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Abstract

Although large language models (LLMs)001
achieve effective safety alignment at the time of002
release, they still face various safety challenges.003
A key issue is that fine-tuning often compro-004
mises the safety alignment of LLMs. To ad-005
dress this issue, we propose a method named006
IRR (Identify, Remove, and Recalibrate for007
Safety Realignment) that performs safety re-008
alignment for LLMs. The core of IRR is to009
identify and remove unsafe delta parameters010
from the fine-tuned models, while recalibrat-011
ing the retained ones. We evaluate the effec-012
tiveness of IRR across various datasets, in-013
cluding both full fine-tuning and LoRA meth-014
ods. Our results demonstrate that IRR signifi-015
cantly enhances the safety performance of fine-016
tuned models on safety benchmarks, such as017
harmful queries and jailbreak attacks, while018
maintaining their performance on downstream019
tasks. The source code is available at: https:020
//anonymous.4open.science/r/IRR-BD4F.021

1 Introduction022

In recent years, large language models (LLMs)023

have been widely used due to their significant suc-024

cess in various tasks (Qin et al., 2023; Zhao et al.,025

2023b). A common paradigm for LLMs is “release026

and fine-tuning.” Before release, developers con-027

duct safety alignment to achieve a safety-aligned028

model (Ouyang et al., 2022). After release, these029

LLMs are made available through fine-tuning APIs030

or open-source platforms, enabling users to further031

fine-tune them for specific downstream tasks.032

In the "release and fine-tuning" paradigm,033

LLMs acquire delta parameters through fine-tuning,034

which enhance their performance on downstream035

tasks. However, this process often compromises036

the safety mechanisms established during safety037

alignment, reducing their value as reliable AI ser-038

vices. Specifically, training data that mixes harm-039

ful data with benign data, or even consists entirely040
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Figure 1: The illustration presents post-hoc approaches
for safety realignment. Our method, IRR, first identifies
and removes unsafe delta parameters, then recalibrates
the remaining ones. The IRR approach enhances safety
while maintaining performance.

of benign data, can significantly compromise the 041

safety alignment of LLMs (Bhardwaj and Poria, 042

2023; Wan et al., 2023; Zhan et al., 2024; Qi et al., 043

2023). Given the widespread adoption of the “re- 044

lease and fine-tuning” paradigm and its associated 045

risks, a key objective is to ensure the safety realign- 046

ment of fine-tuned models while maintaining their 047

performance on downstream tasks. 048

To achieve this objective, a straightforward 049

method is to directly modify the parameters of 050

fine-tuned models. A notable example is RESTA 051

(Bhardwaj et al., 2024), which improves model 052

safety by incorporating a safety vector into all pa- 053

rameters (Figure 1). However, current methods 054

overlook the safety relevance and task-specific rel- 055

evance of model parameters (Frankle and Carbin, 056

2018; Panigrahi et al., 2023; Wei et al., 2024), as 057

well as the trade-offs between them. As a result, 058

applying the same safety modifications to all param- 059

eters without distinction may unintentionally harm 060

those critical for downstream task performance. In- 061
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spired by recent work on removing redundant delta062

