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Abstract—Virtual stain transfer leverages computer-assisted
technology to transform the histochemical staining patterns
of tissue samples into other staining types. However, existing
methods often lose detailed pathological information due to the
limitations of the cycle consistency assumption. To address this
challenge, we propose STNHCL, a hypergraph-based patch-
wise contrastive learning method. STNHCL captures higher-
order relationships among patches through hypergraph mod-
eling, ensuring consistent higher-order topology between input
and output images. Additionally, we introduce a novel negative
sample weighting strategy that leverages discriminator heatmaps
to apply different weights based on the Gaussian distribution for
tissue and background, thereby enhancing traditional weighting
methods. Experiments demonstrate that STNHCL achieves state-
of-the-art performance in the two main categories of stain
transfer tasks. Furthermore, our model also performs excellently
in downstream tasks. Code is available at https://github.com/
Whywwwzzzg/STNHCL.

Index Terms—Image To Image Translation, Patch-Wise Con-
trastive Learning, Multi-domain Virtual Re-staining, Hypergraph

I. INTRODUCTION

Whole Slide Images (WSIs) are the gold standard in
histopathology for clinical diagnosis, utilizing stains or flu-
orescent markers to visualize tissue structures. Hematoxylin
and eosin (H&E) staining is favored for its cost-effectiveness.
Other methods like masson’s trichrome (MAS), periodic acid-
schiff (PAS) and acid-silver-methenamine (PASM) target spe-
cific features such as collagen fibers and glycoproteins. Im-
munohistochemical (IHC) emphasizes specific epitopes via
antigen-antibody binding [1]. However, compared to H&E,
these other stains often require more labor-intensive and costly
tissue processing. Deep learning-based virtual stain transfer
reduces labor and costs of additional staining and imaging
[1], [2]. For many diseases, multiple staining types are needed
for better diagnostic information. Recent works [3], [4] have
achieved one-to-many stain transfer with a single network,
generating multiple target stains from H&E images.

However, these methods rely on cycle-consistency loss [5]
to maintain consistency between source and generated im-
ages. This assumption often limits style variation in complex

1†Corresponding author

Fig. 1. There are implicit higher-order semantic connections between the
input and output images. We model these higher-order semantics using a
hypergraph and maximize the mutual information between them.

restaining tasks and neglects critical semantic details, lead-
ing to loss of important pathological information. Recently,
inspired by the success of contrastive learning strategies,
patch-wise contrastive learning [6] has been introduced into
image translation. By maximizing mutual information across
corresponding patches in the input and output images, patch-
wise contrastive learning improves the modeling capability for
content consistency. Some methods have refined patch-wise
contrastive learning to enhance the quality of generated images
[7], [8]. Among them, PatchGCL [9] constructs a graph of
patch features and enforces topological consistency between
the input and output image features to preserve high-level
semantic content. However, using simple graphs to represent
images has its limitations [10]. In a simple graph structure,
each edge connects only two nodes, which inherently restricts
it to capturing pairwise relationships. In patch-wise image
translation tasks, the relationships between image patches
are often far more complex, involving higher-order semantic
correlations that go beyond simple pairwise interactions. These
higher-order correlations are critical for accurately modeling
the complex semantic relationships between patches in the in-
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put and output images. Moreover, graph-based representations
of patch features often lead to redundant associations. Specif-
ically, when multiple adjacent patches share similar features,
the graph construction process tends to generate excessive and
redundant edges, resulting in an inefficient and less expressive
representation of patch dependencies. To address these issues,
we propose STNHCL, which employs hypergraph modeling
of image features. A hypergraph is a generalized graph struc-
ture. Unlike simple graphs that only connect pairs of nodes,
hypergraphs can have hyperedges connecting any number
of nodes. Hypergraphs excel at capturing complex higher-
order correlations present in images [10]. We treat patches in
patch-wise contrastive learning as hypergraph nodes and use
soft k-means to build connections, maintaining higher-order
topological consistency between input and output images, as
shown in Fig. 1. Furthermore, to enhance the utilization of
negative samples, we propose a novel approach that integrates
both the hard weighting strategy for prior unpaired image
translation and the easy weighting strategy for paired image
translation into a unified framework. Our contributions are
summarized as follows:

• We propose patch-wise hypergraph contrastive learning
to address shortcomings of previous methods in high-
order pathological semantic consistency. This is the first
application of patch-wise contrastive learning in multi-
domain stain transfer tasks. We innovatively model patch
features using hypergraphs, enhancing the consistency of
higher-order topological structures.

