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Abstract

Can reinforcement learning (RL) teach language models new reasoning proce-
dures, or does it merely sharpen what pretraining already encodes? We intro-
duce DELTA—Distributional Evaluation of Learnability and Transferrability in
Algorithms—a controlled benchmark of synthetic programming families with tem-
plated generators and fully OOD splits. DELTA enables two tests: learnability
(can RL solve families where base models have pass @K=0) and transferability (do
acquired procedures generalize across exploratory, compositional, and transforma-
tive axes). We observe a striking grokking transition: after long near-zero reward,
RL abruptly reaches near-perfect accuracy. A staged recipe—dense test-case re-
wards for warm-up, followed by binary verification, plus experience replay and
curriculum—unlocks learnability on previously unsolved families. Generalization
improves within families and for recomposed skills but remains fragile under trans-
formative shifts. DELTA offers a clean testbed for probing RL-driven reasoning
beyond memorized priors.

1 Introduction

Do RL-trained language models merely refine latent heuristics, or can they acquire genuinely new pro-
cedures? Recent work offers conflicting views (Yue et al., [2025; |Wu et al.| 2025} [Liu et al., 2025b/a)).
We make this debate testable using two criteria: learnability—whether RL can instill a procedure the
base model fails to execute even with many attempts (pass @ K=0)—and generalization—whether
the acquired procedure transfers systematically to out-of-distribution (OOD) variants rather than
reflecting memorization. Open math/coding benchmarks mix topics and difficulty, confounding
attribution of gains. Controlled synthetic families permit precise train—test splits, difficulty scaling,
and attribution to specific skills, allowing us to detect phase transitions and measure transfer.

Standard GRPO/PPO pipelines often use sparse pass/fail rewards (Guo et al.l [2025)), which stall
learning on hard families. Programming tasks provide natural dense feedback via test cases. We
leverage this by warming up with test-case rewards to encourage partial progress, then switching to
strict verification to consolidate exact solutions. While coding uniquely scales this signal, the princi-
ple—use intermediate structure before enforcing binary correctness—applies broadly to reasoning
domains.

We introduce DELTA, a controlled benchmark of synthetic programming families (e.g., puzzle-like
automata and physical simulation) generated from templates. DELTA supports clean studies of
learnability, difficulty scaling, and transfer across families. a) Learnability and grokking. On
families where base models have pass @K=0, binary-reward RL yields no positive signal and collapses.
A staged regime—dense-to-binary rewards, experience replay, curriculum, and verification-in-the-
loop—creates a long exploratory plateau followed by an abrupt grokking jump to near-perfect
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Figure 1: Overview of DELTA with controlled RL studies. Left: Synthetic Programming Problem fami-
lies—Manufactoria with custom syntax and puzzle-like rules, BounceSim with physical simulation, etc. Right:
Controlled RL experiments. Top: Learnability shows grokking, where RL shifts from long exploration to sudden
convergence, uncovering strategies beyond reference models. Bottom: Generalization extends OMEGA (Sun
et al.}[2025)) across four axes—Exploratory, Compositional, Transformative, and Domain-level—testing adapta-
tion to harder or recombined tasks.

accuracy, indicating discovery of procedures absent from the base model. b) Generalization along
three axes. Building on OMEGA (Sun et al., [2025)) and Boden’s creativity typology (Boden, |1998)),
we evaluate transfer along: (1) Exploratory (harder variants within a family), (2) Compositional
(recombining learned skills), and (3) Transformative (unconventional solutions that shift the problem
space). RL-trained models generalize well in exploratory and recomposed settings, but performance
degrades on transformative cases, revealing persistent limits.

Contributions. (1) DELTA, a controlled benchmark isolating reasoning skills with fully OOD splits
and richly graded rewards, avoiding tool-use shortcuts and data confounds. (2) Learnability beyond
sharpening: staged RL yields a grokking transition from failure to mastery on pass @K=0 families,
demonstrating acquisition of procedures not executed by the base model, while easier regimes chiefly
show sharpening. (3) Three-axis generalization: strong gains within families and for recomposed
skills, with weaknesses under transformative shifts—clarifying both the promise and the boundaries
of RL-driven reasoning.

2 DELTA: Controlled Programming Problem Families

We operationalize learnability and generalization with DELTA, a controlled suite of synthetic
programming families.

From OMEGA to DELTA. OMEGA (Sun et al., [2025)) studies exploratory, compositional, and
transformative generalization across 40 math families. DELTA complements it in programming,
where templated generators yield automatically verifiable tasks, tunable difficulty, and clean dis-
tributional control. Key advantages over OMEGA: (a) a truly OOD scope (Manufactoria) with
novel syntax/strategies; (b) reduced tool shortcuts—the target is the program itself; (c) rich reward
signals via per—test case pass rates that enable staged dense—binary training. Figure[T]illustrates the
five scopes; we detail the one for learnability below (dataset designed for generalization test is in

Appendix [A).
2.1 Manufactoria (OOD Problems for Learnability)

Manufactoria reimagines the 2010 puzzle as a compact program syntax built from two node types
(puller, painter), akin to assembling finite-state automata/tag systems. The OOD status stems
from: (i) our custom syntax (not present in pretraining corpora); (ii) newly synthesized families rather
than reused game levels; (iii) distinctive strategies unlike standard coding/Turing-machine tasks.
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Figure 2: The Manufactoria difficulty ladder: 14 families grouped into BASIC/EASY/MEDIUM/HARD. Each
split has 20-50 problems; full-pass rates are averaged over 4 runs.

Full Pass Rate

Difficulty ladder. We construct 14 families (e.g., HAS requires accepting tapes containing a subse-
quence like GGRBB), organized into BASIC—EASY—MEDIUM—HARD. BASIC/EASY suit small
models (1.5B-4B); MEDIUM/HARD probe SOTA. The novelty makes Manufactoria a clean OOD
benchmark: MEDIUM exposes a large gap—only GPT-5 attains non-trivial pass rates; others remain
near zero. HARD is unsolved across models, highlighting sharp difficulty transitions and current
limits.

3 Learnability Study: Can RL Uncover New Strategies and How to
Accelerate it?

A central debate in recent research concerns whether reinforcement learning (RL) can endow models
with reasoning abilities beyond those of their base model.

The skeptical view. |Yue et al.|(2025) argue that although RLVR- Pass@k Comparison
trained models outperform their base models at small k (e.g., k = 1), Before/After RL Training
the base models achieve equal or superior pass@k performance
when £k is large. Their coverage and perplexity analyses suggest that
reasoning capabilities are ultimately bounded by the base model’s
support. Similarly, Wu et al.|(2025) provide a theoretical argument
that RLVR cannot extend beyond the base model’s representational
limits.
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that ProRL can expand reasoning boundaries on tasks where the base
model performs poorly—specifically in letter-formed 2D puzzles
from Reasoning Gym (Stojanovski et al., [2025)).
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Our contribution: a clean testbed and clear evidence for RL
enable grokking in LLMs. Existing evidence in favor of RL’s gen-
eralization often comes from large, heterogeneous training corpora.
This makes it difficult to isolate why and how RL might discover
novel strategies. To address this, DELTA offers a controlled environ-
ment: synthetic problem families that are both out-of-distribution (requiring novel strategies) and
internally consistent (free of data confounds). We focus on the Manufactoria-HAS family (742
training / 100 test instances), where the reference model Qwen3-4B-Instruct-2507 achieves 0% full
pass rate at pass@128. As shown in Figure 3] our staged RL training strategies enables the model to
fully solve this family, achieving 100% full pass rate. Next, we detail how this is made possible.

Figure 3: Pass@k comparison
before and after RL training on
the Manufactoria-HAS.

