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Abstract
Compositional languages leverage rules that001
derive meaning from combinations of simpler002
constituents. This property is considered to003
be the hallmark of human language as it en-004
ables the ability to express novel concepts and005
ease of learning. As such, numerous studies in006
the emergent communication field explore the007
prerequisite conditions for emergence of com-008
positionality. Most of these studies set out one-009
to-one communication environment wherein010
a speaker interacts with one listener during a011
single round of communication game. How-012
ever, real-world communications often involve013
multiple listeners; their interests may vary and014
they may even need to coordinate among them-015
selves to be successful at a given task. This016
work investigates the effects of one-to-many017
communication environment on emergent lan-018
guages where a single speaker broadcasts its019
message to multiple listeners to cooperatively020
solve a task. We observe that simply broadcast-021
ing the speaker’s message to multiple listeners022
does not induce more compositional languages.023
We then analyze two axes of environmental024
pressures that facilitate emergence of compo-025
sitionality: listeners of different interests and026
coordination among listeners.027

1 Introduction028

The field of emergent communication studies the029

core environmental factors in language emergence030

and the characteristics of emergent languages in031

relation to that of the human’s. The recent devel-032

opments in artificial neural networks have spurred033

research on the field utilizing communication sim-034

ulations of neural agents (Lazaridou and Baroni,035

2020). This has served as a crucial testbed for036

studying evolution of language (Briscoe, 2002),037

which often lacks concrete physical trace. The field038

has also demonstrated promising application possi-039

bilities in numerous domains leveraging language’s040

desirable properties (Mu et al., 2023; Yao et al.,041

2022; Xu et al., 2022).042

Compositionality (Janssen and Partee, 1997) is 043

one of the most prominent features of human lan- 044

guages. Compositional languages can express com- 045

plex meaning with combinations of simpler at- 046

tributes leveraging systematic rule structures. This 047

enables the ability to express novel concepts by 048

combining familiar attributes. Compositionality is 049

also attributed to enhancing languages’ learnabil- 050

ity (Ren et al., 2020; Davidson, 1965) and gives 051

rise to robustness to noisy communication channel 052

(Kuciński et al., 2021). 053

Determining the prerequisite environmental pres- 054

sures for emergence of compositionality has been 055

extensively studied in the field. These factors in- 056

clude language’s learnability (Ren et al., 2020; 057

Chaabouni et al., 2020; Smith et al., 2003; Li 058

and Bowling, 2019), agents’ capacity (Resnick 059

et al., 2020), reliability of communication channel 060

(Kuciński et al., 2021), task difficulty (Chaabouni 061

et al., 2022; Choi et al., 2018; Mu and Goodman, 062

2021; Bouchacourt and Baroni, 2018; Lazaridou 063

et al., 2017), and communication channel capacity 064

(Lazaridou et al., 2018; Chaabouni et al., 2020). 065

Recently, populations of agents have been investi- 066

gated as a driving force for emergence of compo- 067

sitionality (Rita et al., 2022a; Michel et al., 2023) 068

following prior sociolinguistic findings that larger 069

population size tends to derive more structured lan- 070

guages (Raviv et al., 2019). 071

Most of these studies take one-to-one communi- 072

cation regime where only a single speaker-listener 073

pair interacts with each other during an instance of 074

game play. Even when there are multiple listeners 075

in the system, a speaker’s message is only sent to 076

a single listener (Chaabouni et al., 2022; Michel 077

et al., 2023; Rita et al., 2022a; Kim and Oh, 2021; 078

Tieleman et al., 2019). Consequently, they fail to 079

model the effects of one-to-many communication 080

in emergent languages. 081

This work investigates the effects of one-to- 082

many communication regime on the compositional- 083
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ity of emergent languages. In real-world communi-084

