DELTA: How Does RL Unlock and Transfer New Algorithms in LLMs?

Yiyou Sun¹, Yuhan Cao, Pohao Huang¹, Haoyue Bai², Hannaneh Hajishirzi³,⁴, Nouha Dziri⁴, Dawn Song¹ ♠

¹University of California, Berkeley, ²University of Wisconsin, Madison, ³University of Washington, ⁴Ai2

Abstract

Can reinforcement learning (RL) teach language models *new* reasoning procedures, or does it merely sharpen what pretraining already encodes? We introduce **DELTA**—**D**istributional **E**valuation of **L**earnability and **T**ransferrability in Algorithms—a controlled benchmark of synthetic programming families with templated generators and fully OOD splits. DELTA enables two tests: *learnability* (can RL solve families where base models have pass@K=0) and *transferability* (do acquired procedures generalize across exploratory, compositional, and transformative axes). We observe a striking **grokking** transition: after long near-zero reward, RL abruptly reaches near-perfect accuracy. A staged recipe—dense test-case rewards for warm-up, followed by binary verification, plus experience replay and curriculum—unlocks learnability on previously unsolved families. Generalization improves within families and for recomposed skills but remains fragile under transformative shifts. DELTA offers a clean testbed for probing RL-driven reasoning beyond memorized priors.

1 Introduction

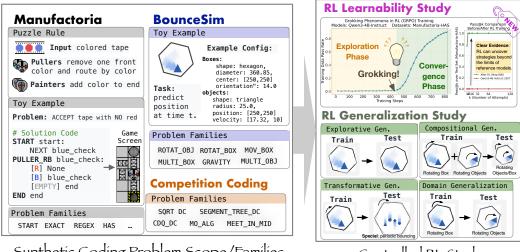
Do RL-trained language models merely refine latent heuristics, or can they acquire *genuinely new* procedures? Recent work offers conflicting views (Yue et al., 2025; Wu et al., 2025; Liu et al., 2025b,a). We make this debate testable using two criteria: *learnability*—whether RL can instill a procedure the base model fails to execute even with many attempts (pass@K=0)—and *generalization*—whether the acquired procedure transfers systematically to out-of-distribution (OOD) variants rather than reflecting memorization. Open math/coding benchmarks mix topics and difficulty, confounding attribution of gains. Controlled synthetic families permit precise train–test splits, difficulty scaling, and attribution to specific skills, allowing us to detect phase transitions and measure transfer.

Standard GRPO/PPO pipelines often use sparse pass/fail rewards (Guo et al., 2025), which stall learning on hard families. Programming tasks provide natural *dense* feedback via test cases. We leverage this by warming up with test-case rewards to encourage partial progress, then switching to strict verification to consolidate exact solutions. While coding uniquely scales this signal, the principle—*use intermediate structure before enforcing binary correctness*—applies broadly to reasoning domains.

We introduce **DELTA**, a controlled benchmark of synthetic programming families (e.g., puzzle-like automata and physical simulation) generated from templates. DELTA supports clean studies of learnability, difficulty scaling, and transfer across families. **a) Learnability and grokking.** On families where base models have pass@K=0, binary-reward RL yields no positive signal and collapses. A staged regime—dense-to-binary rewards, experience replay, curriculum, and verification-in-the-loop—creates a long exploratory plateau followed by an abrupt **grokking** jump to near-perfect

^{*}Core dataset contributor, independent researcher.

[♣] Indicates equal advising role in alphabetical order.



Synthetic Coding Problem Scope/Families

Controlled RL Study

Figure 1: Overview of DELTA with controlled RL studies. *Left*: Synthetic Programming Problem families—Manufactoria with custom syntax and puzzle-like rules, BounceSim with physical simulation, etc. *Right*: Controlled RL experiments. *Top*: Learnability shows grokking, where RL shifts from long exploration to sudden convergence, uncovering strategies beyond reference models. *Bottom*: Generalization extends OMEGA (Sun et al., 2025) across four axes—Exploratory, Compositional, Transformative, and Domain-level—testing adaptation to harder or recombined tasks.

accuracy, indicating discovery of procedures absent from the base model. **b) Generalization along three axes.** Building on OMEGA (Sun et al., 2025) and Boden's creativity typology (Boden, 1998), we evaluate transfer along: (1) *Exploratory* (harder variants within a family), (2) *Compositional* (recombining learned skills), and (3) *Transformative* (unconventional solutions that shift the problem space). RL-trained models generalize well in exploratory and recomposed settings, but performance degrades on transformative cases, revealing persistent limits.

Contributions. (1) **DELTA**, a controlled benchmark isolating reasoning skills with fully OOD splits and richly graded rewards, avoiding tool-use shortcuts and data confounds. (2) **Learnability beyond sharpening**: staged RL yields a grokking transition from failure to mastery on pass@K=0 families, demonstrating acquisition of procedures not executed by the base model, while easier regimes chiefly show sharpening. (3) **Three-axis generalization**: strong gains within families and for recomposed skills, with weaknesses under transformative shifts—clarifying both the promise and the boundaries of RL-driven reasoning.

2 DELTA: Controlled Programming Problem Families

We operationalize *learnability* and *generalization* with **DELTA**, a controlled suite of synthetic programming families.

From OMEGA to DELTA. OMEGA (Sun et al., 2025) studies exploratory, compositional, and transformative generalization across 40 math families. DELTA complements it in programming, where templated generators yield automatically verifiable tasks, tunable difficulty, and clean distributional control. Key advantages over OMEGA: (a) a truly OOD scope (Manufactoria) with novel syntax/strategies; (b) reduced tool shortcuts—the target is the *program* itself; (c) rich reward signals via per–test case pass rates that enable staged dense—binary training. Figure 1 illustrates the five scopes; we detail the one for learnability below (dataset designed for generalization test is in Appendix A).

2.1 Manufactoria (OOD Problems for Learnability)

Manufactoria reimagines the 2010 puzzle as a compact program syntax built from two node types (puller, painter), akin to assembling finite-state automata/tag systems. The OOD status stems from: (i) our custom syntax (not present in pretraining corpora); (ii) newly synthesized families rather than reused game levels; (iii) distinctive strategies unlike standard coding/Turing-machine tasks.

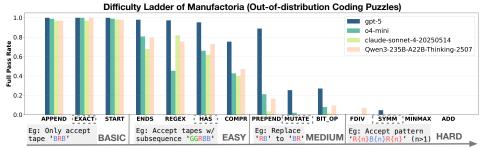


Figure 2: The *Manufactoria* difficulty ladder: 14 families grouped into BASIC/EASY/MEDIUM/HARD. Each split has 20–50 problems; full-pass rates are averaged over 4 runs.

Difficulty ladder. We construct 14 families (e.g., HAS requires accepting tapes containing a subsequence like GGRBB), organized into BASIC→EASY→MEDIUM→HARD. BASIC/EASY suit small models (1.5B–4B); MEDIUM/HARD probe SOTA. The novelty makes *Manufactoria* a clean OOD benchmark: MEDIUM exposes a large gap—only GPT-5 attains non-trivial pass rates; others remain near zero. HARD is unsolved across models, highlighting sharp difficulty transitions and current limits.

3 Learnability Study: Can RL Uncover New Strategies and How to Accelerate it?

A central debate in recent research concerns whether reinforcement learning (RL) can endow models with reasoning abilities beyond those of their base model.

The skeptical view. Yue et al. (2025) argue that although RLVR-trained models outperform their base models at small k (e.g., k=1), the base models achieve equal or superior pass@k performance when k is large. Their coverage and perplexity analyses suggest that reasoning capabilities are ultimately bounded by the base model's support. Similarly, Wu et al. (2025) provide a theoretical argument that RLVR cannot extend beyond the base model's representational limits.

The optimistic view. In contrast, Liu et al. (2025b) demonstrates that ProRL can expand reasoning boundaries on tasks where the base model performs poorly—specifically in letter-formed 2D puzzles from Reasoning Gym (Stojanovski et al., 2025).

