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Abstract

Neural models learn data representations that lie on low-dimensional manifolds,
yet modeling the relation between these representational spaces is an ongoing chal-
lenge. By integrating spectral geometry principles into neural modeling, we show
that this problem can be better addressed in the functional domain, mitigating com-
plexity, while enhancing interpretability and performances on downstream tasks.
To this end, we introduce a multi-purpose framework to the representation learning
community, which allows to: (i) compare different spaces in an interpretable way
and measure their intrinsic similarity; (ii) find correspondences between them, both
in unsupervised and weakly supervised settings, and (iii) to effectively transfer
representations between distinct spaces. We validate our framework on various
applications, ranging from stitching to retrieval tasks, and on multiple modalities,
demonstrating that Latent Functional Maps can serve as a swiss-army knife for
representation alignment.

1 Introduction

Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional
latent spaces. While much attention is given to the model’s output for tasks such as classification,
generation, reconstruction, or denoising, understanding the internal representations and their geometry
is equally important. This understanding facilitates reusing representations for downstream tasks
[62, 14] and the comparison between different models [23, 39], thereby broadening the applicability
of NNs, and understanding their structure and properties. Moreover, recent studies have shown
that distinct neural models often develop similar representations when exposed to similar stimuli,
a phenomenon observed in both biological [16, 25, 63] and artificial settings [38, 23, 39]. Notably,
even when neural networks have different architectures, internal representations of distinct models
can often be aligned through a linear transformation [61, 50]. This indicates a level of consistency
in how NNs process information, highlighting the importance of exploring and understanding these
internal representations.

*Equal Contribution
†Work done while visiting ISTA

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



…

…M

N

GX : kNN(X , d)

GY : kNN(Y, d)

ϕM
1 ϕM

2 ϕM
k

ϕN
1 ϕN

2 ϕN
k

C : F(M) → F(N )
(i)

(ii)

(iii)

Figure 1: Framework overview: given two spaces X , Y their samples lie on two manifolds M, N ,
which can be approximated with the KNN graphs GX ,GY . We can optimize for a latent functional
map C between the eigenbases of operators defined on the graphs. This map serves as a map between
functions defined on the two manifolds and can be leveraged for (i) comparing representational
spaces, (ii) solving correspondence problems, and (iii) transferring information between the spaces.

In this paper, we shift our focus from characterizing relationships between samples in distinct latent
spaces to modeling a map among function spaces defined on these representational spaces. To this
end, we propose leveraging spectral geometry principles by applying the framework of functional
maps [44] to the field of representation learning. Functional maps represent correspondences between
function spaces on different manifolds, providing a new perspective on the problem of representational
alignment. In this setting, many complex constraints can be easily expressed compactly [45]. For
instance, as shown in Figure 1, the mapping (C) between two spaces M and N can be represented in
the functional space as a linear map with a sparse structure.

Originally used in 3D geometry processing and more recently on graphs applications [60, 46], we
extend this framework to handle arbitrary large dimensional latent spaces. Our proposed method,
Latent Functional Map (LFM), is a flexible tool that allows (i) to compare distinct representational
spaces, (ii) to find correspondences between them both in an unsupervised and weakly supervised
way, and (iii) to transfer information between them. Our contributions can be listed as follows:

• We introduce the framework of Latent Functional Maps as a way to model the relation
between distinct representational spaces of neural models.

• We show that LFM allows us to find correspondences between representational spaces,
both in weakly supervised and unsupervised settings, and to transfer representations across
distinct models.

• We showcase LFM capabilities as a meaningful and interpretable similarity measure between
representational spaces.

• We validate our findings in retrieval and stitching tasks across different models, modalities
and datasets, demonstrating that LFMs can lead to better performance and sample efficiency
than other methods.

2 Related Work

Similarity between latent spaces. Comparing representations learned by neural models is of
fundamental importance for a diversity of tasks [63], ranging from representation analysis to latent
space alignment and neural dynamics. In order to do so, a similarity measure between different spaces
must be defined [22]. This can range from functional similarity (matching the performance of two
models) to similarity defined in representational space [23], which is where our framework falls in. A
classical statistical method is Canonical Correlation Analysis (CCA) [18], known for its invariance
to linear transformations. Various adaptations of CCA aim to enhance robustness, such as Singular
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Vector Canonical Correlation Analysis (SVCCA) [48], or to decrease sensitivity to perturbations
using methods like Projection-Weighted Canonical Correlation Analysis (PWCCA) [38]. Closely
related to these approaches, Centered Kernel Alignment (CKA) [23] measures the similarity between
latent spaces while ignoring orthogonal transformations. However, recent research [10] reveals that
CKA is sensitive to local shifts in the latent space.

We propose to leverage LFMs as a tool to measure the similarity, or how much two spaces differ from
an isometry w.r.t. to the metric that has been used to construct the graph.

Representation alignment. Complementary to measuring the similarity of distinct representational
spaces, several methods have been proposed to optimize for a transformation to align them [1].
The concept of latent space communication, introduced by [39], builds on the hypothesis that
latent spaces across neural networks, varying random seed initialization to architecture or even
data modality, are intrinsically compatible. This notion is supported by numerous empirical studies
[38, 30, 23, 6, 55, 3, 58, 27, 29, 4, 40, 9, 15, 8], with the phenomenon being particularly evident in
large and wide models [51, 33]. The core idea is that relations between data points (i.e., distances
according to some metric) are preserved across different spaces because the high-level semantics of
the data are the same and neural networks learn to encode them similarly [19]. With this "relative
representation", the authors show that it is possible to stitch [29] together model components coming
from different models, with little to no additional training, as long as a partial correspondence of the
spaces involved is known. Indeed, [26, 32, 35, 37] show that a simple linear transformation is usually
enough to effectively map one latent space into another, measuring the mapping performance via
desired downstream tasks.

