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Figure 1: Visualization of our motion prediction performance. The top figure demonstrates the comparison of our LiDAR-HMP
and two-stage method on LIPD test set. The bottom figure highlights LiDAR-HMP’s practicality in real-world deployment,
unfettered by lighting conditions, where markers 1, 2, and 3 indicate the current moment and predicted poses for the future 0.4s
and 1.0s, respectively. With online captured LiDAR point cloud, our method achieves real-time promising prediction results,
which is significant for real-world applications.

ABSTRACT
Human motion prediction is crucial for human-centric multimedia
understanding and interacting. Current methods typically rely on
ground truth human poses as observed input, which is not practical
for real-world scenarios where only raw visual sensor data is avail-
able. To implement these methods in practice, a pre-phrase of pose
estimation is essential. However, such two-stage approaches often
lead to performance degradation due to the accumulation of errors.
Moreover, reducing raw visual data to sparse keypoint representa-
tions significantly diminishes the density of information, resulting
in the loss of fine-grained features. In this paper, we propose LiDAR-
HMP, the first single-LiDAR-based 3D human motion prediction
approach, which receives the raw LiDAR point cloud as input and
forecasts future 3D human poses directly. Building upon our novel
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structure-aware body feature descriptor, LiDAR-HMP adaptively
maps the observed motion manifold to future poses and effectively
models the spatial-temporal correlations of human motions for
further refinement of prediction results. Extensive experiments
show that our method achieves state-of-the-art performance on
two public benchmarks and demonstrates remarkable robustness
and efficacy in real-world deployments.

CCS CONCEPTS
• Computing methodologies→ Temporal reasoning; Activity
recognition and understanding.

KEYWORDS
Human motion prediction, Multimedia understanding, LiDAR point
cloud

1 INTRODUCTION
Bridging the gap between human actions and digital interactions,
human motion prediction stands as a pivotal innovation in the
ever-evolving field of multimedia. By accurately predicting future
human movements through the analysis of past motion sequences,
people are able to create multimedia content that is more intuitive,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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responsive, and engaging. For instance, fitness apps can offer per-
sonalized guidance and feedback in real-time based on the predicted
future movements of their users. Assistive robots can predict hu-
man intentions and proactively handover objects to users as they
reach out, instead of waiting until they stop moving.

Current human motion prediction methods [1, 12, 28, 38, 44, 46,
47, 52] have achieved remarkable success by explicitly modeling
the inherent body structural and dynamic features among sequen-
tial human skeletons. However, these approaches heavily rely on
precise historical human poses, necessitating complex setups like
multi-view cameras or densely deployed wearable IMUs, thus im-
posing substantial limitations on their practical application and
deployment. In multimedia applications such as augmented real-
ity(AR) environments, the system is expected to interpret human
actions and gestures in real-time using their onboard sensors, with
raw data often comprising images or point clouds from a single
viewpoint. The dependency on the accuracy of past motion es-
timation techniques [17, 22, 36, 45, 50, 55] leads to cumulative
errors as shown in the upper-right corner of Fig. 1 and the loss of
fine-grained features present in the raw visual data. To advance
practical human motion prediction, directly taking the raw visual
data as input is a more viable strategy. Some studies [39, 51] have
investigated video inputs to improve applicability, the absence of
precise depth information and sensitivity to lighting conditions
frequently results in ambiguous and inconsistent predictions in
unconstrained environments.

In recent years, LiDAR’s long-range depth-sensing and light-
insensitive capabilities have established it as an indispensable sen-
sor in the realm of autonomous driving [4, 23, 33, 43] and various
human-centric applications [17, 21, 36, 37, 53], such as 3D pose
estimation, human motion capture, gait recognition, action recog-
nition, etc. Studies in these areas have underscored the superiority
of LiDAR over traditional cameras, highlighting its robustness and
effectiveness due to its ability to provide precise 3D geometry and
dynamic motion information about humans in free environment.
Crucially, LiDAR is not affected by lighting conditions, presenting
a significant advantage for real-world deployment. Based on this,
we introduce LiDAR-HMP , the first LiDAR-based human motion
prediction solution, which directly predicts future human poses
from raw LiDAR point clouds and is more practical for real-world
multimedia applications.

Our approach is founded on three carefully crafted modules that
effectively harness the valuable information contained within the
raw point cloud input, enabling precise predictions of future human
motion as shown in Fig. 1. Firstly, the Structure-aware Body Fea-
ture Descriptor delves into the implicit semantics of human body
structure entailed by the point cloud observation, amalgamating
part-wise with global body features. This ensures a rich, detailed
representation of human structure essential for accurate motion
forecasting. Following this, ourAdaptive Motion Latent Mapping
module employs a set of learnable queries, each mapping to a future
motion frame. These queries dynamically extract critical informa-
tion from the observed point cloud frames, laying the foundation for
precise motion prediction. Finally, the Spatial-Temporal Correla-
tions Refinement module embeds coarse motion predictions and
part-wise body features into a high-dimensional space. Leveraging

spatial-temporal correlations among the predicted poses, it metic-
ulously refines the predicted keypoints, enhancing the prediction
accuracy. Together, these modules embody our design philosophy
of capturing both the spatial structure and temporal dynamics of
human motion, setting a new benchmark for LiDAR-based human
motion prediction in real-world robotic applications.

