retrieved QA pairs are then268

evaluated by a memory judger, trained on LLaMA269

3.1-8B2, to assess their relevance. Given a dialogue270

context ci, a missing query qmiss, and the relevant271

memory QA pairs vj . The output indicates if the272

QA pairs under intent ki sufficiently answer qmiss.273

Let j index memory units and u index QA pairs274

within the j-th unit. The memory judger evaluates275

each QA pair (qj,u, aj,u) as:276

sj,u = P (y = 1|(ci, qmiss, qj,u, aj,u)) (2)277

where y = 1 indicates that the QA pair contributes278

to the task goal, while y = 0 indicates irrelevance.279

The memory judger LLMMJ is trained using a cross-280

entropy loss function:281

L = −
∑

(qj,u,aj,u)

[y log sj,u + (1− y) log(1− sj,u)] (3)282

This formulation ensures the judger assigns283

higher scores to QA pairs that are more relevant to284

the missing query qmiss. Next, all retrieved mem-285

ory QA pairs are re-ranked based on updated scores.286

For each QA pair, the final score sf,ju is calculated287

by combining the previous retrieval score sprev,ju288

and the judger’s score sju using a weighted sum:289

sf,ju = α · sprev,ju + (1− α) · sju, (4)290

where α is a weight parameter balances retrieval291

relevance and judger evaluation. The top 5 QA292

pairs vselected with the highest sfinal,ju scores are293

selected to ensure contextual relevance and task294

alignment in subsequent dialogue steps.295

Memory Refinement mainly contains memory296

pruning and memory reconstruction. Memory prun-297

ing filter activated memory units {vj} by removing298

redundant components (e.g., auxiliary questions299

qj,u) tied to intent ki, retaining only core answers300

Acore = {aj,u}. We reconstruct answers Acore into301

the dialogue context c through concatenation ensur-302

ing noise removal prior to contextualization.303

4.3 Proactive Response Strategy304

The response generation phase synthesizes the di-305

alogue context c and pruned memory Acore (from306

memory reconstruction) into a confirmation re-307

sponse r. Using LLMReader, the system evaluates308

if integrated memory supports task completion:309

r = LLMReader(c, Acore) (5)310

2Meta. (2024). Llama 3.1: A Family of Open and Efficient
Multilingual Language Models. Meta AI. Retrieved from
https://llama.meta.com/

where r serves dual purposes: (1) providing task 311

guidance and (2) explicitly verifying memory rele- 312

vance to user goals (see Appendix A.3 for details). 313

To provide more comprehensive responses to 314

user queries, we propose a proactive dialogue 315

policy. Based on the generated response r, we 316

identify missing or incorrect slots within the dia- 317

logue. This results in a set of slots, denoted as 318

L = {l1, l2, ..., ln}, where each li represents a 319

missing or erroneous slot. We design an agent 320

to simulate the user, explicitly informing it of the 321

slot set L. The user agent then interacts with our 322

dialogue model in an interactive conversation to 323

address the identified slots. 324

At each dialogue turn, a supervisor (played by 325

an LLM) evaluates whether the conversation accu- 326

rately fulfills the slot information requirements. If 327

a slot si is successfully resolved during the inter- 328

action, it is removed from L. Mathematically, the 329

update to the slot set is expressed as: 330

S ← L {li} (6) 331

The interaction continues for multiple turns until 332

the slot set becomes empty, L = ∅, ensuring all 333

missing or erroneous slots are resolved. 334

5 Experiments 335

5.1 Experimental Setups 336

Evaluation Settings. Our evaluation primarily 337

focuses on GPT-4 score3, Joint Goal Accuracy 338

(JGA), Dialogue Turn Efficiency (DTE), and Suc- 339

cess Rate (S.R.) as key performance metrics. DTE 340

reflects the system’s efficiency by measuring the 341

number of turns required to complete a task, where 342

a lower value indicates more effective interactions. 343

To assess memory activation, we include Recall@k 344

to evaluate the retrieval of relevant long-term his- 345

torical context. Additionally, we conduct human 346

evaluation to assess response accuracy, informative- 347

ness, and coherency. For further insights into task 348

completion accuracy and response quality, we re- 349

port Slot Accuracy, BLEU (Papineni et al., 2002), 350

and ROUGE (Lin, 2004) 351

Baselines We conduct comparisons with state- 352

of-the-art conversational approaches using differ- 353

ent large language models, such as LLaMA3- 354

8B (Touvron et al., 2024), Qwen2.5-7B (Team, 355

2024c), Mistral-7B (Team, 2024a), and GPT-4o- 356

mini (Team, 2024b). Furthermore, we conduct a 357

3GPT4-as-the-judge prompts can be found in Appendix
A.4
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Model Setting GPT4 JGA DTE S.R.