With LFMs, we change the perspective from merely relating samples of distinct latent spaces
to relating function spaces defined on the manifold that the samples approximate, showing that
processing information in this dual space is convenient as it boosts performance while also being
interpretable.

Functional Maps. The representation we propose is directly derived from the functional maps
framework for smooth manifolds introduced in the seminal work by [44]. This pioneering study
proposed a compact and easily manipulable mapping between 3D shapes. Subsequent research
has aimed at enhancing this framework. For instance, [41] introduced regularization techniques to
improve the informativeness of the maps, while [34] developed refinement methods to achieve more
accurate mappings. The functional map framework has been extended as well outside the 3d domain,
for example, in [60] and [17], who applied the functional framework to model correspondences
between graphs, and in [46], who demonstrated its utility in graph learning tasks. In particular, they
have shown that the functional map representation retains its advantageous properties even when the
Laplace basis is computed on a graph.

Inspired by these advancements, our work leverages the functional representation of latent spaces
of neural models. We demonstrate how this representation can be easily manipulated to highlight
similarities and facilitate the transfer of information between different spaces, thereby extending the
applicability of the functional maps framework to the domain of neural latent spaces.

3 Method

3.1 Background

This section provides the basic notions to understand the framework of functional maps applied to
manifolds. We refer to [45] for a comprehensive overview.

Consider two manifolds M and N equipped with a basis ΦM (respectively ΦN ). Any squared
integrable function f : M → R can be represented as a linear combination of basis functions ΦM:
f =

∑
i aiΦ

M
i = aΦM. Given a bijective correspondence T : M → N between points on these

manifolds, for any real-valued function f : M → R, one can construct a corresponding function
g : N → R such that g = f ◦ T−1. In other words, the correspondence T defines a mapping
between two function spaces TF : F(M,R) → F(N ,R). Such a mapping is linear [44] and can be
represented as a matrix C such that for any function f represented as a vector of coefficients a, we
have TF (a) = Ca.
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The functional representation is particularly well-suited for map inference (i.e., constrained optimiza-
tion problems). When the underlying map T (and by extension the matrix C) is unknown, many
natural constraints on the map become linear constraints in its functional representation. In practice,
the simplest method for recovering an unknown functional map is to solve the following optimization
problem:

argmin
C

||CA−B||2 + ρ(C) (1)

where A and B are sets of corresponding functions, denoted as descriptors, expressed in the bases
on M and N , respectively, and ρ(C) represents additional constraints deriving from the properties
of the matrix C [45]. When the manifolds M and N are approximately isometric and the descriptors
are well-preserved by the (unknown) map, this procedure provides a good approximation of the
underlying map. In cases where the correspondence T is encoded as a permutation matrix P, the
functional map can be retrieved as C = Φ†

NPΦM where ΦM and ΦN are the bases of the functional
spaces F(M,R) and F(N ,R), respectively, and † denotes the Moore-Penrose pseudo-inverse.

3.2 Latent Functional Maps

3.2.1 Setting

We consider deep neural networks f := f1 ◦ f2 ◦ ...fn where each layer fi is associated to a
representational space Xi corresponding to the image of fi. In the following we’re gonna drop the
subscript i, when the layer considered is clear form the context. We assume that elements x ∈ X
are sampled from a latent manifold M. Considering pairs of spaces (X ,Y), and corresponding
manifolds M,N our objective is to characterize the relation between them by mapping the space of
functions F(M) to F(N ). Our framework can be summarized in three steps, which we are going to
describe in the following sections: (i) how to represent M from a sample estimate X , by building a
graph in the latent space X (ii) how to encode any known preserved quantity between the two spaces
by defining a set of descriptor function for each domain (iii) optimizing for the latent functional map
between M and N . An illustrative description of our framework is depicted in Figure 1.

Building the graph. To leverage the geometry of the underlying manifold, we model the latent
space of a neural network building a symmetric k-nearest neighbor (k-NN) graph [31]. Given a set
of samples X = {x1, . . . , xn}, we construct an undirected weighted graph G = (X,E,W) with
nodes X , edges E, and weight matrix W. The weight matrix is totally characterized by the choice
of a distance function d : X × X 7→ R.Suitable choices for d include the L2 metric or the angular
distance. Edges E are defined as E = {(xi, xj) ∈ X ×X | xi ∼k xj or xj ∼k xi}, where xi ∼k xj

indicates that xj is among the k nearest neighbors of xi. The weight matrix W ∈ Rn×n
≥0 assigns

a weight ω(xi, xj) = α(d(xi, xj)) to each edge (xi, xj) ∈ E, and Wi,j = 0 otherwise, with α
being some monotonic function. Next, we define the associated weighted graph Laplacian operator
LG = I−D−1/2WD−1/2, where D is the diagonal degree matrix with entries Di,i =

∑n
j=1 Wi,j .

LG is a positive semi-definite, self-adjoint operator [57]), therefore, it admits an eigendecomposition
LG = ΦGΛGΦ

T
G, where ΛG is a diagonal matrix containing the eigenvalues, and ΦG is a matrix

whose columns are the corresponding eigenvectors. The eigenvectors form an orthonormal basis for
the space of functions defined on the graph nodes (i.e., ΦT

GΦG = I). We give comprehensive details
on the choice of k in Appendix A.1.