parameters from fine-tuned models (Panigrahi et al.,063

2023; Yu et al., 2024), we propose separating un-064

safe delta parameters from fine-tuned models. As065

shown in Figure 1, by removing unsafe delta param-066

eters and recalibrating the retained parameters, we067

can achieve safety realignment while maintaining068

performance on downstream tasks.069

Based on these insights, we propose IRR070

(Identify, Remove, and Recalibrate for Safety Re-071

alignment), a simple yet effective post-hoc method072

for the safety realignment of fine-tuned models.073

Specifically, the IRR method involves three steps:074

(1) We use safety vectors to represent the param-075

eter changes that move the model from an unsafe076

state to a safety-aligned state. Next, to identify077

unsafe delta parameters, our identification strategy078

combines safety importance and safety interference079

which result from sign disagreement with the safety080

vector. (2) We remove the unsafe delta parameters081

from the fine-tuned models. The remaining delta082

parameters are retained. (3) Unsafe delta parame-083

ters can compromise model safety but may be im-084

portant for downstream task performance. There-085

fore, removing unsafe delta parameters can lead086

to performance degradation. To mitigate this, we087

recalibrate the retained delta parameters using pre-088

cise weight compensation based on the inverse of089

the Hessian matrix.090

We conducted extensive experiments to evaluate091

IRR under full fine-tuning and LoRA fine-tuning092

across various datasets. Compared to the baselines,093

IRR significantly improves model safety while pre-094

serving downstream task performance, achieving a095

Pareto improvement.096

The main contributions of this work are summa-097

rized as follows:098

• We propose IRR, a novel safety realignment099

method that improve safety through three100

steps: identify, remove, and recalibrate.101

• IRR introduces a novel perspective on safety102

realignment, showing that combining safety103

interference and safety importance scores can104

effectively separate unsafe delta parameters105

from fine-tuned models to enhance safety.106

• Extensive experiments across various datasets,107

fine-tuning methods, and models show that108

IRR effectively restores safety while preserv-109

ing downstream task performance, achieving110

Pareto improvements.111

2 Related Work 112

LLMs Safety The safety of LLMs aims to mit- 113

igate potential safety risks arising from misuse or 114

malicious use. Recent studies have identified vul- 115

nerabilities in the safety alignment of LLMs. Yang 116

et al. (2023); Bhardwaj and Poria (2023); Zhan 117

et al. (2024) demonstrated that even fine-tuning on 118

small amounts of harmful data can significantly im- 119

pact the safety alignment of LLMs. Qi et al. (2023) 120

used more practical datasets, such as identity shift 121

data and benign data like Alpaca, to undermine the 122

safety alignment of LLMs. 123

To address the safety compromises introduced 124

by fine-tuning, current methods focus on three main 125

phases: (1) Pre-processing phase, where Zhao et al. 126

(2023a) uses catastrophic forgetting to filter harm- 127

ful data; (2) Fine-tuning phase, where Huang et al. 128

(2024) limits parameter updates to reduce safety 129

loss; (3) Post-hoc phase, where Bhardwaj et al. 130

(2024) employs a merging safety vector approach 131

to enhance model safety, and Zhao et al. (2024) 132

introduces a patch to the safety vector to miti- 133

gate over-safety issues. Additionally, Hsu et al. 134

(2024) proposes the Safe LoRA method, and Yi 135

et al. (2024) utilizes sub-network search techniques 136

to train a safety sub-network within the fine-tuned 137

model. Inference-time safety has also gained at- 138

tention, with Hazra et al. (2024) removing harmful 139

vectors and adjusting the latent space, and Xu et al. 140

(2024) improving content safety by increasing the 141

probability of safe tokens during decoding. 142

We focus on the post-hoc phase that does not re- 143

quire additional fine-tuning, thereby reducing com- 144

putational costs while allowing flexible trade-offs 145

between safety and downstream task performance. 146

Supervised Fine-Tuning and Delta Parameters. 147

Supervised fine-tuning (SFT) is a widely used 148

method to enhance the performance of pre-trained 149

LLMs on specific downstream tasks. This process 150

involves changing the model parameters to improve 151

task performance, with these alterations referred 152

to as delta parameters. Recent studies have high- 153

lighted redundancy in these delta parameters in fine- 154

tuned models. Panigrahi et al. (2023) addressed 155

this issue by employing sub-network search to se- 156

lectively prune delta parameters, retaining only a 157

minimal subset necessary to achieve performance 158

comparable to standard SFT. Similarly, Yu et al. 159

(2024) introduced the DARE method, which in- 160

volves randomly dropping a certain proportion of 161

delta parameters and rescaling the remaining ones. 162
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Figure 2: During fine-tuning phase, safety-aligned models acquire delta parameters that enhance downstream task
performance, but these parameters may compromise model safety. In the post-hoc phase, IRR carefully identifies and
removes unsafe delta parameters. It then computes compensatory values and adds them to the retained parameters,
effectively restoring safety while preserving the model performance on downstream tasks.

