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Abstract

Cutting-edge foundation models have sparked a
groundbreaking AI revolution in a wide range
of sophisticated real-world applications. In
stark contrast, conventional machine learning
paradigms, even with perfect data and model ca-
pacity, still persist in grappling with entrenched
challenges that manifest in rudimentary forms;
for instance, “simple” clustering with mixture
models (based on maximum likelihood learning)
suffers severely from bad local optima with an
exponentially high probability. The marked dis-
crepancy between the achievements of the two re-
search strands gives rise to a question: what is the
core element absent from conventional learning
paradigms? To answer this question, we assume
ideal setup for both data and model capacity and
focus on the learning perspective to present the
big cooperative learning. Specifically, big coop-
erative learning makes diverse use of the avail-
able (data or energy landscape) information to
design massive cooperative training tasks, whose
local optima are different but whose global opti-
mum is the same; therefore, by randomly switch-
ing among such tasks, big cooperative learning
destabilizes and thus conquers their local optima
and concurrently encourages exploring the global
optimum. Tailored mixture-model-based simula-
tions on forward and reverse KL minimizations
(representing the popular maximum likelihood
and adversarial learning paradigms, respectively)
demonstrate its general effectiveness across multi-
ple paradigms in an explicit and controlled setup.

1. Introduction
The world is experiencing a groundbreaking AI revolution
with cooperation among scientists and the rise of foundation

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

models (Bommasani et al., 2021; Yuan et al., 2022), such as
the GPT series (OpenAI, 2023; 2022; Ouyang et al., 2022;
Brown et al., 2020), Sora (Brooks et al., 2024), Geminis
(Reid et al., 2024; Team et al., 2023), DALL-Es (Ramesh
et al., 2021; 2022; Betker et al., 2024), and BERTs (Devlin
et al., 2018; Lan et al., 2019; Liu et al., 2019), which brings
advanced AI capabilities to a wide range of sophisticated
real-world applications with impressive robustness (Stick-
land & Murray, 2019; Ramesh et al., 2021; He et al., 2021)
and lights up the way towards AI agents (Xi et al., 2023;
Guo et al., 2024; Wang et al., 2024a) or even Artificial Gen-
eral Intelligence (AGI) (Fei et al., 2022; Liu et al., 2023;
Sun et al., 2024).

However, in stark contrast to the compelling AI power that
extensively conquers sophisticated real-world challenges,
conventional machine learning paradigms still persist in
grappling with entrenched challenges that manifest in rudi-
mentary forms, demonstrating puzzling discrepancy. For
example, in the territory of popular maximum likelihood
learning (or equivalently forward Kullback-Leibler (KL)
minimization), “simple” clustering with mixture models
is theoretically proven to suffer from arbitrarily worse lo-
cal optima than the global optimum with an exponentially
high probability (Jin et al., 2016; Chen et al., 2024b). Sim-
ilarly, “basic” adversarial learning (represented by reverse
KL minimization) is notoriously susceptible to mode col-
lapse/seeking, which is also a manifestation of bad local
optima (Minka et al., 2005; Srivastava et al., 2017).

The marked discrepancy between the achievements of the
two research strands gives rise to the question: if we can
overcome sophisticated real-world challenges, we should
be able to conquer rudimentary conventional entrenched
challenges as well, so what is the core element absent from
conventional learning paradigms?

Before answering that question, we first note that, although
the great successes of foundation models are often attributed
to their large-scale training data and huge model archi-
tectures, both data and model capacity are almost cer-
tainly non-ideal. Conversely, conventional machine learning
paradigms, even with perfect data and model capacity in
controlled simulations, still fail to address their entrenched
challenges (as empirically demonstrated in the experiments).
Therefore, the aforementioned missing core element must
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Big Cooperative Learning to Conquer Local Optima

be associated with the learning process.

To answer that question in a clarifying and straightforward
manner, we make ideal assumptions on both data (or unnor-
malized energy landscapes) and model capacity in order to
focus on the application-agnostic learning perspective for in-
vestigation. Specifically, we observe that the learning of ex-
isting foundation models makes diverse use of the available
data information, while conventional learning paradigms
often monotonously exploit the available (data) information
in the joint space. Drawing upon these observations, we
condense the learning essence of existing foundation models
and generalize it into the presented big cooperative learning,
which is deemed the missing core element.

Given the available information that could be manifested
as data samples from the underlying data distribution or its
unnormalized energy landscape, big cooperative learning
diversely exploits the available information from versatile
perspectives to design massive multi-task training tasks,
whose local optima are different but whose global optimum
is the same. Accordingly, by followup randomly switching
among such tasks, big cooperative learning destabilizes
and thus conquers their inconsistent local optima and, at
the same time, encourages exploring the consistent global
optimum, demonstrating cooperation among tasks.

To explicitly demonstrate the principle of big cooperative
learning, we deliberately bypass situations with black-box
Deep Neural Networks (DNNs), where neither local nor
global optima are easily accessible. Alternatively, we design
tailored simulations based on Gaussian Mixture Models
(GMMs), because (i) GMMs are representative in that a
GMM is a universal approximator of densities (Lindsay,
1995; Peel & MacLahlan, 2000; Goodfellow et al., 2016),
(ii) GMMs are easy to interpret as their joint, marginal,
and conditional distributions are analytic in any linearly
transformed domain, and (iii) GMMs’ local optima are
well studied (Chen et al., 2024b). We will briefly discuss
situations with DNNs when necessary.