Choice of descriptors. To define the alignment problem between pair of spaces X ,Y we will
introduce the notion of descriptor function. We define as descriptor function any real valued function
f : G 7→ Rk defined on the nodes of the graph. Informally descriptors should encode the information
which is shared between X and Y , either explicitly or implicitly . We categorize descriptor functions
into supervised, weakly supervised and unsupervised descriptors. For the former we assumed to
have access to a partial correspondence between the domains X ,Y , defined as a bijective mapping
ΓS : AX 7→ AY where AX ⊂ X ,AY ⊂ Y . Then descriptors takes the form of distance functions
dX : X ×AX 7→ R+, dY : Y × ΓS(AX ) 7→ R+. As an example considering the geodesic distance
(shortest path distance on the k-NN graph) from each node of the graph to the nodes in the anchor
set, is an instance of supervised descriptor. In the case of weakly supervised descriptor, we assume
to have access to an equivalence relation defined ΓW : AX ×AY 7→ {0, 1}. Example of these are
multi-to-multi mappings, like mappings between labels. Unsupervised descriptors are quantities that
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depends on the topology and the geometry of the graph itself and they don’t rely on any pre-given
correspondence or equivalence relation. An example of this is the Heat Kernel Signature [53] node
descriptor, based on heat diffusion over the manifold. We give examples of descriptors and ablation
in Appendix C.2.

Computing LFMs. We now describe the optimization problem to compute a latent functional map
between X and Y . We model each space using a subset of training samples X = {x1, . . . , xn} and
Y = {y1, . . . , yn} and build the k-NN graphs GX and GY from these samples, respectively. For each
graph, we compute the graph Laplacian LG and derive the first k eigenvalues ΛG and eigenvectors
ΦG = [ϕ1, . . . , ϕk], which serve as the basis for the function space defined on the latent spaces.

Given the set of descriptors FGX
= [fGX

1 , . . . , fGX
nf

] and FGY
= [fGY

1 , . . . , fGY
nf

], we consider
the optimization problem defined in Equation 1 and incorporate two regularizers which enforce
commutativity for the Laplacian and the descriptors, respectively, with the map C:

argmin
C

∥CF̂GX
− F̂GY

∥2F + αρL(C) + βρf (C) (2)

where F̂G = ΦT
GFG are the spectral coefficients of the functions FG, ρL and ρf are the Laplacian

and descriptor operator commutativity regularizers respectively, akin to [41]. We give full details on
the regularizers in Appendix A. Once we have solved the optimization problem defined in Equation
2, we refine the resulting functional map C using the spectral upsampling algorithm proposed by
[34], as detailed in Appendix A.3.

3.3 LFMs as a similarity measure

Once computed, the functional map C can serve as a measure of similarity between spaces. The reason
is that for isometric transformations between manifolds, the functional map is volume preserving
(see Thm 5.1 in [44]), and this is manifested in orthogonal C. By defining the inner product between
functions h1, h2 ∈ F(M) as ⟨h1, h2⟩ =

∫
M h1(x)h2(x)µ(x), it holds that ⟨h1, h2⟩ = ⟨ĥ1, ĥ2⟩

when the map preserves the local area, where ĥ denotes the functional representation of h. In other
words, when the transformation between the two manifolds is an isometry, the matrix CTC will be
diagonal. By measuring the ratio between the norm of the off-diagonal elements of CTC and the
norm of the full matrix, we can define a measure of similarity sim(X,Y ) = 1− ||off((CTC)||2F

||CTC||2F
. In

Appendix A.4 we prove that this similiarity measure is a proper distance on the space of functional
maps, allowing to compare measurements from collections of spaces. Furthermore, this quantity
is interpretable; the first eigenvector of CTC can act as a signal to localize the area of the target
manifold where the map has higher distortion [43], as we show in the experiment in Figure 3a.

3.4 Transfering information with LFM

The map C computed between two latent spaces can be utilized in various ways to transfer information
from one space to the other. In this paper, we focus on two methods: (i) Expressing arbitrary points
in the latent space as distance function on the graph and transferring them through the functional
domain; (ii) Obtaining a point-to-point correspondence between the representational spaces from
the LFM (see the first step in Appendix A.3) , starting from none to few known pairs, and leverage
off-the-shelf methods to learn a transformation between the spaces. Additional strategies could be
explored in future work.

Space of Functional Coefficients. The space of functional (or spectral) coefficients offers an
alternative representation for points in the latent space X . Using the equation f̂G = ΦT

GfG, any
function fG ∈ F(G,R) can be uniquely represented by its functional coefficients f̂G. We leverage
this property to represent any point x ∈ X as a distance function fd ∈ F(G,R) from the set of points
XG, which correspond to the nodes of the graph G. The functional map C between two latent spaces
X and Y aligns their functional representations, enabling the transfer of any function from the first
space to the second. This functional alignment can be used similarly to the method proposed by [39]
to establish a shared space where the representational spaces X and Y are aligned.