Our contribution: a clean testbed and clear evidence for RL enable grokking in LLMs. Existing evidence in favor of RL's generalization often comes from large, heterogeneous training corpora. This makes it difficult to isolate why and how RL might discover novel strategies. To address this, DELTA offers a controlled environ-

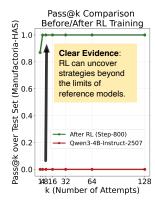


Figure 3: Pass@k comparison before and after RL training on the Manufactoria-HAS.

ment: synthetic problem families that are both out-of-distribution (requiring novel strategies) and internally consistent (free of data confounds). We focus on the Manufactoria-HAS family (742 training / 100 test instances), where the reference model *Qwen3-4B-Instruct-2507* achieves **0% full pass rate at pass@128**. As shown in Figure 3, our staged RL training strategies enables the model to fully solve this family, achieving 100% full pass rate. Next, we detail how this is made possible.

3.1 Basic Setup

Unless otherwise specified, the reference model is Qwen3-4B-Instruct. Training and testing datasets are drawn from single or combined problem families introduced in Section 2. By default, each training step consists of 48 prompts with 16 rollouts. The learning rate is set to 5×10^{-7} . For code training, the default reward signal is $full\ pass$, a binary indicator of whether a program passes all test cases. In later experiments, we also consider per-test $pass\ rate$ as the reward signal, measuring the fraction of test cases passed. A more detailed experiment setup parameter descriptions are included in Appendix C. We also provide complementary experiments with alternative model families, sizes, and problem domains in Appendix D.1.

3.2 How to Solve "pass@K=0" Tasks with RL?

The skeptical position that RL cannot exceed the boundaries of the base model is understandable for a simple reason: GRPO (Guo et al., 2025) depends on reward differences across rollouts. If no rollout ever succeeds (as in "pass@K=0" tasks), there is no gradient signal to learn from. Indeed, as Figure 4(a) shows, naïve GRPO training stagnates. Thus, the central challenge is:

If no rollout achieves a full pass, how can RL propagate a meaningful learning signal?

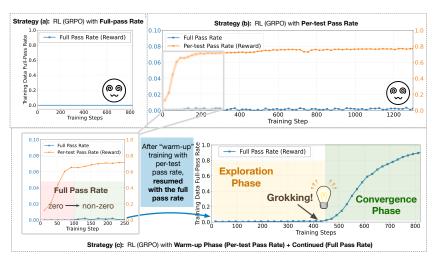


Figure 4: Comparison of strategies solving "pass@K=0" tasks. (a) Directly optimizing for full-pass rate under GRPO fails. (b) Training with a per-test pass rate provides a smoother reward but quickly saturates. (c) A two-phase training—warming up with per-test pass rate, then switching to full-pass reward. All training is performed on Manufactoria-HAS family and the reference model *Qwen3-4B-Instruct-2507*.

Per-test pass rate training. One solution is to exploit partial credit. Instead of the all-or-nothing full pass rate (reward = 1 only if all test cases pass), we use a finer-grained per-test pass rate, a continuous reward in [0,1]. As Figure 4(b) shows, this signal provides initial learning traction. However, it quickly saturates after \sim 100 steps, and the full-pass rate remains negligible (<0.01%).

Warm-up phase. Even though it can not serve as a full surrogate loss, we find that the per-test pass rate can serve as an important warm-up stage that pushes the model out of the all-zero region. As shown in Figure 4(a), this signal allows the model to move beyond the all-zero region: although the full-pass rate remains < 1%, the model begins to accumulate positive gradients.

Exploration and grokking. From this warm-up checkpoint, we switch to RL with the binary full-pass reward. Figure 4(b) illustrates the dynamics: For \sim 450 steps, the model remains in an *exploration phase*, with full-pass rate still < 1%. After a sudden **grokking moment**, the model discovers the key strategy to solve the family. Training then enters a *convergence phase*, where RL sharpens and consistently reinforces the successful reasoning path. At convergence, the RL-trained model achieves nearly a 100% absolute improvement in pass@k compared to the reference model (Figure 3). We also observe this phenomena with other model families, sizes, and problem domains in Appendix D.1

Due to the space limitation, the experiments for the generalization study is in Appendix A.

4 Discussion and Implications for Future Study

Study the hard subset. Averages over mixed pools obscure the "hard frontier"—instances with pass@K=0 for strong base models (Huan et al., 2025; Guha et al., 2025; Liu et al., 2025b,a). These cases show distinct dynamics: RL often exhibits a grokking-like jump after hundreds—thousands of steps, but in heterogeneous pools their signal is diluted by easier items. We argue evaluations should explicitly isolate and track this subset to measure progress on genuinely novel reasoning.

Beyond coding: to math and science. Dense, verifiable feedback lets RL cross the learnability gap in code; analogous signals can make math/science amenable too—e.g., rubric scoring, stepwise checkers, theorem-prover verification, and simulation/constraint evaluators. We expect these finegrained supervisors to transfer DELTA's insights and unlock currently unsolved problems.

References

- Lean community. https://leanprover-community.github.io/, 2025. Accessed: 2025-09-22.
- Margaret A Boden. Creativity and artificial intelligence. *Artificial intelligence*, 103(1-2):347–356, 1998.
- Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning models. arXiv preprint arXiv:2506.04178, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Poovendran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities? understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.
- Zenan Li, Zhaoyu Li, Wen Tang, Xian Zhang, Yuan Yao, Xujie Si, Fan Yang, Kaiyu Yang, and Xiaoxing Ma. Proving olympiad inequalities by synergizing llms and symbolic reasoning. *arXiv* preprint arXiv:2502.13834, 2025.
- Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin, Shaokun Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking diverse reasoning in llms via prolonged training. *arXiv preprint arXiv:2507.12507*, 2025a.
- Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong. Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models. arXiv preprint arXiv:2505.24864, 2025b.
- Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autoformalizing euclidean geometry. *arXiv preprint arXiv:2405.17216*, 2024.
- Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour, and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning with verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.
- Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn Song. Omega: Can Ilms reason outside the box in math? evaluating exploratory, compositional, and transformative generalization. *arXiv* preprint arXiv:2506.18880, 2025.
- Kyle Wiggers. People are benchmarking ai by having it make balls bounce in rotating shapes. *TechCrunch*, 2025. Retrieved from https://techcrunch.com/2025/01/24/people-are-benchmarking-ai-by-having-it-make-balls-bounce-in-rotating-shapes/.
- Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr may not escape its origin. *arXiv preprint arXiv:2507.14843*, 2025.
- Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale lean problem set formalized from natural language math problems. *Advances in Neural Information Processing Systems*, 37:105848–105863, 2024.
- Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv* preprint arXiv:2504.13837, 2025.
- Haoyu Zhao, Yihan Geng, Shange Tang, Yong Lin, Bohan Lyu, Hongzhou Lin, Chi Jin, and Sanjeev Arora. Ineq-comp: Benchmarking human-intuitive compositional reasoning in automated theorem proving on inequalities. *arXiv* preprint arXiv:2505.12680, 2025.

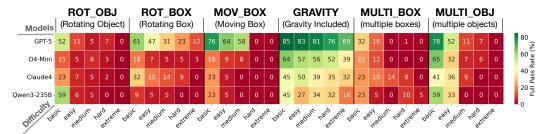


Figure 5: Full-pass rate (%) on *BouncingSim* across families (ROT_OBJ, ROT_BOX, MOV_BOX, GRAVITY, MULTI_BOX, MULTI_OBJ) and tiers (BASIC→EXTREME). Means over 4 runs on 50 tests/split.

A Generalization Study

A.1 BouncingSim (2D Simulation Problems Family for Generalization)

Task design. We formalize the community "bouncing ball" program: given a deterministic initial state (geometry, positions, velocities), the model must synthesize code that returns the exact state at a queried time. Instances are (a) *verifiable* via an oracle; (b) *synthesizable* from templated generators with Box2D ground truth; (c) *composable* by combining single-skill families (e.g., ROT_BOX, ROT_OBJ) into multi-skill ones; and (d) *difficulty-controlled* from BASIC to EXTREME by scaling polygon complexity, speeds, motion, gravity, and counts of objects/boxes (Appendix B).

Generalization axes. Aligned with OMEGA's typology: (a) *Exploratory*: test uses smaller containers with denser collisions than training; (b) *Compositional*: train on rotating boxes and rotating objects separately, test on the combined ROT_BOX_OBJ; (c) *Transformative*: introduce qualitatively different dynamics (e.g., perfectly periodic trajectories from special initial states) absent from training.