• We propose a unique negative sample weighting strategy.
To mitigate the extremeness of traditional weighting
methods, we use a discriminator output heatmap to divide
stained images into tissue and background regions. We
then apply distinct, milder normal distribution weights to
negative samples to make better use of their information.

• We evaluated our method on human kidney dataset and
human lung lesion dataset for H&E to special stain
and H&E to IHC tasks, respectively. The experiments
demonstrate that our model achieves state-of-the-art per-
formance in both types of tasks.

II. RELATED WORK

A. Contrastive Learning in Unpaired Image Translation
Early unpaired image-to-image translation (I2I) methods

rely on cycle-consistency assumptions [5], which impose
overly restrictive bijection constraints. CUT [6] introduced
contrastive learning to I2I to move beyond cycle-consistency,
significantly improving translation quality. QS-Attn [8] se-
lects key anchors through a query-selection attention module.
MoNCE [7] adjusts pushing forces based on negative-anchor
similarity and introduces optimal transport. PatchGCL [9] uses
graph neural networks to explore topological structures at the
patch level to enforce high-level semantic consistency.

B. Multi-Domain Stain Transfer

One-to-one stain transfer methods demand high resources
for multiple stains, leading to the rise of multi-domain stain

transfer methods. UMDST [3] employs style-guided normal-
ization to dynamically control the transfer direction. PPHM-
GAN [11] achieves virtual transformation between multiple
high-resolution stained images. GramGAN [4] uses style en-
coding dictionary for progressive multi-domain stain transfer.

C. Hypergraphs in Computer Vision

High-order interactions are ubiquitous in complex systems
and applications, including images. For example, hypergraphs
can be used to model high-order correlations among 3D
objects [12] for retrieval tasks. Hypergraph learning was
applied to video object segmentation [13]. Hypergraph neural
networks have also been applied to action recognition [14] and
multi-human mesh recovery [15]. However, the application of
hypergraph in low-level vision tasks is still not well-explored.

III. METHOD

A. Patch-Wise Hypergraph Contrastive Learning

In our model, the input stained image X , after passing
through the encoder Genc, generates feature maps at L
intermediate layers, forming a feature stack {Zl}L, where
l ∈ {1, 2, . . . , L} denotes the layer number, and Zl =
Gl

enc(X) ∈ Rc×h×w, with c, h, and w representing the
number of channels, height, and width of the feature map,
respectively. Here, we sample K patch features to obtain
Zk
l ∈ Rc, where k ∈ {1, 2, . . . ,K}, and Zk

l represents the
feature vector of the k-th patch in the l-th layer of the encoder
for the input image. Similarly, the generated output stained
image Y , processed by the encoder Genc, produces feature
maps in its L layers, forming a feature stack {Vl}L. Again, we
sample K patch features V k

l ∈ Rc, where k ∈ {1, 2, . . . ,K},
and V k

l represents the embedding vector of the k-th patch in
the l-th feature map for the output image Y .

We detail the process for the input stained image branch,
with the output branch following a similar structure. We
designate the sampled K patch features as the nodes of the
input branch hypergraph Hgi. A hypergraph can be defined
as Hg = (V,E), where V is a set of K unique nodes,
and E is a set of M hyperedges. Unlike ordinary graphs
where edges connect two nodes, in hypergraphs a single
hyperedge can connect multiple nodes, allowing hypergraphs
to represent complex relationships more flexibly. The structure
of a hypergraph can be described by a hyperedge matrix
Hi ∈ RM×K :

Hij =

{
k, if node vk belongs to hyperedge ei

−1, otherwise
(1)