Tailored GMM-based simulations on both forward and re-
verse KL minimizations (representing the popular maximum
likelihood and adversarial learning paradigms, respectively)
explicitly demonstrate the general effectiveness of big coop-
erative learning in conquering local optima across multiple
conventional learning paradigms, revealing a promising re-
search direction. Our main contributions include:

• We present the general learning concept of big cooper-
ative learning that is condensed and generalized from
the learning of successful foundation models.

• We reveal that big cooperative learning conquers local
optima and encourages exploring the global optimum
by diversely exploiting the available information (i.e.,
data samples or unnormalized energy landscapes).

• We design tailored simulations to explicitly demon-
strate its general effectiveness in addressing entrenched
challenges of multiple conventional paradigms.

2. Setup and Preliminaries
2.1. Setup

For generalizability, we formulate the available informa-
tion via a Probability Distribution Function (PDF) q(x),
where x ∈ RL×D has L tokens of dimension D (D = 1 un-
less stated otherwise). Often the available information of the
underlying q(x) is either manifested as i.i.d. data samples
{x} or its unnormalized energy landscape ε(x) such that
q(x) = exp(−ε(x))/Z with an unknown denominator Z .
We make ideal assumptions on the available data {x} and
energy landscape ε(x); in practice, such ideal assumptions
may be approximately fulfilled with e.g., data preprocessing
techniques like data augmentation1.

We define the token index set L = {1, · · · , L}; therefore,
x ≡ xL and q(x) is now interpreted as a joint PDF. We
use S,T to denote random subsets of L, where S ⊂ L,
T ⊆ L, T ̸= ∅, and S ∩ T = ∅. For simplified notations,
we use q(xS) and q(xT|xS) to denote the S-marginal and
T|S-conditional PDF of q(x), respectively. The PDF of
random subsets (S,T) is denoted as ρ(S,T).

We use pθ(x) with parameter θ to denote the joint model
PDF and assume the existence of a unique2 global optimum
θ∗ such that pθ∗(x) = q(x). Accordingly, the marginal
pθ∗(xS) = q(xS) and the conditional pθ∗(xT|xS) =
q(xT|xS) hold true for any (S,T). This also generalizes to
any transformed y-domain with a transformation y = g(x);
that is, pθ∗(yT|yS) = q(yT|yS) for any (S,T). Therefore,
we say θ∗ indicates the essence of q(x). The PDF of a
random transformation g(·) is denoted as τ(g).

To present the big cooperative learning in a clarifying and
straightforward manner, we additionally assume that one
can derive pθ(yT|yS),∀(S,T, g(·)) from pθ(x). We will
discuss how to address this assumption in practice later.

2.2. Conventional Machine Learning Paradigms

Based on the above definitions and notations, we next dis-
cuss two popular conventional learning paradigms.

Maximum Likelihood Learning (MLL) seeks to max-
imize the joint log-likelihood Eq(x)[log pθ(x)], which is
equivalent to minimizing the joint forward KL divergence
between q(x) and pθ(x) (Bishop, 2006; McLachlan & Kr-
ishnan, 2007), because

Eq(x)[− log pθ(x)] = KL[q(x)||pθ(x)]− C, (1)

1No need for data augmentation if i.i.d. data are available.
2Equivalent global optima are considered to be the same.
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where C = Eq(x)[log q(x)] is a constant w.r.t. θ. The avail-
able information here is data {x} from q(x); accordingly,
Eq. (1) is optimized with Monte Carlo estimation.

Because of the characteristics of forward KL minimization,
MLL often suffers from the entrenched challenge associated
with strong mode covering (or zero avoiding) local optima
(Minka et al., 2005); that is, the trained pθ(x) often assigns
non-zero densities to where q(x) ≈ 0, resulting in blurry
generated samples (Goodfellow et al., 2014).

Adversarial Learning Taking the standard GAN (Good-
fellow et al., 2014) as example, adversarial learning pa-
rameterizes the model pθ(x) via its generative process
x = Gθ(z), z ∼ p(z), where Gθ(·) is the generator and
p(z) is an easy-to-sample distribution, and minimizes the
joint Jensen-Shannon (JS) divergence JS[q(x)||pθ(x)] via

min
θ

max
β

Eq(x) log σ[fβ(x)]+Epθ(x) log σ[−fβ(x)], (2)

where σ[·] is the sigmoid function. The optimal fβ∗(x) sat-
isfies fβ∗(x) = log q(x)− log pθ(x), which is the negative
log density ratio of the reverse KL divergence

KL[pθ(x)||q(x)] = Epθ(x)[log pθ(x)− log q(x)]. (3)

Since the reverse KL divergence can also be leveraged to
form a GAN (Nowozin et al., 2016; Li et al., 2018; Zhao
et al., 2020), we use it to represent adversarial learning in
this paper, because of its simplicity and natural relationship
with the forward-KL-based MLL.