Notably, acknowledging the inherent unpredictability and po-
tential for sudden changes in human movement, we extend our
model to support diverse motion predictions [9, 24, 27, 32, 49], thus
broadening its applicability and enhancing predictive reliability
and robustness. Our experimental results and visual analysis both
indicate that diverse predictions not only enhance the robustness
and reliability of forecasts but also offer invaluable insights for ap-
plications requiring an in-depth understanding of human dynamics.
For instance, in interactive systems and autonomous navigation,
the ability to predict a range of potential motions can significantly
improve the decision-making process.

We conduct experiments on both short-term and long-term hu-
man motion prediction on two public LiDAR-based human mo-
tion datasets, including LiDARHuman26M [17] and LIPD [53]. Our
method significantly outperforms existing methods in terms of
mean per joint position error (MPJPE) by a large margin, e.g. av-
erage 17.42𝑚𝑚 and 7.86𝑚𝑚 for short-term prediction, and aver-
age 11.62𝑚𝑚 and 9.12𝑚𝑚 for long-term prediction, respectively.
We also evaluate the robustness and generalization ability of our
method under long-range distance, occluded and noisy cases. In
particular, we have deployed our method in real scenarios and
achieved real-time human motion predictions, providing a feasible
interface for further robotic applications. Our contributions can be
summarized as follows:

• We propose the first LiDAR-based method for practical 3D
human motion prediction by fully utilizing the fine-grained
motion details in raw LiDAR point clouds, which closely
aligns with real-world application scenarios.

• We present a structure-aware body feature descriptor that
decouples the holistic human point cloud into distinct body
parts based on the semantics of anatomical structure, en-
abling the capture of fine-grained dynamic motion details.

• Wemap the past motion manifold to the future motion mani-
fold adaptively, and fully leverage the spatial-temporal corre-
lation of the motions to further refine the predicted results.

• Our method achieves state-of-the-art performance on two
public LiDAR-based human motion datasets.

2 RELATEDWORK
2.1 Human Motion Prediction
Existing human motion prediction methods focus on forecasting
future human motions based on past ground truth observations cap-
tured through multi-view cameras or dense IMUs, with specialized
network structures to address the spatial and temporal dependen-
cies in structured skeleton sequences. Several methods [11, 13, 16,
25, 31, 47] have explored modeling temporal dependencies in hu-
man motion prediction using RNN and TCN structures, but often
overlook spatial relationships. Recent advancements [3, 8, 19, 42, 52]
have seen GCNs achieving state-of-the-art results by learning spa-
tial dependencies among joints with learnable weights. Building



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Practical Human Motion Prediction with LiDAR Point Clouds ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

on the GCN framework, DMGNN [19] and MSR-GCN [8] intro-
duced multi-scale body graphs to capture both local and global
spatial features. PGBIG [28] extended this approach by incorporat-
ing temporal graph convolutions for extracting spatial-temporal
features. SPGSN [18] introduced a graph scattering network to
enhance the modeling of temporal dependencies through multi-
ple graph spectrum bands. DMAG [12] uses frequency decom-
position and feature aggregation respectively to encode the in-
formation. Beyond GCN-based approaches, transformer architec-
tures [1, 2, 30] also have been utilized to model pair-wise spatial-
temporal dependencies, indicating a broad interest in capturing
complex spatial-temporal relationships in human motion predic-
tion. AuxFormer [46] introduced a model learning framework with
an auxiliary task that can recover corrupted coordinates depending
on the rest coordinates. [44] synthesizes the modeling ability of
the self-attention mechanism and the effectiveness of graph neural
networks. However, these methods are primarily designed for in-
puts of ground truth observed skeletons and showed performance
degradationwith inputs of estimated skeletons from 3D pose estima-
tion methods [14, 17, 22, 26, 34, 36, 45, 50, 55] due to accumulative
errors, restricting their real-world applicability. Although some
studies [39, 51] have explored the use of video inputs to enhance
practical applicability, the absence of precise depth information and
sensitivity to lighting changes frequently result in ambiguous and
inconsistent predictions in uncontrolled settings.

2.2 LiDAR-based Human-centric Applications
Due to the accurate depth sensing and light-insensitive ability in
long-range scenes, LiDAR has emerged as a pivotal perception sen-
sor for robots and autonomous driving [4, 15, 23, 33, 43, 54]. In
recent years, numerous human-centric applications[5–7, 17, 21, 36,
37, 48, 53], such as pose estimation, motion capture, action recog-
nition, gait recognition, scene reconstruction, etc., have adopted
LiDAR to expand usage scenarios and improve performance of so-
lutions by utilizing accurate geometric characteristics of LiDAR
point clouds. Especially, recent works [17, 36, 53] have already
underscored the efficacy of single-LiDAR systems for human mo-
tion capture. Given LiDAR’s success in large-scale human-related
applications, we make the first attempt to leverage LiDAR for prac-
tical 3D human motion predictions by fully exploiting the dynamic
spatial-temporal correlations among observed sequential LiDAR
point clouds.