Finding correspondences. As explained in Section 3, the functional map C represents the bijection
T in a functional form. [44] demonstrated that this bijection can be retrieved as a point-to-point
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Figure 2: Similarity across layers Similarity matrices between internal layer representations of
CIFAR10 comparing our LFM-based similarity with the CCA and CKA baselines, averaged across
10 models. For each method, we report the accuracy scores for matching the corresponding layer by
maximal similarity.

map by finding the nearest neighbor for each row of ΦGY
C in ΦGX

. This process can be efficiently
implemented and scaled up using kd-tree structures or approximation strategies [21, 20]. Starting
from an empty set or few known correspondences (anchors) between the two spaces X and Y , we
can extend the correspondence to the entire set of nodes X and Y . This extended set of anchors can
then be used to fit an arbitrary transformation between the latent spaces, for example an orthogonal
mapping [32]. In our experiments, we demonstrate that by using a very small number of anchors
(typically ≤ 50), we can retrieve optimal transformations that facilitate near-perfect stitching and
retrieval tasks.

4 Experiments

In this section, we present a series of experiments designed to evaluate the effectiveness of the
Latent Functional Map (LFM) framework. We explore its application across various tasks, including
similarity evaluation, stitching, retrieval performance, and robustness to perturbations in latent
space. By comparing LFM to existing methods under different conditions, we aim to demonstrate
its versatility and superior performance in aligning and analyzing neural network representations.
Additional ablations and qualitative visualizations on the choice of distance metric to construct the
graph and descriptors selection are reported in the Appendix C.

4.1 Analysis

We demonstrate the benefits of using latent functional maps for comparing distinct representational
spaces, using the similarity metric sim(X,Y ) defined in Section 3.3

Experimental setting In order to validate experimentally if LFMs can serve as a good measure
of similarity between distinct representational spaces, we run the same sanity check as [23]. We
train 10 CNN models (the architecture is depicted in Appendix B.1) on the CIFAR-10 dataset [24],
changing the initialization seed. We compare their inner representations at each layer, excluding
the logits and plot them as a similarity matrix, comparing with Central Kernel Alignment (CKA)
measure [23] and Canonical Correlation Analysis (CCA) [18, 48]. We then measure the accuracy of
identifying corresponding layers across models and report the results comparing with CKA and CCA
as baselines. For CCA, we apply average pooling on the spatial dimensions to the embeddings of the
internal layers, making it more stable numerically and boosting the results for this baseline compared
to what was observed in [23].

Result analysis Figure 2 shows that our LFM-based similarity measure behaves correctly as CKA
does. Furthermore, the similarities are less spread around the diagonal, favoring a slightly higher
accuracy score in identifying the corresponding layers across models.

While CKA (Centered Kernel Alignment) is a widely used similarity metric in deep learning, recent
research by [10] has shown that it can produce unexpected or counter-intuitive results in certain
situations. Specifically, CKA is sensitive to transformations that preserve the linear separability of
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Figure 3: Robustness of LFM similarity Left: Similarity scores as a function of perturbation
strength: while the CKA baseline degrades, our LFM similarity scores are robust to perturbations
that preserve linear separability of the space. Right: Visualization of area distortion of the map by
projecting the first singular component of the LFM in the perturbed space: the distortion localizes on
the samples of the perturbed class, making LFM similarity interpretable.

two spaces, such as local translations. Our proposed similarity measure is robust to these changes
and demonstrates greater stability compared to CKA.

Experimental setting We compute the latent representations from the pooling layer just before
the classification head for the CIFAR10 train and test sets. Following the setup in [10], we train a
Support Vector Machine (SVM) classifier on the latent representations of the training samples to
find the optimal separating hyperplane between samples of one class and others. We then perturb the
samples by translating them in a direction orthogonal to the hyperplane, ensuring the space remains
linearly separable. We measure the CKA and LFM similarities as functions of the perturbation vector
norm, as shown in Figure 3a. In the accompanying plot on the right, we visualize the area distortion
of the map by projecting the first singular component of the LFM C into the perturbed space and
plotting it on a 2d TSNE [56] projection of the space.

Result Analysis We start by observing that when the latent space is perturbed in a way that still
preserves its linear separability, it should be considered identical from a classification perspective, as
this does not semantically affect the classification task. Figure 3a shows that while CKA degrades as
a function of perturbation intensity, the LFM similarity remains stable to high scores. To understand
this difference, we can visualize the area distortion as a function of the samples by projecting the
first singular component of C onto the perturbed space. In Figure 3b, we use t-SNE [56] to project
the perturbed samples and the distortion function into 2D. The visualization reveals that distortion is
localized to the samples corresponding to the perturbed class.

4.2 Zero-shot stitching

In latent communication tasks, a common challenge is combining an encoder that embeds data with a
decoder specialized in a downstream task, such as classification or reconstruction—this process is
often referred to as stitching. Previous works, like [29] and [2], have used trainable linear projections,
known as stitching layers, to enable the swapping of different network components. However, [39]
introduced the concept of zero-shot stitching, where neural components can be marged without
any additional training procedure. It’s important to note that while [39] still required to trained a
decoder module once for processing relative representations before stitching could be performed,
our method is fully zero-shot, with no need for additional training. In the following experiments,
stitching is conducted without any training or fine-tuning of the encoder or decoder, adhering strictly
to a zero-shot fashion.

Experimental Setting We consider four pre-trained image encoders (see Appendix B.2 for details)
and stitch their latent spaces to perform classification using a Support Vector Machine (SVM) on five
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Figure 4: Stitching results. Accuracy performance in stitching between image encoders trained on 6
datasets, comparing orthogonal transformation (Ortho) and LFM+Ortho at varying anchor counts.
Also shown is LFM+Ortho (Labels), which uses the dataset labels instead of anchors. Results are
presented with mean accuracy values reported on each box.