Results (Figure 5). GPT-5 leads overall; accuracy declines with difficulty and composition. MULTI_BOX is challenging even at BASIC ($\sim 30\%$); MULTI_OBJ drops from $\sim 80\%$ (BASIC) to $\sim 10\%$ (MEDIUM). Other LLMs typically achieve $\leq 30-40\%$ on EASY/MEDIUM and near zero on HARD/EXTREME and most compositional settings. *BouncingSim* thus isolates what current models can (and cannot) generalize, clarifying when RL sharpens skills versus catalyzes new procedures.

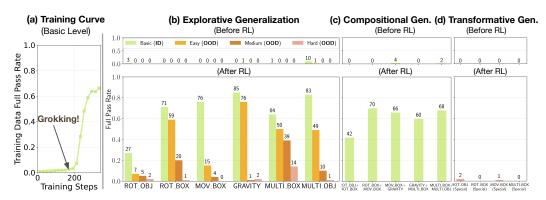


Figure 6: **Generalization Study on BOUNCINGSIM**. (a) Training full-pass rate on the Basic-level mixture (6 families, 1k each) for *Qwen3-4B-Instruct* with binary full-pass reward shows a sharp *grokking* jump near step 200. (b) *Explorative generalization:* Before RL (top) the model rarely solves any OOD cases; after RL (bottom) it transfers to Easy/Medium/Hard variants with diminishing gains as difficulty increases (bars aggregate 6 families × 4 tiers; 100 prompts per cell, averaged over 4 runs). (c) *Compositional generalization:* Zero-shot composition of skills. (d) *Transformative generalization:* Qualitatively new dynamics (e.g., special periodic trajectories) remain near zero after RL. Results are averaged over 4 runs.

Setup. We study how far the learned programmatic skills transfer beyond the training distribution. Unless noted, the reference model is *Qwen3-4B-Instruct*. We train on a Basic-level mixture of six single-skill families—ROT_OBJ, ROT_BOX, MOV_BOX, GRAVITY, MULTI_BOX, MULTI_OBJ—with 1k instances per family (6k total). Because the base model has non-zero full-pass on some basic instances, we directly optimize a *binary full-pass reward* (all tests pass) for 300 gradient steps; all other hyperparameters follow Section 3. Evaluation spans three axes—*explorative*, *compositional*, and *transformative*—and reports *full pass rate* (fraction of prompts for which the synthesized program

exactly matches the oracle on all unit tests). For explorative generalization we consider four difficulty tiers (Basic=ID, Easy/Medium/Hard=OOD) crossed with the six families; each bar in Figure 6 aggregates. More detailed setup is in Appendix C.

Training dynamics (Fig. 6a). We again observe a sharp *grokking* phase transition: after a long plateau of near-zero reward, performance on the training mixture jumps around the step 200 to 0.7 full pass rate, indicating the emergence of stable simulation code that handles elastic collisions.

Generalization results (Fig. 6b–d). RL-trained models transfer beyond the training distribution, but with varying success across axes. In *explorative generalization*, performance is strong on Basic (ID, 70–85%) and carries over to Easy (50–75%), though gains shrink on Medium (15–50%) and nearly vanish on Hard (single digits). For *compositional generalization*, the model demonstrates surprising skill integration: unseen combinations such as ROT_BOX+MOV_BOX, MOV_BOX+GRAVITY, and MULTI_BOX+MULTI_OBJ achieve 60–70% full-pass (vs. near-zero before RL), in contrast to the weak compositional transfer reported in OMEGA (Sun et al., 2025). We attribute this to coding tasks composing *structurally* (merging simulation modules) rather than *strategically* (inventing new reasoning steps). Finally, in *transformative generalization*, models remain near zero on qualitatively novel dynamics such as perfectly periodic or degenerate trajectories, which demand the discovery of new invariants and align with the persistent difficulty of transformative math generalization.

Takeaways. RL discovers executable simulators that (i) transfer well to parametric shifts and (ii) compose across skills, but (iii) struggle when the test distribution demands qualitatively different solution schemas. Coding tasks appear more amenable to structural composition than symbolic math, yet transformative "schema creation" remains an open challenge. Figure 6 summarizes these trends.

B Dataset Details

B.1 Manufactoria

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort robots based on their colored tape patterns. The underlying logic resembles constructing finite-state automata or tag systems using two special node types (puller, painter). While the original game is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as the syntax defined as a prompt below.

_ Prompt Template of Manufactoria Problems ___

Manufactoria Solution DSL

A Domain Specific Language for describing Manufactoria puzzle solutions in text format.

Overview

Manufactoria is a puzzle game where you build automated factories to sort robots based on their colored tape patterns. Robots enter your factory carrying sequences of colored tape, and you must route them to the correct destinations based on the given criteria.

Game Mechanics

```
### Robots and Tape
- **Robots**: Each robot carries a sequence of colored tapes
- **Tape Colors**: Primary colors are Blue (B) and Red (R), with additional
Yellow (Y) and Green (G) for advanced puzzles
- **Tape Representation**: Sequences are represented as strings
(e.g., `RBRR`, `BBR`, or empty string `""`)

### Operations
- **Pull**: Remove tape from the front of the robot's sequence
- **Paint**: Add colored tape to the end of the robot's sequence
```

```
- **Route**: Direct robots through the factory based on their current tape state
### Objective
Route robots to the correct destinations based on their final tape
configuration and the puzzle requirements:
- **Accepted**: Robot reaches the END node
- **Rejected**: Robot is routed to the NONE node, or caught in an infinite
loop, or robot reaches the END node but fails to meet the puzzle's
acceptance criteria
## DSL Syntax
### Program Structure
Every solution must start with a `START` directive and end with an
`END` directive, wrapped in ``manufactoria ...``:
```manufactoria
START start:
 NEXT <next_node_id>
Factory logic goes here
END end
Node Types
1. Puller Nodes
Pullers remove specific colors from the front of the robot's tape sequence
and route based on the current front color.
Red/Blue Puller:
```manufactoria
PULLER_RB <node_id>:
   [R] <next_node_id>
                        # Route and remove color if front tape is Red
   [B] <next_node_id> # Route and remove color if front tape is Blue
   [EMPTY] <next_node_id> # Route if no tape or front tape is neither R nor B
**Yellow/Green Puller:**
```manufactoria
PULLER_YG <node_id>:
 [Y] <next_node_id>
 # Route and remove color if front tape is Yellow
 [EMPTY] <next_node_id> # Route if no tape or front tape is neither Y nor G
Note: Unspecified branches default to `NONE`, which rejects the robot.
2. Painter Nodes
Painters add colored tape to the end of the robot's sequence and continue
to the next node.
```manufactoria
PAINTER_RED <node_id>:
```

```
NEXT <next_node_id>
PAINTER_BLUE <node_id>:
    NEXT <next_node_id>
PAINTER_YELLOW < node_id>:
    NEXT <next_node_id>
PAINTER_GREEN < node_id>:
  NEXT <next_node_id>
## Syntax Rules
1. **Node IDs**: Must be unique identifiers (alphanumeric characters
and underscores only)
2. **Comments**: Lines starting with `#` are comments (single-line only)
3. **Indentation**: Use consistent spaces or tabs for route definitions
4. **Case Sensitivity**: Colors must be uppercase (R, B, Y, G)
5. **Termination**:
   - Robots routed to `NONE` are rejected
   - Robots routed to the END node are accepted{objective_clause}
6. **Code Blocks**: Final factory code should be wrapped in triple
backticks with ``` markers
## Example
Here's a simple example that accepts robots with exactly one red tape
(ending tape should be empty):
```manufactoria
START start:
 NEXT entry
PULLER_RB entry:
 [R] end
END end
Your task is to design a factory with code with following functionality:
{criteria}
 _ The End of Prompt ___
```

The criteria are defined in the Table 1 with different problem families.

We synthesize each problem family by starting from a parameterized template (alphabet, tape operation(s), acceptance predicate, and any numeric thresholds) and then perturbing those parameters within a constrained search space. Discrete knobs (e.g., start/end substrings, regex subpatterns, token rewrites) are toggled or swapped with near neighbors, while numeric knobs (e.g., bitwise constants, comparison thresholds, additive offsets, division factors) are jittered by small deltas drawn from a valid set (e.g.,  $\pm 1$ ,  $\pm 2$ , powers of two), with guards to keep the task well-posed and nontrivial.

<b>Problem Family</b>	Difficulty	Criteria Examples			
APPEND	BASIC	Accept any input and append the sequence RBR to the end of the			
		tape.			
EXACT	BASIC	Accept if the tape is exactly RBB.			
START	BASIC	Accept if the tape starts with BR.			
ENDS	EASY	Accept if the tape ends with BB.			
REGEX	EASY	Accept if the tape matches the regex pattern (RBR)+(B)? exactly.			
HAS	EASY	Accept if the tape contains the substring RYY (must be consecu			
COMPR	EASY	tive).  Treat Blue as 1 and Red as 0. Accept if the binary number is greater than or equal to 13.			
PREPEND	MEDIUM	Put BR at the beginning of the tape.			
MUTATE	<b>MEDIUM</b>	Change all RB to BR sequentially.			
BIT_OP	<b>MEDIUM</b>	Treat Blue as 1 and Red as 0. Apply bitwise OR with 16 to th			
		binary number.			
FDIV	HARD	Treat Blue as 1 and Red as 0. Apply floor division by 4 to the			
		binary number.			
SYMM	HARD	Accept strings that match the pattern $R\{n\}B\{n+1\}$ for any $n \ge 1$ .			
MINMAX	HARD	Treat Blue as 1 and Red as 0. Output the maximum of 11 and			
		input.			
ADD	HARD	Treat Blue as 1 and Red as 0. Apply add 8 to the binary number.			

Table 1: Manufactoria Problem families with difficulty levels and acceptance criteria.

# **B.1.1** Example Traces Comparison of a MANUFACTORIA-HAS Problem

Here is one example response of *Qwen3-4B-Instruct* on a problem in MANUFACTORIA-HAS: "Accept if the tape contains the substring BRRR (must be consecutive)".

### \_ Failure Case \_

To design a \*\*Manufactoria solution\*\* that \*\*accepts robots whose tape contains the substring 'BRRR'\*\* (consecutive), and \*\*rejects therwise\*\*, we need to carefully build a factory that:

```
- **Detects** the presence of the sequence `BRRR` in the robot's tape.
```

\_\_\_

# ## Understanding the Requirement

We are looking for \*\*consecutive\*\* `BRRR` | that is, the letters B followed by three R's in a row.

We can't just look for  ${}^{`B`}$  and then three  ${}^{`R`}$ s as separate steps | since the robot has a sequence, and we must detect \*\*this exact substring\*\*.

---

#### ## Strategy

We will use \*\*state-based pattern matching\*\* using \*\*pullers\*\* to simulate a finite state machine.

<sup>-</sup> Only accepts robots when this exact pattern appears \*\*somewhere\*\* in their tape.

<sup>-</sup> Rejects all others (including those with `BRR`, `BRRR`, but not full `BRRR`, or other combinations).

```
We'll define states that track how close we are to matching "BRRR":
| State | Meaning |
|-----|
| `SO` | Start: looking for the first 'B' |
| `S1` | After seeing 'B': now expecting R |
| `S2` | After seeing 'R': now expecting R |
| `S3` | After seeing RR: now expecting R (final match) |
| `S4` | Match found: accept (go to END) |
| `S5` | Failed to match (hit any invalid character or didn't complete) → reject |
We'll use **PULLER_RB** nodes (since only R and B are used) to process
the tape from front to back.
We want to **build a machine that scans** the robot's tape until it
finds `BRRR`.
Once the substring is found, we route the robot to the **END**.
If it fails, we route it to a **rejection node** (via `NONE`).
Design Steps
1. **Start** node sends to a scanning state.
2. Use a series of pullers to detect:
 - If the front is `B`, go to next state (`S1`)
 - If the tape is empty or neither, reject (fail).
3. After each `R`, advance state.
4. If we ever get `BRRR`, go to `END`.
5. If we see anything else (e.g., `G`, `Y`, or a non-R after `B`), reject.
> Because the only tape colors in this puzzle are **B** and **R**, we
do not need yellow or green.
> So we only need **PULLER_RB**.
Implementation
```manufactoria
START start:
   NEXT s0
s0:
    [B] s1
    [R] s5
    [EMPTY] s5
s1:
    [R] s2
    [B] s5
    [EMPTY] s5
s2:
    [R] s3
    [B] s5
    [EMPTY] s5
```

```
s3:
    [R] end
    [B] s5
    [EMPTY] s5
s5:
    NONE
END end
## Explanation
| State | Action |
|----|
| `s0`: Start | Wait for `B` \rightarrow go to `s1`. If `R` or empty \rightarrow reject (`s5`). |
| `s1`: After 'B' | Expect R → go to `s2`. If `B` or empty → fail → reject. |
| \S2: After 'RR' | Expect another R \rightarrow go to \S3. Any other \rightarrow fail. |
| `s3`: After 'BRR' | If next is `R`, we have `BRRR`, go to **END**. Otherwise fail. |
| `s5`: Failure state | All invalid or wrong transitions → `NONE` → **rejected** |
> **No alternative paths** are accepted.
> This correctly **only passes robots with "BRRR" in their tape**, and rejects:
> - `BRR` (missing last R)
> - `BBRR` (fails at `B` after `B`)
> - `BRBR` (breaks the sequence)
> - Any tape with `B` not followed by at least three `R`s
> - Empty or non-matching tapes
## Example Test Cases
| Input Tape | Accepted? | Why |
|----|
| `BRRR` | Yes | Found `BRRR` → reaches `end` |
| `BBRRR` | Yes | First `B` \rightarrow goes to `s1`, then `R` \rightarrow `s2`, `R` \rightarrow `s3`, `R` \rightarrow `end` |
| `BRBR` | No | After `B`, then `R`, then `B` \rightarrow fails (not `R`) \rightarrow reject |
| `BRR` | No | No final `R` → rejected |
| `RRB` | No | No `B` at start → rejected |
| `` (empty) | No | Empty → rejects |
| `RBR` | No | No \dot{} B` at start, so never starts sequence \rightarrow reject |
> Works as required.
## Final Solution
```manufactoria
START start:
 NEXT s0
s0:
 [B] s1
 [R] s5
 [EMPTY] s5
```

This solution correctly accepts robots with the substring \*\*'BRRR'\*\* and rejects all others.

\_\_\_\_\_ The End of Trace \_\_\_\_

Here is another example response (partial) of *Qwen3-4B-Instruct* after RL training with grokking (as in Figure ?? (c)) on a test problem in MANUFACTORIA-HAS: "Accept if the tape contains the substring BRRR (must be consecutive)".

\_\_\_\_\_ Success Trace \_\_\_\_

We are tasked with designing a factory in the \*\*Manufactoria DSL\*\* that:

- \*\*Accepts\*\* robots whose tape contains the substring \*\*`BRRR`\*\* (four consecutive characters: B, R, R, R) - \*\*Rejects\*\* all others.

\_\_\_

This is a \*\*string matching\*\* problem via finite automata. Since the tape is processed from left to right (front to back), and we are only allowed to use pullers (which remove from the front), we must simulate a finite state machine (FSM) that tracks progress toward detecting "BRRR".

We can't assume the input is long or ordered | so we have to detect the exact substring \*\*"BRRR"\*\* in the input sequence, \*\*anywhere\*\*, and accept if and only if it appears.

We must design an \*\*automaton\*\* that:

- Keeps track of how much of "BRRR" it has matched so far
- When it sees a match, it goes to an accepting state
- Otherwise, it continues scanning, possibly resetting or continuing partial matches

```
We do **not** allow adding tape (painting), only pulling (removing
from front), and routing based on the current front character.
Step 2: Define state transitions
We will build the automaton with states:
- `s0` \rightarrow initial state
- s1 \rightarrow after matching B
- \S2 \rightarrow after matching BR
- `s3` → after matching BRR
- `s4` → matched BRRR → ACCEPT
Now, what about the tape that is exactly `BRRR`?
- s0 → B → s1
- s1 → R → s2
-s2 \rightarrow R \rightarrow s3
- s3 \rightarrow R \rightarrow go to `end`
What about if the tape is `R`?
- s0 \rightarrow R \rightarrow s0 \rightarrow then R \rightarrow s0 \rightarrow forever \rightarrow never reaches end \rightarrow rejected \rightarrow correct.
What about `B`?
- s0 → B → s1 → then if next is R → s2 → etc.
So yes.
What about `BBR`?
- B → s1
- B → s1
- R \rightarrow s2 \rightarrow then if no more, it stops \rightarrow never accepts \rightarrow correct,
because BRRR not present.
But what about `BBRRR`? \rightarrow yes, after seeing second B \rightarrow s1 \rightarrow then
R \rightarrow s2 \rightarrow R \rightarrow s3 \rightarrow R \rightarrow end \rightarrow Accepted
So it works.
Are there any **missing** cases?
What if the tape starts with Y?
- s0 \rightarrow Y \rightarrow goes to yg0 \rightarrow Y \rightarrow s0 \rightarrow same \rightarrow so eventually if B comes,
we can proceed.
Eventually, if "BRRR" appears later, we will catch it.
What if "BRRR" appears in the middle? Like `X BRRR Y`?
- X \rightarrow if R \rightarrow s0 \rightarrow then B \rightarrow s1 \rightarrow R \rightarrow s2 \rightarrow R \rightarrow s3 \rightarrow R \rightarrow end
```