Zhu et al. (2024) proposed the use of significance163

and sensitivity metrics to identify critical delta pa-164

rameters. Our method also focuses on delta param-165

eters, but emphasizes their role in balancing safety166

and downstream performance, rather than focusing167

solely on downstream tasks.168

Model Pruning Technique As neural network169

models grow in size, model pruning techniques170

have been widely adopted to reduce computational171

costs (Cheng et al., 2017; Liang et al., 2021). The172

goal of model pruning is to remove unnecessary173

parameters while maintaining model performance174

(Zhu and Gupta, 2017). The key to successful prun-175

ing lies in evaluating the importance of parameters176

and removing those with low importance scores177

to compress the model. For example, Liu et al.178

(2021) used the Fisher matrix to compute parame-179

ter importance and removed those with low scores.180

Frantar and Alistarh (2023) introduced SparseGPT,181

forming importance scores by solving a layer-wise182

reconstruction problem, while Sun et al. (2024) pro-183

posed the Wanda score, which assesses parameter184

importance using joint weight/activation metrics.185

Although our approach shares the concept of pa-186

rameter removal with model pruning, our focus is187

on removing certain delta parameters rather than188

removing entire parameters.189

3 Approach 190

We propose IRR, a novel method for safety re- 191

alignment of fine-tuned models, which effectively 192

restores safety while maintaining downstream task 193

performance. The overall framework of IRR is 194

illustrated in Figure 2, and consists of the follow- 195

ing three steps: (1) Identify the Unsafe Delta Pa- 196

rameters. This step identifies delta parameters 197

that interfere with important parameters for safety 198

alignment and marks these interfering delta param- 199

eters as unsafe. (2) Remove the Unsafe Delta 200

Parameters. These unsafe delta parameters are 201

removed and reverted to their original safe pre- 202

trained states, improving the safety of fine-tuned 203

models. (3) Recalibrate the Retained Param- 204

eters. Since some unsafe delta parameters may 205

significantly affect downstream task performance, 206

removing them could degrade performance. To mit- 207

igate this, we compute compensatory values and 208

add them to the retained parameters. 209

3.1 Identify the Unsafe Delta Parameters 210

In this step, we propose two strategies: Safety 211

Interference and Safety Importance to identify 212

the unsafe delta parameters. These strategies help 213

separate unsafe delta parameters from fine-tuned 214

models, thereby restoring safety. 215

3



Safety Interference To identify unsafe delta pa-216

rameters, it is crucial to clarify the direction of safe217

parameter updates. Therefore, we define a safety218

vector δsafe, which represents the parameter differ-219

ences when moving from the unaligned model to220

the safety-aligned model:221

δsafe = θalign − θunalign (1)222

Inspired by the concept of interference (Yadav et al.,223

2024), we hypothesize that if a delta parameter224

δi has a sign disagreement with the safety vector225

δisafe, it causes safety interference that compro-226

mises model safety. Therefore, it is essential to227

identify delta parameters in δsft that exhibit sign228

disagreement with δsafe, forming a candidate set U229

of safety interference delta parameters, as defined230

by the following formula:231

U = {δisft ∈ δsft | δisft · δisafe ≤ 0, ∀i} (2)232

Safety Importance After identifying the candi-233

date set of safety interference delta parameters U ,234

the next step is to determine which of these param-235

eters poses a threat to model safety. Building on236

previous work (Liu et al., 2021; Matena and Raf-237

fel, 2022), we introduce the Fisher matrix (Fisher,238

1922; Amari, 1996) as a safety importance score to239

evaluate the significance of each parameter relative240

to the safety alignment of the original model.241

To simplify computation for LLMs, we approxi-242

mate the Fisher matrix by averaging the gradients243

of N samples to estimate its diagonal (Kirkpatrick244

et al., 2017). Our estimation is as follows:245

F̂θ =
1

N

N∑
i=1

E
y∼pθ(y|xi)

(∇θ log pθ(y|xi))2 (3)246

where x1, . . . , xN represent harmful queries, and247

the expectation over y indicates a safe refusal re-248

sponse that refuses harmful queries. Notably, the249

Fisher matrix is computed on the original model be-250

fore fine-tuning and can be reused in the post-hoc251

phase without repeated computation.252

Parameters with high safety importance scores253

are critical for the safety alignment of the original254

model. If delta parameters that cause safety inter-255

ference exist on high-importance parameters, they256

may compromise the safety alignment of the model.257

Such delta parameters should be considered unsafe.258

To identify the unsafe delta parameters, we ex-259

tract the parameters in the top ρ% based on their260

safety importance scores from the set U and apply a261

mask to designate these delta parameters as unsafe. 262

Additionally, s′ denotes the score of the parame- 263

ter at the ρ% position within U . The method for 264

determining the final mask m is defined as follows: 265

mi =

{
1, if δisft ∈ U and si ≥ s′

0, otherwise
. (4) 266

Finally, we identify the delta parameters with a 267

mask value of 1 as unsafe. 268

3.2 Remove the Unsafe Delta Parameters 269

In this step, we remove the identified unsafe delta 270

parameters while retaining the remaining ones. We 271

define the removing process. For the delta param- 272

eters δsft, we introduce a mask m ∈ {0, 1}|θ| to 273

indicate which delta parameters are unsafe and will 274

be removed. Meanwhile, θpre denotes the param- 275

eters of the pre-trained safety-aligned model. The 276

parameters of the model are computed as follows: 277

θ̃sft = (1−m)⊙ δsft + θpre. (5) 278

3.3 Recalibrate the Retained Parameters 279

Removing unsafe delta parameters improves model 280

safety but may degrade downstream performance, 281

as some unsafe parameters are critical for tasks. To 282

address this, we add compensatory values δ∗sft to 283

the retained delta parameters δ̃sft, identified by the 284

mask m. During this step, these retained parame- 285

ters are recalibrated to maintain task performance. 286

θ̂sft = {θ̃isft + δ∗i |mi = 0, θ̃isft ∈ θ̃sft} (6) 287

Previous work on the Optimal Brain Surgeon 288

(OBS) theory (LeCun et al., 1989; Hassibi et al., 289

1993; Zhu et al., 2024) analyzed the change in loss 290

caused by parameter alterations and studied the 291

minimal perturbation required for the remaining 292

parameters to minimize the loss. Based on these 293

theories, our method applies compensatory values 294

δ∗i to the retained delta parameters θisft, ensuring 295

optimal performance on downstream tasks. The 296

compensatory values for the retained parameters 297

are computed using the following formula: 298

δ∗i = −
θisft − θipre

[H−1]ii
·H−1

:,i , (7) 299

Here, H−1 represents the inverse of the Hessian 300

matrix, and H−1
:,m denotes the m-th column of H−1. 301

The identify, remove, and recalibrate steps are 302

executed iteratively on the parameter matrix using 303

a specified block size, continuing this process until 304

the entire parameter matrix has been traversed. 305
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4 Experimental Setup306