E1 D1 E2 D2 Absol. Ortho LFM

(a) MNIST

E1 D1 E2 D2 Absol. Ortho LFM

(b) FashionMNIST

E1 D1 E2 D2 Absol. Ortho LFM

(c) CIFAR-10

Figure 5: Qualitative results on stitching. We combine the encoder decoder modules of two
convolutional autoencoder (E1 D1, E2 D2) using three different approaches: no transformation
(Absol.), the orthogonal transformation from [32] (Ortho), the orthogonal transformation augmented
with LFM (LFM).

different datasets: CIFAR100 [24] with coarse and fine-grained labelling, ImageNet [11], Caltech-
UCSD Birds-200-2011 (CUB) [59], MNIST [12], AgNews [65]. These datasets were chosen to
encompass both large-scale, complex datasets like ImageNet and a variety of modalities, including
text and images. To evaluate the effectiveness of integrating the functional map, we extend the
correspondences to determine an orthogonal transformation [32] between the latent spaces. For
each encoder, we compute a graph of 3,000 points with 300 neighbors per node. We optimize
the problem in Equation 2 using the first 50 eigenvectors of the graph Laplacian and consider two
different descriptors: the distance functions defined from the anchors (LFM+Ortho) and the labels
(LFM+Ortho (Labels)). For each dataset class, the latter provides an indicator function with 1 if
the point belongs to the class and 0 otherwise. This descriptor does not require any anchor as input,
representing a pioneering example of stitching requiring no additional information beyond the dataset.

Result Analysis Figure 4 shows the accuracy results for all possible combinations of encoder
stitching. The latent functional map (LFM+Ortho) consistently outperforms other methods across all
datasets, particularly with a low number of anchors. Even without anchors, using label descriptors
(LFM+Ortho (Labels)) achieves strong performance across different labeling schemes. The orthogo-
nal transformation computed directly from the anchors (Ortho) only matches LFM’s performance
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Figure 6: Retrieval of word embeddings. We compare the retrieval performance of the functional
map framework with state-of-the-art models as the number of anchors increases. The left panel shows
the Mean Reciprocal Rank (MRR) across different numbers of anchors. The right panels depict the
first two components of PCA for a subsample of the latent space (b) and the functional space (c), both
before and after alignment using the functional map.

when more than 50 anchors are used, at which point LFM’s effectiveness is constrained by the
number of eigenvectors. Comparing the CIFAR100 coarse and fine-grained labeling, the fine-grained
task is more complex due to the larger number of classes, making the estimation of the map more
challenging. This complexity is especially evident when aligning self-supervised vision models with
classification-based ones (e.g., DINO vs. ViT), where the training strategies differs.

This experiment shows that the latent functional map is highly effective when few anchors are
available (≤ 50). It significantly enhances performance in zero-shot stitching tasks, outperforming
direct orthogonal transformations at low or no anchor counts. This suggests that the latent functional
map method provides a robust means of aligning latent spaces with minimal correspondence data,
making it a valuable tool for tasks requiring the integration of independently trained models.

4.2.1 Qualitative example

In Figure 5, we present qualitative experiments on the MNIST, FashionMNIST [64], and CIFAR-10
datasets, focusing on visualizing the reconstructions of stitched autoencoders. For these experiments,
we trained convolutional autoencoders using two different seeds and stitched their encoder and
decoder modules together. As a baseline, we used no transformation (Absol.), where the latent
representation from the first encoder is directly input into the second decoder. We then compared
this baseline with the orthogonal transformation from [32] (Ortho) and its LFM-augmented version
(LFM). For both our method and [32], we used 10, 10 and 50 correspondences for the MNIST,
FashionMNIST, and CIFAR-10 datasets, respectively. Our method consistently produced superior
reconstruction quality compared to both the baseline and the method from [32].

4.3 Retrieval

We extend our analysis to the retrieval task, where we look for the most similar embedding in the
aligned latent space.

Experimental Setting We consider two different English word embeddings, FastText [5] and
Word2Vec [36]. Following the approach of [39], we extract embeddings of 20K words from their
shared vocabulary using pre-trained models. We use 2K random corresponding samples to construct
the k-NN graphs and evaluate the retrieval performance on the remaining 18K word embeddings. We
test two settings in our experiments:

1. Aligning functional coefficients (LFM Space).
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2. Computing an orthogonal transformation using the correspondences obtained by the func-
tional map (LFM+Ortho).

For this experiment, we construct k-NN graphs with a neighborhood size of 300 and compute the
functional map using the first 50 eigenvectors. We evaluate the methods’ performance using the Mean
Reciprocal Rank (MRR), as detailed in Appendix B.4. Our functional map methods are compared
with the method proposed by [39] (Relatives) and the orthogonal transformation method proposed
by [32] (Ortho). We choose to fit the same orthogonal transformation on top of the correspondence
found by LFM to make the comparison the fairest possible, although in principle any off-the-shelf
methods could be used to estimate the transformation once the new correspondence is found. We
illustrate this versatility in Table 3 of the Appendix, where LFM is combined with other methods in
the same task.