LLaMA3-8B w/o MAP 4.89 0.64 5.37 0.82
w/ MAP 6.39 0.63 3.46 0.92

Qwen-7B w/o MAP 6.26 0.66 4.93 0.83
w/ MAP 6.81 0.66 4.31 0.87

Mistral-7B w/o MAP 6.20 0.73 2.52 1.00
w/ MAP 6.48 0.80 1.21 1.00

GPT4o-mini w/o MAP 6.93 0.67 6.03 0.88
w/ MAP 7.14 0.70 3.19 0.99

Table 3: Performance comparison of task-oriented dia-
logue models with and without long-term memory inte-
gration. The w/o MAP setting uses full-context prompt-
ing, feeding the entire dialogue history as input, while
w/ MAP leverages memory active policy to retrieve and
utilize relevant long-term memory.

comparison with task-oriented dialogue methods358

in the context of dialogue state tracking (DST),359

including BERT-DST (Chao and Lane, 2019), Au-360

toTOD (Xu et al., 2024a), and LDST (Feng et al.,361

2024), to evaluate the adaptability of our approach362

in task-specific dialogue scenarios. To evaluate363

the effectiveness of memory activation, we com-364

pare our method against various retrieval meth-365

ods, including BM25 (Robertson and Zaragoza,366

2009), T5 (Raffel et al., 2020), BERT-base, BERT-367

large (Devlin et al., 2018), nv-embed-v2 (Lee et al.,368

2024), bge-large-en-v1.5 (Liu et al., 2023), and369

text-embedding-3-small (OpenAI, 2023).370

5.2 Main Results371

Overall Performance. We conduct the experi-372

ments comparing full context prompting and our373

MAP framework in the metric of GPT4, JGA,374

DTE, and S.R. As shown in Table 3, MAP demon-375

strates consistent performance gains over baseline376

prompting methods. For instance, applying MAP377

to Mistral-7B increases JGA from 0.73 to 0.80378

and S.R. from 0.83 to 0.87. Notably, LLaMA3-379

8B, Qwen-7B, and GPT-4o-mini also show signif-380

icant improvements in both JGA and S.R. when381

integrated with MAP. In terms of response qual-382

ity, GPT-4 scores rise notably for all models; for383

example, LLaMA3-8B achieves the largest gain,384

from 4.89 to 6.39. Regarding DTE, MAP consid-385

erably shortens the required turns, with reductions386

of 35.6% for LLaMA3-8B, 12.6% for Qwen-7B,387

52.0% for Mistral-7B, and 47.1% for GPT-4o-mini.388

These results demonstrate that integrating long-389

term memory enhances both response quality390

and conversation efficiency.391 Human Evaluation. We conduct a human eval-392

uation to further assess the effectiveness of the393

Model GPT4 JGA DTE S.R.

Bert-DST∗ - 0.067 - -
LDST∗ - 0.234 - -
AutoTOD† 6.49 0.440 7.80 0.81
MAP 7.14 0.698 3.19 0.99

Table 4: Performance comparison of traditional TOD
models and MAP. Models marked with ∗ focus on DST,
predicting slot-value pairs without handling dialogue
management or task execution, making them unsuitable
for evaluating S.R., GPT-4 score, and DTE. † indicates
simplified AutoTOD.

Model Confirmation Multi-Turn

w/o MAP w/ MAP w/o MAP w/ MAP

LLaMA3-8B 1.64 1.99 1.60 2.03
Qwen-7B 1.46 1.88 1.48 1.77
Mistral-7B 1.79 1.99 2.04 2.18
GPT4o-mini 1.86 2.27 1.72 1.85

Table 5: Human evaluation results based on the average
A.I.C., which is the mean of Accuracy, Informativeness,
and Coherence. w/ denotes with, w/o denotes without.

MAP structure, as presented in Table 5. The evalu- 394

ation focuses on confirmation-type responses and 395

multi-turn dialogues adopting a proactive response 396

strategy. Accuracy, informativeness, and coherence 397

serve as evaluation metrics, with their average, de- 398

noted as A.I.C., representing overall performance. 399

The results indicate that the MAP structure consis- 400

tently enhances response quality, reinforcing the 401

primary experimental findings. Further details are 402

provided in Appendix C.2. 403

Comparision with Traditional TOD Models. 404

Since no dedicated multi-session TOD model is 405

available, we validate MAP using DST models 406

as baselines. AutoTOD, which retains a full dia- 407

logue pipeline, allows evaluation across all four 408

metrics, while LDST and BERT-DST are limited 409

to JGA. As shown in Table 4, MAP outperforms 410

these models, achieving the highest GPT-4 score of 411

7.14 and a JGA of 0.698, significantly surpassing 412

AutoTOD at 0.440. Additionally, MAP improves 413

efficiency, reducing DTE to 3.19 turns compared 414

to 7.8 for AutoTOD. These results highlight the 415

advantages of multi-session memory integration 416

and a proactive response strategy in improving 417

both accuracy and efficiency. 418

5.3 Ablation Study 419

Memory Judger for Improved Retrieval. We 420

explore the impact of the Memory Judger on Re- 421

call@k by filtering out irrelevant memory units, 422
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Figure 4: Impact of memory judger on memory activa-
tion performance across different embedding models.