3 METHODOLOGY
In this section, we introduce the details of our single-LiDAR-based
3D human motion prediction method LiDAR-HMP. After defining
the problem in Sec.3.1, we introduce our components sequentially.
In Sec.3.2, we introduce Structure-aware Body Feature Descriptor
to extract comprehensive human features. Subsequently, in Sec.3.3,
we employ Adaptive Motion Latent Mapping to facilitate dynamic
interactions crucial for accurate motion prediction. Upon obtaining
the initial predicted 3D skeleton joints, the Spatial-temporal Corre-
lations Refinement module (Sec.3.4) further refines the correlations
between different body joints. Finally, Sec.3.5 outlines the decoding
and supervision of the network, while Sec.3.6 demonstrates the
potential of our methods across various settings.

3.1 Problem Definition
3D human motion prediction involves forecasting 3D human mo-
tion poses for the next few frames based on a few observed frames.
Let P1:𝑇𝑜 =

{
𝑃1, 𝑃2, . . . , 𝑃𝑇𝑜

}
represent the historical point cloud

observation of length𝑇𝑜 , where 𝑃𝑡 denotes the point cloud frame at
time 𝑡 . Additionally, denote J𝑇𝑜+1:𝑇𝑜+𝑇𝑝 =

{
𝐽𝑇𝑜+1, 𝐽𝑇𝑜+2, . . . , 𝐽𝑇𝑜+𝑇𝑝

}
as the predicted 3D pose sequence of length 𝑇𝑝 . Here 𝐽𝑡 ∈ R24×3
signifies the future human pose of time 𝑡 , represented by 24 3D
keypoint coordinates. Our approach aims to predict the 𝑇𝑝 frames
of future 3D human motion poses from the 𝑇𝑜 observed frames of
human LiDAR point clouds.

3.2 Structure-aware Body Feature Descriptor
Contrary to the inherently structured skeleton-based human mo-
tion representations, the sparse and disordered nature of LiDAR
point clouds pose substantial challenges for efficient feature extrac-
tion. Existing methods in human-focused research [36, 53] com-
monly adopt PointNet [35] to extract bodily features from point
clouds, using max pooling to distill key features from the LiDAR
data. While efficient and widely applied in existing LiDAR-based
human analytics, such an approach overlooks the rich geometric
and structural details in the 3D point cloud data, which are essential
for deriving expressive features that accurately represent human
body structure. To overcome these limitations, we introduce the
Structure-aware Body Feature Descriptor. Our approach combines
the holistic global feature of the entire body with detailed local
features that capture the semantics of anatomical body parts, in-
cluding the thigh, calf, arm, and more. This decomposition enables
a nuanced and comprehensive representation of human motion,
facilitating a deeper understanding of complex movements.

Specifically, given a frame of point cloud observation of the
past human motion 𝑃𝑖 = {𝑝1, ..., 𝑝𝑁 } ∈ P1:𝑇𝑜 , we segment the
human body point cloud into 𝐾 semantically meaningful anatom-
ical parts via a pre-trained human part segmentation model Φ(·).
Details of the pre-trained human parsing model are illustrated in
the supplementary materials. We retrieve the point-wise features
𝐹𝑖 = {𝑓1, 𝑓2, . . . , 𝑓𝑁 } from the PointNet encoder before the global
max-pooling. These point-wise features are then scattered into 𝐾
bins corresponding to different body part segments. Within each
bin, we perform max-pooling across the points to obtain part-wise
feature 𝐻𝑝𝑎𝑟𝑡 ∈ R𝑇𝑜×𝐾×𝑑1 :

𝐻𝑝𝑎𝑟𝑡 =
{
𝐻𝑘𝑝𝑎𝑟𝑡 = MaxPool({𝑓𝑖 |Φ(𝑝𝑖 ) == 𝑘}

��𝑘 = 1, 2, . . . , 𝐾
}
. (1)

We then integrate the global body feature𝐻𝑔𝑙𝑜 yielded by the Point-
Net encoder with the part-wise feature to obtain the structure-
aware body feature descriptor 𝐻 :

𝐻 =
[
𝐻𝑔𝑙𝑜 ⊕ 𝐻𝑝𝑎𝑟𝑡

]
∈ R𝑇𝑜×(𝐾+1)×𝑑1 , (2)

where ⊕ denotes concatenation. The feature descriptor is further
enhanced with a spatial-temporal transformer layer, which models
the non-linear dependencies among the body parts across different
frames, further refining the descriptor’s ability to capture complex
bodily dynamics.
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Figure 2: The pipeline of our LiDAR-HMP. First, we obtain the structure-aware body feature descriptor from the observed
LiDAR point cloud frames. Then, we adaptively predict the human motion with learnable queries for initial predictions and
explicitly model the spatial-temporal correlations among them to refine the predictedmotions. Finally, we decode the joint-wise
results and point-wise results for auxiliary supervision.