3.1 Basic Setup

Unless otherwise specified, the reference model is Qwen3-4B-Instruct. Training and testing datasets
are drawn from single or combined problem families introduced in Section 2} By default, each
training step consists of 48 prompts with 16 rollouts. The learning rate is set to 5 x 10~7. For code
training, the default reward signal is full pass, a binary indicator of whether a program passes all test
cases. In later experiments, we also consider per-test pass rate as the reward signal, measuring the
fraction of test cases passed. A more detailed experiment setup parameter descriptions are included
in Appendix [C}] We also provide complementary experiments with alternative model families, sizes,
and problem domains in Appendix [D.1]



3.2 How to Solve “pass@K=0" Tasks with RL?

The skeptical position that RL cannot exceed the boundaries of the base model is understandable
for a simple reason: GRPO (Guo et al.,|2025) depends on reward differences across rollouts. If no
rollout ever succeeds (as in “pass@K=0" tasks), there is no gradient signal to learn from. Indeed, as
Figure[{a) shows, naive GRPO training stagnates. Thus, the central challenge is:

If no rollout achieves a full pass, how can RL propagate a meaningful learning signal?

Strategy (a): RL (GRPO) with Full-pass Rate Strategy (b): RL (GRPO) with Per-test Pass Rate
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Figure 4: Comparison of strategies solving “pass@K=0" tasks. (a) Directly optimizing for full-pass rate under
GRPO fails. (b) Training with a per-test pass rate provides a smoother reward but quickly saturates. (c) A
two-phase training—warming up with per-test pass rate, then switching to full-pass reward. All training is
performed on Manufactoria-HAS family and the reference model Qwen3-4B-Instruct-2507.

Per-test pass rate training. One solution is to exploit partial credit. Instead of the all-or-nothing full
pass rate (reward = 1 only if all test cases pass), we use a finer-grained per-test pass rate, a continuous
reward in [0, 1]. As Figure Ekb) shows, this signal provides initial learning traction. However, it
quickly saturates after ~100 steps, and the full-pass rate remains negligible (<0.01%).

Warm-up phase. Even though it can not serve as a full surrogate loss, we find that the per-test pass
rate can serve as an important warm-up stage that pushes the model out of the all-zero region. As
shown in Figure f[(a), this signal allows the model to move beyond the all-zero region: although the
full-pass rate remains < 1%, the model begins to accumulate positive gradients.

Exploration and grokking. From this warm-up checkpoint, we switch to RL with the binary full-pass
reward. Figure (D) illustrates the dynamics: For ~450 steps, the model remains in an exploration
phase, with full-pass rate still < 1%. After a sudden grokking moment, the model discovers the
key strategy to solve the family. Training then enters a convergence phase, where RL sharpens and
consistently reinforces the successful reasoning path. At convergence, the RL-trained model achieves
nearly a 100% absolute improvement in pass@k compared to the reference model (Figure 3). We
also observe this phenomena with other model families, sizes, and problem domains in Appendix

Due to the space limitation, the experiments for the generalization study is in Appendix [A]

4 Discussion and Implications for Future Study

Study the hard subset. Averages over mixed pools obscure the “hard frontier”—instances with
pass@K =0 for strong base models (Huan et al., [2025} \Guha et al., 2025} |L1u et al., [2025bla)). These
cases show distinct dynamics: RL often exhibits a grokking-like jump after hundreds—thousands of
steps, but in heterogeneous pools their signal is diluted by easier items. We argue evaluations should
explicitly isolate and track this subset to measure progress on genuinely novel reasoning.

Beyond coding: to math and science. Dense, verifiable feedback lets RL cross the learnability
gap in code; analogous signals can make math/science amenable too—e.g., rubric scoring, stepwise
checkers, theorem-prover verification, and simulation/constraint evaluators. We expect these fine-
grained supervisors to transfer DELTA’s insights and unlock currently unsolved problems.
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Figure 5: Full-pass rate (%) on BouncingSim across families (ROT_0BJ, ROT_BOX, MOV_BOX, GRAVITY,
MULTI_BOX, MULTI_OBJ) and tiers (BASIC—EXTREME). Means over 4 runs on 50 tests/split.

A Generalization Study

A.1 BouncingSim (2D Simulation Problems Family for Generalization)

Task design. We formalize the community “bouncing ball” program: given a deterministic initial
state (geometry, positions, velocities), the model must synthesize code that returns the exact state at a
queried time. Instances are (a) verifiable via an oracle; (b) synthesizable from templated generators
with Box2D ground truth; (c) composable by combining single-skill families (e.g., ROT_BOX, ROT_0BJ)
into multi-skill ones; and (d) difficulty-controlled from BASIC to EXTREME by scaling polygon
complexity, speeds, motion, gravity, and counts of objects/boxes (Appendix B).

Generalization axes. Aligned with OMEGA’s typology: (a) Exploratory: test uses smaller containers
with denser collisions than training; (b) Compositional: train on rotating boxes and rotating objects
separately, test on the combined ROT_B0OX_0BJ; (c) Transformative: introduce qualitatively different
dynamics (e.g., perfectly periodic trajectories from special initial states) absent from training.

Results (Figure 5). GPT-5 leads overall; accuracy declines with difficulty and composition.
MULTI_BOX is challenging even at BASIC (~30%); MULTI_0BJ drops from ~80% (BASIC) to
~10% (MEDIUM). Other LLMs typically achieve <30-40% on EASY/MEDIUM and near zero
on HARD/EXTREME and most compositional settings. BouncingSim thus isolates what current mod-
els can (and cannot) generalize, clarifying when RL sharpens skills versus catalyzes new procedures.
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Figure 6: Generalization Study on BOUNCINGSIM. (a) Training full-pass rate on the Basic-level mixture
(6 families, 1k each) for Qwen3-4B-Instruct with binary full-pass reward shows a sharp grokking jump near
step 200. (b) Explorative generalization: Before RL (top) the model rarely solves any OOD cases; after RL
(bottom) it transfers to Easy/Medium/Hard variants with diminishing gains as difficulty increases (bars aggregate
6 families x 4 tiers; 100 prompts per cell, averaged over 4 runs). (c) Compositional generalization: Zero-shot
composition of skills. (d) Transformative generalization: Qualitatively new dynamics (e.g., special periodic
trajectories) remain near zero after RL. Results are averaged over 4 runs.

Setup. We study how far the learned programmatic skills transfer beyond the training distribution.
Unless noted, the reference model is Qwen3-4B-Instruct. We train on a Basic-level mixture of
six single-skill families—ROT_0BJ, ROT_BOX, MOV_BOX, GRAVITY, MULTI BOX, MULTI_0BJ—with
1k instances per family (6k total). Because the base model has non-zero full-pass on some basic
instances, we directly optimize a binary full-pass reward (all tests pass) for 300 gradient steps; all
other hyperparameters follow Section[3] Evaluation spans three axes—explorative, compositional,
and transformative—and reports full pass rate (fraction of prompts for which the synthesized program



exactly matches the oracle on all unit tests). For explorative generalization we consider four difficulty
tiers (Basic=ID, Easy/Medium/Hard=OOD) crossed with the six families; each bar in Figure E]
aggregates. More detailed setup is in Appendix [C]

Training dynamics (Fig. [6h). We again observe a sharp grokking phase transition: after a long
plateau of near-zero reward, performance on the training mixture jumps around the step 200 to 0.7
full pass rate, indicating the emergence of stable simulation code that handles elastic collisions.