Result Analysis Figure 6 shows the performance of these methods as the number of anchors
increases. Numerical results are detailed in Table 2 in the Appendix. The functional map significantly
improves performance with just 5 anchors, achieving an MRR of over 0.8. As the number of anchors
increases, the performance of competing methods improves but still falls short of FMAP+Transform
at 300 anchors, which reaches an MRR of 0.99. Interestingly, the performance of the functional map
methods does not improve beyond 5 anchors, suggesting that this number of anchors is sufficient to
achieve an optimal functional map between the spaces. These findings are further supported by Table
3 in the Appendix, where LFM consistently achieves superior MRR scores, particularly with fewer
anchors, outperforming other baselines such as [29]. In Appendix C.3, we analyze how the results
improve as the number of eigenvectors used to compute the functional map increases. Notably, the
MRR score drastically increases to over 0.6 with more than 25 eigenvectors.

These results confirm that the latent functional map is a valuable tool in settings with little knowledge
about correspondences. It significantly enhances retrieval performance with a minimal number of
anchors, making it an efficient approach for aligning latent spaces. Moreover, its performance can be
improved using a higher number of eigenvectors. In particular, our framework comprises at the same
time (i) an interpretable similarity measure, (ii) a way to find correspondences, and (iii) solving for
an explicit mapping between different spaces in a single framework, differently from [39] and [32]
which attempt to solve just the latter implicitly.

5 Conclusions

In this paper, we explored the application of latent functional maps (LFM) to model and analyze the
relationships between different latent spaces. Our approach leverages the principles of spectral geom-
etry, providing a robust framework for comparing and aligning representations across various models
and settings. By extending the functional map framework to high-dimensional latent spaces, we offer
a versatile method for comparing distinct representational spaces, finding correspondences between
them in both unsupervised and weakly supervised settings (few or no anchors) and transferring
information across different models.

Limitations and future work The performance of LFM can be sensitive to the number of eigenvec-
tors used, as observed in some of our experiments (see Appendix C.3). Finding the optimal number
of eigenvectors without extensive experimentation remains an open problem. The current framework
assumes a correspondence between the domains, and is not directly adapted in order to deal with
partial mappings, where just a subset of one domain can be mapped to other. Extending the results in
[49, 47] to our neural representation setting, is a promising way to overcome the full correspondence
assumption. Future research can further explore the potential of LFM in other domains and tasks,
and modalities. The versatility of the functional representation can be further explored to define
new ad-hoc constraints and regularizers for different settings. In particular, ts performance in fully
unsupervised settings, while promising is still an area requiring further research and improvement. In
conclusion, the Latent Functional Map framework offers a novel and effective approach to under-
standing and utilizing neural network representations, promising significant advancements in both
theoretical and practical aspects of machine learning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction gives an overview of the paper’s scope clearly
stating the contributions in a dotted list.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We put our limitations in the conclusion, after analyzing the results of our
method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include new theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Experiment and Appendix, we report all the information needed to
reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will share the code after the paper acceptance. All the data we use are
open-source and publically available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report all the training and test details in the Experiment and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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A Latent Functional Maps

A.1 Building the graph

In the following section we give more details about how to construct the graph in the latent space in
order to approximate the manifold domain from a sample estimate.

Throughout the paper, we assume the eigenvalues (and corresponding eigenvectors) are sorted in
non-descending order 0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn. One may consider a subset of eigenvectors, namely
those associated with the k smallest eigenvalues, to compactly approximate a graph signal, employing
techniques akin to Fourier analysis. As demonstrated in multiple recent works [54, 7], the eigenvalues
and eigenvectors of the graph Laplacian associated with a k-NN graph approximate the weighted
Laplace-Beltrami operator, placing us in a setting similar to the original one of [44]. In particular
in [7] it has been derived optimal bounds for the choices of k, bounds based on the dimensionality
of the underlying manifold and the number of sampled points. In our experiments we choose our
parameter k according to these estimates. For an estimate of manifold dimensionality we use the
latent space dimensionality, which correspond to an upper bound to it. In practice, we typically set
k = 300 with a graph in the order of few thousands nodes.

A.2 Additional Regularizers

In Equation 2, we improve the computation of the functional map by incorporating two additional
regularizers: Laplacian commutativity and descriptor operator commutativity. Both regularizers
exploit the preservation of linear functional operators SG : F(G,R) → F(G,R), enforcing that the
functional map C commutes with these operators: ∥SG

i C−CSGX
i ∥F = 0.

The Laplacian commutativity regularizer, first introduced by [44], is formulated as:

ρL(C) = ∥ΛGY
C−CΛGX

∥2F (3)

where ΛG represents the diagonal matrices of eigenvalues. This regularizer ensures that the functional
map C preserves the spectral properties of the Laplacian.

The descriptor operator commutativity regularizer, introduced by [41], extracts more detailed informa-
tion from a given descriptor, resulting in a more accurate functional map even with fewer descriptors.
The formulation of this regularizer is as follows:

ρf (C) =
∑
i

∥SGY
i C−CSGX

i ∥2F (4)

where SG
i = ΦT

G(f
G
i )ΦG are the descriptor operators.

A.3 Spectral refinement

Once we have solved the optimization problem defined in Equation 2, we refine the resulting
functional map C using the spectral upsampling algorithm proposed by [34]. We start by considering
the matrix C as the submatrix of size k × k of the current LFM estimate. Then we apply iteratively
the following two steps:

1. Compute the pointwise map T encoded as matrix Π from the current LFM estimate C via
solving: argmin

y
∥C(Φ:,y

GY
)−Φ:,x

GX
)∥2 ∀x ∈ X , where Φ:,x correspond to the x-th column

of the matrix

2. Set Ck+1 = Φ:,k
GX

T
ΠΦ:,k

GY
, where Φ:,k correspond to the k-th column of the matrix Φ.