```
Perfect.
We never require the tape to start with B | just that BRRR appears anywhere.
So it's correct.
Final Answer
```manufactoria
START start:
    NEXT s0
PULLER_RB s0:
    [R] s0
    [B] s1
    [EMPTY] yg0
PULLER_YG yg0:
    [Y] s0
    [G] s0
    [EMPTY] s0
PULLER_RB s1:
    [R] s2
    [B] s1
    [EMPTY] yg1
PULLER_YG yg1:
    [Y] s0
    [G] s0
    [EMPTY] s0
PULLER_RB s2:
    [R] s3
    [B] s1
    [EMPTY] yg2
PULLER_YG yg2:
    [Y] s0
    [G] s0
    [EMPTY] s0
PULLER_RB s3:
    [R] end
    [B] s1
    [EMPTY] yg3
PULLER_YG yg3:
    [Y] s0
    [G] s0
    [EMPTY] s0
```

This factory accepts any robot whose tape contains the substring `"BRRR"` (consecutive), and rejects otherwise.

END end

This	satisfies	the	requirement.				
The End of Trace							

B.2 BouncingSim

We include a widely used community test—a 2D bouncing-ball simulation program—often treated as a proxy for geometry-aware reasoning in LLMs (Wiggers, 2025). The goal is to synthesize a program that simulates elastic collisions in polygonal containers and returns the exact object state at a queried timestamp; strong solutions require precise collision detection/response and numerically stable integration.

Prompt design. We provide a prompt example of the bouncing ball coding problems in ROT_BOX problem family below.

Prompt Template of BouncingSim Problems

Polygon Dynamics Prediction

In this task, you will implement a single function predict_position(t) that computes the 2D positions of all balls at an arbitrary future time t under idealized mechanics. The function parses the scene configuration (containers, balls, and physics/meta), reconstructs the motions, detects and handles boundary collisions with finite-size treatment, and returns a list where each element is the [x, y] position (rounded to 2 decimals) of a ball at time t. Each evaluation of t must be computed directly from initial conditions and scene mechanics with no hidden state or accumulation across calls. Rendering, animation, and explanatory text are out of scope; prefer closed-form reasoning and avoid coarse time-stepping except where narrowly required for collision resolution.

Mechanics (General)

- Kinematics: Use closed-form equations under constant acceleration: $x(t)=x0+vx0*t+0.5*ax*t^2$, $y(t)=y0+vy0*t+0.5*ay*t^2$.
- Collisions: Perfectly elastic. Reflect velocity using v' = v -
- $2 \cdot dot(v, n^{\hat{}}) \cdot n^{\hat{}}$, where $n^{\hat{}}$ is the inward unit normal at the contact.
- Finite size: Use polygon{polygon contact. Derive regular shapes from ('sides','radius','center','rotation'); irregular convex polygon balls use provided vertices.
- Geometry: Irregular convex polygons (if present) are simple (non self-intersecting). Ball finite size must be respected in all interactions.
- Units: Positions in meters; time in seconds; angles in radians; velocities in m/s; accelerations in m/s^2.
- Cartesian Axes: +X is right, +Y is up.

Constraints

- Implement only predict_position(t); no other entry points will be called.
- No global variables; no variables defined outside the function.
- Do not import external libraries (except math); do not perform I/O; do not print; do not use randomness.
- Numerical output must be round(value, 2); normalize -0.0 to 0.0.

Verification and output contract

- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].
- Each call must be computed independently (no state carry-over between calls).
- You should assume that the ball will hit the wall and bounce back, which will be verified in test cases.

Scene description

Containers

- Container 1: regular polygon with 3 sides, radius 225.00m, center at (750, 750); initial orientation 0.000 rad; constant angular velocity 0.170 rad/s

Objects

- Ball 1: regular polygon (3 sides), radius 40.0m, initial position (750, 750), initial velocity (-220.61, 6.21) m/s

```
### Physics
- no effective gravity (treated as zero).
### Dynamics
- No additional time-varying mechanisms.
### Conventions for this scene
- Containers are convex regular polygons (parameters: 'sides', 'radius',
'center'), unless otherwise specified.
- Angle baseline: By default, the initial orientation is 0.000 rad,
pointing to the first vertex along +X (standard Cartesian axes);
positive angles rotate CCW about the container center.
- Polygon vertices (if provided) are CCW and form a simple convex polygon.
- Container 'radius' denotes the circumradius (meters).
- For balls: irregular convex polygons rely on provided vertices (no
radius mentioned); regular polygons may be derived from
'sides/radius/center/rotation'.
- Containers are kinematic (infinite mass, prescribed motion); impacts
do not alter container motion.
### Task
- Number of balls: 1
- Your should think step by step and write python code.
- The final output should be in the following format:
[Your thinking steps here ...] (optional)
 ``python
[Your Python code here]
- Define predict_position(t) returning a list of length n_balls; each
element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)
- Required format: function predict_position(t: float) -> [[x1,y1],
[x2,y2],...]; coordinates as 2-decimal floats
```

$_$ The End of Prompt $_$

We construct a large-scale dataset for elastic collisions of polygonal objects in polygonal containers, designed to probe geometry-aware reasoning and numerically stable simulation in code-generating models (Wiggers, 2025). Each instance provides a fully specified physical scene and a programmatic task: predict the exact object state at one or more queried timestamps. Below we detail our scene taxonomy, generation and validation pipeline, prompt/evaluation protocol, and the difficulty schedule.

B.2.1 Scene Taxonomy

We factor the space of scenes into orthogonal "axes" that control distinct physical effects or composition, allowing systematic sampling and compositional generalization:

- ROT_OBJ (Inner rotation): the ball (modeled as a convex polygon) has nonzero angular velocity; collisions remain perfectly elastic.
- ROT_BOX (Outer rotation): the container rotates; optionally, time-varying angular speed is injected via a sinusoidal envelope.
- MOV_BOX (Outer translation): the container follows a prescribed path (sinusoidal or Lissajous), inducing moving-boundary reflections.
- GRAVITY: gravity can be tiny/small/large, tilted, or chaotic (random direction with time variation).
- MULTI_BOX (Multi-container): multiple non-overlapping polygonal containers are placed; a single ball is spawned in the first container unless otherwise specified.

 MULTI_OBJ (Multi-object): multiple balls are spawned in a single container with non-overlapping initial placement.

All containers and balls are convex polygons; collisions use a perfectly elastic model (restitution 1.0) with finite-size handling (ball centers are constrained by the container's incircle).

B.2.2 Parameterization and Placement

Scenes are defined in a global, display-agnostic metric space. The workspace size is fixed to 1500 m \times 1500 m with a baseline container diameter of 300 m. Difficulty scales the geometry (e.g., container diameter factor), polygon arity (number of sides), ball radii, speeds, and multiplicities. Objects are sampled and placed under strict feasibility constraints:

- Non-overlap: initial ball—ball overlap is rejected by a circle-approximation test; multi-container layouts must respect a minimum center-to-center gap.
- Feasible incircle: ball centers are sampled inside the container's incircle minus a safety margin; scenes violating this bound are rejected.
- Units: positions in meters; time in seconds; angles in radians; velocities and accelerations in SI units. All randomization is seeded and stored in scene metadata for reproducibility.