Generalization results (Fig. @)—d). RL-trained models transfer beyond the training distribution,
but with varying success across axes. In explorative generalization, performance is strong on Basic
(ID, 70-85%) and carries over to Easy (50-75%), though gains shrink on Medium (15-50%) and
nearly vanish on Hard (single digits). For compositional generalization, the model demonstrates
surprising skill integration: unseen combinations such as ROT_BOX+M0OV_B0OX, MOV_BOX+GRAVITY,
and MULTI_BOX+MULTI_0OBJ achieve 60—70% full-pass (vs. near-zero before RL), in contrast to the
weak compositional transfer reported in OMEGA (Sun et al., |[2025). We attribute this to coding
tasks composing structurally (merging simulation modules) rather than strategically (inventing new
reasoning steps). Finally, in transformative generalization, models remain near zero on qualitatively
novel dynamics such as perfectly periodic or degenerate trajectories, which demand the discovery of
new invariants and align with the persistent difficulty of transformative math generalization.

Takeaways. RL discovers executable simulators that (i) transfer well to parametric shifts and (ii)
compose across skills, but (iii) struggle when the test distribution demands qualitatively different
solution schemas. Coding tasks appear more amenable to structural composition than symbolic math,
yet transformative “schema creation” remains an open challenge. Figure [ summarizes these trends.

B Dataset Details

B.1 Manufactoria

Manufactoria is a classic Flash game (2010) in which players build automated factories to sort
robots based on their colored tape patterns. The underlying logic resembles constructing finite-state
automata or tag systems using two special node types (puller, painter). While the original game
is implemented in 2D space, we re-formalize it into a custom programmatic syntax, as the syntax
defined as a prompt below.

Prompt Template of Manufactoria Problems

# Manufactoria Solution DSL

A Domain Specific Language for describing Manufactoria puzzle solutions
in text format.

## Overview

Manufactoria is a puzzle game where you build automated factories

to sort robots based on their colored tape patterns. Robots enter your
factory carrying sequences of colored tape, and you must route them
to the correct destinations based on the given criteria.

## Game Mechanics

### Robots and Tape

- **Robots**: Each robot carries a sequence of colored tapes

- *xTape Colors*x: Primary colors are Blue (B) and Red (R), with additional
Yellow (Y) and Green (G) for advanced puzzles

- **Tape Representation**: Sequences are represented as strings

(e.g., "RBRR™, "BBR", or empty string ~""7)

### Operations
- *xPull**: Remove tape from the front of the robot's sequence
- **Paint**: Add colored tape to the end of the robot's sequence



- **xRoute**: Direct robots through the factory based on their current tape state

### Objective

Route robots to the correct destinations based on their final tape
configuration and the puzzle requirements:

- *xAccepted**: Robot reaches the END node

- *xRejected**: Robot is routed to the NONE node, or caught in an infinite
loop, or robot reaches the END node but fails to meet the puzzle's
acceptance criteria

## DSL Syntax
### Program Structure

Every solution must start with a "START  directive and end with an
"END® directive, wrapped in manufactoria ... " :

“manufactoria
START start:
NEXT <next_node_id>

# Factory logic goes here

END end

### Node Types
#### 1. Puller Nodes

Pullers remove specific colors from the front of the robot's tape sequence
and route based on the current front color.

**Red/Blue Puller:*x*

" "manufactoria
PULLER_RB <node_id>:
[R] <next_node_id> # Route and remove color if front tape is Red
[B] <next_node_id> # Route and remove color if front tape is Blue

[EMPTY] <next_node_id> # Route if no tape or front tape is neither R nor B

**xYellow/Green Puller:**

" “manufactoria
PULLER_YG <node_id>:
[Y] <next_node_id> # Route and remove color if front tape is Yellow
[G] <next_node_id> # Route and remove color if front tape is Green

[EMPTY] <next_node_id> # Route if no tape or front tape is neither Y nor G

**Notex*: Unspecified branches default to "NONE®, which rejects the robot.
#### 2. Painter Nodes

Painters add colored tape to the end of the robot's sequence and continue
to the next node.

" " "manufactoria
PAINTER_RED <node_id>:



NEXT <next_node_id>

PAINTER_BLUE <node_id>:
NEXT <next_node_id>

PAINTER_YELLOW <node_id>:
NEXT <next_node_id>

PAINTER_GREEN <node_id>:
NEXT <next_node_id>

## Syntax Rules

1. **Node IDs**: Must be unique identifiers (alphanumeric characters
and underscores only)
2. *xComments**: Lines starting with “#  are comments (single-line only)
3. *xIndentation**: Use consistent spaces or tabs for route definitions
4. **xCase Sensitivity#**: Colors must be uppercase (R, B, Y, G)
5. **xTerminationx*x*:

- Robots routed to "NONE® are rejected

- Robots routed to the END node are accepted{objective_clause}
6. **xCode Blocks**: Final factory code should be wrapped in triple
backticks with *°° markers

## Example

Here's a simple example that accepts robots with exactly one red tape
(ending tape should be empty):

" “manufactoria
START start:
NEXT entry

PULLER_RB entry:
[R] end

END end

# Task
Your task is to design a factory with code with following functionality:

{criteria}

The End of Prompt

The criteria are defined in the Table[I] with different problem families.

We synthesize each problem family by starting from a parameterized template (alphabet, tape
operation(s), acceptance predicate, and any numeric thresholds) and then perturbing those parameters
within a constrained search space. Discrete knobs (e.g., start/end substrings, regex subpatterns, token
rewrites) are toggled or swapped with near neighbors, while numeric knobs (e.g., bitwise constants,
comparison thresholds, additive offsets, division factors) are jittered by small deltas drawn from a
valid set (e.g., =1, 2, powers of two), with guards to keep the task well-posed and nontrivial.



Problem Family Difficulty Criteria Examples

APPEND BASIC Accept any input and append the sequence RBR to the end of the
tape.

EXACT BASIC Accept if the tape is exactly RBB.

START BASIC Accept if the tape starts with BR.

ENDS EASY Accept if the tape ends with BB.

REGEX EASY Accept if the tape matches the regex pattern (RBR)+(B) 7 exactly.

HAS EASY Accept if the tape contains the substring RYY (must be consecu-
tive).

COMPR EASY Treat Blue as 1 and Red as 0. Accept if the binary number is
greater than or equal to 13.

PREPEND MEDIUM  Put BR at the beginning of the tape.

MUTATE MEDIUM Change all RB to BR sequentially.

BIT_OP MEDIUM  Treat Blue as 1 and Red as 0. Apply bitwise OR with 16 to the
binary number.

FDIV HARD Treat Blue as 1 and Red as 0. Apply floor division by 4 to the
binary number.

SYMM HARD  Accept strings that match the pattern R{n}B{n+1} for any n > 1.

MINMAX HARD Treat Blue as 1 and Red as 0. Output the maximum of 11 and
input.

ADD HARD Treat Blue as 1 and Red as 0. Apply add 8 to the binary number.

Table 1: Manufactoria Problem families with difficulty levels and acceptance criteria.

B.1.1 Example Traces Comparison of a MANUFACTORIA-HAS Problem

Here is one example response of Qwen3-4B-Instruct on a problem in MANUFACTORIA-HAS: “Accept
if the tape contains the substring BRRR (must be consecutive)”.

Failure Case

To design a **Manufactoria solution** that **accepts robots whose tape
contains the substring 'BRRR'** (consecutive), and **rejects therwisexx,
we need to carefully build a factory that:

- **Detects** the presence of the sequence "BRRR™ in the robot's tape.
- Only accepts robots when this exact pattern appears **somewherex* in
their tape.

- Rejects all others (including those with “BRR™, “BRRR™, but not full
“BRRR", or other combinations).

## Understanding the Requirement

We are looking for **consecutive** “BRRR™ | that is, the letters B
followed by three R's in a row.

We can't just look for "B and then three "R’s as separate steps |
since the robot has a sequence, and we must detect **this exact substringxx.