with k=5. As shown in Figure 4, integrating the423

Memory Judger into our Memory Activation mod-424

ule improves performance by 9.4%. Specifically,425

BM25’s score rises from 0.721 to 0.731, while426

text-embedding-3-small improves from 0.792427

to 0.832. Retrieval quality improves by 7.7%, with428

nv-embed-v2 achieving 0.828. These results un-429

derscore Memory Judger’s efficiency in enhancing430

retrieval quality with limited memory units.431

Memory Judger and Memory Refinement432

substantially enhance multi-session dialogue433

performance. By integrating Memory Judgement434

and Memory Refinement, MAP outperforms the435

Hybrid RAG baseline in dialogue state tracking436

(JGA) and task completion efficiency (DTE), as437

shown in Figure 5. For instance, MAP achieves438

a JGA of 0.74 on Qwen2.5-7B, surpassing Hy-439

brid RAG at 0.41. Similarly, on Mistral-7B, MAP440

reaches 0.64, compared to Hybrid RAG at 0.57441

(Figure 5(a)). In terms of DTE, MAP reduces the442

the required turns for task completion, achieving443

a DTE of 3.19 on GPT-4o-mini, compared to 4.30444

for Hybrid RAG (Figure 5(b)). These findings445

demonstrate the effectiveness of Memory Judger446

and Refinement in MAP, enhancing dialogue state447

tracking and dialogue efficiency across LLMs.448

QA memory improves performance in exist-449

ing task-oriented dialogue datasets. To validate450

the generalizability of QA memory within MAP,451

we evaluate it on two standard dialogue state track-452

ing benchmarks: SGD and MultiWOZ2.2. Despite453

sharing the same DST task, these datasets differ454

in annotation protocols and domain complexity,455

leading to distinct sets of published baselines as456

shown in Table 6. For SGD evaluation, compared457

with fine-tuned LDST (Feng et al., 2023) and the458

SGD Baseline (Rastogi et al., 2020b), GOLOMB459

(Gulyaev et al., 2020), SGP-DST (Ruan et al.,460

0.57

0.41

0.74

0.64

0.63

0.66

0.80

0.70

0% 50% 100%
MAP w/. Activation only MAP

LLaMA3-8B

Qwen2.5-7B

Mistral-7B

GPT4o-mini

5.04

4.70

1.20

3.54

3.46

4.30

1.17

3.19

0% 50% 100%
MAP w/. Activation only MAP

JGA Win Rate DTE Win Rate

(a) (b)
Hybrid RAG Hybrid RAG

Figure 5: Comparison of Hybrid RAG vs. MAP across
four LLMs on two metrics: (a) JGA Win Rate and (b)
DTE Win Rate.

Dataset Methods JGA AGA

SGD

SGD Baseline 0.254 0.906
GOLOMB 0.465 0.750
SGP-DST 0.722 0.913
TS-DST 0.786 0.956
LDST 0.845 0.994
MAP∗ 0.846 0.965

MultiWOZ 2.2

SGD Baseline 0.420 -
TRADE 0.454 -
DS-DST 0.517 -
TripPy 0.530 -
TOATOD 0.638 -
SDP-DST 0.576 0.985
LDST 0.607 0.988
MAP∗ 0.879 0.976

Table 6: Results of different methods on SGD and Mul-
tiWOZ 2.2. MAP∗ is a single-session variant of MAP,
where the Memory Judger is disabled while retaining
the QA memory.

2020), TS-DST (Du et al., 2022), we achieved a 461

state-of-the-art JGA of 0.846 and achieves com- 462

parable performance with LDST in the metric of 463

AGA. For MultiWOZ 2.1 evaluation, compared 464

with SGD Baseline, TRADE (Wu et al., 2019a), 465

DS-DST (Zhang et al., 2020), TripPy (Heck et al., 466

2020), TOATOD (Bang et al., 2023b), SDP-DST 467

(Lee et al., 2021), and LDST, MAP* achieves a 468

JGA of 0.879, substantially outperforming other 469

methods. We attribute this phenomenon to the 470

fewer task domains in MultiWOZ, which enables 471

our QA memory to effectively capture relationships 472

among task attributes, thereby demonstrating that 473

QA memory is a powerful method for improving 474

task-oriented dialogue state tracking. 475

5.4 Case Study 476

In our case study, we compared four methods 477

for generating confirmation responses: (1) Direct 478

Prompting with the full conversation history, (2) 479

Hybrid RAG retrieving relevant dialogue history, 480
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User: Can you play 'Drive' again? Assistant:Dialogue Context

Sure! Just to confirm, you’d like me to play the song 
"Drive" on the bedroom speaker again. Should I start it 
now? Also, would you like me to check out some tickets 
for … (Extra Noise)

Confirmation Response 
(Direct Prompting
with the Full Conversation 
History)

Sure! Let me play "Drive" for you once more. By the 
way, have you decided on the number of tickets you'd 
like to buy for Bill Callahan's concert? It’s coming up on 
March 10th in Los Angeles! (Wrong Answer)

Confirmation Response 
(Hybrid RAG
with Retrieved History)

Sure! I’ve started playing “Drive” again. Is there 
anything else you’d like? (Key Slot Omission)

Confirmation Response 
(Hybrid RAG 
with Summary)

Sure! Just to confirm, you’d like me to play the song 
"Drive" on the bedroom speaker again. Should I start it 
now? (Right Answer)

Confirmation Response 
(MAP)

Session 23 Evaluation  - Intention: The user intends to listen to songs.

Figure 6: Case study.