A.4 LFM similarity properties

In this section we will demonstrate that the LFM similarity property sim(X,Y ) = 1− ∥off((CTC)∥2
F

∥(CTC)∥2
F

,
defined in Section 3.3 is a metric, as it satisfies, positiveness, simmetry and triangle inequality.
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Namely, for a pairs of spaces X,Y :

sim(X,Y ) ≥ 0 (5)
sim(X,Y ) = sim(Y,X) (6)
sim(X,Z) ≤ sim(X,Y ) + sim(Y,Z) (7)

Since ∥diag(CTC)∥2F + ∥off(CTC)∥2F = ∥(CTC)∥2F we will consider sim(X,Y ) =

sim(X,Y ) =
∥diag(CTC)∥2

F

∥(CTC)∥2
F

for simplicity. The former property is trivial as the ration between
two norms is positive. For proving simmetry we have that:

sim(X,Y ) =
∥diag(CTC)∥2F
∥(CTC)∥2F

(8)

sim(X,Y ) =
∥diag(ΦT

XΦY )∥2F
∥(ΦT

XΦY )∥2F
(9)

for the numerator ∥(ΦT
XΦY )∥F we trivially have diag(ΦT

XΦY ) = diag(ΦT
Y ΦX). For the denomi-

nator:

Since :∥Φ∥F =

√∑
i,j

|Φi,j |2 =
√
Tr(ΦTΦ) (10)

We have that:

∥ΦT
XΦY ∥2F

?
= ∥ΦT

Y ΦX∥2F (11)

Tr(ΦT
XΦY )

T (ΦT
XΦY )

?
= Tr(ΦT

Y ΦX)T (ΦT
Y ΦX) (12)

Tr(ΦT
Y ΦXΦT

XΦY ) = Tr(ΦT
XΦY Φ

T
Y ΦX) (13)

where the last equality is verified for the Trace operator being invariant under cyclic permutations.

For proving triangle inequality we will assume that the matrices of eigenvectors are full rank (i.e. all
eigenvectors are considered). We have to prove the following:

1− ∥diag(ΦT
XΦZ)∥2F

∥(ΦT
XΦZ)∥2F

≤ 2− (
∥diag(ΦT

XΦY )∥2F
∥(ΦT

XΦY )∥2F
+

∥diag((ΦT
Y ΦZ)∥2F

∥(ΦT
Y ΦZ)∥2F

) (14)

∥diag(ΦT
XΦZ)∥2F

∥(ΦT
XΦZ)∥2F

≥ (
∥diag(ΦT

XΦY )∥2F
∥(ΦT

XΦY )∥2F
+

∥diag((ΦT
Y ΦZ)∥2F

∥(ΦT
Y ΦZ)∥2F

)− 1 (15)

Using the fact that the Frobenius norm is invariant under multiplication by orthogonal matrices the
denominator of each term in Eq14 becomes: ∥(ΦT

XΦY )∥2F = ∥ΦX∥2F = Tr[ΦT
XΦX ] = Tr[Id] =

N . Then:

∥diag(ΦT
XΦZ)∥2F
N

≥ (
∥diag(ΦT

XΦY )∥2F
N

+
∥diag((ΦT

Y ΦZ)∥2F
N

)− 1 (16)

Since ∥diag(XT
XY)∥2F ≤ ∥(XT

XY)∥2F for any X,Y then the RHS of Eq. 16 will always be smaller
than the LHS.

B Experimental details

B.1 Architecture Details

All non-ResNet architectures are based on All-CNN-C [52]

B.2 Pre-trained models

In Section 4.2 we used four pretrained models: 3 variations of [13] (’google-vit-base-patch16-224’,
’google-vit-large-patch16-224’, ’WinKawaks-vit-small-patch16-224’) and the model proposed by
[42] ( ’facebook-dinov2-base’).
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Tiny-10

3× 3 conv. 16-BN-ReLu ×2
3× 3 conv. 32 stride 2-BN-ReLu
3× 3 conv. 32-BN-ReLu ×2
3× 3 conv. 64 stride 2-BN-ReLu
3× 3 conv. 64 valid padding-BN-ReLu
1× 1 conv. 64-BN-ReLu
Global average pooling
Logits

Table 1

B.3 Parameters and resources

In all our experiments we used gpu rtx 3080ti and 3090. In order to compute the eigenvector and
functional map on a graph of 3k nodes we employ not more than 2 minutes.

B.4 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is a commonly used metric to evaluate the performance of retrieval
systems [39]. It measures the effectiveness of a system by calculating the rank of the first relevant
item in the search results for each query.

To compute MRR, we consider the following steps:

1. For each query, rank the list of retrieved items based on their relevance to the query.
2. Determine the rank position of the first relevant item in the list. If the first relevant item for

query i is found at rank position ri, then the reciprocal rank for that query is 1
ri

.

3. Calculate the mean of the reciprocal ranks over all queries. If there are Q queries, the MRR
is given by:

MRR =
1

Q

Q∑
i=1

1

ri
(17)

Here, ri is the rank position of the first relevant item for the i-th query. If a query has no
relevant items in the retrieved list, its reciprocal rank is considered to be zero.

MRR provides a single metric that reflects the average performance of the retrieval system, with
higher MRR values indicating better performance.

C Additional Results

In this section, we provide additional results and ablation studies that further support and expand
upon the experiments presented in Section 4.