We conducted experiments using both full fine-307

tuning and LoRA (Hu et al., 2022). The results308

for full fine-tuning are presented in the main text,309

while LoRA results are in Appendix B.310

Model Our experiments are conducted on the311

widely used open-source model Llama-2-7b-chat312

(Touvron et al., 2023), which has been fine-tuned313

to follow instructions, align with human prefer-314

ences, and ensure strong safety. Additionally, we315

perform LoRA fine-tuning experiments based on316

the Llama-3-8B-Instruct (Dubey et al., 2024). Su-317

pervised fine-tuning (SFT) is conducted using the318

LLaMA Factory 1 (Zheng et al., 2024), and the319

resulting models are referred to as domain-specific320

fine-tuned models.321

Dataset For Llama-2, we utilized three datasets322

to obtain the SFT models: GSM8K (Cobbe et al.,323

2021) for Math, CodeAlpaca-20k 2 for Code, and324

Chinese Alpaca (Taori et al., 2023) for Chinese325

capability. Following the setting of Bhardwaj et al.326

(2024), we incorporated an additional 50K English327

instances into the Chinese Alpaca dataset to ensure328

the ability of the model to respond to English in-329

structions. For Llama-3, we use the MathInstruct330

(Yue et al., 2024) dataset to obtain the SFT model.331

Baselines IRR and IRRd refer to the application332

of the method on SFT models without and with333

DARE (Yu et al., 2024), respectively. We compared334

the IRR and IRRd method against several baselines:335

• SFT involves fine-tuning on downstream task336

data using a language modeling objective.337

• DARE (Yu et al., 2024) applies a drop-and-338

rescale operation on the delta parameters of339

the SFT model.340

• Safe LoRA (Hsu et al., 2024) maps the delta341

parameter matrix of the fine-tuned model into342

the subspace of safe vectors, resulting in a343

more secure fine-tuned model.344

• SafeDecoding (Xu et al., 2024) identifies and345

amplifies the probabilities of safe tokens in346

generated content while reducing the proba-347

bilities of unsafe tokens, thereby enhancing348

model safety.349

1https://github.com/hiyouga/LLaMA-Factory
2https://huggingface.co/datasets/sahil2801/

CodeAlpaca-20k

• RESTA (Bhardwaj et al., 2024) improves 350

the safety of fine-tuned model by incorpo- 351

rating safety vectors. Specifically, RESTA 352

and RESTAd refer to methods that integrate 353

safety vectors into SFT models without and 354

with DARE (Yu et al., 2024), respectively. 355

Computing Safety Vectors and Fisher Matrix 356

According to Bhardwaj et al. (2024), we define 357

the safety vector δsafe as the difference in param- 358

eters between the aligned and unaligned models. 359

The unaligned model is fine-tuned using a harm- 360

ful question-answer dataset. We extracted 1,000 361

labeled harmful question-answer pairs from the 362

BeaverTails dataset (Ji et al., 2024) for training. 363

To compute the Fisher matrix, we relied on the 364

same set of harmful questions but generated safe 365

responses using the aligned model to create a safety 366

dataset. This safety dataset serves as the calibration 367

dataset for computing the Fisher matrix. 368

Evaluation Setup To comprehensively evaluate 369

the safety and robustness of LLMs, we considered 370

two evaluation setups: (1) Harmful query bench- 371

mark and (2) Jailbreak attacks. 372

For the harmful query benchmark, we utilized 373

three datasets: 1) CATQA (Bhardwaj et al., 2024), 374

a multilingual dataset encompassing English, Chi- 375

nese, and Vietnamese; 2) HEx-PHI (Qi et al., 2023), 376

which contains 330 harmful queries collected based 377

on the usage policies of Meta and OpenAI; 3) Salad- 378

Base (Li et al., 2024), covering 6 domains, 16 tasks, 379

and 66 categories. We performed stratified sam- 380

pling on 10% of the Salad-Base dataset and ob- 381

tained a total of 2,100 harmful queries. 382

To assess robustness against jailbreak attacks, 383

we used the Salad-Attack (Li et al., 2024) dataset, 384

which simulates various attack attempts using 385

methods from GPTFuzzer (Yu et al., 2023), TAP 386

(Mehrotra et al., 2023), GCG (Zou et al., 2023), 387

AutoDAN (Liu et al., 2024), and human-designed 388

templates, all derived from the Salad-Base dataset. 389

We evaluated the downstream task performance 390

of the SFT model using GSM8K (Cobbe et al., 391

2021), HumanEval (Chen et al., 2021), and the 392

Chinese version of MMMLU 3 (Hendrycks et al., 393

2021a). For Llama3, we conducted evaluations on 394

various mathematical tasks, with detailed settings 395

provided in the Appendix E. 396

Evaluation Metrics We utilize MD-Judge (Li 397

et al., 2024), a content moderation model based 398

3https://github.com/openai/simple-evals
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Method Safety Score Jailbreak Safety Score Math↑
(GSM8K)CATQA HEx-PHI Salad-Base Avg ∆↓ GPTFuzz TAP GCG AutoDAN Template Avg ∆↓