(3) Hybrid RAG retrieving a summary of the con-481

versation, and (4) MAP with intention-based QA482

memory. As shown in Figure 6, Direct Prompting483

introduces excessive noise, while both Hybrid RAG484

settings often miss key task slots due to retrieval485

inaccuracies. In contrast, MAP consistently gen-486

erates responses with accurate, task-relevant slots487

and fewer errors. These findings indicate that lever-488

aging intention-based QA memory within MAP489

is more effective in preserving crucial task infor-490

mation and minimizing errors in confirmation491

response generation compared to other base-492

lines. More details are provided in Appendix D.493

6 Related Works494

6.1 Task-Oriented Dialogue Dataset495

To advance research in TOD modeling, numer-496

ous datasets have been developed, categorized pri-497

marily by how dialogue utterances are curated:498

Machine-to-Machine (M2M) (Shah et al., 2018)499

and Wizard-of-Oz (WOz) (Kelley, 1984). M2M500

datasets like SGD (Rastogi et al., 2020a) define501

service schemas with intents, slots, and constraints,502

while STAR (Mosig et al., 2020) enhances this503

by outlining ideal dialogue flows and incorporat-504

ing realistic user behavior. WOz-based datasets505

like WOZ (Wen et al., 2017) and FRAMES (Asri506

et al., 2017) have demonstrated the effectiveness of507

the WOz setup. MultiWOZ (Budzianowski et al.,508

2018) stands out for its user-friendly interface for509

annotators and well-defined user goals, resulting in510

a diverse and semantically complex dataset.511

Recent TOD datasets aim to reflect more real-512

istic interactions (Zhang et al., 2022; Hu et al.,513

2023; Dai et al., 2022). Notable contributions in-514

clude an employee-oriented dataset by Xu et al.515

(2024b), featuring expert-validated HR schemas516

and diverse user profiles, and OB-MultiWOZ by Li517

et al. (2024b), which enhances TOD sessions with 518

QA-style dialogues supported by external knowl- 519

edge. These datasets expand the scope of TOD 520

research beyond traditional customer-centric sce- 521

narios. Despite the progress in developing diverse 522

TOD datasets, there remains a significant gap in 523

the availability of multi-session TOD datasets. 524

6.2 Task-Oriented Dialogue Systems 525

TOD systems have evolved significantly. Initially, 526

they followed a modular pipeline with distinct Nat- 527

ural Language Understanding (NLU), Dialogue 528

State Tracking (DST), policy learning, and gen- 529

eration components (Wu et al., 2019b; Peng et al., 530

2018). Recently, end-to-end models have emerged, 531

integrating these modules into a single framework 532

trained on annotated dialogues (Wen et al., 2017; 533

Wang et al., 2020). While simplifying structure, 534

this approach still depends on large datasets and 535

retains some modular traits. 536

With LLMs excelling in NLP, interest in their in- 537

tegration into TOD systems has grown (Raffel et al., 538

2020; Ouyang et al., 2022). LLMs enhance NLU 539

and DST by extracting user intents and entities 540

(Zhao et al., 2022; Gupta et al., 2022; Madotto et al., 541

2021, 2020). While Hudeček and Dušek (2023) 542

explored direct LLM use without fine-tuning, per- 543

formance lags behind supervised models. Con- 544

versely, fine-tuning LLMs for TOD tasks shows 545

significant gains (Bang et al., 2023a; Hosseini-Asl 546

et al., 2020). In contrast to existing methods, this 547

work introduces a memory-active policy that inte- 548

grates long-term memory into multi-session TOD 549

systems, dynamically tracking user intents and pre- 550

serving critical information to improve multi-turn 551

and long-duration conversations. 552

7 Conclusion 553

This study introduces a multi-session TOD task 554

and presents the MT-TOD dataset which features 555

diverse multi-session task goals and structured indi- 556

vidual memory banks. Then, MAP, a multi-session 557

TOD framework that integrates memory-guided di- 558

alogue planning and a proactive response strategy, 559

is designed for efficient task completion in minimal 560

dialogue turns. Experimental results demonstrate 561

that our MAP significantly reduces the number of 562

dialogue turns, enhances response quality, and im- 563

proves task success rate, outperforming both direct 564

prompting and other long-term retrieval methods. 565
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Limitation566

While our model demonstrates effectiveness on the567

current dataset, several limitations remain. First,568

our experiments are limited to locally deployable569

LLM models, and we have not explored the po-570

tential benefits of scaling to larger models, which571

may yield further improvements. Second, our ap-572

proach does not incorporate external knowledge573

bases or internet search functionality, which could574

enhance contextual understanding and factual accu-575

racy. Lastly, the model’s generalizability to broader576

domains and more complex real-world scenarios577

remains untested, necessitating further evaluation578

across diverse datasets and tasks. Future work will579

address these limitations by expanding model scal-580

ability, integrating external knowledge sources, and581

conducting more comprehensive evaluations.582

Ethics Statement583

Our research improves multi-session task-oriented584

dialogue systems through memory-augmented pro-585

cessing while adhering to ethical guidelines. All586

datasets are publicly available and free of person-587

ally identifiable information, with no collection of588

user-sensitive data or involvement of human sub-589

jects. To evaluate model responses, three research590

assistants with relevant expertise conduct human as-591

sessments, each compensated $20 per hour, above592

the local average for similar roles. While improv-593

ing AI-driven dialogue, we acknowledge risks such594

as misinformation and biases, which we address595

through rigorous evaluation, emphasizing trans-596

parency, fairness, and accountability. We advocate597

for responsible deployment and ongoing bias miti-598

gation research to ensure ethical and equitable AI599

dialogue systems.600
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A Prompts917

A.1 Prompt of dialogue generation918

We designed a multi-session dialogue prompt (as919

shown in Figure 7) that generates multi-session di-920

alogue data based on input dialogue intent, task921

goal, and target session count. Additionally, during922

the generation process, we annotate whether each923

utterance is a confirmation response. These annota-924

tions, after manual verification, will be used in the925

main experiment for confirmation-type response926

generation.927

A.2 Prompt of Task Slot Query Generation928

During the evaluation process, we design a prompt929

(as shown in Figure 8) that generates a query corre-930

sponding to the missing task attributes based on the931

current dialogue context and task objectives. The932

input to this prompt is the dialogue context history933

and the generated task objectives. This query is934

then used as input to the memory judger to assist935

in selecting QA memory units that align with the936

task objectives.937

Attribute Train

Domains 16
Intentions 22
Task goals 4,534
Dialogues 13,441
Utterances 89,152
Avg. slots per task goal 4.49

Number of individuals 565
Avg. intentions per individual 6.24
Avg. sessions per individual 23.79
Avg. Utterances per individual 157.80

Table 7: MS-TOD Subset Statistics for Memory Judger
Training.