3.3 Adaptive Motion Latent Mapping
Building upon the expressive feature descriptor of the observed Li-
DAR point cloud frames, we advance towards predicting the future
3D human motion from historical motion observations. Specifically,
we initialize a set of learnablemotion queries𝐻𝑞 ∈ R(𝑇𝑜+𝑇𝑝 )×(𝐾+1)×𝑑1

following a normal distribution N(0, 0.02), designated for each of
the observed and predicted frames. These queries then selectively
assimilate information from past frame descriptors within a trans-
former decoder layer to translate past frame features into a com-
prehensive feature set that encapsulates both past observations
and future predictions, thereby laying the foundation for accurate
human motion forecasting:

𝐹 = MHCA
(
Q :𝑊𝑞𝐻𝑞, K :𝑊𝑘𝐻,V :𝑊𝑣𝐻 ), (3)

where MHCA(· query, · key, · value ) represents the multi-head
cross-attention layer [41] and𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 are the linear projection
for query, key and value. To further reinforce the spatial-temporal
consistency within the updated body features, we apply spatial
and temporal transformer layers, progressively refining the pre-
dicted motion features 𝐹 into 𝐹 ′. Finally, we regress the coarse 3D
joints 𝐽𝑡 ∈ R24×3 through the refined motion features 𝐹 ′. The loss
function can be formulated as below:

Linitial =

𝑇𝑜+𝑇𝑝∑︁
𝑡=1



𝐽𝑡 − 𝐽𝑡 

2 . (4)

3.4 Spatial-temporal Correlations Refinement
Leveraging the aforementioned modules, we derive the initial pre-
dicted 3D skeletal joints. However, given the structured nature of
human joint motion, it is crucial to explicitly model the spatial-
temporal correlations among various human joints for accurate
motion prediction. To address this, we employ a spatial-temporal
transformer to integrate joint features, local semantic features, and
global geometric features. This facilitates dynamic refinement of
these correlations, effectively modeling the spatio-temporal contex-
tual information. Specifically, we first embed the coarse 3D pose
prediction Ĵ = {𝐽1, 𝐽2, . . . , 𝐽𝑇 } into joint-wise features using an

Multilayer Perceptron(MLP) layer:

𝑬 joint = MLP(Ĵ) ∈ R𝑇×24×𝑑2 , (5)

where 𝑇 = 𝑇𝑜 + 𝑇𝑝 . Similarly, we transform the refined motion
features 𝐹 ′ to the same dimension:

𝑬𝐹 = MLP(𝐹 ′) ∈ R𝑇×(𝐾+1)×𝑑2 . (6)

These are concatenated to form tokens 𝑇𝐾 =
[
𝑬 joint ⊕ 𝑬𝐹

]
for the

transformer layers. To explore implicit information within these
tokens, we deploy a spatial transformer (STFormer) 𝐹𝑆𝑇𝐹 and a tem-
poral transformer (TTFormer) 𝐹𝑇𝑇𝐹 to capture the dependencies
within spatial and temporal dimensions, respectively. The STFormer
aims to model the spatial dependencies among all tokens within a
frame. We slice the token embedding 𝑇𝐾 at the spatial dimension
and encode the 𝑖th token 𝑇𝐾𝑖 with a learnable spatial positional
encoding to signify each token’s relative spatial location before
processing by STFormer. Utilizing the self-attention mechanism,
STFormer models the dependencies of all tokens per frame, yielding
spatially consecutive token-wise features as below:

𝐻𝑠 =

{
𝐹𝑆𝑇𝐹

(
𝑇𝐾1:(𝐾+25)

)
𝑡

���𝑇
𝑡=1

}
∈ R𝑇×(𝐾+25)×𝑑2 . (7)

Conversely, TTFormer is tasked with discerning the temporal cor-
relations to ensure temporal consistency and motion accuracy. It
regards each feature across the sequence as tokens, generating
features 𝑇𝐾𝑡 ∈ R(𝐾+25)×𝑑2 with a total of 𝑇 tokens, where 𝑇𝐾𝑡
represents the 𝑡 th token of the token embedding 𝑇𝐾 sliced in the
temporal dimension. Additionally, we append a learnable temporal
positional encoding to 𝑇𝐾𝑖 to mark each token’s temporal posi-
tion in the sequence. The TTFormer then encodes the temporally
modeled motion features as:

𝐻𝑡 =

{
𝐹𝑇𝑇𝐹 (𝑇𝐾1:𝑇 )𝑖

���(𝐾+25)
𝑖=1

}
∈ R𝑇×(𝐾+25)×𝑑2 . (8)

We adopt STFormer and TTFormer layers alternatively, which en-
ables a thoroughmodeling of spatial-temporal correlations. STFormer
layers effectively capture the complex spatial relationships present
in the data, whereas TTFormer layers adeptly model the temporal
dynamics of human motion. By focusing on both spatial and tempo-
ral aspects, essentially the “where” and the “when” of motion, our
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Table 1: Short-term motion prediction results of MPJPE(mm) on LIPD [53] and LiDARHuman26M [17] datasets. “AVG” means
the average MPJPE results of 100ms, 200ms, 300ms and 400ms.