Particularly considering the reverse KL minimization in Eq.
(3), the available information could either be (i) data sam-
ples {x} from q(x), where one resorts to Eq. (2) for log
density ratio estimation, or (ii) the unnormalized energy
landscape ε(x) of q(x), which is closely related to sam-
pling Boltzmann distributions (Vargas et al., 2023; Wang
et al., 2024b). Different from the forward KL minimization
frequently gets stuck in mode-covering local optima, the
reverse KL minimization suffers from a distinct entrenched
challenge related to strong mode seeking/dropping (or zero
forcing) local optima (Minka et al., 2005; Srivastava et al.,
2017); that is, the trained pθ(x) only models limited modes
of q(x) while ignoring the rest, manifested as mode collapse
or insufficient exploration capacity.

Despite their differences, both MLL and adversarial learning
share the same commonalities: (i) they both suffer severely
from entrenched challenges associated with bad local op-
tima and (ii) they both monotonously exploit the available
information in the joint space (e.g., all tokens {xl}Ll=1 of a
sample x = [x1, · · · , xL]

T are always jointly used). There-
fore, conventional learning paradigms are mainly about joint
matching between q(x) and pθ(x), which is distinct from
cutting-edge foundation models.

2.3. Cutting-Edge Foundation Models

Taking shape in the field of natural language processing,
foundation models have dramatically changed AI-related re-
search and applications (Devlin et al., 2018; OpenAI, 2022;
2023; Betker et al., 2024; Brooks et al., 2024). Despite
their wide range of applications, foundation models share
a commonality that the available data information is ex-
ploited from diverse perspectives (as detailed below and
summarized in Table 1), which is distinctly different from
the joint-matching-driven conventional learning paradigms.

Masked Prediction Given a universal foundation model
pMAE
θ (xT|xS),∀(S,T) that satisfies the conditional indepen-

dence assumption pMAE
θ (xT|xS) =

∏
t∈T p

MAE
θ (xt|xS), the

masked prediction (also termed masked language modeling
or masked auto-encoding) seeks to optimize θ via

max
θ

Eq(x)ρ(S) log p
MAE
θ (xS∁ |xS), (4)

where S∁ is the complement of S. Often pMAE
θ (xt|xS) is

modeled as a Categorical PDF3 for discrete (text) token
xt ∈ Z1×1 (Devlin et al., 2018) and a Gaussian PDF for
continuous (image) token xt ∈ R1×D (He et al., 2021).

When a specific S is of interest, the objective in Eq. (4)
equivalently recovers KL[q(xS∁ |xS)||pMAE

θ (xS∁ |xS)], i.e.,
the S∁|S-conditional matching between q(x) and pMAE

θ (x).
Therefore, the masked prediction exploits the available data
information from diverse conditional perspectives to form a
multi-task training, which averages over all S∁|S-conditional
matching with weights defined by ρ(S) (see Table 1).

Next-Token Prediction Given (often text) data {x} from
the underlying q(x) and a universal auto-regressive foun-
dation model pAR

θ (xt|x<t),∀t ∈ L, the next-token predic-
tion (also termed auto-regressive/causal language modeling)
(Radford et al., 2019) optimizes the parameter θ with

max
θ

Eq(x)
1

L

∑L

t=1
log pAR

θ (xt|x<t), (5)

where {< t} ≡ {1, · · · , t − 1} and thus x<t contains all
the tokens prior to the t-th token xt.

When a specific t is of interest, the objective in Eq. (5) equiv-
alently recovers KL[q(xT|xS)||pAR

θ (xT|xS)] with T = {t}
and S = {< t}. Accordingly, the next-token prediction
also exploits the available data information from diverse
conditional perspectives, albeit from a different set, to form
a multi-task training that uniformly averages over all condi-
tional matching associated with next-token prediction.

Although many variants have been proposed to generalize
masked prediction and next-token prediction (Yang et al.,
2019; Wei et al., 2021; Tian et al., 2024), these two are

3− log pMAE
θ (xt|xS) recovers the cross-entropy loss.
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the most representative. To summarize, existing foundation
models make flexible use of the available data information
from diverse conditional perspectives, distinctly different
from conventional learning paradigms that monotonously
exploits the available information via joint matching. We
next generalize on these differences to propose our big coop-
erative learning that conquers the entrenched local-optima
challenges of conventional learning paradigms.

3. Big Cooperative Learning
We make ideal assumptions on both the available informa-
tion and the model capacity (see Section 2.1) such that we
can focus on the application-agnostic learning perspective
to present our big cooperative learning in a clarifying and
straightforward manner. Below, we first reveal that the avail-
able information of q(x) can be flexibly exploited from
diverse perspectives, a portion of which are employed by ex-
isting foundation models. We then condense their learning
essence and generalize it into the presented big cooperative
learning. Finally, tailored simulations with 2-D demonstra-
ble objectives are designed to explicitly justify the principle
of big cooperative learning.

3.1. Versatile but Underutilized Exploitations of the
Available Information

We begin with the most popular situations where the avail-
able information of q(x) is manifested as i.i.d. data samples
{x}. After that, we discuss where the available information
is an unnormalized energy landscape ε(x) of q(x).