## Strategy

We will use **state-based pattern matching#** using **pullers** to
simulate a finite state machine.
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We'll define states that track how close we are to matching "BRRR":

| State | Meaning |

|-————- | -—=————- |

| | Start: looking for the first 'B' |
| S1° | After seeing 'B': now expecting R |
| *S2° | After seeing 'R': now expecting R |
| |

| |

| |

T83° After seeing RR: now expecting R (final match) |
“S4° | Match found: accept (go to END) |
*S5° | Failed to match (hit any invalid character or didn't complete) -+ reject |

We'll use **PULLER_RB** nodes (since only R and B are used) to process
the tape from front to back.

We want to **build a machine that scans** the robot's tape until it
finds “BRRR™.

Once the substring is found, we route the robot to the **ENDx*x*.

If it fails, we route it to a **rejection node** (via “NONE™).

## Design Steps

[

**Start** node sends to a scanning state.
2. Use a series of pullers to detect:
- If the front is "B, go to next state (°S17)
- If the front is "R™, stay in current state or fail.
- If the tape is empty or neither, reject (fail).
3. After each "R°, advance state.
4. If we ever get "BRRR™, go to "END".
5. If we see anything else (e.g., "G°, Y, or a non-R after "B”), reject.

> Because the only tape colors in this puzzle are **Bx* and **R**, we
**do not need** yellow or green.
> So we only need **PULLER_RB*x*.

## Implementation

" "manufactoria

START start:
NEXT sO

sO:
[B] si1
[R] sb
[EMPTY] s5

sl:
[R] s2
[B] sb
[EMPTY] s5

s2:
[R] s3
[B] sb
[EMPTY] s5

11



s3:

[R] end
[B] sb
[EMPTY] s5
sb:
NONE
END end

## Explanation

V VVVYVVYV

#

State | Action |
—————— |-
"s0”: Start | Wait for "B - go to “sl1°. If
“s17: After 'B' | Expect R =+ go to “s2°. If
“s27: After 'RR' | Expect another R - go to
“s3 : After 'BRR' | If next is "R°, we have
"sbT:
**No alternative paths** are accepted.
This

- "BRR" (missing last R)
- "BBRR™ (fatls at “B" after 'B°)
- "BRBR™ (breaks the sequence)

"R” or empty - reject ("s57). |

"B” or empty -+ fail -+ reject. |

"s3”. Any other - fail. |

"BRRR™, go to **END**. Otherwise fail.

Failure state | All invalid or wrong transitions = “NONE® = **rejected*x* |

correctly **only passes robots with "BRRR" in their tape**, and rejects:

- Any tape with "B° not followed by at least three "R’s

- Empty or mon-matching tapes

# Example Test Cases
Input Tape | Accepted? | Why |
| |

"BRRR™
"BBRRR"

| Yes | Found “BRRR"
| Yes | First "B” -+ goes to

-+ reaches

“end”

“s1l°, then "R™ =+ "s2°7,

R* -+ "s37, "R” + “end"

"BRBR™ | No | After "B, then "R™, then "B” - fails (not "R™) = reject |

"BRR™ | No | No final "R™ = rejected |
RRB™ | No | No "B” at start - rejected |
** (empty) | No | Empty - rejects |

"RBR™ | No | No "B°

Works as required.

## Final Solution

" “manufactoria

START start:

S

NEXT sO

0:
[B] s1
[R] sb
[EMPTY] sb

12
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sl:
[R] s2
[B] sb
[EMPTY] sb5

s2:
[R] s3
[B] sb
[EMPTY] sb

s3:
[R] end
[B] sb
[EMPTY] sb5

shb:
NONE

END end

This solution correctly accepts robots with the substring **'BRRR'** and
rejects all others.

The End of Trace

Here is another example response (partial) of Qwen3-4B-Instruct after RL training with grokking (as
in Figure ?? (c)) on a test problem in MANUFACTORIA-HAS: “Accept if the tape contains the substring
BRRR (must be consecutive)”.

Success Trace

We are tasked with designing a factory in the **Manufactoria DSL** that:

- *xAccepts** robots whose tape contains the substring ** BRRR ** (four
consecutive characters: B, R, R, R)
- **Rejects** all others.

This is a **string matching** problem via finite automata. Since

the tape is processed from left to right (front to back), and we are
only allowed to use pullers (which remove from the front), we must
simulate a finite state machine (FSM) that tracks progress toward
detecting "BRRR".

We can't assume the input is long or ordered | so we have to detect the
exact substring **"BRRR"** in the input sequence, **anywhere*x*, and
accept if and only if it appears.

We must design an **automaton** that:
- Keeps track of how much of "BRRR" it has matched so far
- When it sees a match, it goes to an accepting state

- Otherwise, it continues scanning, possibly resetting or continuing
partial matches

13



We do **not** allow adding tape (painting), only pulling (removing
from front), and routing based on the current front character.

## Step 2: Define state transitions

We will build the automaton with states:

- "s0° =+ initial state

- "sl1° -+ after matching B

- "s2° - after matching BR

- "s3° -+ after matching BRR

- "s4° -+ matched BRRR - ACCEPT

Now, what about the tape that is exactly "BRRR™ 7

- s0O -+ B ~+ sl
- sl + R~ s2
- 82 + R ~+ 83
- 83 *R = go to “end”

What about if the tape is "R™7

- s0 + R+ s0O -+ then R » sO -+ forever - never reaches end -+ rejected -+ correct.
What about "B 7

- s0 » B = sl + then if next is R = s2 =+ etc.

So yes.

What about "BBR™?

- B - sl

- B -+ sl

- R -+ s2 » then if no more, it stops - never accepts -+ correct,

because BRRR not present.

But what about "BBRRR™7? -+ yes, after seeing second B -+ sl - then
R-+s2-2R -+ s3 R - end » Accepted

So it works.
Are there any **missing+** cases?
What if the tape starts with Y?

- s0+Y -+ goes to yg0 »- Y =+ sO + same - so eventually if B comes,
we can proceed.

Eventually, if "BRRR" appears later, we will catch it.
What if "BRRR" appears in the middle? Like "X BRRR Y 7

- X-+if R+ s0O » then B+ s1 + R ~+s2 +R -+ s3 +R ~+ end

14



Perfect.
We never require the tape to start with B | just that BRRR appears anywhere.

So it's correct.

## Final Answer

““manufactoria
START start:
NEXT sO

PULLER_RB sO0:
[R] sO
[B] s1
[EMPTY] ygO

PULLER_YG yg0:
[Y] sO
[G] sO
[EMPTY] sO

PULLER_RB s1:
[R] s2
[B] si
[EMPTY] ygl

PULLER_YG ygl:
[Y] sO
[G] sO
[EMPTY] sO

PULLER_RB s2:
[R] s3
[B] si
[EMPTY] yg2

PULLER_YG yg2:
[Y] sO
[G] sO
[EMPTY] sO

PULLER_RB s3:
[R] end
[B] st
[EMPTY] yg3

PULLER_YG yg3:
[Y] sO
[G] sO
[EMPTY] sO

END end

This factory accepts any robot whose tape contains the substring
“"BRRR""™ (consecutive), and rejects otherwise.
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This satisfies the requirement.

The End of Trace
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B.2 BouncingSim

We include a widely used community test—a 2D bouncing-ball simulation program—often treated
as a proxy for geometry-aware reasoning in LLMs (Wiggers, 2025). The goal is to synthesize a
program that simulates elastic collisions in polygonal containers and returns the exact object state at
a queried timestamp; strong solutions require precise collision detection/response and numerically
stable integration.

Prompt design. We provide a prompt example of the bouncing ball coding problems in ROT_BOX
problem family below.