cations, a single message often concerns multiple085

parties: an advertisement of a product, a sergeant’s086

command to a squad, etc. In these scenarios, there087

are more than one interested entity for a given mes-088

sage. This environment opens two interesting as-089

pects of communication, and we find that these090

aspects each introduce a new environmental pres-091

sure that facilitates emergence of compositionality.092

First, the listeners may not share the same inter-093

ests. In the case of the advertisement of a product,094

some of the viewers of the advertisement may only095

be interested in certain characteristics of the prod-096

uct such as colors and sizes, while others may only097

care about the price and brand name. While it is098

still the case that the advertisement must contain all099

of the relevant information for the product, we ar-100

gue that it introduces a new pressure that forces the101

message to be easier to understand for listeners that102

are only interested in certain parts of the attributes.103

We hypothesize that these listeners would prefer104

messages that are easily interpretable, without the105

need to understand other details corresponding to106

attributes that they are not concerned with.107

Second, listeners may need to coordinate among108

themselves to be successful at the task at hand. In109

the case of the sergeant’s command to a squad, co-110

ordination among the squad may be required for111

them to have successfully carried out the mission.112

Hence, a misinterpretation of the command from113

a single listener may result in failure for the entire114

squad. We argue that the pressure that the language115

be simultaneously understood by multiple listeners116

forces the language to be more compositional. Intu-117

itively, it is plausible that one listener may develop118

a compositionally inferior language, but it is less119

likely to be shared by other listeners in the group120

due to its inferior compositionality.121

Extensive experiments confirm the hypotheses122

that agents of different interests and coordination123

among agents are crucial environmental pressures124

for emergence of compositionality. We find that125

simply broadcasting a speaker’s message to mul-126

tiple listeners does not enhance compositionality127

of induced languages. We observe emergence of128

compositionality when listeners of different inter-129

ests are introduced or coordination pressures are130

injected to the environment. We then analyze what131

kinds of compositionalities are derived from these132

pressures with various compositionality measures.133

2 Related work 134

Emergent communication and its applications 135

Human languages exhibit a number of universal 136

characteristics (Greenberg, 1961). The emergent 137

communication field strives to close the gap be- 138

tween the communication protocols emerged from 139

artificial agents and the natural languages with re- 140

gard to these language universals. The studied char- 141

acteristics include Zipf’s law of abbreviation (Zipf, 142

1949; Chaabouni et al., 2019; Ueda and Washio, 143

2021; Ueda and Taniguchi, 2024), word bound- 144

aries (Harris, 1955; Ueda et al., 2023; Ueda and 145

Taniguchi, 2024), trade-off between word-order 146

and case-marking (Comrie, 1989; Blake, 2001; 147

Lian et al., 2023) and compositionality (Chaabouni 148

et al., 2020; Rita et al., 2022b). On a more practical 149

note, the language-like properties of induced pro- 150

tocols facilitate numerous applications. Mu et al. 151

(2023) leverage emergent languages’ superior func- 152

tional expressivity for embodied control task. Yao 153

et al. (2022) demonstrate the effectiveness of emer- 154

gent languages in low-resource language modeling, 155

and similar results are reported in machine transla- 156

tion (Li et al., 2020; Downey et al., 2023). Xu et al. 157

(2022) show emergent languages’ competitive as 158

a representation learning method. Techniques for 159

inducing compositionality in emergent languages 160

(Zheng et al., 2024; Li and Bowling, 2019; Ren 161

et al., 2020) find applications in improving generic 162

neural networks’ abilities (Ren et al., 2023; Zheng 163

et al., 2024; Noukhovitch et al., 2023). 164

Environmental pressures for compositionality 165

Prerequisite conditions for emergence of compo- 166

sitionality are extensively studied. Kuciński et al. 167

(2021) theoretically prove that compositional lan- 168

guages are more robust to message corruption and 169

empirically verify that noisy channels facilitate 170

compositionality. Several studies explore how ca- 171

pacity of communication channel (Lazaridou et al., 172

2018; Chaabouni et al., 2020) or capacity of neural 173

agents (Resnick et al., 2020) affect compositional- 174

ity. Cheng et al. (2023) observe that compositional 175

languages are easier to imitate and suggest that 176

imitability may also be a driving force for compo- 177

sitionality. Chaabouni et al. (2022) emphasize the 178

task difficulty in terms of scale. Iterated learning 179

(Smith et al., 2003; Li and Bowling, 2019; Ren 180

et al., 2020) framework investigates the effects 181

of language transmission across generations and 182

finds that languages’ learnability for newly created 183

agents provide crucial pressure for compositional- 184

2



ity.185

Community structures in emergent communica-186

tion Our study on the one-to-many communica-187

tion regime is closely related to a line of works that188

investigates the effects of community structures189

on emergent languages. Harding Graesser et al.190

(2019) explore how independently formed com-191

munities’ languages evolve when these communi-192

ties start to interact with each other. Kim and Oh193

(2021) investigate the effects of different communi-194

cation graphs on the languages’ properties. Several195

studies observe that naively increasing the popula-196

tion size does not yield more structured languages197

(Chaabouni et al., 2022; Kim and Oh, 2021). Rita198

et al. (2022a) argue that different learning speeds in199

populations facilitate language structures. Michel200

et al. (2023) observe that limiting the communica-201

tion graph with partitioning induces compositional-202

ity and generalization to unseen partners. However,203

all of these studies focus on one-to-one game play;204

hence, does not model the effects of one-to-many205

communication. Chaabouni et al. (2022) consider206

a simple voting mechanism of listeners only at in-207

ference time. Li and Bowling (2019) utilize simple208

message broadcasting when studying the effects209

of population size in iterated learning, but do not210

observe substantial improvements.211

3 One-to-many communication game212

We analyze emergent languages of agents play-213

ing a variant of Lewis reconstruction game (Lewis,214

1969). The process of the game is as follows.215

Speaker πθ observes an object, x ∈ XK and pro-216

duces a message m ∼ πθ( · | x) describing the217

object. An object contains K attributes and each218

attribute can take one of |X | possible values. A219

message m ∈ WT is a sequence of symbols of220

fixed length T and each symbol belongs to vocab-221

ulary W . The game contains a set of N listeners222

{πϕi
}Ni=1. Each listener πϕi

is concerned with Ki223

attributes where 1 ≤ Ki ≤ K. Let xi ∈ XKi224

denote the Ki attributes’ values the listener πϕi
is225

concerned with in object x, e.g., if Ki = K, then226

xi = x.227

For each round of game play, the set of listeners228

are randomly partitioned into M groups {Gj}Mj=1229