When given a joint data sample x ∼ q(x), one simultane-
ously receives plenty of versatile data-sampling demonstra-
tions, which include the joint x itself, all marginal samples
xS,∀S (one xS ∼ q(xS) per S), massive conditional sam-
ples xT|xS,∀(S,T) (one xT ∼ q(xT|xS) per (S,T)), and
their corresponding counterparts in any transformed domain
y = g(x),∀g(·). Note that even an incomplete sample
delivers plenty of versatile data-sampling demonstrations.

These readily accessible versatile data-sampling demonstra-
tions, when accumulated across all the available data {x}
from q(x), actually constitute versatile training datasets
representing diverse q(yT|yS), ∀(S,T, g(·)), all of which
are different outward manifestations of the same unique
essence of q(x) (or alternatively θ∗ because pθ∗(x) =
q(x)). Accordingly, with D[·||·] denoting a specific di-
vergence/distance of PDFs, it’s expected that massive ob-
jectives D[pθ(yT|yS)||q(yT|yS)] for various (S,T, g(·))
shall have different local optima but share the same global
optimum θ∗. Note these versatile datasets of q(yT|yS),
∀(S,T, g(·)) need not be explicitly constructed in practice.

Although the available data information can be diversely ex-
ploited from massive perspectives, it is likely underexploited

Table 1. Representative training objectives of foundation models.

Model Objective

Masked Prediction
BERT

(Stickland & Murray, 2019)

Eρ(S)q(x)KL[q(xS∁ |xS)||pMAE
θ (xS∁ |xS)]

S: a random 85% subset of L

Masked Prediction
MAE

(He et al., 2021)

Eρ(S)q(x)KL[q(yS∁ |xS)||pMAE
θ (yS∁ |xS)]

S: a random 25% subset of L
yS∁ : normalized xS∁

Masked Prediction
MaskFeat

(Wei et al., 2021)

Eρ(S)q(x)KL[q(yS∁ |xS)||pMAE
θ (yS∁ |xS)]

S: a random ≈ 60% subset of L
yS∁ : HOG-transformed xS∁

Next-Token Prediction
GPTs

(OpenAI, 2022; 2023)

Eν(t)q(x)KL[q(xt|x<t)||pAR
θ (xt|x<t)]

ν(t) = U [1, L]

Next-Scale Prediction
VAR

(Tian et al., 2024)

Eν(t)q(x)KL[q(rt|r<t)||pAR
θ (rt|r<t)]

r: Multi-scale token maps of x
ν(t) = U [1, L]

Permutation Language
Modeling

(Yang et al., 2019)

Eχ(z)ν(t)q(x)KL[q(xzt |xz<t)||pAR†

θ (xzt |xz<t)]
z: a random permutation

Big Cooperative
Learning

Eρ(S,T)τ(g)q′(yS)
D[pθ(yT|yS)||q(yT|yS)]

g(·): a random transformation
y = g(x): g-transformed x

in current research. As aforementioned, conventional ma-
chine learning paradigms often monotonously exploit it in
the joint space (see Eqs. (1) and (3)), while most foundation
models make use of the available data information from a
specific set of conditional perspectives (see Eqs. (4) and (5)).
Some foundation models have also exploited the available
information in domain-knowledge-inspired transformed do-
mains (He et al., 2021; Wei et al., 2021; Tian et al., 2024).
For the sake of clarity, we summarize in Table 1 represen-
tative training objectives of foundation models and rewrite
them in a consistent manner for comparison. It is evident
that existing foundation models only exploit the available
data information from a limited number of perspectives.

Based on Table 1, we condense the leaning essence of exist-
ing foundation models and generalize it into the big cooper-
ative learning presented below, which flexibly contains most
foundation-model objectives as special cases and optionally
exploits the available information from massive perspectives
in an exhaustive manner.

Before presenting our big cooperative learning, we first
discuss its second main application scenarios, where the
available information is manifested as an unnormalized en-
ergy landscape ε(x) of q(x). Similar to where the available
information is data samples {x}, the energy landscape ε(x)
is also underexploited in conventional learning paradigms:
the joint reverse KL minimization in Eq. (3) monotonously
exploits ε(x) in the joint space and frequently gets stuck
in mode-seeking local optima (Minka et al., 2005; Srivas-
tava et al., 2017). In fact, the unnormalized energy land-
scape ε(x) can also be exploited from diverse perspec-
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tives. For example, when given a joint ε(x) such that
q(x) = exp(−ε(x))/Z , one simultaneously receives all the
conditional energy landscapes of q(xS∁ |xS),∀S, as well as
their corresponding counterparts q(yS∁ |yS) in any monoton-
ically transformed domain with y = g(x). For certain appli-
cations, the marginal energy landscapes of q(yS),∀(S, g(·))
may also be accessible. The tailored simulations in Section
3.3 explicitly demonstrate that big cooperative learning di-
versely exploits the available information of ε(x) to conquer
the entrenched mode-seeking local optima challenge.