Prompt Template of BouncingSim Problems

## Polygon Dynamics Prediction

In this task, you will implement a single function predict_position(t)
that computes the 2D positions of all balls at an arbitrary future time
t under idealized mechanics. The function parses the scene configuration
(containers, balls, and physics/meta), reconstructs the motions, detects
and handles boundary collisions with finite-size treatment, and returns
a list where each element is the [x, y] position (rounded to 2 decimals)
of a ball at time t. Each evaluation of t must be computed directly from
initial conditions and scene mechanics with no hidden state or
accumulation across calls. Rendering, animation, and explanatory text
are out of scope; prefer closed-form reasoning and avoid coarse time-
stepping except where narrowly required for collision resolution.

### Mechanics (General)

- Kinematics: Use closed-form equations under constant acceleration:
x(t)=x0+vx0*t+0.5%ax*t~2, y(t)=y0+vyO*t+0.5*ay*t~2.

- Collisions: Perfectly elastic. Reflect velocity using v' = v -
2.dot(v, n”)-n~, where n~ is the inward unit normal at the contact.

- Finite size: Use polygon{polygon contact. Derive regular shapes from
('sides', 'radius', 'center', 'rotation'); irregular convex polygon balls
use provided vertices.

- Geometry: Irregular convex polygons (if present) are simple (non self-
intersecting). Ball finite size must be respected in all interactions.
- Units: Positions in meters; time in seconds; angles in radians;
velocities in m/s; accelerations in m/s”2.

- Cartesian Axes: +X is right, +Y is up.

### Constraints

- Implement only predict_position(t); no other entry points will be called.
- No global variables; no variables defined outside the function.

- Do not import external libraries (except math); do not perform I/0; do
not print; do not use randomness.

- Numerical output must be round(value, 2); normalize -0.0 to 0.0.

### Verification and output contract

- Return a list of positions per ball for the provided t: [[x1,y1],[x2,y2],...].
- Each call must be computed independently (no state carry-over between calls).
- You should assume that the ball will hit the wall and bounce back,

which will be verified in test cases.

### Scene description

#### Containers

- Container 1: regular polygon with 3 sides, radius 225.00m, center at

(750, 750); initial orientation 0.000 rad; constant angular velocity 0.170 rad/s

#### Objects

- Ball 1: regular polygon (3 sides), radius 40.0m, initial position
(750, 750), initial velocity (-220.61, 6.21) m/s
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### Physics
- no effective gravity (treated as zero).

### Dynamics
- No additional time-varying mechanisms.

### Conventions for this scene

- Containers are convex regular polygons (parameters: 'sides', 'radius',
'center'), unless otherwise specified.

- Angle baseline: By default, the initial orientation is 0.000 rad,
pointing to the first vertex along +X (standard Cartesian axes);
positive angles rotate CCW about the container center.

- Polygon vertices (if provided) are CCW and form a simple convex polygon.
- Container 'radius' denotes the circumradius (meters).

- For balls: irregular convex polygons rely on provided vertices (no
radius mentioned); regular polygons may be derived from
'sides/radius/center/rotation’.

- Containers are kinematic (infinite mass, prescribed motion); impacts
do not alter container motion.

#i## Task

- Number of balls: 1

- Your should think step by step and write python code.

- The final output should be in the following format:

[Your thinking steps here ...](optional)

T Tpython

[Your Python code here]

- Define predict_position(t) returning a list of length n_balls; each
element is [x_i, y_i] (rounded to 2 decimals) for Ball i at time t (seconds)

### Output
- Required format: function predict_position(t: float) -> [[x1,y1],
[x2,y2],...]; coordinates as 2-decimal floats

The End of Prompt

We construct a large-scale dataset for elastic collisions of polygonal objects in polygonal containers,
designed to probe geometry-aware reasoning and numerically stable simulation in code-generating
models (Wiggers, [2025)). Each instance provides a fully specified physical scene and a programmatic
task: predict the exact object state at one or more queried timestamps. Below we detail our scene
taxonomy, generation and validation pipeline, prompt/evaluation protocol, and the difficulty schedule.

B.2.1 Scene Taxonomy

We factor the space of scenes into orthogonal “axes” that control distinct physical effects or composi-
tion, allowing systematic sampling and compositional generalization:

* ROT_OBJ (Inner rotation): the ball (modeled as a convex polygon) has nonzero angular velocity;
collisions remain perfectly elastic.

* ROT_BOX (Outer rotation): the container rotates; optionally, time-varying angular speed is injected
via a sinusoidal envelope.

* MOV_BOX (Outer translation): the container follows a prescribed path (sinusoidal or Lissajous),
inducing moving-boundary reflections.

* GRAVITY: gravity can be tiny/small/large, tilted, or chaotic (random direction with time variation).

* MULTI_BOX (Multi-container): multiple non-overlapping polygonal containers are placed; a single
ball is spawned in the first container unless otherwise specified.
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e MULTI_OBJ (Multi-object): multiple balls are spawned in a single container with non-overlapping
initial placement.

All containers and balls are convex polygons; collisions use a perfectly elastic model (restitution 1.0)
with finite-size handling (ball centers are constrained by the container’s incircle).

B.2.2 Parameterization and Placement

Scenes are defined in a global, display-agnostic metric space. The workspace size is fixed to 1500 m
x 1500 m with a baseline container diameter of 300 m. Difficulty scales the geometry (e.g., container
diameter factor), polygon arity (number of sides), ball radii, speeds, and multiplicities. Objects are
sampled and placed under strict feasibility constraints:

* Non-overlap: initial ball-ball overlap is rejected by a circle-approximation test; multi-container
layouts must respect a minimum center-to-center gap.

* Feasible incircle: ball centers are sampled inside the container’s incircle minus a safety margin;
scenes violating this bound are rejected.

» Units: positions in meters; time in seconds; angles in radians; velocities and accelerations in SI
units. All randomization is seeded and stored in scene metadata for reproducibility.

B.2.3 Generation and Validation Pipeline

The dataset is produced in three stages, repeated for every requested problem family combination and
difficulty level:

(1) Scene synthesis. Given a target problem family set (e.g., ROT_BOX) and difficulty, we draw
parameters from problem-family-specific ranges (polygon arity, speeds, rotation rates, translation
amplitudes, gravity modes) and write a normalized JSON scene: container(s), ball(s), physics
(including time-varying profiles), and comprehensive metadata (difficulty name, seed, key timestamps,
etc.). Difficulty levels scale geometry (container factor, polygon arity), ball radii, kinematics (linear
and angular speeds), gravity complexity, and multiplicity (containers/balls) as shown in Table 2]

(2) Numerical sanity check. Each synthesized scene is validated for step-size stability before
acceptance. We simulate the scene at a small set of reference timestamps under two integrators/time-
steps (a validation baseline vs. the ground-truth step) and require the maximum screen-space deviation
to remain below a tight threshold (15 px). Scenes that exceed this threshold or violate geometric
feasibility (overlap or outside-incircle) are discarded and resampled up to a retry budget.

(3) Dataset assembly. For every accepted scene we choose evaluation timestamps and compute
ground-truth positions using the higher-fidelity integrator. We then construct a task prompt and
serialize a JSONL entry containing: messages (the task), a list of test assertions (per timestamp), the
instance id, difficulty index, the explicit timestamp list, and an error tolerance tag (default 50px) used
during automated checking.

B.2.4 Splits and Composition

We design three complementary splits to probe distinct generalization properties. Each split is
parameterized by which axes, difficulties, and timestamp regimes are exposed during training vs.
evaluation.

Design principles. (1) Factorized skills. Axes isolate orthogonal mechanics (inner vs. outer rotation,
moving boundaries, gravity, multiplicity, periodicity). (2) Controlled distribution shifts. Difficulty
scales geometry, multiplicity, and dynamics; OOD splits increase complexity without changing the
core mechanics.