The set of nodes connected to any hyperedge ei is denoted
as V(ei) = {vj ∈ V|Hij ̸= −1}. The set of hyperedges
connected to any node vj is defined as E(vj) = {ei ∈ E|Hij ̸=
−1}. The degree of a node d(vj) = |E(vj)| is defined as the
number of hyperedges connected to it, while the degree of a
hyperedge d(ei) = |V(ei)| is the number of nodes it connects.
Additionally, Dv and De denote the diagonal matrices of
hyperedge degrees and node degrees, respectively.
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Fig. 2. Overall framework of the proposed method. (a) Our patch-wise hypergraph contrastive learning framework. We promote cross-patch higher-order
topological consistency by maximizing the mutual information between the topological features of the input and output images. (b) A dual normal distribution
weighting strategy is applied to negative samples to optimize the learning process, leveraging the distinct features of tissue and background regions.

We use soft k-means clustering to group the K patches
for constructing the input branch hypergraph Hgi and output
branch hypergraph Hgo (Fig. 2(a)), which differs from the
use of fuzzy c-means for hypergraph construction in [10].
The clustering is applied to the patch features Zk

l ∈ Rc, pro-
ducing a membership matrix m and a centroid matrix c. The
membership matrix m represents the degree of membership
of each patch to each hyperedge, while the centroid matrix c
indicates the central feature location of each hyperedge. For
each hyperedge, we apply a pre-defined membership threshold
to select the patches belonging to that hyperedge. Specifically,
we identify the patches in the membership matrix m whose
membership values exceed the threshold, and store the indices
of these patches in the hyperedge matrix Hi and Ho, thus
forming the final hyperedge structure.

In image translation tasks, we seek to avoid spending
excessive computational resources on mapping patch features
Zk
l and V k

l . Soft k-means offers computational advantages by
enabling nodes to belong to multiple clusters simultaneously
without the extensive complexity of fuzzy c-means. It achieves
this by directly using Euclidean distance to perform soft
assignments via a softmax function with temperature, which
eliminates the need for complex operations like exponentiation
and normalization across clusters. Additionally, while fuzzy c-
means is sensitive to the choice of the fuzziness parameter m,
soft k-means exhibits lower complexity in parameter tuning,
reducing the risk of model instability and minimizing the need
for task-specific adjustments in stain transfer.

After constructing the hypergraphs, we perform hypergraph
convolution on the patch node feature sets as follows:

Zo = D
− 1

2
e Hi σ

(
D−1

v HT
i σ

(
D

− 1
2

e ZiΘZ1

))
ΘZ2 (2)

Vo = D
− 1

2
e Ho σ

(
D−1

v HT
o σ

(
D

− 1
2

e ViΘV 1

))
ΘV 2 (3)

where ΘZ1,ΘZ2,ΘV 1,ΘV 2 are learnable parameters of the
HGNN layers, and σ represents an activation function. Zi

and Zo denote the input and output node embeddings of the
input image branch, respectively, while Vi and Vo represent
the input and output node embeddings of the output image
branch. Hypergraph convolution can be understood as a two-
step message-passing process, where information flows in a
”node-hyperedge-node” manner. The multiplication with HT

i

and HT
o achieves aggregation from nodes to hyperedges,

while the multiplication with Hi and Ho can be seen as
aggregating information from hyperedges back to nodes. De

and Dv perform normalization. In summary, the HGNN layer
effectively extracts high-order relationships within the hyper-
graph through node-edge-node transformations. Finally, we
maximize the patch-wise mutual information between features
Zo and Vo from both branches:

LSTHCL(X,Y ) = − 1

K

K∑
i=1

log
e

z⊤i ·vi
τ

e
z⊤
i

·vi
τ +

∑K
j=1
j ̸=i

e
z⊤
i

·vj
τ

(4)

where zi and vi are the i-th node features from Zo and Vo

and τ is the temperature parameter.