3.2. Big Cooperative Learning with Versatile
Exploitations of the Available Information

Noticing the existence of versatile but underutilized exploita-
tions of the available information (either data samples {x}
or an unnormalized energy landscape ε(x) of q(x)), we
focus on the application-agnostic learning perspective to
propose the big cooperative learning, which optionally ex-
ploits the available information from massive perspectives in
an exhaustive manner and is generally applicable to multiple
conventional learning paradigms.
Definition 3.1 (Big cooperative learning). Based on the
ideal assumptions of the available information (i.e., data
samples {x} or an unnormalized energy landscape ε(x) of
q(x)) and the model capacity of pθ(x) in Section 2.1, the
big cooperative learning (abbr. big learning) trains the
model parameter θ towards the global optimum θ∗ in a
massive multi-task cooperative manner, by minimizing

Eρ(S,T)τ(g)q′(yS)
D[pθ(yT|yS)||q(yT|yS)], (6)

where ρ(S,T), τ(g) and q′(yS) are user-defined PDFs of
random subsets (S,T), a random transformation y = g(x),
and yS, respectively. D[·||·] is a divergence/distance met-
ric of PDFs shared across all (S,T, g(·))-tasks. It’s often
convenient to estimate Eρ(S,T)τ(g)q′(yS)

[·] with one Monte
Carlo sample; that is, one task at a time.
Remark 3.2 (Task diversity). The task diversity is defined
by ρ(S,T), τ(g), q′(yS), and D[·||·]. Since both S = ∅ and
T = L are possible, Eq. (6) could exhaustively cover all
joint, marginal, and conditional matching tasks across many
g(·)-transformed domains. Note certain tasks also enable ex-
ploiting incomplete data (or energy landscapes). One metric
D[·||·] is shared across all (S,T, g(·))-tasks, because (i) met-
rics can conflict (Minka et al., 2005; Zhao et al., 2020) and
(ii) D[·||·] is application dependent and often determined by
how the available information is manifested. For example,
it’s often convenient to set D[·||·] as the forward or reverse
KL divergence if the available information is manifested as
data samples or an energy landscape, respectively.
Remark 3.3 (Task cooperation). As discussed previously,
all tasks D[pθ(yT|yS)||q(yT|yS)] for various (S,T, g(·))
have different local optima but share the same global opti-
mum θ∗. Therefore, if one gets stuck in a local optimum

θ̄A of Task A, doing another Task B (of which θ̄A is not
a local optimum) would help Task A jump out of the local
optimum, demonstrating cooperation. Accordingly, the big
cooperative learning randomly switching among its massive
tasks (via one-sample-based Monte Carlo estimation of Eq.
(6)) to leverage cooperation among tasks to conquer their
inconsistent local optima, while concurrently encouraging
exploring the consistent global optimum. Note that no task
competition/conflict is expected at the global optimum.

Considering practical applications, it’s essential that the
tasks of big cooperative learning are diverse enough to con-
tain a “Task B” for that “Task A”, which guarantees a proba-
bility in conquering the associated local optimum. Note that,
even if the task diversity is not sufficient, big cooperative
learning is also expected to find an improved local optimum,
which is a “global optimum” w.r.t. the employed task scope.
Remark 3.4 (Modeling of pθ(·)). To focus on investigating
the learning of pθ(·), we have made ideal assumptions on
the orthogonal dimension of its modeling in Section 2.1,
i.e., one can access analytic pθ(yT|yS),∀(S,T, g(·)). In
this paper, we leverage GMMs, a universal approximator of
densities (Lindsay, 1995; Peel & MacLahlan, 2000; Good-
fellow et al., 2016), and random orthogonal transforma-
tions y = g(x) to fulfill those assumptions while keeping
representativeness. Considering applying big cooperative
learning to where DNNs are of interest, we reveal that one
can follow existing foundation models to leverage a uni-
versal DNN-based model to simultaneously approximate
pθ(yT|yS)s for all (S,T, g(·))s of interest. Note that DNN
is also a universal approximator of PDFs (Lu & Lu, 2020).
However, how to ensure the interrelationship (i.e., Bayes’
rule) among different pθ(yT|yS)s is worth future research.

Remark 3.5 (Multi-modal generalization). By interpreting
paired multi-modal data (a, b, c) as a joint sample x =
[a, b, c], the big cooperative learning in Definition 3.1 can
be leveraged to handle multi-modal applications.

3.3. Tailored 2-Dimensional Simulations to Explicitly
Demonstrate the Big-Learning Principle

To explicitly verify the big cooperative learning, one would
expect a situation where (i) both the available information
and the model capacity satisfy the ideal assumptions in Sec-
tion 2.1 so as to focus on the learning for investigation, (ii)
both the local and global optima are readily interpretable and
they can be flexibly controlled, (iii) conventional learning
paradigms suffer from entrenched local-optima challenges,
and (iv) each task objective D[pθ(yT|yS)||q(yT|yS)] of Eq.
(6) is a 2-dimensional (2-D) demonstrable function such
that one need not consider the influence of optimization.