Explorative generalization (within-family difficulty shift). This split tests robustness to increased
geometric/dynamic complexity while keeping the same ““skill”. We train on single-family scenes at
Basic difficulty and evaluate on the same family at higher difficulties.
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Table 2: Problem-by-difficulty configurations (aggregated from generator defaults). Abbreviations: f
= container diameter factor (relative to 300m base); out/in = outer/inner polygon sides; r = ball radius
(m); v = linear speed range (m/s); w = angular speed (rad/s); amp = translation amplitude (m); g =
gravity mode; cts = number of boxes; n = number of balls.

Problem family Basic (0) Easy (1) Medium (2) Hard (3) Extreme (4)

ROT_0BJ f1.5;out 3-4;in 3-4; f1.4;out3-5;in5-6; f1.3;0ut3-06;in6-7; f1.2;0ut3-7;in7-8; f1.0;out3-7;in8;r
r 40; w 0.1-0.2; v r 35; w 0.2-0.5; v r 30; w 0.5-1.0; v r30; w 1.0-2.0 (tv); 30; w 2.0-2.5 (tv); v
200-400 400-600 600-800 v 600-800 600-800

ROT_BOX f 1.5; out 34; in f 1.4; out 5-6; in f 1.3; out 6-7; in f 1.2; out 7-8; in f 0.8; out 8-10; in
34; w 0.1-0.2; v 5-6; w 02-0.5; v 6-7; w 0.5-1.0; v 7-8; w 1.0-1.5 (tv); 8-10; w 2.0-3.0 (tv);
200-400 400-600 600-800 v 800-1000 v 1000-1200

MOV_BOX f 1.5; out 3—4; amp f 1.4; out 5-6; amp f 1.3; out 6-7; amp f 1.2; out 7-8; amp f 1.0; out 8-10;
0-10; sinld (0.1); v 20-40; sinld (0.5); v 40-60; sinld (1.0); v 60-90; Lissajous; v amp 90-120; Lis-
200-400 400-600 600-800 800-1000 sajous (chaotic); v

1000-1200

GRAVITY f 1.5 out3-4; g= f14; out 5-6; g= f1.3; out 6-7; g= f 1.2; out 7-8; g = f 1.0; out 8-10; g =
tiny; v 200400 small; v 400-600 large; v 600-800 tilted; v 800-1000 tilted; v 1000-1200

MULTI_BOX cts2;f1.5;out3—4;r cts2;f1.4;0ut5-6;r cts3;f1.3;0ut6-7;r ctsd;f1.2;0out7-8;r cts6;f1.0;out 8-10;
40; v 200400 35; v 400-600 30; v 600-800 25; v 800-1000 r 20; v 1000-1200

ROT_BALL n2;f2.5;out3-6;in n3;f2.5;out3-6;r n4-5;f2.5;out3-6; n5-6;f2.5;0ut3-6; n7-9;f2.5; out 3-6;

3-6; 1 20; v 200400

20; v 400-600

r 20; v 600-800

r 20; v 800-1000

r 20; v 1000-1200

* Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.
* Test (ID): single-family scenes at Basic (0). We generate 100 additional examples in such a split.

* Test (OOD): Easy—Extreme (1-4) at the same family; We generate 100 additional examples in each
difficulty.

* Rationale: isolates the effect of tighter geometry (smaller containers, more sides), higher velocities,
stronger/tilted gravity, and larger multiplicity (more containers/balls), while holding the family-
specific mechanics fixed.

Compositional generalization (skill composition). This split probes whether models learned
modular skills that compose. Concretely, we exemplify by composing inner and outer rotations at
test time after training on them in isolation.

* Train: ROTAT_BOX (outer rotation only) and ROTAT_0BJ (inner rotation only), both at Basic difficulty.
We generate 1000 examples in each family.

* Test (OOD composition): ROTAT_BOX_0BJ = (outer+inner rotation simultaneously) at Basic (0)
level. Container angular velocity and object spin are drawn independently at the current difficulty
level. We generate 100 additional examples in such a split.

» Rationale: assesses whether learned collision handling in a rotating frame combines with inner-spin
kinematics without interference.

Transformative generalization (qualitative strategy change). Here the test-time data is qualita-
tively different from anything seen in training—for instance, perfectly periodic trajectories that arise
from special consruction.

* Train: single-family scenes at Basic (0). We generate 1000 examples in such a split.

* Test (transformative OOD): periodic configurations (even-sided container, symmetry-aligned initial
velocity) using list-prompt mode with a fixed periodic grid; we evaluate cycle consistency and phase
accuracy over evenly spaced timestamps. We provide an example theorem below that supports
such a periodic case construction.

* Rationale: measures whether models trained on generic dynamics can extrapolate to a qualitatively
different but mathematically structured regime (near-1D periodic motion in polygonal symmetry).

Periodic Construction (transformative setting). We exploit a closed-form condition that yields
perfectly periodic, normal “shuttle” trajectories between two concentric, co-rotating regular polygons.
This result underpins the periodic test cases in our ROT_BOX transformative split and provides an
analytical knob to dial the fundamental period via the angular velocity.

20



Theorem 1 (Periodic bounce between two concentric regular n-gons). Setup. Let P, and P; be two
concentric regular n-gons (n > 3) with circumradii R, > R; > 0. Both polygons rotate rigidly with
the same constant angular velocity w about their common center. At time t = 0 a point mass (“‘ball”)
is placed on the inward normal to a side of P, and moves with speed v > 0 along that normal toward
P;. Collisions with sides are perfectly elastic, and motion is confined to the annular region between
the polygons. The initial pose has one vertex on the +x-axis.

Let a(R) := Rcos(w/n) denote the apothem of a regular n-gon with circumradius R, and define the
normal gap

A= a(R,) — a(R;) = (R, — R;) cos(%).

Thus A is the (signed) distance between the parallel supporting lines of the corresponding side family
in P, and P;.

Claim (closed-form condition). The ball executes uniform periodic motion—bouncing back and forth
at constant speed along a fixed set of parallel sides with a repeating impact pattern—if and only if
there exists an integer k € Z such that

B k- 2mv
N n(R, — R;) cos(X)

w

Equivalently, with the one-way flight time
A (R, — R;)cos(m/n)

tay = — =
Y v ’

the periodicity condition is

2m
W,tﬁy :]f ;

When this holds, the fundamental bounce period and the orientation recurrence are

2(R, — R) cos(m/n) o A
Tbounce = 27 tﬂy = ) ) orient — m - W

The minimal nonzero periodic rotation corresponds to |k| = 1.

Proof sketch. (1) In a regular n-gon, opposite sides are parallel; the distance between their supporting
lines is 2a(R). For concentric, co-oriented P,, P;, the normal gap between the corresponding
supports is A = a(R,) — a(R;). (2) Launching exactly along a side normal produces specular
reflections that preserve a straight, normal shuttle between parallel side families; the speed remains
v, so each one-way flight takes tay, = A/v. (3) During a one-way flight, the polygons rotate by w, tgy.
For the next impact to occur on a side parallel to the previous one (so that the normal shuttle and
impact geometry repeat), the side orientations must recur, which in a regular n-gon happens modulo
27 /n. Hence w,tgy =0 (mod 27/n), yielding the stated condition.

Construction recipe for ROT_BOX (periodic). To instantiate periodic test scenes in the transforma-
tive split

1. Choose n (even n makes the normal families align with diameters) and set circumradii (R,, R;)
(or effective radii after finite-size shrink/expand).

2. Pick a speed v > 0 and launch along a side normal of P, (avoid vertex alignment by a tiny phase
offset).

3. Set the box angular velocity using |k| = 1 in the closed form, w < #W, and
co-rotate any inner boundary if present, or equivalently use w,.] for differential rotations.