SFT 78.85 71.52 90.01 80.12 19.83 32.11 44.76 23.91 36.96 38.52 35.25 47.71 43.06
DARE 78.97 71.21 90.43 80.20 19.75 32.51 41.43 23.91 36.10 38.58 34.51 48.05 42.99
SafeDecoding 93.52 95.45 96.90 95.29 4.66 78.39 85.24 92.12 52.44 52.44 76.35 6.05 38.67
Safe LoRA 99.88 100.00 99.86 99.91 0.04 74.73 96.19 89.13 65.04 89.58 82.93 0.03 22.61
RESTA 99.33 99.09 99.34 99.26 0.69 54.51 76.19 89.13 86.82 78.24 76.98 5.98 41.93
RESTAd 99.52 98.79 99.20 99.17 0.78 55.10 75.71 88.86 84.24 77.49 76.28 6.68 41.77
IRR 99.58 99.39 99.72 99.56 0.39 59.56 82.86 85.05 91.12 79.68 79.65 3.31 42.91
IRRd 99.70 99.70 99.77 99.72 0.23 60.36 84.29 86.96 93.12 82.10 82.10 0.86 42.61

(a) The results of fine-tuning on GSM8K and performing safety realignment.

Method Safety Score Jailbreak Safety Score Code↑
(HumanEval)CATQA HEx-PHI Salad-Base Avg ∆↓ GPTFuzz TAP GCG AutoDAN Template Avg ∆↓

SFT 64.48 62.42 83.07 69.99 29.96 24.98 40.00 17.39 25.79 29.04 27.44 55.92 19.02
DARE 64.18 63.03 83.26 70.16 29.79 26.16 42.38 19.02 25.50 28.91 28.40 54.56 18.66
SafeDecoding 92.73 86.06 96.72 91.83 8.12 37.66 65.71 36.68 28.37 47.83 43.25 39.71 17.62
Safe LoRA 99.94 99.70 99.91 99.85 0.10 77.60 96.67 60.87 80.80 80.82 79.35 3.61 11.89
RESTA 99.70 96.97 99.62 98.76 1.19 66.30 81.90 68.21 93.12 83.47 78.60 4.36 14.88
RESTAd 99.58 96.67 99.67 98.64 1.31 66.80 82.86 69.57 91.69 83.63 78.91 4.05 15.61
IRR 99.27 97.88 99.72 98.96 0.99 71.46 85.24 67.93 91.69 89.28 81.12 1.84 18.96
IRRd 99.58 98.48 99.81 99.29 0.66 75.12 87.62 71.20 93.12 90.59 83.53 -0.57 19.02

(b) The results of fine-tuning on CodeAlpaca-20k and performing safety realignment.

Method Safety Score Jailbreak Safety Score Chinese↑
(MMMLU)CATQA HEx-PHI Salad-Base Avg ∆↓ GPTFuzz TAP GCG AutoDAN Template Avg ∆↓

SFT 89.09 85.76 95.31 90.05 0.90 66.20 46.19 34.78 64.47 69.42 56.21 26.75 36.85
DARE 88.79 85.45 95.22 89.82 10.13 66.20 48.57 34.24 65.33 69.88 56.84 26.12 36.78
SafeDecoding 96.61 91.21 97.70 95.17 4.78 81.27 66.19 62.77 76.22 77.79 72.85 10.11 23.29
Safe LoRA 99.88 100.00 99.86 99.91 0.04 74.73 96.19 89.13 65.04 89.58 82.93 0.03 22.61
RESTA 98.91 98.18 99.39 98.83 1.12 91.28 78.57 79.89 98.85 96.01 88.92 -5.96 33.03
RESTAd 99.03 98.18 99.48 98.90 1.05 89.89 77.62 79.35 99.14 95.95 88.39 -5.43 32.40
IRR 98.91 98.18 99.39 98.83 1.12 91.58 78.10 62.23 99.43 95.23 85.31 -2.35 37.08
IRRd 98.85 99.39 99.58 99.27 0.68 92.17 81.90 62.23 100.00 95.95 86.45 -3.49 36.82

(c) The results of fine-tuning on Alpaca Chinese and performing safety realignment.