Methods Publication Year LIPD [53] LiDARHuman26M [17]

100ms↓ 200ms↓ 300ms↓ 400ms↓ AVG↓ 100ms↓ 200ms↓ 300ms↓ 400ms↓ AVG↓
LiDARCap [17]+SPGCN [28] 2022 / 2022 82.63 100.98 116.71 128.67 107.25 83.69 94.68 105.09 113.97 99.35

LiDARCap [17]+Eqmotion [47] 2022 / 2023 81.27 97.26 111.28 122.79 103.15 83.01 91.66 101.15 109.91 96.43

LiDARCap [17]+AuxFormer [46] 2022 / 2023 82.09 99.19 113.80 124.89 104.99 83.77 94.90 105.36 113.96 99.50

LIP [53]+SPGCN [28] 2023 / 2022 77.75 95.67 111.40 123.68 102.12 81.20 91.43 101.22 110.07 95.98

LIP [53]+Eqmotion [47] 2023 / 2023 77.34 93.78 108.19 120.18 99.87 81.14 89.76 98.80 107.49 94.30

LIP [53]+AuxFormer [46] 2023 / 2023 77.81 95.00 109.85 121.18 100.96 81.31 91.70 101.77 110.25 96.26

LiveHPS [36]+SPGCN [28] 2024 / 2022 70.40 87.83 103.62 116.21 94.51 76.29 84.87 93.89 101.73 89.20

LiveHPS [36]+Eqmotion [47] 2024 / 2023 71.60 87.75 102.67 115.40 94.22 76.97 84.17 92.50 101.14 88.69

LiveHPS [36]+AuxFormer [46] 2024 / 2023 70.89 88.31 103.69 115.55 94.61 77.13 86.65 96.62 104.40 91.20

MDM [40] 2023 77.38 89.28 100.73 110.66 94.51 73.12 78.21 85.65 92.68 82.41

Ours 60.05 70.84 82.65 93.70 76.80 67.09 69.88 76.57 84.64 74.55

approach achieves a comprehensive analysis and synthesis, leading
to more accurate and coherent motion predictions.

3.5 Motion Prediction Head
In the network’s final phase, we employ dual heads to decode
human skeletons and point clouds concurrently, utilizingMultilayer
Perceptrons (MLPs). The joint-wise regression head utilizes three
MLP layers to decode the final joints 𝐽 ′𝑡 ∈ R24×3. To supervise the
training of this head, we apply an 𝐿2 loss:

Lfinal =

𝑇𝑜+𝑇𝑝∑︁
𝑡=1



𝐽 ′𝑡 − 𝐽𝑡 

2 . (9)

For the point-wise regression head, three MLP layers are employed
to decode each local-semantic feature into points corresponding to
each human body part. With 𝐾 predefined body parts, we achieve
the final point clouds representation 𝑃 ′𝑡 ∈ R𝐾×32×3. We compare
the point cloud obtained from the network outputs 𝑃𝑡 =

{
𝑝 ∈ R3

}
,��𝑃𝑡 �� = 𝑁 , with 𝑃𝑡 with the ground truth point cloud 𝑃𝑡 =

{
𝑝 ∈ R3

}
,

|𝑃𝑡 | = 𝑀 by Chamfer Distance as follow:

LCD,𝑡 =
1
𝑁

∑︁
𝑝∈𝑃𝑡

min
𝑝∈𝑃𝑡

∥𝑝 − 𝑝 ∥22 +
1
𝑀

∑︁
𝑝∈𝑃𝑡

min
𝑝∈𝑃𝑡

∥𝑝 − 𝑝 ∥22 . (10)

The overall loss is:

L = Linitial + Lfinal + LCD,𝑡 . (11)

3.6 Diverse Motion Prediction Extension
Given the highly subjective nature of human behaviour, motion
prediction requires multiple potential future predictions. We extend
our approach to diverse humanmotion prediction setting. Following
the above framework, we implement 𝐾 = 4 multiple learnable
motion queries in our adaptive motion intention prediction module.
For each probable motion feature, they share all the network weight
during the training process. We can regard each learnable query
as a different motion mode that can map the past motion into

multiple future motion latent space with various motion patterns.
The “winner-take-all" (WTA) training strategy [10, 20] is employed,
which only optimizes the best prediction with minimal average
prediction error to the ground truth human motion.

4 EXPERIMENTS
In this section, we begin by introducing the datasets (Sec.4.1), im-
plementation details (Sec.4.2). Subsequently, we conduct a qualita-
tive and quantitative comparison between our method and current
state-of-the-art (SOTA) methods on two publicly available LiDAR-
based human motion datasets (Sec.4.3), showcasing the superiority
and generalization capabilities of our approach. Additionally, we
conduct ablation studies to illustrate the superiority of our net-
work design (Sec.4.4). Moreover, we analyze the robustness and
generalization ability of our method (Sec.4.5). Finally, we present ex-
perimental results on diverse human motion predictions in Sec.4.6,
highlighting its importance and utility in real-world scenarios, par-
ticularly in long-term prediction, where human behavior is highly
unpredictable and emergent.