A.3 Prompts of Confirmation Response 938

Generation 939

In the evaluation process, we employed a 940

confirmation-type response generation approach to 941

assess the integration performance of multi-session 942

memory in task-oriented dialogues. We designed 943

the prompt as shown in Figure 9, which leverages 944

the dialogue context, task objectives, and activated 945

memory units to generate responses. 946

A.4 Prompts of GPT4 Evaluation 947

During the evaluation process, we employed a GPT- 948

4 prompt (as shown in Figure 11) to assess the qual- 949

ity of confirmation-type responses. This prompt 950

evaluates the response holistically from four per- 951

spectives: requirement alignment, content accuracy, 952

language quality, and comparison to the reference 953

answer. The input to this prompt includes the di- 954

alogue history, task objectives, the reference re- 955

sponse, and the model-generated response. This 956

design ensures that the evaluation of the response 957

is not solely based on the dataset’s reference reply 958

but also takes into account multiple factors such as 959

whether the task objectives are met and the over- 960

all quality of the response. Such an evaluation 961

approach is more comprehensive. 962

A.5 Prompts of Dialogue State Tracking 963

we used a prompt modified from (Heck et al., 964

2023b) (as shown in Figure 10) that generates the 965

dialogue state for each user turn in the dialogue. 966

Let 967

A1 = P ⊕ system : M1 ⊕ user : U1 968

969

At = At−1⊕system : Mt⊕user : Ut, ∀t ∈ [2, T ] 970
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where P is the task description which provides the971

model with instructions for how to process a dia-972

logue between a system M and a user U. In con-973

trast to (Heck et al., 2023b), P does not include974

the detailed description for slots to challenge Chat-975

GPT’s ability to understand the meaning of the976

slots. Apart from that, ChatGPT often generated977

answers with excessively detailed explanations, de-978

viating from the expected response format. To ad-979

dress this issue, a prompt that includes "No explana-980

tion!" as an instruction to ChatGPT not to provide981

detailed explanations was introduced (Feng et al.,982

2023) and we added this to our prompt.983

B Dataset984

B.1 Dataset for Memory Judger985

To ensure that the memory judger generalizes986

across different domains and scenarios, we gen-987

erated the training dataset(as shown in Table 7)988

using the same method described in the main text.989

The dataset spans 16 domains, 4,534 task goals,990

and 13,411 dialogues, involving a total of 565 in-991

dividuals, each with an average of 6.24 intentions.992

Beyond training the memory judger, this dataset993

can also serve as an alternative evaluation set for994

broader benchmarking.995

B.2 Dataset Structure996

MS-TOD encompasses multiple individual task-997

oriented dialogue datasets, each consisting of sev-998

eral sessions. We present an example of one ses-999

sion (as shown in Figure 12) from an individ-1000

ual. This session includes a session_id, where1001

a larger value indicates a more recent timestamp.1002

The domain represents the specific field or area1003

of the dialogue. The reference_dialogue_id cor-1004

responds to the dialogue_id in the original SGD1005

dataset that shares the same task objective. The1006

exist_confirmation indicates whether the ses-1007

sion contains a confirmation-type response and1008

whether it is an evaluation target. The intent rep-1009

resents the specific purpose or goal of the dia-1010

logue. The content stores the actual dialogue text.1011

The task_goal includes task slots and their cor-1012

responding attribute values. Each individual con-1013

tains dozens of session data structured as described1014

above.1015

B.3 Intent-driven QA Memory1016

For each historical session, we generated an intent1017

description and the corresponding QA memory (as1018

Activation Module Recall@3 Recall@5 Recall@10

bm25 0.642 0.721 0.842
t5-base 0.443 0.575 0.773
bert-base 0.463 0.584 0.785
bert-large 0.401 0.530 0.730
nv-embed-v2 0.668 0.769 0.896
bge-large-en-v1.5 0.681 0.761 0.888
text-embed3-small 0.702 0.792 0.905

Table 8: Performance evaluation of activation modules
on memory retrieval

shown in Figure 13) for the objectives of that intent 1019

description. The QA memory consists of multiple 1020

QA pairs, where each query is a question about a 1021

task attribute under that intent, and the answer is 1022

the slot value corresponding to that task attribute. 1023

C Supplementary Experimental Results 1024

C.1 Memory Activation Comparision 1025

Table 8 compares the performance of different 1026

activation modules on memory retrieval. text- 1027

embed3-small achieves the highest recall across 1028

all thresholds, with 0.702 at Recall@3, 0.792 at 1029

Recall@5, and 0.905 at Recall@10, demonstrating 1030

superior retrieval capability. Among other models, 1031

nv-embed-v2 and bge-large-en-v1.5 also perform 1032

well, while traditional retrieval methods like BM25 1033

remain competitive at Recall@10 but lag behind 1034

embedding-based methods at lower recall levels. 1035

T5-base and BERT-based models exhibit lower 1036

recall, suggesting that general pre-trained models 1037

are less effective for specialized memory retrieval. 1038

These results highlight text-embed3-small as the 1039

most effective choice for long-term memory activa- 1040

tion in multi-session dialogues. 1041

C.2 Human Evaluation Details 1042

Table 11 presents the results of human evaluation, 1043

including accuracy, informativeness, and coherency 1044

scores. Accuracy is rated on a scale of 0 to 1, while 1045

informativeness and coherency are rated from 0 1046

to 3. The average scores in 5 are computed using 1047

a weighted sum with weights of 1, 1/3, and 1/3. 1048

All evaluations were conducted in a blind review 1049

manner to compare the response quality of w/o 1050

MAP and w/ MAP. Additionally, the Confirmation- 1051

type Response type assesses the response quality 1052

after memory-guided dialogue planning, while the 1053

multi-turn evaluation focuses on dialogues under 1054

the proactive response strategy, continuing until 1055

task completion or forced termination. 1056
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Model Setting Slot Accuracy BLEU ROUGE