With that in mind, we bypass black-box DNNs and lever-
age GMMs to design tailored simulations that satisfy all the
aforementioned conditions. Specifically, we set D[·||·] as the
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Figure 1. Explicit demonstration of the principle of big cooperative learning with tailored 2-D simulations. The first row generally
indicates the experimental setup, such as q(x) or the transformed space. The second row shows the local optima or the exploited
q(·)-information, i.e., the energy landscape of q(y1)/q(y1|y2). The third row demonstrates the 2-D objective surfaces.

reverse KL divergence4. The available information is then
set as an unnormalized energy landscape ε(x) of the under-
lying q(x) =

∑2
i=1

1
2N (x|µ∗

i , σ
2I) where µ∗

1 = [−1, 0]T ,
µ∗

2 = [1, 0]T , and σ2 is a hyperparameter; see Fig. 1a.
To enable 2-D demonstrable objectives, we employ a tai-
lored modeling5 of pθ(x) =

∑2
i=1

1
2N (x|µi, σ

2I), where
µ1 = [µ1, 0]

T , µ2 = [µ2, 0]
T , and θ = [µ1, µ2]

T is the 2-D
parameter. Accordingly, each task objective KL[pθ(·)||q(·)]
is a 2-D demonstrable function of θ.

The objective of the conventional joint matching, i.e.,
KL[pθ(x)||q(x)], is explicitly demonstrated in Fig. 1a,
where it’s apparent that two strong mode-seeking local op-
tima emerge (marked as green triangles).

Regarding the big cooperative learning, we employ random
rotational transformations y = g(x) = Ax here for sim-
plicity, where A is a random rotation matrix, and explicitly
demonstrate in Figs. 1b and 1c its sample task objectives of
(i) transformed marginal matching KL[pθ(y1)||q(y1)] with
T = {1}, S = ∅, and A denoting 15◦, 45◦, and 60◦ rota-
tions, respectively, and (ii) transformed conditional match-
ing KL[pθ(y1|y2)||q(y1|y2)] with T = {1}, S = {2}, and
the same set of rotations. It’s evident that different tasks
of big cooperative learning have different local optima but
share the same global optimum (marked as red stars). More
importantly, for a specific Task A of the joint matching, its
strong local optimum (e.g., the north-east green triangle)
can be readily conquered by many potential Task Bs, as in-
dicated by the black arrows, demonstrating the potential of
cooperation among tasks. We further investigate the relation-
ships between different exploitations of the available infor-

4One needs ≥3 GMM components to simulate the local optima
of the forward KL divergence (Jin et al., 2016; Chen et al., 2024b).

5For a 2-component GMM, the dimensionality of θ is in gen-
eral 11, where the objective is not easy to demonstrate.

mation and the local-optima patterns of the correspondingly
objective. By parallel comparing the second and third rows
of Fig. 1b, it is apparent that as the intersection of the two
modes increases, the local optima of transformed marginal
matching gradually vanish, albeit at the cost of a decreased
sharpness around the global optimum; similar phenomena
are observed in Fig. 1c, which further reveal the poten-
tial of cooperation among tasks. Therefore, by randomly
switching among these tasks, big cooperative learning is ex-
pected to form cooperation among them to destabilize and
conquer their inconsistent local optima, while concurrently
encourage exploring the same global optimum.

The above tailored 2-D simulations explicitly justify the
principle of big cooperative learning within the RKL terri-
tory in a lightweight manner. In the experiments, we will
leverage more challenging simulations on both forward and
reverse KL minimizations to demonstrate the effectiveness
and, more importantly, the emerging power of exploration
of our big cooperative learning.

4. Related Work
Multi-Task Learning trains a model from multiple related
tasks simultaneously (Caruana, 1997; Ruder, 2017; Zhang &
Yang, 2021; Chen et al., 2024a) for improved performance,
generalization, robustness to data sparsity, etc. In a broad
sense, our big cooperative learning falls into the category of
multi-task learning.

However, classical multi-task learning concentrates on “ex-
ternal” knowledge transfer among several related but poten-
tially distinct tasks, which e.g., possess different supervision,
modalities, and/or even goals (Nishino et al., 2019; Zhang &
Yang, 2021; Hu et al., 2024; Zhang et al., 2024; Chen et al.,
2024a; Xu et al., 2023). These tasks are often heuristically

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Big Cooperative Learning to Conquer Local Optima

(a) Stationary point w.r.t. different random seeds (b) Boxplot of test joint FKL

Figure 2. Big cooperative learning conquers the mode-covering local optima challenge of the conventional FKL-based joint matching.

assembled without solid theoretical support; accordingly,
task competition/conflict (Ruder, 2017) frequently emerges,
i.e., different tasks compete for the model’s capacity, result-
ing in poor performance on certain tasks.

By comparison, our big cooperative learning, being
markedly different, focuses on “internal” information ex-
ploitations through massive cooperative tasks, which are
designed by diversely exploiting the available information
of q(x) from versatile perspectives. Accordingly, the mas-
sive tasks of big cooperative learning share the same global
optimum, where no task competition/conflict is expected.