C.1 Functional maps structure

In Section 3.2.1, we have shown that latent graphs can be constructed using different distance metrics.
While angular distance was primarily used in our experiments, we now highlight its effectiveness and
the resulting functional maps.

In Figure 7, we present a visualization of the structure of the functional map in a synthetic setting. The
experiment was conducted as follows: given an input set X consisting of test embeddings extracted
from MNIST, we aimed to observe the degradation of the functional map structure as the space is
perturbed. The perturbation involved an orthogonal transformation combined with additive Gaussian
noise at increasing levels. In the first row, the functional maps were computed from k-nearest neighbor
(knn) graphs using the angular distance metric, while in the second row, knn graphs were constructed
using the L2 distance metric. Below each functional map, the LFM similarity score and MRR retrieval
scores are displayed.
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(a) Functional maps structure

Noise level
0 0.1 0.5 1

Angular distance
MRR 1.00 0.99 0.99 0.99

Similarity 1.00 0.50 0.55 0.49
L2 distance

MRR 1.00 0.81 0.04 0.03
Similarity 1.00 0.6 0.15 0.13

(b) Scores

Figure 7: Functional maps structure at increasing level noise. Given a set of MNIST embeddings,
we plot the degradation of the functional map structure as the space is perturbed. We compare the
graph built with two different metrics (Angular, L2) and report MRR and LFM similarity score.

0.949 0.949 0.921 0.044 0.011

Figure 8: Descriptors ablation. We compare the latent functional maps computed on MNIST using
different descriptors. For each map we report the MRR score.

We observed that (i) when noise is absent (first column), the two spaces are isometric, and the
functional map is diagonal, (ii) constructing the graph with the cosine distance metric is more robust
to increasing noise, and (iii) the LMF similarity score correlates with the MRR retrieval metric,
indicating that more structured functional maps reflect better alignment between spaces.

C.2 Ablation on the choice of descriptors

In Figure 8, we performed an ablation study on the choice of descriptors, comparing supervised
descriptors (geodesic distance and cosine distance using 10 correspondences), weakly supervised
descriptors (label descriptor), and fully unsupervised descriptors (heat kernel signature [53] and wave
kernel signature [53]).

To conduct this study, we performed a retrieval task on the test embeddings of two convolutional
autoencoders trained on MNIST, which differed by their parameter initialization. We visualized
the structure of the functional map and reported the performance in terms of mean reciprocal rank
(MRR), observing the following: (i) Geodesic and cosine descriptors performed best (ii) The geodesic
distance (shortest path) is a good choice as it is agnostic of the metric chosen to build the initial graph,
yet provides the same result as using the metric itself; (iii) The structure of the functional map reflects
the performance of retrieval.

C.3 Retrieval

In Table 2, we report the numerical results for the experiment in Figure 6 adding more transformations
from the method of [32]: orthogonal (Ortho), linear (Linear) and affine (Affine). From the value in
the table, we can see that all the methods that involve the latent functional map (LFM) saturate at 5
anchors, reaching top performance. In Figure 9, we show how the performance of the latent functional
map methods depends on the number of eigenvectors used to compute the map. In particular, we
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Figure 9: Retrieval of word embeddings for increasing number of eigenvectors. We report the
MMR score for the methods in Figure 6 with fixed number of anchors (5) and increasing number of
eigenvectors.

Table 2: MRR Score for the retrieval of word embeddings.
We report the value of the results depicted in Figure 6 adding
more kind transformation between spaces (Orthogonal, Lin-
ear and Affine).

Number of anchors
Method 2 5 10 25 50 75 100 150 200 300

Relatives 0.01 0.01 0.05 0.28 0.55 0.72 0.79 0.84 0.87 0.90

Ortho 0.01 0.01 0.01 0.03 0.15 0.34 0.60 0.82 0.93 0.97
Linear 0.01 0.01 0.01 0.05 0.26 0.49 0.66 0.77 0.74 0.01
Affine 0.01 0.01 0.01 0.04 0.19 0.45 0.64 0.81 0.89 0.95

LFM Space 0.01 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

LFM+Ortho 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Linear 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Affine 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3: MRR Score for the retrieval
of CUB. We report the results on the
CUB including the additional baseline
Procustes [29].

Number of anchors
Method 5 50 250

Relatives 0.01 0.07 0.14
Procrustes 0.00 0.06 0.32
Ortho 0.00 0.06 0.33
Linear 0.00 0.04 0.18
LFM+Procrustes 0.07 0.24 0.33
LFM+Ortho 0.05 0.24 0.34
LFM+Linear 0.04 0.16 0.22

notice that the performance drastically increases at 25 eigenvectors, reaching the same score when
using the functional map computed from the ground truth correspondences (LFMGT).

C.3.1 Extended comparison

In Table 3 we added a comparison with multiple baselines: Relative [39], Ortho [32], Linear[28],
Procrustes [29]. With the same foundation models and settings used in Section 4.3, we perform
a retrieval task on the Caltech-UCSD Birds-200-2011 (CUB) dataset. We demonstrate that LFM
is consistently superior in performance and can be used on top of any method which computes an
explicit mapping between spaces.

C.4 Additional qualitative results

In Figure 10 we show additional qualitative results on theMNIST, FMNIST, Cifar10 datasets, akin to
the experiment in Figure 5 in the main manuscript.
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(a) MNIST
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(c) CIFAR-10

Figure 10: Additional qualitative results on stitching.
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