such that ∪M
j=1Gj = {πϕi

}Ni=1 and ∩M
j=1Gj = ∅.230

Upon receiving message m, listener πϕi
outputs231

its prediction for the object as x̂i ∼ πϕi
( · | m).232

Let G(i) denote the indices of listeners in the233

group that listener πϕi
belongs to. Listener πϕi

234

receives a reward of 1 if all of the listeners’ predic- 235

tions in its group are correct, i.e., RLi(x) = 1 if 236

∀j ∈ G(i), x̂j = xj and 0 otherwise. The speaker 237

receives the average reward of all listeners as a 238

reward, which is equal to the fraction of success- 239

ful listeners: RS(x) =
1
N

∑N
i=1RLi(x). See Ap- 240

pendix A for graphical illustrations. 241

4 Experimental setup 242

Dataset We represent each attribute’s value with 243

one-hot encoding. The number of attributes, K, is 244

set to 4, and the number of values, |X |, is set to 10. 245

We set aside 10% of all attribute-value combina- 246

tions as test set and use the rest as train set. 247

Speaker architecture One-hot encoded object x 248

passes through a linear layer and initializes a single- 249

layer GRU (Chung et al., 2014) of hidden size 500. 250

It recurrently processes the input in total of T = 5 251

time steps. In each time step, outputs from it are 252

fed to a linear layer and then goes through Softmax 253

activation to produce vocabulary distribution of 254

dimension |W| = 10. 255

Listener architecture A listener πϕi
is a single- 256

layer GRU of hidden size 500. The listener se- 257

quentially processes the speaker’s message m, the 258

last output of which is then passed to Ki linear 259

layers corresponding to the number of attributes 260

the listener is interested in. They each go through 261

Softmax activation and produce distribution of size 262

|X | corresponding to the number of possible values 263

an attribute can take. 264

Optimization We maximize each of the listen- 265

ers’ and speaker’s expected reward with the REIN- 266

FORCE algorithm (Williams, 1992). The expected 267

reward for listener πϕi
is written as JLi(ϕi) = 268

Ex∼pEm∼πθ( · |x)RLi(x) and that of the speaker’s 269

is written as JS(θ) = Ex∼pEm∼πθ( · |x)RS(x), 270

where p denotes the uniform distribution over 271

XK . We also utilize entropy regularization for the 272

speaker to facilitate exploration and cross entropy 273

loss from listeners for stable training. We stop train- 274

ing if the success rate on the train set reaches 99. 275

Full description of the setup is in Appendix B. See 276

Appendix H for source code. 277

Reporting We report average over 10 random 278

seeds. Throughout the paper, we use error bars to 279

indicate 95% confidence interval and ± to denote 280

standard deviation. Bold and underline indicate the 281

best and second best results. 282
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5 Evaluation metrics283

Topographic similarity (TopSim) Let Dobj :284

XK×XK → R+ and Dmsg : WT×WT → R+ be285

distance measures over the objects and messages,286

respectively. Topographic similarity (Brighton and287

Kirby, 2006) is Spearman’s rank correlation of Dobj288

and Dmsg over the joint uniform object, message289

distribution. This measures how changes in ob-290

jects correlate with changes in messages. For Dobj291

and Dmsg, we use cosine distance and Levenshtein292

distance (Levenshtein, 1965), respectively.293

Positional disentanglement (PosDis) Let mi de-294

note the i-th symbol of message m. Let ai1 de-295

note the attribute that has the highest mutual in-296

formation with mi, i.e., ai1 = argmaxa I(mi; a).297

Similarly, let ai2 denote the attribute that has the298

second highest mutual information with mi, i.e.,299

ai2 = argmaxa̸=ai1
I(mi; a). Positional disen-300

tanglement (Chaabouni et al., 2020) is equal to301
1
T

∑T
i=1

I(mi;a
i
1)−I(mi;a

i
2)

H(mi)
, where H(mi) denotes302

the entropy of the i-th symbol. This measures the303

degree to which a single position is responsible for304

conveying information about an attribute.305

Bag-of-symbols disentanglement (BosDis) Let306

ni denote the number of occurrences of i-th sym-307

bol in vocabulary W . Other notations follow from308

positional disentanglement. Bag-of-symbols dis-309

entanglement (Chaabouni et al., 2020) is equal310

to 1
|W|

∑|W|
i=1

I(ni;a
i
1)−I(ni;a

i
2)

H(ni)
. This measures how311

much a symbol univocally refers to an attribute.312

Compositional generalization Compositional313

generalization is the average task success rate on314

unseen attribute combinations. This is calculated315

using the test set without regard to the group.316

6 Experiments317

6.1 Does naive one-to-many communication318

enhance compositionality of languages?319

Setup In naive one-to-many communication320

regime, all listeners share the same interests, and321

there is no coordination required among the lis-322

teners. More specifically, the number of attributes323

each listener is interested in is identical to the num-324

ber of attributes the speaker observes (Ki = K),325

and each group contains only a single listener326

(|Gj | = 1).327

Naive message broadcasting does not improve328

compositionality Figure 1 compares languages329
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Figure 1: Language properties under varying number of
listeners in naive one-to-many communication regime.

from naive one-to-many communication regime 330

with varying number of listeners (N ) against the 331

single-listener one-to-one communication regime 332

(N = 1). While some of the cases exhibit im- 333

provements, none of the differences are statistically 334

significant (two-tailed t-test with p = 0.05). The 335

results suggest that simply broadcasting a message 336

does not introduce a meaningful pressure on lan- 337

guage emergence. 338

6.2 How do listeners of different interests 339

affect language properties? 340

Setup We devise three kinds of listener forma- 341

tions for this experiment. The partial-interest for- 342

mation contains
(
K
Ki

)
listeners that are only con- 343

cerned with Ki attributes. Each of
(
K
Ki

)
listeners’ 344

interests are distinct attribute combinations. The 345

mixed-interest formation is the same as the partial- 346

interest formation except that it contains one ad- 347

ditional listener that is concerned with all of the 348

K attributes. The full-interest formation contains 349

1 +
(
K
Ki

)
listeners all of which are interested in all 350

of the K attributes. As there is no coordination 351

required, each group Gi contains a single listener. 352

The test set accuracy is calculated only with the 353

listeners that are interested in all of the attributes. 354

Readability pressure from different interests fa- 355

cilitates more structured languages In Figure 356

2a, we observe a trend that the more the listeners 357

can disregard other parts of a message that they are 358

not concerned with, the more compositional the 359

languages tend to be. The formations with smaller 360

number of interested attributes (Ki) exhibit higher 361

TopSim, and the partial-interest formation’s lan- 362

guages tend to exhibit higher TopSim compared 363

to the mixed-interest formation. Languages from 364

the two formations are more compositional then 365

that of a similarly sized full-interest formation. In 366

Figure 2d, we observe a similar trend for composi- 367

tional generalization ability. We hypothesize that 368

listeners of different interests prefer more struc- 369
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Figure 2: Comparison of language properties in listeners of different interests regime.