B.2.3 Generation and Validation Pipeline

The dataset is produced in three stages, repeated for every requested problem family combination and difficulty level:

- (1) Scene synthesis. Given a target problem family set (e.g., ROT_BOX) and difficulty, we draw parameters from problem-family-specific ranges (polygon arity, speeds, rotation rates, translation amplitudes, gravity modes) and write a normalized JSON scene: container(s), ball(s), physics (including time-varying profiles), and comprehensive metadata (difficulty name, seed, key timestamps, etc.). Difficulty levels scale geometry (container factor, polygon arity), ball radii, kinematics (linear and angular speeds), gravity complexity, and multiplicity (containers/balls) as shown in Table 2.
- (2) Numerical sanity check. Each synthesized scene is validated for step-size stability before acceptance. We simulate the scene at a small set of reference timestamps under two integrators/timesteps (a validation baseline vs. the ground-truth step) and require the maximum screen-space deviation to remain below a tight threshold (15 px). Scenes that exceed this threshold or violate geometric feasibility (overlap or outside-incircle) are discarded and resampled up to a retry budget.
- (3) **Dataset assembly.** For every accepted scene we choose evaluation timestamps and compute ground-truth positions using the higher-fidelity integrator. We then construct a task prompt and serialize a JSONL entry containing: messages (the task), a list of test assertions (per timestamp), the instance id, difficulty index, the explicit timestamp list, and an error tolerance tag (default 50px) used during automated checking.

B.2.4 Splits and Composition

We design three complementary splits to probe distinct generalization properties. Each split is parameterized by which axes, difficulties, and timestamp regimes are exposed during training vs. evaluation.

Design principles. (1) Factorized skills. Axes isolate orthogonal mechanics (inner vs. outer rotation, moving boundaries, gravity, multiplicity, periodicity). (2) Controlled distribution shifts. Difficulty scales geometry, multiplicity, and dynamics; OOD splits increase complexity without changing the core mechanics.

Explorative generalization (within-family difficulty shift). This split tests robustness to increased geometric/dynamic complexity while keeping the same "skill". We train on single-family scenes at Basic difficulty and evaluate on the same family at higher difficulties.

Table 2: Problem-by-difficulty configurations (aggregated from generator defaults). Abbreviations: $f = container diameter factor (relative to 300m base); out/in = outer/inner polygon sides; <math>r = ball radius (m); v = linear speed range (m/s); \omega = angular speed (rad/s); amp = translation amplitude (m); <math>g = gravity mode; cts = number of boxes; n = number of balls.$

Problem family	Basic (0)	Easy (1)	Medium (2)	Hard (3)	Extreme (4)
ROT_OBJ		f 1.4; out 3–5; in 5–6; r 35; ω 0.2–0.5; v 400–600			
ROT_BOX		f 1.4; out 5–6; in 5–6; ω 0.2–0.5; v 400–600			
MOV_BOX		f 1.4; out 5–6; amp 20–40; sin1d (0.5); v 400–600			f 1.0; out 8–10; amp 90–120; Lis- sajous (chaotic); v 1000–1200
GRAVITY	f 1.5; out 3–4; g = tiny; v 200–400	f 1.4; out 5–6; g = small; v 400–600	f 1.3; out 6–7; g = large; v 600–800	f 1.2; out 7–8; g = tilted; v 800–1000	f 1.0; out 8–10; g = tilted; v 1000–1200
MULTI_BOX	cts 2; f 1.5; out 3–4; r 40; v 200–400	cts 2; f 1.4; out 5–6; r 35; v 400–600	cts 3; f 1.3; out 6–7; r 30; v 600–800	cts 4; f 1.2; out 7–8; r 25; v 800–1000	cts 6; f 1.0; out 8–10; r 20; v 1000–1200
ROT_BALL	n 2; f 2.5; out 3–6; in 3–6; r 20; v 200–400	n 3; f 2.5; out 3–6; r 20; v 400–600	n 4–5; f 2.5; out 3–6; r 20; v 600–800	n 5–6; f 2.5; out 3–6; r 20; v 800–1000	n 7–9; f 2.5; out 3–6; r 20; v 1000–1200

- Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.
- Test (ID): single-family scenes at Basic (0). We generate 100 additional examples in such a split.
- Test (OOD): Easy–Extreme (1–4) at the same family; We generate 100 additional examples in each difficulty.
- Rationale: isolates the effect of tighter geometry (smaller containers, more sides), higher velocities, stronger/tilted gravity, and larger multiplicity (more containers/balls), while holding the family-specific mechanics fixed.

Compositional generalization (skill composition). This split probes whether models learned modular skills that compose. Concretely, we exemplify by composing inner and outer rotations at test time after training on them in isolation.

- Train: ROTAT_BOX (outer rotation only) and ROTAT_OBJ (inner rotation only), both at Basic difficulty. We generate 1000 examples in each family.
- Test (OOD composition): ROTAT_BOX_OBJ = (outer+inner rotation simultaneously) at Basic (0) level. Container angular velocity and object spin are drawn independently at the current difficulty level. We generate 100 additional examples in such a split.
- Rationale: assesses whether learned collision handling in a rotating frame combines with inner-spin kinematics without interference.

Transformative generalization (qualitative strategy change). Here the test-time data is qualitatively different from anything seen in training—for instance, perfectly periodic trajectories that arise from special consruction.

- Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.
- Test (transformative OOD): periodic configurations (even-sided container, symmetry-aligned initial velocity) using list-prompt mode with a fixed periodic grid; we evaluate cycle consistency and phase accuracy over evenly spaced timestamps. We provide an example theorem below that supports such a periodic case construction.
- Rationale: measures whether models trained on generic dynamics can extrapolate to a qualitatively different but mathematically structured regime (near-1D periodic motion in polygonal symmetry).

Periodic Construction (transformative setting). We exploit a closed-form condition that yields perfectly periodic, normal "shuttle" trajectories between two concentric, co-rotating regular polygons. This result underpins the periodic test cases in our ROT_BOX transformative split and provides an analytical knob to dial the fundamental period via the angular velocity.

Theorem 1 (Periodic bounce between two concentric regular n-gons). Setup. Let P_o and P_i be two concentric regular n-gons ($n \ge 3$) with circumradii $R_o > R_i > 0$. Both polygons rotate rigidly with the same constant angular velocity ω about their common center. At time t = 0 a point mass ("ball") is placed on the inward normal to a side of P_o and moves with speed v > 0 along that normal toward P_i . Collisions with sides are perfectly elastic, and motion is confined to the annular region between the polygons. The initial pose has one vertex on the +x-axis.

Let $a(R) := R\cos(\pi/n)$ denote the apothem of a regular n-gon with circumradius R, and define the normal gap

$$\Delta := a(R_o) - a(R_i) = \left(R_o - R_i\right) \cos\left(\frac{\pi}{n}\right).$$

Thus Δ is the (signed) distance between the parallel supporting lines of the corresponding side family in P_o and P_i .

Claim (closed-form condition). The ball executes uniform periodic motion—bouncing back and forth at constant speed along a fixed set of parallel sides with a repeating impact pattern—if and only if there exists an integer $k \in \mathbb{Z}$ such that

$$\omega = \frac{k \cdot 2\pi v}{n(R_o - R_i)\cos(\frac{\pi}{n})}$$

Equivalently, with the one-way flight time

$$t_{\rm fly} = \frac{\Delta}{v} = \frac{(R_o - R_i)\cos(\pi/n)}{v},$$

the periodicity condition is

$$\omega, t_{\rm fly} = k \cdot \frac{2\pi}{n} \quad .$$

When this holds, the fundamental bounce period and the orientation recurrence are

$$T_{\text{bounce}} = 2, t_{\text{fly}} = \frac{2(R_o - R_i)\cos(\pi/n)}{v}, \qquad T_{\text{orient}} = \frac{2\pi}{|\omega|} = \frac{n\Delta}{|k|v}.$$

The minimal nonzero periodic rotation corresponds to |k| = 1.

Proof sketch. (1) In a regular n-gon, opposite sides are parallel; the distance between their supporting lines is 2a(R). For concentric, co-oriented P_o, P_i , the normal gap between the corresponding supports is $\Delta = a(R_o) - a(R_i)$. (2) Launching exactly along a side normal produces specular reflections that preserve a straight, normal shuttle between parallel side families; the speed remains v, so each one-way flight takes $t_{\rm fly} = \Delta/v$. (3) During a one-way flight, the polygons rotate by $\omega, t_{\rm fly}$. For the next impact to occur on a side parallel to the previous one (so that the normal shuttle and impact geometry repeat), the side orientations must recur, which in a regular n-gon happens modulo $2\pi/n$. Hence $\omega, t_{\rm fly} \equiv 0 \pmod{2\pi/n}$, yielding the stated condition.