4. The resulting shuttle has Thounce = 2(R, — R;) cos(m/n)/v and repeats in orientation every
Torient = nA/v. For evaluation, sample timestamps on a uniform grid over several bounce
periods to probe phase stability.
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B.3 Competition Coding

Competition Code is a well-established domain where participants solve complex algorithmic prob-
lems. For a specified problem, the solver program is required to generate the correct output for
every input in the provided test suite. We curate 5 algorithmic families and collect several problems
per family from various well-known competitive programming platforms. We propose a phased
perturbation pipeline to create a comprehensive OOD dataset.

B.3.1 Seed Families and Coverage
We curate 3-5 seeds per algorithmic family. The current collection includes:

* Mo’s Algorithm (4): LuoguP1494, LuoguP4462, LuoguP4887, LuoguP5047
* Segment Tree Decomposition (3): CF981E, CF1140F, LuoguP5787
CDQ D&C (3): CF848C, CF1045G, LuoguP4093.

* Meet-in-the-Middle: CEOQOI2015-D2T1, LuoguP2962, SPOJ-ABCDEF,
USACO2012USOpen-GoldP3

* Square Root Decomposition (5): CF710D, CF797E, CFI1207F, LuoguP3396, Lu-
oguP8250.

Each seed problem is tagged with public problem code in websites like CodeForces, AtCoder, and
Luogu. Per seed, we target 5-10 perturbation strategies (configurable; default 10). For narrative
coverage, we maintain a library of 20 background templates (e.g., Campus Life, Ancient Warfare,
Cyber Security, Energy Grid, Xuanhuan Fantasy), and by default rewrite each perturbed seed into all
backgrounds.

B.3.2 Synthesis Pipeline

Phase 1: Standardize seed problems. This phase transforms heterogeneous problem statements
into a unified specification. First, the framework parses raw Markdown to extract core fields such as
the problem statement, input/output formats, constraints, and examples, and utilize LLMs to reduce
typographic ambiguities and make semantic clarifications.

Phase 2: Produce enumeration-based solutions for standardized seed problems. This phase
generates a diverse set of feasible, though not necessarily optimal, reference implementations for
each standardized seed problem. Emphasis is placed on reliability rather than optimality, ensuring we
have correct solutions for small test cases.

Phase 3: Produce enumeration-based test case generators for standardized seed problems. This
phase synthesizes test case generators grounded in original seed problems. By curating prompts for
LLMs, generators are designed to cover representative distributions and adversarial conditions.

Phase 4: Generate perturbation strategies. This phase generates strategies how to perturb problems
systematically. Each strategy seed is curated by a human expert with at least 8 years of competitive
programming experience and designed for making a perturbation while keep the main solution
unchanged. These strategy seeds are standardized and extended to strategies with detailed instructions.

Phase 5-7: Generate perturbed problems, enumeration-based solutions and test case generators
according to strategies. Phase 5 generates standardized perturbed problem statements, based on
perturbation strategies. Similar to phase 2 and phase 3, we generate corresponding solutions and test
case generators based on enumeration. When generating solutions, we provide the original problem
and solution to effectively improve the reliability.

Phase 8: Produce input constraint sanity check test case generators for standardized perturbed
problems. To enhance the robustness of our evaluation, this phase produces input constraint sanity
check test case generators. Curated test case generators are designed for testing whether the solution
code can handle big test cases in a reasonable small time. Test case constraints are manually adapted
to the Python programming setting, guaranteeing no brute-force solutions can pass and all correct
Python solutions can be accepted.

Phase 9: Produce background rewrites. Finally, this phase provides an effective approach to
generate OOD samples. By utilizing 20 background settings, the standardized perturbed seed
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problems are rewritten in different background stories, maintaining the same input/output formats
and solutions. All these rewritten problems are final and ready to be involved in training.

B.3.3 Example 1: Segment Tree Decomposition — Bipartite Over Time
Seed (excerpt).

“Given (n, m, k). Each of the (m) edges is active on an interval ([1, r]) over the discrete
timeline (1..k). For each time (t), determine whether the active subgraph is bipartite.”

Perturbation strategies (from Phase 2, sample).

* Two-interval activation. Replace each edge’s interval ([1, r]) with exactly two disjoint
subintervals ([l1, 1], [l2, 72]). The solver continues to use DSU-rollback over a segment tree
covering time.

* Interval > Event rewrite. Convert each interval to two explicit events: an add at (1), a
remove at (r+1). Feed the event list unchanged into the segment-tree over time.

* Event-pair splitting. Expand each add/remove into two sub-events (e.g., preparelapply) to
stress timeline density without changing the rollback design.

Before/After (Strategy-level variant). Before (seed): time-varying edges with single intervals ({1,
r]). After (strategy 1): “Each edge is active exactly on two disjoint intervals ([l1,71]) and ([l2, r2]).
For each (1) in (1..k), is the subgraph bipartite?” Algorithmic essence and complexity remain the
same: DSU with rollback over a segment tree on the time axis, O((n + m) log k).

B.3.4 Example 2: Square Root Decomposition — Hash-Bucket Group Sums
Seed (excerpt).

“Given an array value. For many queries with modulus (pjn), report the sum of numbers in
bucket (x), where index (k) belongs to bucket (k mod p). Updates assign value; < y.”

Strategy-level perturbation (background-agnostic). Before: group by (k mod p). After:
Grouped Sequence Sum and Update Queries:

“Define H (i) = f:_ol Sii® mod M. Sum queries ask for the total over indices mapping
to a given hash value (g); updates set A; < x.”

This preserves the bucket-sum structure and the O(-) behavior under small-(M) caching and updates,
matching the seed’s enumeration profile while modestly changing the grouping function.

Background rewrite (Campus Life). Before (strategy-level): abstract group sums under (H(i)).
After (background): Campus Club Scores:

“Student IDs (1..N) are assigned to clubs by a polynomial function (C(i)). Queries ask for
the total score in club (g); updates change a student’s score.”

Narrative terms shift (students/clubs/scores), but the formal mapping (C(i)) and the I/O grammar
remain intact so the variant’s enumerator and the background rewrite both agree on the 100-case
oracle.

B.3.5 Summary

By enumeration-first solutions and enforcing strategy-level clarity before rewriting, the pipeline makes
large-scale, verifiable perturbation feasible. Standardization, deterministic test generation, and back-
ground consistency checks together ensure that every variant—despite narrative diversity—remains
faithful to the core algorithm and produces outputs consistent with the seed’s brute-force oracle. This
methodology yields rich, well-structured families suitable for training, evaluation, and pedagogical
use.
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B4 LEAN

Four Lean-formalized math families—lean_algebra, lean_number_theory, lean_inequality,
lean_geometry—are sourced from Lean-Workbook (Ying et al., 2024)) and Mathematics in Lean (lea)
2025)), Ineq-Comp (Zhao et al.||2025) and Real-Prover (Li et al.| 2025)) (inequalities; e.g., AM-GM,
Cauchy—Schwarz, Jensen), and LeanEuclid (Murphy et al., [2024)) (Euclid Geometry). Each do-
main is well-scoped—algebra (symbolic manipulation/factorization), number theory (divisibility/-
modular arithmetic), inequalities (analytic convexity), geometry (Euclidean construction/congru-
ence)—yielding stable testbeds for probing learnability and generalization.

To systematically enrich our dataset, we generate controlled families of theorem variants from set of
seed problems. The guiding principle is to preserve the underlying reasoning skill while diversifying
surface forms and algebraic contexts. This ensures that any successful model must rely on substantive
reasoning rather than superficial pattern matching. We implement four major transformation classes:
algebraic transformations, compositional transforms, and functional transforms.