tured languages, so that they can more easily infer370

the attributes of interest from a message without371

needing to understand other details that are not re-372

lated to their interests. In Appendix E, we find that373

languages from listeners of different interests are374

also easier to learn. We confirm that the results do375

not stem from the relative easiness of the task in376

Appendix F.377

Listeners of different interests prefer symbol-378

wise structures rather than position We an-379

alyze what kinds of language structures are pro-380

moted by listeners of different interests. One pos-381

sible structure is to denote each attribute within a382

certain position of a message. However, we do not383

observe such positional structure in regard to the384

number of interested attributes from Figure 2b. An-385

other possible strategy is to associate the number386

of occurrences of a certain symbol to an attribute.387

In Figure 2c, we observe a clear trend that listeners388

of different interests prefer this kind of association.389

6.3 How does coordination pressure affect390

language properties?391

Setup We construct 50 listeners of the same in-392

terests (Ki = K). For each round of game play,393

the listeners are randomly split into equally sized394

groups. We explore the effects of coordination pres-395

sure in terms of group size (|Gj |). A larger group396

size forces more listeners to be simultaneously suc-397

cessful at understanding the speaker’s message.398

The test accuracy is calculated by taking average of399

all listeners’ success rates regardless of the group.400

Coordination pressure amplifies preference of401

compositionality In Figure 3a, we observe a402

steep increase in TopSim as soon as a small co-403

ordination pressure is introduced to the game. Top-404

Sim steadily increases with the group size up to405

10, then shows a bit of decrease at larger group406

sizes of 25 and 50. Similar increase is observed in407

compositional generalization ability in Figure 3d.408

We hypothesize that the coordination pressure am- 409

plifies the degree of preference for the language’s 410

compositionality from the listeners, as it requires 411

the listeners to have a simultaneously shared under- 412

standing of a message. 413

Coordination pressure induces position-wise 414

structures rather than symbols In Figure 3b, 415

we observe increase in PosDis when coordination 416

pressure is injected to the game, suggesting that 417

coordination pressures induce more position-wise 418

structures. A reverse trend is observed in BosDis 419

in Figure 3c. The emergent languages under co- 420

ordinate pressure tend to rely less on the number 421

of occurrences of a symbol when determining an 422

attribute’s value. The results indicate that to effec- 423

tively express more complicated concepts (larger 424

number of attributes) position-wise structures are 425

preferred. 426

6.4 Coordination pressure in relation to 427

iterated learning framework 428

Iterated learning Iterated learning framework 429

(Smith et al., 2003) simulates languages’ transmis- 430

sion across generations. Li and Bowling (2019) 431

find that periodically resetting listener’s parame- 432

ters forces the speaker to develop languages that 433

are easier to teach, hence more compositional. In 434

their experiments with populations of listeners, the 435

authors hypothesize that resetting each listener in 436

uniform time intervals instead of resetting them all 437

at once could yield more structured languages as 438

the population would contain more diverse listen- 439

ers with varying degrees of experience. However, 440

they observe that simultaneously resetting all of the 441

listeners at the same time yield more compositional 442

languages compared to the uniform reset regime. 443

Setup We conduct a small-scale experiment with 444

two listeners to explore how coordination pressure 445

impacts languages in iterated learning. We consider 446

three different listener reset regimes. In simultane- 447
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Figure 3: Comparison of language properties under varying degrees of coordination pressure.

Metric
Single Listener (N = 1) Without Coordination (N = 2) With Coordination (N = 2)

No-Reset Simultaneous No-Reset Simultaneous Uniform No-Reset Simultaneous Uniform

TopSim 21.72±3.3 28.43±2.8 22.34±2.7 28.16±4.0 26.16±2.1 30.91±2.3 32.37±3.4 36.18±4.7
Generalization 61.03±13.5 91.34±8.9 56.66±9.2 92.02±2.9 87.48±8.2 98.27±1.4 92.22±2.3 96.19±3.3

Table 1: Effects of coordination pressure on emergent languages in iterated learning environment.

ous reset regime, we reset all listeners every 200448

epochs. Uniform reset regime resets one listener at449

epochs {100, 300, 500, ...}, and the other listener at450

epochs {200, 400, 600, ...}. No-reset regime does451

not perform any listener reset. We also consider a452

single-listener system under no-reset and simulta-453

neous reset regimes. We train the agents for 6,000454

epochs.455

Coordination pressure accentuates the effects456

of population in iterated learning In Table 1,457

we compare the single-listener system to the two-458

listener systems with and without coordination459

pressure (group size of 2 and 1, respectively).460

When there is no coordination pressure, uniform461

reset produces less compositional languages com-462

pared to the simultaneous reset regime, and the463

simultaneous reset regime in two-listener system464

does not show a clear improvement over the single-465

listener system. Under coordination pressure, uni-466

form reset exhibits higher compositionality than467

the simultaneous reset regime, and simultaneous468

reset regime shows improvements over the single-469

listener system. These observations demonstrate470

the importance of coordination in iterated learning.471

6.5 Listeners of different interests under472

coordination pressure473

We explore how the readability pressure from listen-474

ers of different interests and coordination pressure475

interact with each other in language emergence.476

Setup We construct three kinds of listener for-477

mations. The single-interest formation contains478

four listeners that are interested in each of the four479
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Figure 4: Comparison of language properties in general
one-to-many communication regime.

attributes (Ki = 1). The mixed-interest forma- 480

tion is the same as the single-interest formation but 481

contains one additional listener that is interested 482

in all of the attributes. The full-interest formation 483

contains five listeners that are interested in all of 484

the four attributes (Ki = K). We test how these 485

listener formations behave under varying degrees 486

of coordination pressure expressed by group sizes 487

of 1, 2, 4 (and 5 for the latter two formations that 488

contain 5 listeners). We note that the latter two for- 489

mations render one single-listener group at group 490

sizes of 2 and 4 as it contains 5 listeners. 491

Readability pressure from different interests 492

complements coordination pressure In Figure 493

4a, we observe that the mixed-interest formation in- 494

duces more compositional languages compared to 495

the full-interest formation in terms of TopSim un- 496

der varying degrees of coordination pressure. We 497

also observe that the single-interest formation’s 498

languages exhibit increase in TopSim as the group 499

size is increase to 2. However, it experiences a 500

decrease as the group size is further increased to 501
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4. At group size of 4, the four listeners in the502