Table 1: We evaluate safety using harmful benchmarks and jailbreak attacks. A higher safety score indicates better
safety, while ∆ represents the difference in safety score compared to the original model. Higher performance in
downstream tasks reflects better capability. The best and second-best results are highlighted in bold and underlined.

on LLMs, to evaluate the harmfulness of question-399

answer pairs, including responses to harmful re-400

quests and jailbreak attacks. We report the safety401

of the model as Safety score, defined as the pro-402

portion of responses assessed as harmless by MD-403

Judge to all annotated responses. A higher score404

indicates a safer model.405

5 Results and Discussions406

As shown in Table 1, all methods except DARE im-407

proved the safety of the SFT model. Although Safe408

LoRA enhanced model safety, it significantly re-409

duced downstream task performance. For example,410

the accuracy on Math tasks dropped from 43.06 to411

22.61. This indicates that projecting delta param-412

eters into a safe subspace may disrupt parameters413

that are critical for downstream tasks.414

The RESTA method also improved safety, with415

performance degradation varying across tasks. For416

example, the accuracy on Math tasks decreased by417

only 1.13, while accuracy on Code decreased by418

4.14 and accuracy on Chinese decreased by 3.82.419

We also observed that the random dropout and scal- 420

ing operations in the DARE method did not signifi- 421

cantly improve safety, even when combined with 422

RESTA or IRR, as seen in RESTAd and IRRd. 423

In contrast, our IRR method maintains down- 424

stream task performance almost unchanged while 425

enhancing safety compared to the SFT model. 426

5.1 IRR Achieves Pareto Improvement 427

To investigate the trade-off between downstream 428

task performance and safety during the safety im- 429

provement, we plotted the relationship between per- 430

formance and safety (see Figure 3 and Figure 4). In 431

the harmful benchmark and jailbreak attack, we ob- 432

served that both RESTA and RESTAd maintained 433

stable performance in the initial stages of safety 434

improvements. However, as safety increased, their 435

performance gradually declined, particularly for 436

Code and Chinese tasks. In contrast, both IRR and 437

IRRd consistently performed well at the safety fron- 438

tier. Notably, even at safety levels close to those of 439

the original model, IRR outperformed RESTA and 440
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Figure 3: We show the trend of “downstream task performance vs. safety score” based on the Harmful Benchmark.
Our method, IRR, outperforms baseline methods, maintaining downstream task performance as safety improves.
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Figure 4: We show the trend of “downstream task performance vs. safety score” based on the Jailbreak Attack.
Our method, IRR, outperforms baseline methods, maintaining downstream task performance as safety improves.

RESTAd in downstream task performance, espe-441

cially in jailbreak attacks. Additionally, the LoRA442

experiment results detailed in Appendix B followed443

a similar trend as full fine-tuning, confirming the444

effectiveness of the IRR method.445

5.2 Ablation Study446

We conducted an ablation study on the IRR method447

and reported the “downstream task performance448

vs. safety” trade-off curves on jailbreak attacks in449

Figure 5. Additional ablation experiments can be450

found in the Appendix D.451

Identifying the Unsafe Parameters. We ablated452

the identification step (IRR w/o ID) and replaced453

it with a random selection of delta parameters to454

be removed. As shown in Figure 5, skipping the455

identification step typically results in a significant456

drop in downstream task performance as a trade-457

off for improved safety. This highlights the critical458

importance of identifying unsafe delta parameters.459

Safety Interference. IRR uses safety interfer- 460

ence together with the safety importance score to 461

identify unsafe delta parameters. We ablated the 462

safety interference strategy in the identification step 463

(IRR w/o SI). As shown in Figure 5, relying only on 464

the safety importance score to identify unsafe delta 465

parameters also leads to significant degradation in 466

downstream task performance. 467

Recalibration. We ablated the recalibrate step 468

(IRR w/o Recal). As shown in Figure 5, removing 469

recalibration resulted in performance degradation, 470

although the impact was relatively minor. 471

These results validate the effectiveness of the 472

IRR method. 473

5.3 Cross-Language Safety Improvement 474

We assessed the safety of SFT models fine-tuned on 475

mathematical datasets using the English, Chinese, 476

and Vietnamese versions of the harmful benchmark 477

CATQA (see Figure 6). Additional experiments 478
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Figure 5: We present the results of the IRR ablation study using “downstream task performance vs. safety” curves.
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Figure 6: We conduct a safety evaluation on the En-
glish, Chinese, and Vietnamese versions of CATQA. We
compare the safety changes of harmful queries across
different mask ratios and languages.