Algebraic transformations. The first class of transformations rewrites an identity or inequality
into an equivalent but syntactically distinct form. In practice, we restrict to one-step algebraic edits
that are provably semantics-preserving. Examples include re-parenthesization using associativity,
commuting terms, adding or subtracting the same quantity on both sides, or multiplying both sides by
a strictly positive constant. These modifications retain the core reasoning path of the seed theorem
but alter the syntactic presentation. Care is taken to avoid introducing additional side conditions: for
instance, multiplication is only permitted by fixed positive scalars to prevent unintended inequality
reversal.

Compositional transforms. The second transformation class enlarges inequalities by applying the
same arithmetic operation to both sides. Our implementation extracts the inequality clause from
the Lean theorem by locating the statement after the final colon preceding := by and rewriting it
according to the selected transform. The resulting statement is then spliced back into the theorem
template. To ensure robustness, the parser falls back gracefully in the presence of unusual formatting
or nested colons, in which case the original problem is preserved unchanged. Randomized pipelines
may be employed to select among the available safe transforms in order to increase distributional
diversity.

Functional transforms. Finally, we apply monotone functional lifts to both sides of an inequality.
The functional catalog currently includes the exponential, logarithm functions, each annotated with
domain, codomain, and monotonicity metadata. For example, the exponential function is strictly
increasing on all real numbers, while the logarithm is defined and monotone only on the positive
reals. Similarly, the square root is monotone on the non-negative reals, and the square function is
monotone only when restricted to the non-negative domain. When a function is applied, both sides of
the inequality are wrapped accordingly, and domain side conditions are explicitly checked or attached
as auxiliary hypotheses. This ensures that no unsound variants are introduced.

In summary, each domain of algebra, number theory, inequality, geometry has well-defined boundaries
and characteristic techniques: 1) Algebra relies on symbolic manipulation, polynomial identities,
functional equations, and factorization. 2) Number theory focuses on divisibility, modular arithmetic,
congruences, and prime structure. 3) Inequalities are grounded in classical analytic techniques such
as AM-GM, Cauchy-Schwarz, Jensen’s inequality, and convexity arguments. 4) Geometry builds on
Euclidean construction, congruence. Within each domain, problems differ only in surface structure
or complexity but share a common reasoning kernel. This is what makes them a problem family:
instances are linked by a shared mathematical backbone and solvable by a stable set of techniques.
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C Experiment Details

Models. We use Qwen3-4B-Instruct as the reference instruction-tuned model for all experiments in
this paper.

Training Details. We fine-tune with GRPO (Guo et al.,[2025) using the Open-Instruct framewor
Unless otherwise noted, the key arguments are:

--beta 0.0 \
—-num_unique_prompts_rollout 48 \
—--num_samples_per_prompt_rollout 16 \
--kl_estimator k13 \
--learning_rate 5e-7 \
--max_token_length 12240 \
--max_prompt_token_length 2048 \
—--response_length 10192 \
--pack_length 12240 \
—-apply_verifiable_reward true \
--non_stop_penalty True \
--non_stop_penalty_value 0.0 \
--temperature 1.0 \
--total_episodes 1000000 \
--deepspeed_stage 2 \
—--per_device_train_batch_size 1 \
--num_mini_batches 1 \
--num_learners_per_node 8 \
--num_epochs 1 \
--vllm_tensor_parallel_size 1 \
-—-clip_higher 0.3 \
--vllm_num_engines 8 \
—--1r_scheduler_type constant \
--seed 1 \
--gradient_checkpointing \

Across all experiments—including the multi-stage schedules in the paper—we vary only (i) the
train/eval datasets, (ii) the base/reference model, and (iii) the scoring mode (full-pass reward vs.
per-test reward) to match the setting.

Datasets for learnability (Section [3). Manufactoria-HAS: 742 training and 100 test examples.
Manufactoria-START/APPEND/EXACT: 350 training examples in total across the three families.
Manufactoria-REGEX: 560 training examples. Manufactoria-COMPR: 535 training examples.

Datasets for generalization (Section[A.T). Unless otherwise specified, for each curated problem
family and each difficulty, we sample 1,000 training problems (Appendix [B.2.4). In the setup of
Figure @a), the training set contains six families at the Basic level, totaling 6,000 training samples.
Evaluation comprises:

¢ In-distribution (ID): 100 test samples from the same Basic difficulty as training.

* Explorative (OOD): 100 test samples per family at each higher difficulty (Easy, Medium,
Hard).

» Compositional (OOD): 100 test samples per composed family at Basic difficulty.

* Transformational (OOD): 100 test samples per setting.
Evaluation Protocol. Evaluation uses the same sampling configuration as training. Each score is
averaged over 4 runs.

Compute Resources. Each RL run uses 16 NVIDIA H100 GPUs across two nodes and completes in
~3 days for 1,000 optimization steps.

*https://github.com/allenai/open-instruct
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Figure 7: Grokking across models and tasks. (a) Qwen3-4B-Instruct on Manufactoria-REGEX; (b) Qwen3-
4B-Instruct on BouncingSim—All (same training setup as in Figure[6); (c) Nemotron-14B on Manufactoria—HAS.
Curves plot training-data full pass rate versus training steps. A consistent pattern emerges: a long exploration
phase, an abrupt grokking transition, and a convergence regime; (a) also exhibits an RL collapse when training
continues past convergence.

D Additional Experiments

D.1 Grokking Generalizes Across Models and Problem Families

Figure|/|demonstrates that the RL grokking phenomenon, an extended low-signal exploration phase
followed by an abrupt phase transition and rapid convergence in training-data full-pass rate, can arise
across (i) model sizes and families and (ii) distinct problem scopes.

Panel (a) shows Qwen3-4B-Instruct trained on Manufactoria{REGEX. After a long plateau, perfor-
mance surges and subsequently enters a convergence regime. Continued training eventually triggers
an RL collapse, highlighting the need for stabilization or early stopping once solutions consolidate.
Panel (b) uses the same model on BouncingSim—All, a real-world ball-bouncing simulation coding
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suite for real-world coding tasks. The same exploration to phase-transition to a convergence pattern
appears. Panel (c) swaps the model family and scale to Nemotron-14B on Manufactoria—HAS, again
reproducing the grokking phenomenon.

Together, these results indicate that grokking is not an artifact of a particular backbone or a single
synthetic family. It emerges with different parameter counts, across independent model lineages, and
on tasks ranging from symbolic program synthesis to physics-driven simulation code. This supports
the view that RL can discover new procedural strategies rather than merely sharpening pre-trained
ones.

D.2 Warm-up Benefits Beyond the “pass@k=0" Problems

Warm-up with per-test rewards is not only a rescue mechanism for tasks where the base policy never
succeeds; it also helps when the initial success probability is small but non-zero (pass@k = ¢ > 0).
In this regime the binary full-pass reward still provides a weak and high-variance signal, which can
lead to slow or unstable improvement. A short warm-up phase with dense, per-test rewards (here:
100 steps) (i) accelerates discovery of partially correct behaviors, (ii) better stability, and (iii) delivers
a more reliable starting point for the subsequent binary-reward phase. Empirically, we observe faster
and steadier convergence with warm-up, whereas training that optimizes full-pass from scratch can
remain sluggish and brittle, sometimes exhibiting late-stage regressions even after partial progress.
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Figure 8: Warm-up helps when pass@k is small but non-zero. Training curves on Manufactoria-REGEX
with Qwen3-4B-Instruct. The blue curve is trained after a 100-step warm-up using per-test rewards, then
switched to the binary full-pass objective; it achieves faster and steadier gains. The orange curve trains full-pass
from scratch and improves slowly with occasional regressions.
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