single-interest formation now experience success503

only if each listener’s prediction for its attribute of504

interest is correct. Hence, the learning signals that505

shape the language may reflect less the readability506

pressure introduced by different interests. We fur-507

ther analyze derived compositionality structures in508

terms of PosDis and BosDis in Appendix G.509

Partial interests reduce the magnitude of coor-510

dination pressure In Figure 4b, we see that the511

mixed-interest formation’s generalization ability in-512

creases more slowly with the group size compared513

to the full-interest formation. We hypothesize that514

this stems from the fact that some of the attribute’s515

descriptions need not be shared by multiple listen-516

ers in the mixed-interest formation. For example,517

at group size of 2 or 4, a description of an attribute518

must be agreed upon by at least 2 members of a519

group in the full-interest formation, in contrast to520

the mixed-interest formation where an attribute’s521

description may not have to be agreed upon by mul-522

tiple listeners if they happened to be interested in523

different sets of attributes. This results in reduc-524

tion in coordination pressure for the mixed-interest525

formation. At group size of 5, however, coordina-526

tion pressure forces any attribute’s description to527

be agreed upon by more than one listener in the528

mixed-interest formation, and it exhibits similar529

generalization ability to the full-interest formation.530

7 Experiments with raw images531

We expand our study to more realistic scenarios532

employing datasets that consist of raw pixel im-533

ages.534

7.1 Listeners of different interests with raw535

pixel data536

Experimental setup We explore the effects of537

readability pressures introduced by listeners of538

different interests in more realistic setup with539

3dshapes dataset (Kim and Mnih, 2018). The540

dataset contains images of 3D shapes. Each image541

is characterized by 6 attributes such as the object’s542

color and shape. We sample 4 values from each of543

these 6 attributes and perform the same experiment544

as in §6.2. Full description of the experimental545

setup is in Appendix C.546

Results Overall, we observe similar trends to that547

of the attribute-value dataset’s, suggesting that the548

findings in §6.2 hold in more complex environ-549

ments. In Figure 5a, we find that smaller numbers550

of attributes of interest yield more compositional 551

languages, and Figure 5d shows that they exhibit 552

stronger generalization ability. We obtain more 553

pronounced effects in terms of symbol- or position- 554

wise structures of emergent languages. There is a 555

clear tendency that smaller number of interested 556

attributes produce languages that are less reliant on 557

positional structures of messages as can be seen 558

in Figure 5b. In Figure 5c, we also observe the 559

tendency to denote an attribute with number of 560

occurrences of a symbol in listeners of different 561

interests regime. 562

7.2 Coordination pressure in large scale 563

image discrimination game 564

Discrimination game We explore the effects 565

of coordination pressure in a large-scale image 566

discrimination game with ImageNet dataset (Rus- 567

sakovsky et al., 2015). The rules of the game are 568

as follows. The speaker observes the target image 569

x and sends a message m containing descriptions 570

of the image to a set of listeners {πϕi
}Ni=1. A lis- 571

tener πϕi
is tasked to determine which one is the 572

target among its context Ci containing other images 573

and rewarded if all of the listeners in the group it 574

belongs to correctly predict the target. 575

Scramble resistance (ScrRes) Let m′ denote 576

a randomly permuted version of message m and 577

πϕi
(x | m, Ci) denote the probability assigned 578

to the target object x by listener πϕi
given mes- 579

sage m and context Ci. Scramble resistance 580

(Bernard and Mickus, 2023) is calculated as 581
min(πϕi

(x|m,Ci),πϕi
(x|m′,Ci))

πϕi
(x|m,Ci) . A higher scramble re- 582

sistance means the language is less affected by 583

positional perturbations. 584

Experimental setup We use representations of 585

images processed by a ResNet-50 (He et al., 2016) 586

encoder pretrained on ImageNet with BYOL (Grill 587

et al., 2020) as in Chaabouni et al. (2022); Michel 588

et al. (2023). The context size |Ci| is set to 1,000 for 589

all listeners. We use the train, validation, test splits 590

from Chaabouni et al. (2022). We set aside 10% 591

of the classes in the dataset as in-distribution (ID) 592

classes and the rest as out-of-distribution (OOD) 593

classes. We perform training and validation with 594

ID samples in each split and evaluation with the test 595

set containing only OOD samples. TopSim is cal- 596

culated with respect to the image’s representations 597

using cosine distance. We construct 10 listeners 598

and observe the effects of coordination pressure 599
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Figure 5: Comparison of language properties in different interests regime with 3dshapes dataset.

Group Task Success Rate Compositionality
Size Test (OOD) Val (ID) Train (ID) TopSim ScrRes

1 90.24±2.2 96.16±0.2 98.45±0.2 22.03±1.8 4.48±0.9

2 94.03±0.2 97.59±0.1 98.04±0.1 20.79±0.8 6.20±0.9

5 93.37±0.3 97.13±0.1 98.34±0.1 20.90±1.0 5.90±0.9

10 93.16±0.3 96.96±0.1 98.32±0.1 19.73±1.1 5.66±0.8

Table 2: Results on image discrimination game.

under varying group sizes. Full description of the600

experimental setup is in Appendix D.601

Lower encounter frequency forces agents to de-602

velop more generalizable languages We report603

the accuracies on each split in Table 2. We observe604

that coordination pressure induces stronger general-605

ization ability in both OOD and ID samples. Group606

size of 2 exhibits the highest generalization ability607

and further increase in group size results in lower608

generalization ability. Group size of 10 would ex-609

ert the strongest coordination pressure requiring610

10 listeners to simultaneously carry out the task.611

However, it forms only a single group throughout612

the training. A lower group size means that any613

two listeners less frequently encounter each other614

during training and yet need to be successful at615

coordination. We hypothesize that this pressure616

forces the agents to develop more generalizable617

languages.618

Scramble resistance shows higher correlation619

with generalization than TopSim In Table 2,620

we observe that agents trained without any coordi-621

nation exhibit the highest TopSim even though they622

show lowest generalization ability. Prior works623

(Chaabouni et al., 2022; Michel et al., 2023) also624

report that TopSim does not correlate with gen-625

eralization ability and suggest that it may be an626

inadequate measure of compositionality for com-627

plex data forms. In contrast to TopSim, ScrRes628

shows high correlation with generalization ability,629

suggesting that a certain degree of positional in-630

variance is beneficial for expressing more complex631

forms of data. 632

Coordination pressure induces languages that 633

are easier to learn We explore how coordi- 634

nation pressure affects languages’ learnability. 635
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Figure 6: Learnabil-
ity comparison on Ima-
geNet.