B. Dual Normal Distribution Weighting

In MoNCE [7], different weighting strategies are applied in
paired and unpaired scenarios, with hard and easy weighting
strategies applied to unpaired and paired image translation
tasks, respectively. The hard-weighting strategy assigns higher
weights to hard negative samples—those highly similar to
the anchor, emphasizing their impact on the contrastive ob-
jective. Meanwhile, the easy-weighting strategy focuses on
highlighting the contributions of moderately negative samples,
and MoNCE achieves this by assigning lower weights to hard
negative samples. MoNCE loss is defined as:

LMoNCE(X,Y ) = − 1

K

K∑
i=1

log
e

z⊤i ·vi
τ

e
z⊤
i

·vi
τ +

∑K
j=1
j ̸=i

wij · e
z⊤
i

·vj
τ

(5)
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Fig. 3. Illustration of the relationship between the training weights assigned
to negative samples and their similarity to the anchor point (z⊤i · vj ). The
MoNCE approach places significant emphasis on hard negative samples, while
our proposed method adopts a more balanced approach, incorporating both
hard and easy negative sample weighting strategies depending on the context
of the tissue and background regions.

where zi and vj represent the feature embeddings of the
patches, and K is the total number of patches.

The hard-weighting strategy weight w+
ij and easy-weighting

strategy weight w−
ij are defined as:

w+
ij =

e
z⊤i vj

τ∑K
j=1 e

z⊤
i

vj
τ

, w−
ij =

e
1−z⊤i vj

τ∑K
j=1 e

1−z⊤
i

vj
τ

(6)

Histopathological images often contain distinct tissue areas
and white backgrounds. Previous works have generally applied
the hard-weighting strategy to the entire image. However,
we argue that using different strategies to the tissue and
background regions maximizes the utility of negative sam-
ples. Specifically, in the background regions, different patches
exhibit small differences in feature space, with overlapping
similarity distributions between negative and positive samples.
This situation is similar to paired image translation. Therefore,
we adopt the easy-weighting strategy for background regions,
assigning lower weights to the most similar negative samples
to the anchor point. In contrast, we treat the tissue region’s
stain transfer as a typical unpaired image translation task,
applying the hard-weighting strategy with higher weights for
negative samples closer to the anchor.

However, in MoNCE, weights are always exponentially re-
lated to the similarity between features. For the hard-weighting
strategy, the sample weights are excessively high in high-
similarity regions, while for the easy-weighting strategy, they
may be too high in low-similarity regions. We consider this
approach inflexible and too extreme. Additionally, in practice,
for the hard-weighting strategy, the most informative negatives
lie in the ’head’ region (top 20% similarity), not just the top
1% [16], [17]. The same holds for the easy-weighting strategy.
To address this, we introduce normal distribution weights into
the image translation task, improving upon MoNCE’s extrem-
ity. The normal distribution weight function allows for flexible
weighting of negative samples. Example weights are shown
in Fig. 3. We categorize tissue and background regions using
the discriminator’s heatmap output, without extra parameters
[18]. This works because the tissue region is more complex
in structure and diverse in morphology, causing the model to
focus more on these areas, resulting in higher heatmap values.

In contrast, the background’s simpler color and structure make
it easier for the model to distinguish real from fake, resulting
in lower heatmap values. As shown in Fig. 2(b). Based on
the heatmap values corresponding to the patches, we sample
patches with high and low heatmap values to form two separate
sets: hard features (high heatmap values) and easy features
(low heatmap values). We then apply soft k-means clustering
to each of the two separated feature sets to construct the
hypergraphs, and perform hypergraph convolution on them.
Finally, we apply different weight computation strategies to
calculate the contrastive loss.