Construction recipe for ROT_BOX (**periodic**). To instantiate periodic test scenes in the transformative split

- 1. Choose n (even n makes the normal families align with diameters) and set circumradii (R_o, R_i) (or effective radii after finite-size shrink/expand).
- 2. Pick a speed v>0 and launch along a side normal of P_o (avoid vertex alignment by a tiny phase offset).
- 3. Set the box angular velocity using |k|=1 in the closed form, $\omega \leftarrow \frac{2\pi v}{n,(R_o-R_i)\cos(\pi/n)}$, and co-rotate any inner boundary if present, or equivalently use $\omega_{\rm rel}$ for differential rotations.
- 4. The resulting shuttle has $T_{\text{bounce}} = 2(R_o R_i)\cos(\pi/n)/v$ and repeats in orientation every $T_{\text{orient}} = n\Delta/v$. For evaluation, sample timestamps on a uniform grid over several bounce periods to probe phase stability.

B.3 Competition Coding

Competition Code is a well-established domain where participants solve complex algorithmic problems. For a specified problem, the solver program is required to generate the correct output for every input in the provided test suite. We curate 5 algorithmic families and collect several problems per family from various well-known competitive programming platforms. We propose a phased perturbation pipeline to create a comprehensive OOD dataset.

B.3.1 Seed Families and Coverage

We curate 3-5 seeds per algorithmic family. The current collection includes:

- Mo's Algorithm (4): LuoguP1494, LuoguP4462, LuoguP4887, LuoguP5047
- Segment Tree Decomposition (3): CF981E, CF1140F, LuoguP5787
- CDQ D&C (3): CF848C, CF1045G, LuoguP4093.
- Meet-in-the-Middle: CEOI2015-D2T1, LuoguP2962, SPOJ-ABCDEF, USACO2012USOpen-GoldP3
- Square Root Decomposition (5): CF710D, CF797E, CF1207F, LuoguP3396, LuoguP8250.

Each seed problem is tagged with public problem code in websites like *CodeForces*, *AtCoder*, and *Luogu*. Per seed, we target 5-10 perturbation strategies (configurable; default 10). For narrative coverage, we maintain a library of 20 background templates (e.g., Campus Life, Ancient Warfare, Cyber Security, Energy Grid, Xuanhuan Fantasy), and by default rewrite each perturbed seed into all backgrounds.

B.3.2 Synthesis Pipeline

- **Phase 1: Standardize seed problems.** This phase transforms heterogeneous problem statements into a unified specification. First, the framework parses raw Markdown to extract core fields such as the problem statement, input/output formats, constraints, and examples, and utilize LLMs to reduce typographic ambiguities and make semantic clarifications.
- **Phase 2: Produce enumeration-based solutions for standardized seed problems.** This phase generates a diverse set of feasible, though not necessarily optimal, reference implementations for each standardized seed problem. Emphasis is placed on reliability rather than optimality, ensuring we have correct solutions for small test cases.
- **Phase 3: Produce enumeration-based test case generators for standardized seed problems.** This phase synthesizes test case generators grounded in original seed problems. By curating prompts for LLMs, generators are designed to cover representative distributions and adversarial conditions.
- **Phase 4: Generate perturbation strategies.** This phase generates strategies how to perturb problems systematically. Each strategy seed is curated by a human expert with at least 8 years of competitive programming experience and designed for making a perturbation while keep the main solution unchanged. These strategy seeds are standardized and extended to strategies with detailed instructions.
- Phase 5-7: Generate perturbed problems, enumeration-based solutions and test case generators according to strategies. Phase 5 generates standardized perturbed problem statements, based on perturbation strategies. Similar to phase 2 and phase 3, we generate corresponding solutions and test case generators based on enumeration. When generating solutions, we provide the original problem and solution to effectively improve the reliability.
- **Phase 8: Produce input constraint sanity check test case generators for standardized perturbed problems.** To enhance the robustness of our evaluation, this phase produces input constraint sanity check test case generators. Curated test case generators are designed for testing whether the solution code can handle big test cases in a reasonable small time. Test case constraints are manually adapted to the Python programming setting, guaranteeing no brute-force solutions can pass and all correct Python solutions can be accepted.
- **Phase 9: Produce background rewrites.** Finally, this phase provides an effective approach to generate OOD samples. By utilizing 20 background settings, the standardized perturbed seed

problems are rewritten in different background stories, maintaining the same input/output formats and solutions. All these rewritten problems are final and ready to be involved in training.

B.3.3 Example 1: Segment Tree Decomposition – Bipartite Over Time Seed (excerpt).

"Given (n, m, k). Each of the (m) edges is active on an interval ([l, r]) over the discrete timeline (1..k). For each time (t), determine whether the active subgraph is bipartite."

Perturbation strategies (from Phase 2, sample).

- Two-interval activation. Replace each edge's interval ([l, r]) with exactly two disjoint subintervals ([l_1, r_1], [l_2, r_2]). The solver continues to use DSU-rollback over a segment tree covering time.
- Interval Event rewrite. Convert each interval to two explicit events: an add at (l), a remove at (r+1). Feed the event list unchanged into the segment-tree over time.
- Event-pair splitting. Expand each add/remove into two sub-events (e.g., *preparelapply*) to stress timeline density without changing the rollback design.

Before/After (Strategy-level variant). Before (seed): time-varying edges with single intervals ([l, r]). After (strategy 1): "Each edge is active exactly on two disjoint intervals ([l₁, r₁]) and ([l₂, r₂]). For each (t) in (1..k), is the subgraph bipartite?" Algorithmic essence and complexity remain the same: DSU with rollback over a segment tree on the time axis, $O((n+m)\log k)$.

B.3.4 Example 2: Square Root Decomposition – Hash-Bucket Group Sums Seed (excerpt).

"Given an array value. For many queries with modulus (p;n), report the sum of numbers in bucket (x), where index (k) belongs to bucket $(k \mod p)$. Updates assign value $i \leftarrow y$."

Strategy-level perturbation (background-agnostic). Before: group by $(k \mod p)$. After: Grouped Sequence Sum and Update Queries:

"Define $H(i) = \sum_{k=0}^{K-1} S_k i^k \mod M$. Sum queries ask for the total over indices mapping to a given hash value (g); updates set $A_i \leftarrow x$."

This preserves the bucket-sum structure and the $O(\cdot)$ behavior under small-(M) caching and updates, matching the seed's enumeration profile while modestly changing the grouping function.

Background rewrite (Campus Life). *Before (strategy-level):* abstract group sums under (H(i)). *After (background):* **Campus Club Scores:**

"Student IDs (1..N) are assigned to clubs by a polynomial function (C(i)). Queries ask for the total score in club (g); updates change a student's score."

Narrative terms shift (students/clubs/scores), but the formal mapping (C(i)) and the I/O grammar remain intact so the variant's enumerator and the background rewrite both agree on the 100-case oracle.

B.3.5 Summary

By enumeration-first solutions and enforcing strategy-level clarity before rewriting, the pipeline makes large-scale, verifiable perturbation feasible. Standardization, deterministic test generation, and background consistency checks together ensure that every variant—despite narrative diversity—remains faithful to the core algorithm and produces outputs consistent with the seed's brute-force oracle. This methodology yields rich, well-structured families suitable for training, evaluation, and pedagogical use.

B.4 LEAN

Four Lean-formalized math families—lean_algebra, lean_number_theory, lean_inequality, lean_geometry—are sourced from Lean-Workbook (Ying et al., 2024) and Mathematics in Lean (lea, 2025), Ineq-Comp (Zhao et al., 2025) and Real-Prover (Li et al., 2025) (inequalities; e.g., AM-GM, Cauchy-Schwarz, Jensen), and LeanEuclid (Murphy et al., 2024) (Euclid Geometry). Each domain is well-scoped—algebra (symbolic manipulation/factorization), number theory (divisibility/modular arithmetic), inequalities (analytic convexity), geometry (Euclidean construction/congruence)—vielding stable testbeds for probing learnability and generalization.

To systematically enrich our dataset, we generate controlled families of theorem variants from set of seed problems. The guiding principle is to preserve the underlying reasoning skill while diversifying surface forms and algebraic contexts. This ensures that any successful model must rely on substantive reasoning rather than superficial pattern matching. We implement four major transformation classes: algebraic transformations, compositional transforms, and functional transforms.