are provided in Appendix C.479

We observed that SFT models achieve lower480

safety scores in Chinese and Vietnamese compared481

to English. As the IRR mask ratio increases, the482

safety scores for harmful queries across different483

languages gradually improve, eventually approach-484

ing the safety level of the original model. Addi-485

tionally, as shown in Appendix C, different SFT486

models exhibit similar trends.487

5.4 Efficacy of IRR Across Models488

The IRR method is not restricted by any spe-489

cific model architecture, allowing it to be applied490

across various models. To validate this claim, we491

conducted experiments by LoRA fine-tuning the492

LLama-3-8B-Instruct (Dubey et al., 2024). The493

experimental results on harmful benchmarks are494

shown in Figure 7. We evaluated the performance495

on several mathematical tasks and reported the496

average scores. The results demonstrate that for497
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Figure 7: We fine-tune the Llama-3-8B-Instruct model
using LoRA on the MathInstruct dataset. We then eval-
uate the impact of IRR and baseline methods on the
safety and mathematical capabilities of the SFT model.

fine-tuned Llama3, the IRR method effectively 498

improves model safety while maintaining down- 499

stream task performance, confirming its effective- 500

ness. More detailed experimental results can be 501

found in Appendix E. 502

6 Conclusion 503

In this paper, we introduce a safety realignment 504

method IRR, which enhances model safety by iden- 505

tifying and removing unsafe delta parameters while 506

recalibrating the remaining ones. IRR significantly 507

improves the effectiveness of safety realignment. 508

Evaluations on various harmful query benchmarks 509

and jailbreak attacks indicate that IRR considerably 510

reduces the risks of fine-tuned models. Among 511

various fine-tuning methods, datasets, and models, 512

IRR outperforms baseline methods by improving 513

model safety while maintaining downstream task 514

performance, achieving Pareto improvements. 515

8



7 Limitations516

Our work explores the important issue of safety re-517

alignment in fine-tuned models. While our findings518

offer valuable insights, they also highlight several519

limitations and directions for future research.520

Multimodal Models. Due to budget constraints,521

we did not conduct experiments on multimodal522

models. However, we believe that safety assess-523

ments for images, speech, and other modalities524

could reveal more interesting insights, which we525

plan to consider in future work.526

Our IRR. Given the complex architecture of527

LLMs, our approach for obtaining safety vectors528

and evaluating the safety importance scores of pa-529

rameters in the IRR method is relatively simple.530

Developing more robust and precise methods for531

these steps is necessary and should be a focus of532

future investigations.533

Despite these limitations, we believe our work534

makes a new contribution to the field of safety align-535

ment.536

8 Ethical consideration537

Ensuring ethical applications of artificial intelli-538

gence is critical. Our safety realignment method539

IRR enhances the safety of fine-tuned language540

models by reducing harmful content. The identi-541

fication and removal operations effectively reduce542

harmful responses in fine-tuned models, while cal-543

ibration ensures strong downstream task perfor-544

mance. Our framework demonstrates its effective-545

ness in improving the safety of fine-tuned models546

across different datasets. We advocate for ongo-547

ing collaboration among researchers, policymakers,548

and industry stakeholders to ensure that artificial549

intelligence development prioritizes human values,550

fairness, and safety. We remain committed to con-551

tinuously evaluating and improving our approach552

to address ethical challenges.553

9 Potential Risks554

We now discuss the potential risks associated with555

our work. First, we highlight that the safety of fine-556

tuned models may be compromised, which could557

pose safety threats to users relying on these models558

for downstream tasks. We believe that improving559

safety will help the community benefit from ad-560

vancements in secure large language models.561

On the other hand, our proposed safety re-562

alignment method may lead users to mistakenly563

believe that the resulting models are completely 564

safe, which may not be the case. We only demon- 565

strate improvements in safety based on the eval- 566

uations presented in this paper. This also poses 567

potential safety risks to users. We recommend ex- 568

ercising caution when deploying language models 569

and always conducting safety checks. 570
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A Experimental Details852