Diverse Information Exploitation The idea of diversely
exploiting the available data information underlies a lot of
AI-related research, such as the foundation models revealed
in Section 3.1, neural processes (Garnelo et al., 2018a;b;
Kim et al., 2019; Nguyen & Grover, 2022; Shih et al., 2022;
Maraval et al., 2024), and other related research (Bao et al.,
2023; Cong & Li, 2024). Often relatively limited use is
made of the available data information (e.g., via diverse
conditional matching in the original domain) to deliver a
specific output (such as pretraining or diverse conditional
data sampling capabilities).

In contrast, we reveal and unify the principle of diverse in-
formation exploitation from a general application-agnostic
learning perspective to present the big cooperative learning
concept, which is generally applicable to situations where
the available information is manifested as data samples or
unnormalized energy landscapes. More importantly, we
leverage tailored simulations to explicitly and empirically
prove that big cooperative learning delivers a more gen-
eral output of conquering local optima and encouraging the
exploration of the global optimum.

5. Experiments
To focus on the application-agnostic learning perspective
to verify the big cooperative learning in a clarifying and

straightforward manner, we leverage flexible GMMs to de-
sign challenging simulations, where the ideal assumptions
in Section 2.1 are satisfied. Since a GMM is a universal
approximator of densities, the GMM-based simulation setup
is not deemed particularly restrictive.

Specifically, we set the underlying q(x) as a GMM with K
components and employ a perfect modeling of pθ(x), i.e.,

q(x) = pθ∗(x) =
∑K

k=1
π∗
kN (x|µ∗

k,Σ
∗
k)

pθ(x) =
∑K

k=1
πkN (x|µk,Σk),

(7)

where K = 25, π∗
k = 1/K, µ∗

ks are placed on a grid (see
Fig. 2a), and Σ∗

k = σ2I with hyperparameter σ2. Other
details are given in Appendices B and C.

To demonstrate the general effectiveness of the big cooper-
ative learning in addressing entrenched local-optima chal-
lenges across multiple conventional learning paradigms, we
design GMM-based simulations on both mode-covering for-
ward KL (FKL) minimization (associated with where the
available information is data samples {x} from q(x)) and
mode-seeking reverse KL (RKL) minimization (related to
where the available information is an unnormalized energy
landscape ε(x) of q(x)). To our knowledge, the big co-
operative learning is the first research that simultaneously
conquers the local optima of both FKL and RKL minimiza-
tions in an elegant way (i.e., only diverse exploitations of
the available information are additionally employed).

5.1. Big Cooperative Learning Conquers Local Optima
of Forward KL Minimization

We first demonstrate the effectiveness of big cooperative
learning on the mode covering FKL minimization. We make
empirical comparisons between (i) joint matching with
the joint FKL objective KL[q(x)||pθ(x)], which is equiva-
lent to the conventional maximum likelihood learning, and
(ii) the big cooperative learning with FKL-based objective

7
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Figure 3. Big cooperative learning endows the mode-seeking RKL-based joint matching with power of exploration.

Eρ(S,T)τ(g)q′(yS)
KL[q(yT|yS)||pθ(yT|yS)], where ρ(S,T),

τ(g), and q′(yS) are specified to include the joint, all
marginal, and random orthogonally transformed marginal
matching tasks. During learning, only the available infor-
mation (i.e., i.i.d. data samples {x}) of q(x) is used for
both methods. Note the major difference of big cooperative
learning is its diverse exploitations of the same data {x}.

Experimental results are summarized in Fig. 2, where it’s ex-
pected that the conventional joint matching suffers severely
from mode-covering local optima that demonstrate both
“one-fits-many” and “many-fit-one” patterns (Chen et al.,
2024b). By comparison, the FKL-based big cooperative
learning stably delivers the global optimum in this simu-
lation, despite it utilizes the same available data informa-
tion (but with additional diverse exploitations). Therefore,
by considering that both methods employ the same mode-
covering FKL divergence, it’s evident that it is the versatile
exploitations of the available information that conquer the
entrenched local-optima challenge of the conventional FKL-
based joint matching, justifying the effectiveness of big
cooperative learning.

5.2. Big Learning Endows Reverse KL Minimization
With Emerging Power of Exploration

We next leverage GMM-based white-box simulations to re-
veal that the big cooperative learning can also address the
entrenched challenges of the mode seeking RKL minimiza-
tion, with a highlight on its emerging power of exploration.

We make parallel comparisons between the training pro-
cesses of (i) the conventional learning paradigm of the RKL-
based joint matching, whose objective is KL[pθ(x)||q(x)],
and (ii) the big cooperative learning with objective
Eρ(S,T)τ(g)q′(yS)

KL[pθ(yT|yS)||q(yT|yS)], where ρ(S,T),
τ(g), and q′(yS) are specified to include the joint, marginal,
conditional, and random orthogonally transformed marginal
and conditional matching tasks. During learning, only the

available information (i.e., the unnormalized energy land-
scape ε(x)) of q(x) is used. We deliberately initialize {µi}s
with N (−5, 0.01) to encourage mode collapse for strength-
ened challenge (see Fig. 3). Similarly, the big cooperative
learning mainly differs in its diverse exploitations of the
same available information of ε(x).