To that end, we train a 636

newly initialized listener 637

by letting it play the dis- 638

crimination game with 639

a frozen speaker on the 640

train set. We compare 641

learnability of languages 642

emerged under no co- 643

ordination pressure to 644

the languages emerged 645

under coordination pres- 646

sure from group size of 2. In Figure 6, we observe 647

that new listeners learn languages emerged under 648

coordination pressure faster than the ones that did 649

not experience coordination pressure. 650

8 Conclusion 651

This work investigates how one-to-many commu- 652

nication affects language emergence. We find that 653

one-to-many communication introduces two com- 654

plementary aspects of communication that facilitate 655

emergence of compositionality. First, listeners of 656

different interests exert readability pressure. This 657

forces the language to be more structured as lis- 658

teners prefer messages that do not require under- 659

standing of other aspects unrelated to the attributes 660

of interest. Second, coordination among listeners 661

amplify agents’ preference of compositionality as 662

the language has to be simultaneously understood 663

by multiple listeners. Additionally, we find that 664

coordination across different generations is an im- 665

portant factor in iterated learning. We verify that 666

our findings hold in more complex environments 667

with experiments on raw image data. Our work 668

sheds light on the importance of one-to-many com- 669

munication in the emergent communication field. 670
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Limitations671

Task complexity This work analyzes emergent672

languages with basic attribute-values and image673

datasets. While these datasets are widely employed674

in the emergent communication community and675

permit detailed analysis of compositionality, they676

lack the complexities of real-world environments.677

Recent studies propose various tasks that require678

more abstract reasoning (Guo et al., 2023; Zhou679

et al., 2024; Mihai and Hare, 2021; Patel et al.,680

2021). Future work may explore how our findings681

apply in more complex task scenarios.682

Complex communication structures This study683

sets a basic one-to-many communication of a sin-684

gle speaker and the speaker’s message is broadcast685

to all listeners in the system. However, more com-686

plex communication structures are possible. There687

could be multiple speakers and a speaker’s mes-688

sage may be relayed to only certain portions of689

the listeners. The effects of population size (Rita690

et al., 2022a; Michel et al., 2023) and more com-691

plex communication graphs (Kim and Oh, 2021;692

Harding Graesser et al., 2019; Michel et al., 2023)693

could be further explored. In the coordination side,694

instead of forming new groups for each game play,695

longer listener group formation frequency could be696

explored. We also note that the effects of skewed697

interests of listeners are not explored in this work698

as we simply utilized all combinations of interests.699

Exploration of applications Our work does not700

explore immediate application areas of the findings.701

However, the emergent communication field has702

demonstrated numerous application possibilities in703

diverse domains. Some of these find applications in704

improving foundation models (Noukhovitch et al.,705

2023; Zheng et al., 2024). It may be an interest-706

ing research direction to investigate our findings707

in relation to alignment of large language models708

(Ouyang et al., 2022; Rafailov et al., 2023) as hu-709

man preferences can be decomposed into multiple710

attributes (Lou et al., 2024), e.g., helpfulness, po-711

liteness, etc. Our findings suggest that devising sep-712

arate preference models each of which concerning713

a certain preference aspect could be beneficial for714

compositional generalization in terms of these pref-715

erences. As for the coordination pressure, multiple716

preference models of different value systems could717

be explored for simultaneously satisfying a wide718

range of users of varying cultural backgrounds.719

Causes and implications of different composi- 720

tionality structures In §6.2, we observe that lis- 721

teners of different interests induce more symbol- 722

wise structures in languages rather than position- 723

wise structures, and we find a reverse trend when 724

coordination pressure is exerted to the environment. 725

We do not fully investigate the underlying mech- 726

anisms that cause these phenomena and their im- 727

plications. Future work may explore how these 728

kinds of compositionality structures affect perfor- 729

mance in downstream tasks from the perspective 730

of representation learning. 731

Theoretical analysis Through extensive experi- 732

ments, we empirically verify that listeners of dif- 733

ferent interests and coordination among listeners 734

play crucial roles in emergence of compositionality. 735

However, more fine-grained analysis of the process 736

would enhance the understanding these factors and 737

facilitate applications possibilities. One could the- 738

oretically analyze the processing efforts required 739

for listeners of different interests are indeed lower 740

when the language is more compositional, or theo- 741

retically validate that the chances of any two listen- 742

ers to stumble upon the same protocol are higher 743

when the language is compositional. 744

Relationship to other environmental pressures 745

As we discuss in §2, there are various environmen- 746

tal factors involved in emergence of composition- 747

ality, e.g., noisy channel (Kuciński et al., 2021). 748

The relationship between these and the pressures 749

investigated in this work could be further explored. 750

For instance, we explore coordination pressure in 751

relation to iterated learning in §6.4. 752

Effects of one-to-many communication on other 753

language universals Our work focuses on one- 754

to-many communication’s effects on composition- 755

ality. However, there are other language universals 756

that are actively studied in the emergent communi- 757

cation field as discussed in §2. Future work may 758

explore how one-to-many communication affects 759

other language universals. 760

Availability of attribute labels In the experi- 761

ments with listeners of different interests, the lis- 762

teners’ interests are derived from labeled attributes. 763

However, a dataset in question may lack such labels. 764

Future work may investigate the ways in which in- 765

terests can be formed in an unsupervised manner. 766

One could devise information bottlenecks so that 767

each listener would have a specialized role in the 768

cooperative task. 769
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A Graphical illustration of one-to-many 1069