Hyperparameter Settings For the Math, Code,853

and Chinese in Table 1, we set varying values for854

ρ, specifically 60%, 10%, and 80%, respectively.855

However, for each task, we can optimize the hyper-856

parameters to achieve the best trade-off between857

downstream task performance and safety, as illus-858

trated in Figure 3 and Figure 4. The calculation859

of compensatory values in the recalibration step860

requires downstream task data. For this purpose,861

we extracted 1,000 samples from the corresponding862

downstream task dataset. We employed greedy de-863

coding as our generation strategy. All experiments864

were conducted on 4 × A100 80GB GPUs.865

We conducted full fine-tuning experiments on866

Llama-2-7B-chat (Touvron et al., 2023), follow-867

ing the default configuration settings of Llama2.868

The initial learning rate was set to 2.0× 10−5 and869

gradually decayed to zero using a cosine annealing870

schedule. The training batch size was set to 64.871

The number of epochs was set to 3, except for fine-872

tuning on the Alpaca Chinese dataset, for which873

only 1 epoch was used.874

For experiments using Low-Rank Adaptation875

(LoRA) (Hu et al., 2022) to fine-tune Llama-2-7B-876

chat (Touvron et al., 2023), the query and value877

matrices in LoRA were adjusted with a rank of r =878

8. We followed the default configuration settings879

of Llama2. The initial learning rate was set to880

2.5× 10−4 and gradually decayed to zero using a881

cosine annealing schedule. The training batch size882

was set to 64. The epoch was set to 5.883

Llama-2 training and inference are conducted884

with the default system prompt.885

B LoRA fine-tuning Experimental886

We also conducted experiments on SFT models887

fine-tuned with LoRA (Hu et al., 2022) and evalu-888

ated their safety using the harmful benchmark and889

jailbreak attack. The specific experimental results 890

are shown in Figure 8 and Figure 9. We found 891

that for LoRA fine-tuning, the IRR method is also 892

effective, achieving Pareto improvements in both 893

safety enhancement and maintaining downstream 894

task performance. 895

C Multilingual Safety 896

We assessed the safety of SFT models fine-tuned on 897

the Code (CodeAlpaca-20k) and Chinese (Alpaca- 898

Chinese) datasets using the English, Chinese, and 899

Vietnamese versions of the harmful benchmark 900

CATQA (see Figure 10). As shown in Figure 10, 901

the safety scores across different languages im- 902

prove as the masking ratio increases for both the 903

Code and Chinese datasets. 904

D Ablation Experiments 905

We conducted an ablation study on the IRR method 906

and presented the trade-off curve between down- 907

stream task performance and safety on the harmful 908

benchmark in Figure 11. 909

E Details about Llama-3-8B-Instruct 910

experiment 911

In the Llama3 experiments, we fine-tuned Meta- 912

Llama-3-8B-Instruct (Dubey et al., 2024) using 913

LoRA. The query and value matrices in LoRA were 914

tuned with a rank of r = 8. The training batch size 915

was set to 64, and the learning rate configured as 916

2.5 × 10−4. Fine-tuning was performed on the 917

MathInstruct dataset (Yue et al., 2024). 918

To evaluate the mathematical capabilities of the 919

fine-tuned model, we conducted few-shot eval- 920

uations on GSM8K (Cobbe et al., 2021), Math 921

(Hendrycks et al., 2021b), AQuA (Ling et al., 922

2017), simuleq (Koncel-Kedziorski et al., 2016), 923

numglue (Mishra et al., 2022), MMLU STEM 924

(Hendrycks et al., 2021a), and SAT math (Zhong 925

et al., 2024) datasets. The evaluation was imple- 926

mented using the math-evaluation-harness frame- 927

work 4. 928

Meta-Llama-3-8B-Instruct does not include a 929

default system prompt, so no system prompt is 930

added during training or inference. 931

F Computational Complexity of IRR 932

To implement IRR, we leverage a computation- 933

ally efficient technique called SparseGPT (Frantar 934

4https://github.com/ZubinGou/
math-evaluation-harness
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Figure 8: LoRA experimental results. We present the trends of "task performance versus safety score" on the
harmful benchmark. Our method, IRR, outperforms baseline methods by improving safety while maintaining
strong downstream task performance.
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Figure 9: LoRA experimental results. We present the trends of "task performance versus safety score" on the
Jailbreak attacks. Our method, IRR, outperforms baseline methods by improving safety while maintaining strong
downstream task performance.

and Alistarh, 2023) to compute the inverse Hes-935

sian matrix, which is a critical component of the936

OBS computation. The computational complexity937

of calculating the inverse Hessian as described in938

SparseGPT can be divided into three main parts:939

Initial Hessian Calculation. The time com-940

plexity for calculating the initial Hessian matrix is941

O(nd2col), where n represents the number of input942

samples and dcol is the number of columns in the943

matrix.944

Hessian Inversion Iteration. The iterative inver-945

sion of the Hessian matrix has a time complexity of946

O(d3col), which remains manageable even for large947

models.948

Reconstruction Process. The pruning or re-949

construction process based on the inverse Hessian950

involves a complexity of O(d3col + d2rowdcol), where951

drow denotes the number of rows in the matrix. This952

ensures that the process is computationally feasible953

even for models with a large number of parameters.954

In summary, considering the hidden dimension 955

dhidden of Transformer models, the overall compu- 956

tational complexity aligns with O(d3hidden). This 957

indicates a significant improvement in efficiency 958

compared to exact reconstruction methods, demon- 959

strating that our approach is computationally prac- 960

tical even for very large models. 961
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Figure 10: We conduct a safety evaluation on the English, Chinese, and Vietnamese versions of CATQA. We
compare the safety changes of harmful queries across different mask ratios and languages.
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Figure 11: We present the results of the IRR ablation study using “task performance vs. safety” curves on harmful
benchmarks. Our method effectively identifies unsafe delta parameters and, combined with the calibration step,
successfully preserves downstream task performance.
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Figure 12: We fine-tune the Llama-3-8B-Instruct model using LoRA on the MathInstruct dataset. We then evaluate
the impact of IRR and baseline methods on the safety and mathematical capabilities of the SFT model.
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