Algebraic transformations. The first class of transformations rewrites an identity or inequality into an equivalent but syntactically distinct form. In practice, we restrict to one-step algebraic edits that are provably semantics-preserving. Examples include re-parenthesization using associativity, commuting terms, adding or subtracting the same quantity on both sides, or multiplying both sides by a strictly positive constant. These modifications retain the core reasoning path of the seed theorem but alter the syntactic presentation. Care is taken to avoid introducing additional side conditions: for instance, multiplication is only permitted by fixed positive scalars to prevent unintended inequality reversal.

Compositional transforms. The second transformation class enlarges inequalities by applying the same arithmetic operation to both sides. Our implementation extracts the inequality clause from the Lean theorem by locating the statement after the final colon preceding := by and rewriting it according to the selected transform. The resulting statement is then spliced back into the theorem template. To ensure robustness, the parser falls back gracefully in the presence of unusual formatting or nested colons, in which case the original problem is preserved unchanged. Randomized pipelines may be employed to select among the available safe transforms in order to increase distributional diversity.

Functional transforms. Finally, we apply monotone functional lifts to both sides of an inequality. The functional catalog currently includes the exponential, logarithm functions, each annotated with domain, codomain, and monotonicity metadata. For example, the exponential function is strictly increasing on all real numbers, while the logarithm is defined and monotone only on the positive reals. Similarly, the square root is monotone on the non-negative reals, and the square function is monotone only when restricted to the non-negative domain. When a function is applied, both sides of the inequality are wrapped accordingly, and domain side conditions are explicitly checked or attached as auxiliary hypotheses. This ensures that no unsound variants are introduced.

In summary, each domain of algebra, number theory, inequality, geometry has well-defined boundaries and characteristic techniques: 1) Algebra relies on symbolic manipulation, polynomial identities, functional equations, and factorization. 2) Number theory focuses on divisibility, modular arithmetic, congruences, and prime structure. 3) Inequalities are grounded in classical analytic techniques such as AM–GM, Cauchy–Schwarz, Jensen's inequality, and convexity arguments. 4) Geometry builds on Euclidean construction, congruence. Within each domain, problems differ only in surface structure or complexity but share a common reasoning kernel. This is what makes them a problem family: instances are linked by a shared mathematical backbone and solvable by a stable set of techniques.

C Experiment Details

Models. We use *Qwen3-4B-Instruct* as the reference instruction-tuned model for all experiments in this paper.

Training Details. We fine-tune with GRPO (Guo et al., 2025) using the Open-Instruct framework³. Unless otherwise noted, the key arguments are:

```
--beta 0.0 \
--num_unique_prompts_rollout 48 \
--num_samples_per_prompt_rollout 16 \
--kl_estimator kl3 \
--learning_rate 5e-7 \
--max_token_length 12240 \
--max_prompt_token_length 2048 \
--response_length 10192 \
--pack_length 12240 \
--apply_verifiable_reward true \
--non_stop_penalty True \
--non_stop_penalty_value 0.0 \
--temperature 1.0 \
--total_episodes 1000000 \
--deepspeed_stage 2 \
--per_device_train_batch_size 1 \
--num_mini_batches 1 \
--num_learners_per_node 8 \
--num_epochs 1 \
--vllm_tensor_parallel_size 1 \
--clip_higher 0.3 \
--vllm_num_engines 8 \
--lr_scheduler_type constant \
--seed 1 \
--gradient_checkpointing \
```

Across all experiments—including the multi-stage schedules in the paper—we vary only (i) the train/eval datasets, (ii) the base/reference model, and (iii) the scoring mode (full-pass reward vs. per-test reward) to match the setting.

Datasets for learnability (Section 3). Manufactoria-HAS: 742 training and 100 test examples. Manufactoria-START/APPEND/EXACT: 350 training examples in total across the three families. Manufactoria-REGEX: 560 training examples. Manufactoria-COMPR: 535 training examples.

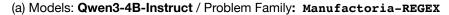
Datasets for generalization (Section A.1). Unless otherwise specified, for each curated problem family and each difficulty, we sample 1,000 training problems (Appendix B.2.4). In the setup of Figure 6(a), the training set contains six families at the *Basic* level, totaling 6,000 training samples. Evaluation comprises:

- **In-distribution** (**ID**): 100 test samples from the same *Basic* difficulty as training.
- Explorative (OOD): 100 test samples per family at each higher difficulty (*Easy*, *Medium*, *Hard*).
- Compositional (OOD): 100 test samples per composed family at *Basic* difficulty.
- Transformational (OOD): 100 test samples per setting.

Evaluation Protocol. Evaluation uses the same sampling configuration as training. Each score is averaged over 4 runs.

Compute Resources. Each RL run uses 16 NVIDIA H100 GPUs across two nodes and completes in \sim 3 days for 1,000 optimization steps.

³https://github.com/allenai/open-instruct



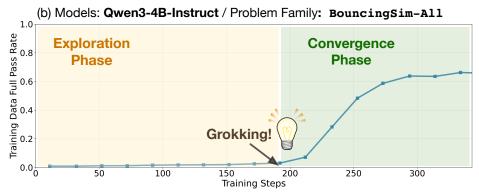


Figure 7: **Grokking across models and tasks.** (a) *Qwen3-4B-Instruct* on *Manufactoria–REGEX*; (b) *Qwen3-4B-Instruct* on *BouncingSim–All* (same training setup as in Figure 6); (c) *Nemotron-14B* on *Manufactoria–HAS*. Curves plot *training-data full pass rate* versus training steps. A consistent pattern emerges: a long exploration phase, an abrupt grokking transition, and a convergence regime; (a) also exhibits an RL collapse when training continues past convergence.

D Additional Experiments

D.1 Grokking Generalizes Across Models and Problem Families

Figure 7 demonstrates that the *RL grokking* phenomenon, an extended low-signal exploration phase followed by an abrupt phase transition and rapid convergence in training-data full-pass rate, can arise across (i) model sizes and families and (ii) distinct problem scopes.

Panel (a) shows *Qwen3-4B-Instruct* trained on Manufactoria{REGEX. After a long plateau, performance surges and subsequently enters a convergence regime. Continued training eventually triggers an *RL collapse*, highlighting the need for stabilization or early stopping once solutions consolidate. Panel (b) uses the same model on *BouncingSim-All*, a real-world ball-bouncing simulation coding

suite for real-world coding tasks. The same exploration to phase-transition to a convergence pattern appears. Panel (c) swaps the model family and scale to **Nemotron-14B** on *Manufactoria–HAS*, again reproducing the grokking phenomenon.

Together, these results indicate that grokking is not an artifact of a particular backbone or a single synthetic family. It emerges with different parameter counts, across independent model lineages, and on tasks ranging from symbolic program synthesis to physics-driven simulation code. This supports the view that RL can *discover* new procedural strategies rather than merely sharpening pre-trained ones.

D.2 Warm-up Benefits Beyond the "pass@k=0" Problems

Warm-up with per-test rewards is not only a rescue mechanism for tasks where the base policy never succeeds; it also helps when the initial success probability is small but non-zero ($pass@k = \epsilon > 0$). In this regime the binary full-pass reward still provides a weak and high-variance signal, which can lead to slow or unstable improvement. A short warm-up phase with dense, per-test rewards (here: 100 steps) (i) accelerates discovery of partially correct behaviors, (ii) better stability, and (iii) delivers a more reliable starting point for the subsequent binary-reward phase. Empirically, we observe faster and steadier convergence with warm-up, whereas training that optimizes full-pass from scratch can remain sluggish and brittle, sometimes exhibiting late-stage regressions even after partial progress.

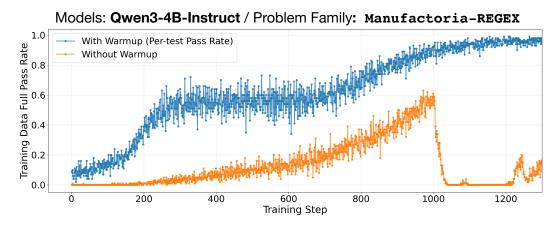


Figure 8: Warm-up helps when pass@k is small but non-zero. Training curves on Manufactoria—REGEX with Qwen3-4B-Instruct. The blue curve is trained after a 100-step warm-up using per-test rewards, then switched to the binary full-pass objective; it achieves faster and steadier gains. The orange curve trains full-pass from scratch and improves slowly with occasional regressions.