4.1 Datasets
LIPD [53] is a comprehensive dataset designed for LiDAR-related
motion capture and focuses on a variety of challenging motions.
It includes data from 15 performers executing around 30 motion
types, amounting to 62,341 frames of LiDAR point clouds. LiDARHu-
man26M [17] includes contributions from 13 volunteers, consisting
of 11 males and 2 females. Each volunteer participated in sessions
ranging from 15 to 30 minutes, performing 20 types of daily motions
such as walking, swimming, running, phoning, and bowing. The
dataset contains 184,048 frames with a total of 26,414,383 points.

4.2 Implementation Details
We build our network on PyTorch 2.1.0 and CUDA 12.1, trained
over 100 epochs with batch size of 128, using an initial learning
rate of 10−4. We set the hyper parameters of our model as {𝐾 =
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Table 2: Long-term motion prediction results of MPJPE(mm) on LIPD[53] and LiDARHuman26M [17] datasets. “AVG” means
the average MPJPE results of 600ms, 800ms and 1000ms.

Methods Publication Year LIPD [53] LiDARHuman26M [17]

600ms↓ 800ms↓ 1000ms↓ AVG↓ 600ms↓ 800ms↓ 1000ms↓ AVG↓
LiDARCap [17]+SPGCN [28] 2022 / 2022 142.82 153.70 159.64 152.05 125.42 134.03 137.89 132.44

LiDARCap [17]+Eqmotion [47] 2022 / 2023 138.83 147.95 154.44 146.91 120.93 126.85 131.36 126.38

LiDARCap [17]+AuxFormer [46] 2022 / 2023 137.10 147.15 153.54 145.93 122.86 129.72 134.05 128.87

LIP [53]+SPGCN [28] 2023 / 2022 138.08 149.46 155.76 147.76 120.79 129.18 133.27 127.75

LIP [53]+Eqmotion [47] 2023 / 2023 136.03 146.18 153.04 145.08 118.84 125.25 129.81 126.63

LIP [53]+AuxFormer [46] 2023 / 2023 133.79 144.11 150.79 142.89 118.73 125.60 130.39 124.91

LiveHPS [36]+SPGCN [28] 2024 / 2022 130.66 142.65 150.07 141.13 111.79 119.97 124.71 118.82

LiveHPS [36]+Eqmotion [47] 2024 / 2023 132.21 143.41 151.30 142.31 113.37 120.30 125.74 119.80

LiveHPS [36]+AuxFormer [46] 2024 / 2023 127.03 137.92 145.74 136.90 112.40 119.39 124.22 118.67

MDM [40] 2023 139.58 162.51 173.69 158.59 124.05 149.01 158.39 143.82

Ours 113.24 126.49 136.10 125.28 100.85 110.81 117.00 109.55

Table 3: Ablation studies for network design on LIPD dataset, where “SBFD” denotes our structure-aware body feature descriptor
module, and “STCR” represents the spatial-temporal correlations refinement module.

Network Module short-term long-term

Baseline SBFD STCR point prediction 100ms 200ms 300ms 400ms AVG 600ms 800ms 1000ms AVG

! 64.49 75.44 87.48 98.71 81.53 116.60 128.96 138.08 127.88

! ! 61.91 73.11 84.64 95.87 78.88 114.44 126.91 136.17 125.84

! ! ! 60.46 71.30 83.08 94.21 77.26 113.10 125.78 135.33 124.74

! ! ! ! 60.05 70.84 82.65 93.70 76.80 112.84 125.51 135.11 124.49

9, 𝑑1 = 1024, 𝑑2 = 512} across all experiments. The process was run
on a server equipped with two Intel(R) Xeon(R) E5-2678 CPUs and
4 NVIDIA RTX3090 GPUs. We resample each frame of input point
clouds 𝑃𝑖 to a fixed 𝑁 = 256 points by the farthest point sample
algorithm, thenwe subtract the center coordinates of point clouds to
normalize the input data. Following skeleton-based human motion
prediction methods [18, 28], our model takes 0.4s continuous point
clouds as input(4 frames for LiDAR with 10fps), and we predict
the future 0.4s(4 frames) and 1.0s(10 frames) human motion for
short-term and long-term prediction, respectively. For compared
methods, we keep the same training strategy as in the original paper.
For training data, we take training set of LiDAR-related human
motion dataset LIPD [53], LiDARHuman26M [17], and synthetic
dataset of a subset of AMASS [29], including ACCAD, BMLMovi,
CMU following LIP [53]. We leverage Mean Per Joint Position Error
(MPJPE) in millimeters as our evaluation metric, which is a common
metric used for evaluating the accuracy of predicted 3D human
poses against ground truth data.