LLaMA3-8B
w/o MAP 0.62 10.47 28.59

w/ MAP 0.56 9.86 30.39

Qwen-7B
w/o MAP 0.48 10.33 29.77

w/ MAP 0.55 10.90 31.28

Mistral-7B
w/o MAP 0.59 10.09 28.42
w/ MAP 0.56 6.66 24.64

GPT4o-mini
w/o MAP 0.61 20.30 43.49
w/ MAP 0.68 13.6 35.20

Table 9: Performance comparison of task-oriented dia-
logue models with and without long-term memory inte-
gration: Slot Accuracy, BLEU, and ROUGE metrics.

Model Slot Accuracy BLEU ROUGE

AutoTOD 0.61 3.34 24.07
MAP 0.68 5.47 25.03

Table 10: Performance comparison on Slot Accuracy,
BLEU, and ROUGE.

C.3 Additional Evaluation Metrics1057

Table 9 compares the performance of task-oriented1058

dialogue models with and without memory-1059

augmented processing (MAP) across Slot Accu-1060

racy, BLEU, and ROUGE metrics. The results1061

reveal a trade-off between structured slot accu-1062

racy and response fluency. In most models, MAP1063

slightly reduces slot accuracy, as seen in LLaMA3-1064

8B, which drops from 0.62 to 0.56, and Mistral-1065

7B, which decreases from 0.59 to 0.56. However,1066

GPT4o-mini benefits from MAP, achieving the1067

highest slot accuracy of 0.68. BLEU scores gener-1068

ally decline, suggesting that MAP shifts responses1069

away from verbatim accuracy towards greater con-1070

textual adaptability. Mistral-7B drops from 10.901071

to 6.66, and LLaMA3-8B decreases from 10.47 to1072

9.86. Conversely, ROUGE scores improve with1073

MAP in several cases. LLaMA3-8B increases from1074

28.59 to 30.39, and Qwen-7B rises from 29.77 to1075

31.28, indicating enhanced informativeness and co-1076

herence. However, Mistral-7B experiences a slight1077

decrease in ROUGE from 28.42 to 24.64. Overall,1078

the results suggest that MAP enhances response1079

informativeness while slightly compromising slot1080

accuracy and BLEU, highlighting a trade-off be-1081

tween structured information retention and more1082

natural, contextually aware responses.1083

Table 10 presents the performance comparison1084

between AutoTOD and MAP on Slot Accuracy,1085

BLEU, and ROUGE. The results indicate that 1086

MAP consistently outperforms AutoTOD across 1087

all three metrics, demonstrating its effectiveness 1088

in enhancing dialogue quality. Slot Accuracy im- 1089

proves from 0.61 to 0.68, indicating better track- 1090

ing of task-specific information. BLEU increases 1091

from 3.34 to 5.47, reflecting more precise and flu- 1092

ent responses. ROUGE also shows a slight im- 1093

provement, rising from 24.07 to 25.03, suggesting 1094

that MAP enhances informativeness and coherence. 1095

These results highlight the advantages of memory- 1096

augmented processing, which enables more accu- 1097

rate and contextually relevant dialogue generation. 1098

D Case Study Detail 1099

Figure 14 presents four different configurations of 1100

conversation contexts not shown in the main paper. 1101

Specifically, (1) Full conversation history includes 1102

every session from the dialogue history as prompt 1103

input to the reader. (2) Retrieval-based methods 1104

retrieve the dialogue sessions most relevant to the 1105

current session (Session 23) and append them to the 1106

reader’s context (3) Retrieving a summary compiles 1107

a summary of past sessions (Sessions 1 to 22) for 1108

inclusion alongside the current context. Finally, 1109

(4) MAP integrates QA memory with the Session 1110

23 context to generate responses. By illustrating 1111

these detailed contexts, Figure 14 provides further 1112

insights into how each approach manages multi- 1113

session dialogue. 1114
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Model Setting Confirmation-type Response Multi-Turn

Accuracy Informativeness Coherency Accuracy Informativeness Coherency

GPT4o-mini
w/o MAP 0.62 1.83 1.90 0.81 1.92 2.44
w/ MAP 0.65 2.38 2.48 0.87 1.93 2.74

LLaMA
w/o MAP 0.56 1.47 1.74 0.78 1.64 2.36
w/ MAP 0.61 1.98 2.16 0.88 2.51 2.71

Qwen
w/o MAP 0.43 1.24 1.85 0.82 1.60 2.02
w/ MAP 0.54 1.70 2.30 0.92 1.93 2.47

Mistral
w/o MAP 0.58 1.63 1.99 0.89 2.49 2.72
w/ MAP 0.61 2.06 2.08 0.93 2.74 2.85