communication game 1070

Figure 7 illustrates listeners of different interests in 1071

one-to-many communication game. The speaker’s 1072

message is broadcast to three listeners. These lis- 1073

teners each have their own distinct interests. The 1074

first listener is only interested in the color of the 1075

object, while the second listener is only interested 1076

in the shape of the object. The third listener is inter- 1077

ested in both the color and the shape of the object. 1078

The predictions of these listeners reflect their inter- 1079

ests, hence exclusively pertain to the attributes of 1080

interest. 1081

Figure 8 illustrates coordination among four lis- 1082

teners. Each of the four listeners are assigned to a 1083

group of size 2. The speaker’s message is broadcast 1084

to the listeners, and each listener predicts the ob- 1085

ject’s attributes. Both listeners in the first group cor- 1086

rectly predict the object’s attributes and the group 1087

is considered to be successful at the task. One of 1088

the listeners in the second group produces an incor- 1089

rect prediction and this results in a failure of the 1090

task for the entire group. 1091

12

http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1125.pdf
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1125.pdf
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1125.pdf
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1125.pdf
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1125.pdf
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=qqHMvHbfu6
https://openreview.net/forum?id=qqHMvHbfu6
https://openreview.net/forum?id=qqHMvHbfu6
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1162/106454603322694825
https://doi.org/10.1162/106454603322694825
https://doi.org/10.1162/106454603322694825
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=HC0msxE3sf
https://openreview.net/forum?id=HC0msxE3sf
https://openreview.net/forum?id=HC0msxE3sf
https://openreview.net/forum?id=HC0msxE3sf
https://openreview.net/forum?id=HC0msxE3sf
https://doi.org/10.18653/v1/2021.acl-srw.6
https://doi.org/10.18653/v1/2021.acl-srw.6
https://doi.org/10.18653/v1/2021.acl-srw.6
https://doi.org/10.18653/v1/2021.acl-srw.6
https://doi.org/10.18653/v1/2021.acl-srw.6
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
https://doi.org/10.1609/aaai.v38i16.29712
https://doi.org/10.1609/aaai.v38i16.29712
https://doi.org/10.1609/aaai.v38i16.29712


Figure 7: Illustration of listeners of different interests in one-to-many communication game. Each listener is
interested in different set of attributes and its predictions only pertain to the attributes of interest.

Figure 8: Illustration of coordination among listeners in one-to-many communication game. Listeners are split into
groups and each listener is rewarded only if all of the listeners in the same group correctly predict the attributes.
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B Experimental details1092

We utilize EGG framework (Kharitonov et al.,1093

2021) which is available under MIT license.1094

Speaker’s symbol embedding size is 5 and listen-1095

ers’ symbol embedding size is 30. We use Adam1096

optimizer (Kingma and Ba, 2017) with learning1097

rate of 0.001. The batch size is set to 5120. We1098

utilize REINFORCE with baseline (Sutton et al.,1099

1999) where the baseline function is the average of1100

the past rewards for the corresponding speaker or1101

listener agent. We report compositionality metrics1102

from the full dataset. We exclude a few runs that1103

did not reach train accuracy of 99. At inference1104

time, messages are constructed by selecting the1105

symbol that has been assigned the highest proba-1106

bility by the sender at each time step. Experiments1107

on raw pixel datasets follow the same setup unless1108

otherwise specified.1109

Entropy regularization We add entropy regular-1110

ization term in the speaker’s symbol distribution to1111

promote exploration. The magnitude of the regular-1112

ization is controlled by a scaling hyperparameter1113

γ which is multiplied to the entropy term. γ is set1114

to induce successful language emergence on the1115

train set of each dataset. For the experiments with1116

attribute-values dataset, the value is set to 0.5. In1117

the experiments with 3dshapes dataset, the value is1118

set to 1.0. In the image discrimination experiments,1119

the value is set to 0.1.1120

Cross entropy loss The training objective con-1121

tains cross entropy loss from listener to stabilize1122

training process. The cross entropy loss for listener1123

πϕi
is written as − 1

Ki

∑Ki
k=1 log πϕi

(x
(k)
i | m),1124

where x
(k)
i refers to the k-th attribute in the ob-1125

ject of interest xi for the listener. For the speaker,1126

listeners’ average cross entropy loss is added to the1127

reward after taking negative of it. For the listeners,1128

each listener’s own cross entropy loss is added to1129

the reward in a similar manner. In addition to that,1130

we directly backpropagate the cross entropy loss1131

for each listener. Each cross entropy loss term is1132

multiplied by a scaling hyperparameter λ. We use1133

minimal value of λ for each dataset required for1134

successful language emergence. In experiments1135

with attribute-values dataset, the value is set to 0.4.1136

For experiments with 3dshapes dataset, the value1137

is set to 0.0. For the image discrimination experi-1138

ments with ImageNet, the value is set to 0.2.1139

Figure 9: A sample of 3dshapes dataset.