4.3 Results
We evaluate LiDAR-HMP against several state-of-the-art meth-
ods [17, 28, 36, 40, 46, 47, 53] on two public datasets (LIPD [53]
and LiDARHuman26M [17]) to demonstrate its superiority in 3D
human motion prediction task. The results for short-term and long-
term human motion prediction are shown in Tab. 1 and Tab. 2,
respectively.

(1) Comparison with two-stage methods. Conventional methods
for human motion prediction typically rely on historical ground
truth skeletons as input. In contrast, our method utilizes histor-
ical LiDAR frames alone. We integrate results from state-of-the-
art LiDAR-based 3D human pose estimation methods into these
skeleton-based approaches. Due to accumulative error and the
loss of fine-grained features, two-stage methods often show de-
graded performance in real-world scenarios that depend solely on
raw sensor data. In contrast, our approach demonstrates substan-
tial improvements, achieving enhancements of average 17.42mm
and 7.86mm in short-term human motion prediction, and average
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Table 4: Ablation of structure-aware body feature descriptor
on LIPD dataset.

global local 100 200 300 400 600 800 1000

! 63.40 74.65 86.88 98.08 116.28 128.74 137.78
! 60.67 71.42 82.93 93.90 114.26 127.05 136.57

! ! 60.05 70.84 82.65 93.70 112.84 125.51 135.11

Table 5: Ablation of adaptive motion latent mapping module
on LIPD dataset.

100 200 300 400 600 800 1000

static padding 60.95 71.47 83.11 94.27 113.21 126.33 136.39
linear mapping 60.94 71.93 83.62 94.70 113.58 126.29 136.49

ours 60.05 70.84 82.65 93.70 112.84 125.51 135.11

LIPD

T(ms)

LiDARHuman26M

T(ms)

MDM

LiveHPS+AuxFormer

Ours

GT

0 1000 -400 0 1000

INPUT
-400

INPUT

Figure 3: Qualitative comparisons of long-term predictions on LIPD and LiDARHuman26M dataset. “GT” denotes the future
ground truth skeletons. The green arrow denotes the motion trace.

11.62mm and 9.12mm in long-term prediction on the LIPD and Li-
DARHuman26M datasets, respectively. This superior performance
stems from our method’s capability to fully capture the dynamic
spatial-temporal motion features from raw LiDAR point clouds.
Our approach not only bypasses the inaccuracies introduced by
intermediate skeletons from 3D pose estimation methods, but also
retains the fine-grained, point-level features from the raw LiDAR
data.

(2) Comparison with diffusion-based method. In addition, we also
adapt the Motion Diffusion Model (MDM) [40] methodology for
LiDAR-based human motion prediction by substituting its text en-
coder with a PointNet [35] encoder for another comparison. From
Tab. 1 and Tab. 2, we can observe that diffusion-based methods ob-
tain limited performance. This is mainly because the diffusion-based
method relies on gradually denoising a signal towards generating a
coherent output, may struggle with the variability and noise inher-
ent in point cloud data. The nuances of human motion, particularly
subtle movements are lost or inadequately captured during the
diffusion process.

Furthermore, visual comparisons in Fig. 3 highlight our method’s
superiority in predicting long-term complex motions. Such as pre-
dicting the motion of bending down and getting up in LIPD and
the motion of the lowering left hand and raising the right hand in
LiDARHuman26M, MDM and two-stage method can only predict
short-termmotions or remain consistent with historical motions. By
effectively modeling dynamic spatial-temporal correlations among
structure-aware motion features from raw visual input, our ap-
proach offers enhanced accuracy and applicability in real-world
scenarios of 3D human motion prediction.

4.4 Ablation on Network and Module Design
(1) Ablation on overall network design. We assess the efficacy of

our proposed modules through comprehensive ablation studies on
LIPD [53] dataset, as detailed in Tab. 3. Notably, our baseline models
focus solely on global-geometric feature extraction and incorporate
the adaptive motion latent mapping module. Incorporating fine-
grained local-semantic features leads to average 2.65𝑚𝑚, 2.04𝑚𝑚
improvements on short-term and long-term prediction, respectively.
The addition of our spatial-temporal correlations refinement module,
which explicitly models the spatial-temporal relationships among
distinct body joints and structure-aware motion features, further
refines our 3D human motion predictions. Introducing an auxiliary
points regression head also contributes to performance improve-
ments by providing additional supervision, thereby enhancing the
network’s predictive capabilities.

(2) Structure-aware body feature descriptor. The analysis pre-
sented in Tab. 4 underscores the importance of fine-grained local-
semantic feature modeling, especially for capturing nuanced body
movements. Our approach effectively leverages both holistic global-
geometric motion features and detailed local-semantic information,
delivering more robust and precise human motion predictions.