Table 11: Comparison of different models on human evaluation metrics: accuracy, informativeness, and coherence.
The results are presented for both confirmation-type responses and multi-turn dialogue settings, comparing standard
inference (‘w/o MAP‘) with memory-augmented processing (‘w/ MAP‘).
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Prompts of the Dataset Generation

User Prompt:
"""
Help me generate an English conversation under the {dialogue_intent} intent, where {task_goal}.
The conversation should be between a user and an assistant, and it should be split into
{task_goal_length} sessions at different points in time, with continuity and connection between the
sessions and each session should not less than 6 turns. Additionally, the final session must include
a assistant response containing a complete confirmation-type utterance before the user confirms,
and this utterance should be marked with ‘is_confirmation‘ set to ‘True‘. and the user must provide
a final confirmation response at the end of the final session. For all other sessions, the conversation
should end with an assistant’s polite declarative statement.
"""
System Prompt:
""" You are dialogue generator assistant.
The sessions should be clearly separated, and the conversation should be formatted as follows:
Each turn should be a dictionary entry.
The conversation should be in the format of a list of sessions, where each session is a list of
dictionaries representing each turn.
Each dictionary entry should have two keys: speaker (either ’user’ or ’assistant’) and text (the
spoken dialogue).
Except for final session, each session should be a seperate dialogue and include a complete
dialogue structure, beginning with a greeting from the user and ending with an assistant’s polite
declarative statement.
Feel free to expand the dialogue with additional relevant details, but avoid redundant expressions
or repeating the same phrases.
Reponse me with a json format

{
" s e s s i o n s " : [

[
{

" s p e a k e r " : " xx " ,
" t e x t " : " xx "

} ,
{

" s p e a k e r " : " xx " ,
" t e x t " : " xx "

}
]

]
}

"""

Figure 7: Prompts of the Dataset Generation
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Prompts of the Task Slot Querying Generation

"""
Please help me generate questions, based on the provided {conversation history}, that correspond
to unanswered attributes in the task goal {task_attributes}.
1. The questions should start with ’What,’ ’When,’ ’Why,’ ’How,’ or ’Where.’
2. Ensure that the generated questions are in third person.
fill the following json: { [Question], }
"""

Figure 8: Prompts of the Task Slot Querying Generation

Prompts of Confirmation Response Generation

""" You are an dialogue assistant.
Generate a confirmation response based on the userś utterance. Include any relevant task goals
[TASK GOALS] identified in the dialogue or related memory [MEMORY]. If [MEMORY]
is unavailable, construct your response accurately and comprehensively using the provided
conversation details. Ensure your reply acknowledges the userś request clearly and incorporates
relevant information from both the dialogue and the related memory units [MEMORY].
[TASK GOAL]
{task_goal}

[MEMORY]
{memory}
"""

Figure 9: Prompt of Confirmation Response Generation
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Prompt of Dialogue State Tracking on MultiWOZ 2.2

"""Consider the following list of concepts, called "slots" provided to you as a json list.

"slots": {
"attraction-area",
"attraction-name",
"attraction-type",
"bus-day",
"bus-departure",
"bus-destination",
"bus-leaveat",
"hospital-department",
"hotel-area",
"hotel-bookday",
"hotel-bookpeople",
"hotel-bookstay",
"hotel-internet",
"hotel-name",
"hotel-parking",
"hotel-pricerange",
"hotel-stars",
"hotel-type",
"restaurant-area",
"restaurant-bookday",
"restaurant-bookpeople",
"restaurant-booktime",
"restaurant-food",
"restaurant-name",
"restaurant-pricerange",
"taxi-arriveby",
"taxi-departure",
"taxi-destination",
"taxi-leaveat",
"train-arriveby",
"train-bookpeople",
"train-day",
"train-departure",
"train-destination",
"train-leaveat",
}

Now consider the following dialogue between two parties called the "system" and "user". Can
you tell me which of the "slots" were updated by the "user" in its latest response to the "system"?
Present the updates in JSON format. If no "slots" were updated, return an empty JSON list. If you
encounter "slots" that were requested by the "user" then fill them with "?". If the user informed
that he did not care about a "slot", fill it with "dontcare". Return the output in JSON format and no
explanation!
{dialogue}
"""

Figure 10: Prompt of Dialogue State Tracking on MultiWOZ 2.2
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Prompts of GPT4 Evaluation

""" You are a strict and objective evaluator. Your task is to assess the quality of the final predicted
response using the provided conversation context, the user’s target goal attributes, and a reference
answer. Your evaluation should be fair, professional, and reflect an expert judgment of the
response’s quality.
[Dialogue Context]
{{conversationhistory}}
[Task Goal]
{{task_goal}}
[reference_answer]
{{reference_anwser}}
[predict_answer]
{{predict_answer}}
Evaluation Criteria:
Requirement Alignment: Does the final predict_answer meet the user’s task goal?
Content Accuracy: Is the information in the final response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?
Comparison to Reference Answer: Compared to the reference answer, how does the final response
differ in terms of completeness, professionalism, and clarity?
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation must be structured in the following JSON format:
“‘json
{
"Rationale": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}
“‘ """

Figure 11: Prompts of GPT4 Evaluation
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MS-TOD dialogue session structure

{
"session_id ": 9,
"domain ": "Travel",
"reference_dialogue_id ": "66 _00101",
"exist_confirmation ": true ,
"intent ": "ReserveHotel",
"content ": [

{
"speaker ": "user",
"utterance ": "Hi again , I’m ready to finalize the booking for Aloft