C Experimental details on 3dshapes 1140

We set the vocabulary size |W| to 6 and the length 1141

of messages T to 6. The batch size is set to 5,120. 1142

We stop training when the train accuracy reaches 1143

99. We run each experiment with 20 random seeds 1144

and report the average. The dataset is available 1145

under Apache-2.0 license. 1146

Dataset construction An image is characterized 1147

by 6 attributes: object’s shape, object’s color, ob- 1148

ject’s size, color of the wall, color of the floor, and 1149

viewing orientation. Figure 9 shows a sample of 1150

the 3dshapes dataset. The number of values these 1151

attributes can take range from 4 to 14. We take 1152

4 values from each attribute (|X | = 4). For the 1153

attribute that correspond to the scale of the object, 1154

we choose values 0, 2, 4, 7 out of all the available 1155

values which range from 0 to 7. For the viewing 1156

orientation attribute, we choose values 0, 4, 9, 14 1157

out of all the available values which range from 0 1158

to 14. We construct each of the other attributes’ 4 1159

values by random sampling. 1160

Agent architecture The speaker processes the 1161

image with a two-layer convolutional neural net- 1162

work (CNN) each of which is accompanied by a 1163

max pooling layer. The outputs then go through a 1164

linear layer before being processed by the single- 1165

layer GRU as described in §4. This produces a 1166

message m. CNNs have kernel size of 8, stride 1167

of 1, and filter size of 8. We utilize same padding. 1168

Max pooling layer has kernel size of 2 and stride 1169

of 2. The linear layer projects activations of di- 1170

mension 2,048 to 500. A listener with the same 1171

architecture as in §4 processes the message m and 1172

outputs its prediction for the values of the image’s 1173

attributes. 1174

D Experimental details on ImageNet 1175

The speaker processes the target image’s represen- 1176

tation of dimension 2048 with a linear layer pro- 1177

ducing activations of dimension 500. They are then 1178
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Figure 10: Learnability comparison in different interests
regime. Shades indicate one standard deviation across
10 random seeds.

processed by the single-layer GRU as described in1179

§4. This produces message m containing descrip-1180

tions of the target image.1181

A listener πϕi
processes each of the images’ rep-1182

resentations in its context Ci with a linear layer then1183

computes similarity scores of them with the mes-1184

sage representation from the single-layer GRU de-1185

scribed in §4. The message representation is com-1186

puted from the last hidden state of the the single-1187

layer GRU after it is passed through a linear layer.1188

The resulting message representation has a dimen-1189

sion of 500. We use dot product as the similarity1190

score function. These scores are then passed to1191

Softmax activation to produce distribution over the1192

context Ci. We construct each listener’s context by1193

randomly sampling images without replacement.1194

The vocabulary size |W| and message length T1195

are both set to 10. The batch size is set to 2048.1196

Training is performed for 1,000 epochs and eval-1197

uation is performed with the checkpoint that ex-1198

hibit the highest accuracy on the validation set. We1199

repeat each experiment with 10 different random1200

seeds and report the average. Scramble resistance1201

is calculated with respect to one randomly selected1202

listener. We report compositionality metrics from1203

the test set. The image representations of ImageNet1204

dataset is available under Apache-2.0 license.1205

E Languages from listeners of different1206

interests regime are easier to learn1207

We test if listeners of different interests in §6.21208

indeed facilitate more structured, hence easier to1209

learn languages. We take languages from the1210

partial-interest formation with the number of in-1211

terested attributes set to one (Ki = 1) and the1212

full-interest formation of equal size. We randomly1213

initialize new listeners of two different interests;1214

one is only interested in one randomly sampled at-1215
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Figure 11: Language properties under varying values
of listener hidden sizes in the full-interest formation in
comparison with the mixed-interest formation of a fixed
listener capacity.

tribute (Ki = 1), and the other is interested in all of 1216

the four attributes (Ki = 4). We train these listen- 1217

ers by letting them play the game with the frozen 1218

senders of respective languages. In Figure 10, we 1219

observe that in both cases the languages from the 1220

partial-interest formation are easier to learn. 1221

F Effects of relative model capacity in 1222

listeners of different interests regime 1223

We validate that higher compositionality exhibited 1224

from listeners of different interests regime do not 1225

stem from the relative difficulty of the task as the 1226

number of attributes that need to be determined is 1227

lower in that regime. To that end, we increase the 1228

hidden size of listeners in the full-interest formation 1229

from 500 to larger values and compare them with 1230

the mixed-interest formation with Ki = 1. The 1231

experimental setup follows from §4. The hidden 1232

size of listeners in the mixed-interest formation is 1233

fixed to 500. Both formations contain the same 1234

number of listeners, N = 5. 1235

In Figure 11a, we observe that the values of Top- 1236

Sim stay almost the same as the listeners’ capacity 1237

is increased in the full-interest formation. This sug- 1238

gests that the relative capacity of the listeners in 1239

listeners of different interests regime is not the core 1240

contributing factor for the emergence of compo- 1241

sitionality. Similarly, in Figure 11b, we observe 1242

a decrease in generalization ability as the capac- 1243

ity of the listeners in the full-interest formation is 1244

increased. These observations confirm that it is 1245

not the relative easiness of the task that induced 1246

more compositional languages in the listeners of 1247

different interests regime. 1248
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Figure 12: Comparison of language properties in gen-
eral one-to-many communication regime.

G Trade-off in the preference of1249

symbol-wise and position-wise1250

structures in general one-to-many1251

communication1252

We analyze how the tendency to form more1253

position-wise language structures under coordina-1254

tion pressure affects the tendency to form more1255

symbol-wise language structures in listeners of dif-1256

ferent interests regime and vice versa. The experi-1257

mental setup follows from §6.5. In Figure 12a, we1258

observe in all listener formations the preference for1259

position-wise language structures increases along1260

with coordination pressure but the degree is less1261

pronounced in single-interest and mixed-interest1262

formations compared to the full-interest formation.1263

Interestingly, Figure 12b shows that preference for1264

symbol-wise structures in different interests regime1265

prevails under coordination pressure unless the four1266

single-attribute listeners are required to be always1267

in the same group.1268

H Reproducibility1269

For training we utilized NVIDIA RTX A60001270

48GB and NVIDIA A100 80GB. The most de-1271

manding task in terms of compute required less1272

than 24GB of VRAM and took about 2 or 3 hours1273

to complete per random seed. The number of pa-1274

rameters of an agent is far less than 1M in all ex-1275

periments.1276

We make an anonymized version of1277

our code available at: https://anonymous.1278

4open.science/r/onetomany/.1279
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