(3) Adaptive motion latent mapping. To validate the effectiveness
of our adaptive motion latent mapping module, we conducted ex-
periments by replacing the module’s learnable motion query with a
linear mapping in the temporal dimensions using an MLP. Addition-
ally, we compare our method against a "static padding" approach,
where future motions are extrapolated by replicating the last frame
of observed motion at the input stage. As shown in Tab. 5, our
approach achieves superior performance. This is attributed to our
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Table 6: MinMPJPE(mm) results of diverse motion prediction extension. “AVG” means the average MPJPE(mm).

motions LIPD [53] LiDARHuman26M [17]

200ms↓ 400ms↓ 600ms↓ 800ms↓ 1000ms↓ AVG↓ 200ms↓ 400ms↓ 600ms↓ 800ms↓ 1000ms↓ AVG↓
1 70.84 93.70 113.24 126.49 136.10 108.07 69.88 84.64 102.16 112.51 118.40 97.51
4 68.61 87.49 98.25 106.03 117.68 95.61 64.57 78.09 91.16 98.25 107.21 87.85

Table 7: Ablation on LIPD with simulated occlusion.

occlusion ratio 100 200 300 400 600 800 1000

0% 60.05 70.84 82.65 93.70 112.84 125.51 135.11
20% 61.60 72.60 84.48 95.68 114.66 127.31 136.72
40% 62.96 74.22 86.34 97.70 116.16 128.62 137.88
80% 66.57 78.29 90.75 102.20 120.28 132.59 141.40

Table 8: Ablation on LIPD with simulated noise.

noise ratio 100 200 300 400 600 800 1000

0% 60.05 70.84 82.65 93.70 112.84 125.51 135.11
20% 61.49 72.52 84.55 95.81 113.97 126.63 136.18
40% 62.29 73.29 85.24 96.42 114.43 127.27 136.96
80% 63.02 74.02 85.93 97.13 115.47 128.21 137.55

learnable motion query’s ability to selectively assimilate informa-
tion from past motion features and more accurately project it into
the future motion latent space.

4.5 Generalization Capability Test
(1) Distance. To assess the generalization capability of our LiDAR-

HMP across point clouds of varying sparsity and distances, we
evaluate our method on the LIPD testing sets. Performance of the
short-term motion prediction at 0.4s and long-term motion predic-
tion at 1.0s in different distances is illustrated in Figure 4. Despite
the decreasing density of LiDAR human point clouds with increas-
ing distance results in sparser representations, our method still
maintains stable performance up to a long-range distance of 17
meters. This stability is crucial for large-scale applications such
as autonomous driving and robot obstacle avoidance, where mo-
tion prediction at long ranges is essential. At about 20 meters, the
point cloud may reduce to roughly 30 points, capturing only the
basic human outline, which poses challenges for capturing detailed
movements. Nonetheless, our method consistently delivers the best
performance, even under these extreme conditions.

Short-term(0.4s)

M
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PE
(m
m
)

77
.5

95
.0

11
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0.0
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68.37
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143.52
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164.15 161.04

151.12
145.57

LiveHPS+AuxFormer
MDM
Ours

Figure 4: Evaluation for the generalization capability on var-
ious distances on LIPD.

(2) Occlusion and noise. To evaluate the robustness of our al-
gorithm against occlusions and noise, we conduct simulations on
the LIPD dataset. We introduce random noise by adding 30 noise
points around the human point clouds and apply noise to 20%, 40%,
and 80% of the frames, respectively. For occlusion simulation, we

randomly mask points within a cubic region measuring 0.4 meters
on each side on the human body, affecting 20%, 40%, and 80% of the
frames respectively. The results, as presented in Tab. 7 and Tab. 8,
demonstrate that even under severe 80% noise or occlusion, the
performance of our algorithm only slightly decreases, underscoring
its robustness to noise and occlusions. More visualization results on
noise and occlusion cases are detailed in our supplementary.

(3) Real-world applications. Fig. 1 shows that ourmethod is practi-
cal for in-the-wild scenarios, capturing human motion in real-world
scenarios day and night with real-time performance about 40 fps.
This strongly demonstrates the feasibility and superiority of our
method in real-life applications.

4.6 Diverse Motion Prediction Extension
Given the inherent spontaneity and unpredictability of human be-
havior, deterministic action predictions, which provide only a single
outcome, are not optimal for scenarios requiring the anticipation
of multiple possible outcomes for accurate decision-making. To
address this, we expand our framework to diverse human motion
predictions, covering up to four potential future motions. Our com-
parative analysis of deterministic and diverse motion predictions,
detailed in Table 6, reveals that as the prediction time horizon in-
creases, so does the uncertainty in human motion. This underscores
the benefits of adopting diverse predictions, particularly for long-
term forecasting. Visualizations of these diverse motion prediction
results can be found in our supplementary materials.

5 CONCLUSION
We introduce the first single-LiDAR-based method for practical 3D
human motion prediction. Building upon our effective structure-
aware body feature descriptor, our approach adaptively maps the
observed motion manifold to the future and models the spatial-
temporal correlations of the human motion for further refinement.
Additionally, we extend our method to support diverse predictions,
accommodating multiple potential future motions for improved
decision-making in real-world applications. Extensive experiments
validate our method’s superior performance and generalization
capabilities in real-world human motion prediction scenarios.
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