For the weighted loss function:

Lw(X,Y ) = − 1

K

K∑
i=1

log
e

z⊤i ·vi
τ

e
z⊤
i

·vi
τ +

∑K
j=1
j ̸=i

wij(µ, σ, τ)e
z⊤
i

·vj
τ

(7)
We define the weight as follows:

wij(µ, σ, τ) =

1
σ
√
2π

exp

(
− (l(ij)neg −µ)2

2σ2

)
1
K

∑K
m=1

(
1

σ
√
2π

exp

(
− (l

(i,m)
neg −µ)2

2σ2

)) (8)

where

l(ij)neg =
z⊤i · vj

τ
(9)

µ and σ are controllable hyperparameters. µ controls the
central region of weight distribution, with samples closer
to µ having larger weights, while σ controls the height of
the weight distribution in the central region. The overall
contrastive learning loss function is:

LSTNHCL(X,Y )

= − 1

K

K∑
i=1

log
e

a⊤
i bi
τ

e
a⊤
i

bi
τ +

∑K
j=1
j ̸=i

wij(µ1, σ1, τ)e
a⊤
i

bj
τ

− 1

K

K∑
p=1

log
e

c⊤p dp

τ

e
c⊤p dp

τ +
∑K

q=1
q ̸=p

wpq(µ2, σ2, τ)e
c⊤p dq

τ

(10)

Here, ai and bi represent the i-th patch features from the tissue
parts of source and generated images, respectively, while ci
and di represent the i-th patch features from the background.
The larger value of µ1 reflects the hard-weighting strategy,
while smaller µ2 indicates easy weighting strategy.

The total loss of the generator can be defined as:

Ltotal = λ1×(Ladv+LR+Lnon-dia)+λ2×(LSTNHCL+LPatchNCE)
(11)

The adversarial loss can be defined as:

Ladv =Ex∼Y

[
(D(x))

2
]
+ Ex∼X

[
(1−D(G(x, Lt)))

2
]
(12)

where Lt is the target stain label, G is the generator, and D
is the discriminator. In addition, LR and Lnon-dia are defined
in [4], and LPatchNCE is from CUT [6]. Here, λ1 = λ2 = 10.
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Fig. 4. The performance comparison of various existing methods and our proposed method for multiple stain transfer of the same H&E-stained image.

IV. EXPERIMENT

A. Datasets and Experiment Setup
Datasets. We used three publicly available datasets: the

latest versions of the human kidney dataset and human lung
lesion dataset from ANHIR [19], as well as Glomeruli Seg-
mentation Dataset [4] for downstream tasks. Details on data
preprocessing can be found in the supplementary materials.

Evaluation Metrics. We employed standard metrics to
evaluate the performance of pathological image translation:
Contrast Structure Similarity (CSS), Fréchet Inception Dis-
tance (FID), and Kernel Inception Distance (KID). CSS mea-
sures how well the original structure and content of the
image preserved. FID and KID are employed to quantify the
distributional differences between real and generated images.

Implementation Details. Our method was implemented in
PyTorch on an AMD EPYC 9754 CPU and NVIDIA RTX
3090 GPU. We used the generator from GramGAN [4]. The
training dataset patch size was set to 256× 256, with a batch
size of 1, and the model was trained for 300,000 iterations.

B. Comparison
We compared our method with state-of-the-art multi-domain

stain transfer approaches and other applicable multi-domain
image translation methods, including StarGAN [20], AttGAN
[21], STGAN [22], DRIT++ [23], HiSD [24], UMDST [3],
MulHiST [25], GramGAN [4], and PPHM-GAN [11]. Quan-
titative results are shown in Table I. Compared to baseline
methods, our approach excelled in preserving the original
tissue structure (measured by CSS) and generating realistic
target stain styles (measured by FID and KID). In the human
lung lesion dataset, STGAN achieved the best CSS metric
but it performed poorly on FID and KID. Our approach
demonstrated superior stain transfer performance. The visual
qualitative results in Fig. 4 show that our model generates
clearer, more contrast-rich images with better structural and
semantic alignment compared to other methods.

C. Ablations
We conducted ablation studies to assess the effectiveness

of the proposed method. These include experiments on Patch-
NCE, STHCL, and STNHCL. The experimental results are
shown in Table II. The results indicate that each component
significantly enhances the model’s performance. Moreover,

TABLE I
QUANTITATIVE RESULTS OF STAIN TRANSFER. THE BOLD DENOTES THE

BEST AND THE UNDERLINED DENOTES THE SECOND BEST.