Portland Airport At Cascade Station.",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "Just to confirm , you are booking 1 room at Aloft Portland

Airport At Cascade Station , Portland , from March 5th to March 7th.
The room is a standard king room with free Wi-Fi and a 24-hour
cancellation policy. Is that correct?",

"is_confirmation ": true
},
{

"speaker ": "user",
"utterance ": "Yes , that is correct.",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "Excellent! Your room has been successfully booked. You

will receive a confirmation email shortly.",
"is_confirmation ": false

},
{

"speaker ": "user",
"utterance ": "Thank you so much for your help!",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "You ’re welcome! Have a great stay in Portland.",
"is_confirmation ": false

}
],
"task_goal ": {

"hotel_name ": "Aloft Portland Airport At Cascade Station",
"location ": "Portland",
"check_in_date ": "March 5th",
"check_out_date ": "March 7th",
"number_of_rooms ": 1

}
}

Figure 12: MS-TOD Session Structure.
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MS-TOD Intent Description and QA Memory

{
"9": {

"intent_description ": "The user ’s intent is to finalize and confirm a
hotel booking for a specific room at Aloft Portland Airport At Cascade
Station , including details about the stay dates and room type.",

"qa_summary ": [
{

"Question ": "What type of room did the user book?",
"Answer ": "The user booked a standard king room."

},
{

"Question ": "When is the user ’s reservation ?",
"Answer ": "The user ’s reservation is from March 5th to March 7th."

},
{

"Question ": "Where is the user ’s reservation located?",
"Answer ": "The user ’s reservation is located at Aloft Portland Airport

At Cascade Station ."
},
{

"Question ": "What amenities are included in the user ’s reservation ?",
"Answer ": "The user ’s reservation includes free Wi-Fi."

},
{

"Question ": "What is the cancellation policy for the user ’s booking?",
"Answer ": "The cancellation policy for the user ’s booking is 24 hours

."
}

]
}

}

Figure 13: Intent description and QA Memory in MT-TOD.
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Intention-driven QA MemorySummaryDialogue HistorySession ID
Intention Description: The user
intends to book a specific
appointment.

"Question": "What type of 
appointment is the user looking to 
book?",
"Answer": "The user is looking to 
book an appointment at Blow Dry 
Bar.”
…

The user wants to book an
appointment at Blow Dry Bar
on March 3rd at 3:15 pm. The
assistant confirms the date
and is checking the
availability for the requested
time.

User:Hi there! I'd like to
book an appointment at
Blow Dry Bar.
Assistant : Sure! When
would you like to
schedule your
appointment?
…

Session 1

Intention Description: The user 
intends to listen to the song.

"Question": "Where was the song 
'Drive' played?",
"Answer": "The song 'Drive' was 
played on the bedroom speaker."

The user requested to play the 
song \"Drive\" on the 
bedroom. The assistant 
confirmed and started the 
song, asking if the user 
needed anything else. The 
user declined further 
assistance and expressed 
gratitude.

User:Hey, can you play 
the song 'Drive' on the 
bedroom speaker?
Assistant:Sure, I can 
play 'Drive' for you. Do 
you want me to start the 
song now?
…

Session 3

Intention Description: The user's 
intent is to purchase a single 
ticket

"Question": "Where will the 
concert be held?",
"Answer": "The concert will be 
held in Los Angeles."

The user expresses interest in 
buying a ticket for the Bill 
Callahan concert on March 
10th in Los Angeles. They 
request one ticket, and the 
assistant confirms availability 
and asks if the user would 
like to proceed with the 
purchase.

User:Hi there! I'm 
interested in buying a 
ticket for the Bill 
Callahan concert?
Assistant:Great choice! 
The Bill Callahan 
concert is happening on 
March 10th in Los 
Angeles. How many 
tickets would you like to 
purchase? …

Session 12

Intention Description: The user's
intent is to arrange a shared
transportation service.

The user wants to book a ride
to 1580 Clayton Road #1 for
three people and has
requested a shared ride.

User:Hi, I need to book 
a ride.
Assistant:Sure, I can 
help with that. Where 
would you like to go? …

Session 16

Intention Guess: The user 
intends to listen to songs.

User: Can you play
'Drive' again?
Assistant:

Session 23
Evaluation

Sure! Just to confirm, you’d like me to play the song "Drive" on the bedroom speaker 
again. Should I start it now? Also, would you like me to check out some tickets for the Bill 
Callahan concert on March 10th in Los Angeles, or are you planning to book a ride 
somewhere else? Let me know! (Extra Noise)

Confirmation Response 
(Direct Prompting
with the Full 
Conversation History)

Sure! Let me play "Drive" for you once more. By the way, have you decided on the number 
of tickets you'd like to buy for Bill Callahan's concert? It’s coming up on March 10th in Los 
Angeles! (Wrong Answer)

Confirmation Response 
(Hybrid RAG
with Retrieved History)

Sure! I’ve started playing “Drive” again. Is there anything else you’d like? (Wrong Answer)Confirmation Response 
(Hybrid RAG 
with Summary)

Sure! Just to confirm, you’d like me to play the song "Drive" on the bedroom speaker 
again. Should I start it now? (Right Answer)

Confirmation Response 
(MAP)

Figure 14: Comparison of confirmation response generation across four approaches: (1) Direct Prompting with
the full conversation history, (2) Hybrid RAG retrieving relevant dialogue history, (3) Hybrid RAG retrieving a
summary of the conversation, and (4) MAP with intention-based QA memory.
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