Dataset Method CSS(↑) FID(↓) KID×100(↓)

Human Lung
Lesion Dataset

StarGAN 0.823 60.30 3.41
AttGAN 0.897 43.41 2.68
STGAN 0.930 95.49 5.66
DRIT++ 0.707 144.81 14.60

HiSD 0.892 43.27 2.81
UMDST 0.893 40.14 2.77
MulHiST 0.524 193.36 16.91

GramGAN 0.875 56.96 2.73
PPHM-GAN 0.856 64.21 3.42

Ours 0.943 35.66 2.67

Human Kidney
Dataset

StarGAN 0.162 81.90 7.78
AttGAN 0.609 84.47 8.03
STGAN 0.860 135.61 13.72
DRIT++ 0.646 79.02 10.11

HiSD 0.620 77.95 8.99
UMDST 0.637 77.91 8.94
MulHiST 0.767 112.18 11.23

GramGAN 0.657 88.46 8.80
PPHM-GAN 0.464 171.07 16.82

Ours 0.776 56.53 5.75

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDIES

Method CSS(↑) FID(↓)

Ladv 0.814 97.18
Ladv + Lcyc 0.875 56.87

Ladv + LpatchNCE 0.909 54.04
Ladv + LPatchNCE + LPatchGCL 0.917 46.69

Ladv + LpatchNCE + LSTHCL (Ours) 0.928 41.53

Ladv + LpatchNCE + LSTHCL+traditional weighting 0.933 41.85
Ladv + LPatchNCE + LSTNHCL (Ours) 0.943 35.66

our LSTHCL outperforms LPatchGCL in enhancing the higher-
order semantic correspondence across multiple patches. Our
dual normal distribution weighting strategy leverages negative
samples more effectively compared to traditional weighting
strategies. Furthermore, we evaluated the performance of
STNHCL under different settings of mean parameters, as
shown in Table III. The µ1 and µ2 represent the normal
weighting means for the tissue region and the background
region, respectively. We observed that the best performance
was achieved when the mean was set at an intermediate value,
rather than at the extremes, confirming the effectiveness of our
dual normal distribution weighting mechanism.
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TABLE III
COMPARISON OF THE EFFECTS OF DIFFERENT MEAN PAIRS ON CSS AND

FID METRICS ON THE HUMAN LUNG LESION DATASET

µ2

µ1 0.3 0.5 0.7 0.9

CSS FID CSS FID CSS FID CSS FID

-0.2 0.935 43.07 0.936 41.76 0.936 39.29 0.936 35.66
0.1 0.940 41.79 0.940 38.43 0.943 35.66 0.943 40.40
0.3 0.939 40.56 0.940 39.16 0.942 38.02 0.935 41.64
0.5 0.937 40.14 0.940 39.54 0.941 41.48 0.934 42.37
0.7 0.936 40.32 0.939 42.58 0.941 41.73 0.932 42.20

TABLE IV
THE QUANTITATIVE RESULTS OF THE DOWNSTREAM TASKS, WE USE

MAP@[0.50:0.95] TO MEASURE THE ACCURACY.

Tasks H&E
(real)

PASM
(generated)

PAS
(generated)

MAS
(generated)

Detection 0.380 0.446 0.408 0.406
Segmentation 0.402 0.461 0.386 0.389

D. Downstream Tasks

On the Glomeruli Segmentation Dataset [4], we utilize the
same network (Mask R-CNN [26]) to detect and segment
glomeruli in both H&E-stained images and their virtually
converted stained counterparts generated by our model. The
virtually generated stains achieve performance that is compa-
rable to or even surpasses the original H&E stains in detection
and segmentation tasks, as demonstrated in Table IV.

V. CONCLUSION

Traditional stain transfer methods often struggle to main-
tain higher-order semantic correspondence between multiple
patches of input and output images, leading to the loss of
essential information. To address this issue, we introduce
STNHCL, which constructs hypergraph-based feature repre-
sentations to match the input and output images. To further im-
prove upon the traditional extreme negative sample weighting
strategy, which does not fully utilize effective negative sample
information, we employ a more moderate normal distribution
weighting scheme. Experimental results demonstrate superior
performance, further validating the advantages of our method.
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