Fig. 3 explicitly demonstrates the training processes of both
methods. It’s evident that the conventional RKL-based joint
matching suffers severely from mode collapse, showing
feeble exploration as expected. By contrast, the RKL-based
big cooperative learning manages to deliver a surprising
power of exploration, even though it uses the same available
information and all its tasks are based on the mode-seeking
RKL. Therefore, it has to be the versatile exploitations of
the available information that conquer the entrenched mode-
seeking local-optima challenge of the conventional RKL-
based joint matching, justifying the big cooperative learning
from another important perspective.

6. Concluding Remarks
By summarizing and generalizing the learning of founda-
tion models, we present the general learning concept of big
cooperative learning, which diversely exploits the available
information in a massive multi-task cooperative manner to
address the entrenched local-optima challenges of conven-
tional machine learning paradigms. Tailored GMM-based
simulations are carried out to explicitly demonstrate its gen-
eral effectiveness in simultaneously conquering the local
optima of both FKL and RKL minimizations that represent
maximum likelihood and adversarial learning, respectively.

Although big cooperative learning is inspired by foundation
models, it hasn’t provided a solid positive feedback for their
improvement. We leave this for future research. Another
valuable future research may concern about generalizing big
cooperative learning with an optimized task sequence for
improved learning efficiency and exploration power.

8
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A. Details and Additional Results of Tailored 2-D Simulations
Given GMM-based q(x) and pθ(x) with 2-D parameter θ = [µ1, µ2]

T , i.e.,

q(x) = pθ∗(x) =
∑2

i=1

1

2
N (x|µ∗

i , σ
2I)

pθ(x) =
∑2

i=1

1

2
N (x|µi, σ

2I),

(8)

and by specifying D[·||·] as the reverse KL divergence, we approximately calculate the 2-D objective of the conventional
joint matching, i.e., KL[pθ(x)||q(x)], with Monte Carlo estimation using 2000 samples from pθ(x). Accordingly, the joint
KL[pθ(x)||q(x)] is a 2-D function that can be explicitly demonstrated.

Similarly, KL[pθ(xl)||q(xl)], l ∈ 1, 2 for marginal matching, KL[pθ(xl|xm)||q(xl|xm)], l ̸= m for conditional match-
ing, KL[pθ(yl)||q(yl)], l ∈ 1, 2 for transformed marginal matching, KL[pθ(yl|ym)||q(yl|ym)], l ̸= m for transformed
conditional matching, can also be approximately calculated and demonstrated as a 2-D image.

Figure 4. Demonstration of the joint matching, marginal matching, and conditional matching in the original domain. The two global
optima are marked with red stars. σ2 = 0.1.

Fig. 4 shows the joint matching, marginal matching, and conditional matching in the original domain. It’s evident that,
similar to Fig. 1 of the main manuscript, cooperation does not emerge between any two tasks; but, at least, tasks are harmless
to each other because they all share the same global optimum. This implies:

• In situations with independent features/tokens, no cooperation would arise for naive joint, marginal, and
conditional matching. Accordingly, existing foundation models likely fail in such situations.

• The task scope of big cooperative learning, i.e., the versatility in exploiting the available information, is essential.

During our investigations in the tailored 2-D simulations, we discover several interesting side-products (as summarized
below) that potentially benefit implementations of foundation models.

• Big cooperative learning constructed with diverse transformed joint and marginal matching may favor a bi-level
optimization (i.e., training multiple steps in one matching before moving on to the next), because, as shown in Fig. 5b,
direct averaging over diverse marginal matching may not address local optima sufficiently but training multiple steps in
one matching (like the 70◦ plot in Fig. 5a) would conquer local optima.

• Big cooperative learning constructed with diverse transformed conditional matching need no bi-level optimization,
because direct averaging over diverse transformed conditional matching may already conquer local optima, as shown in
Fig. 6. This is akin to what’s done in existing foundation models.
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Big Cooperative Learning to Conquer Local Optima

(a) KL(pθ(y1)||q(y1)),y = Ax with diverse rotation A (b) EU(A)KL(pθ(y1)||q(y1))

Figure 5. Demonstration of the preference of a bi-level optimization when using transformed joint and marginal matching. (a) Transformed
marginal matching has an magnitude correlated with the significance of local optima. (b) Optimization with an uniformly sampled
marginal matching may not sufficiently address local optima, where a bi-level optimization would be beneficial. See the supplementary
Figure Tailored Simulation video margin.gif.

• Multi-scale noising (when applicable) serves as powerful transformations for big cooperative learning, as illustrated in
Fig. 7; this is akin to diffusion models (Ho et al., 2020; Song et al., 2020). It’s worth noting that the significance of
local optima increases with the decreasing of σ.

B. Details on the 25-GMM Simulations on Forward KL Minimization
We use i.i.d. samples {x} from q(x), where the hyperparameter σ2 is set to 0.1, and employ a model with a perfectly
matched model capacity, i.e.,

pθ(x) =
∑25

i=1
πiN (x|µi,Σi), (9)

where θ = {πi,µi,Σi}25i=1. {µi}s are randomly initialized with N (0, 1) for strengthened challenge. We employ the joint
matching, all marginal, and random transformed marginal matching to constitute our big cooperative learning. We resort to
the Expectation Maximization (EM) for the optimization of each forward KL (FKL) matching, because all the employed FKL
matching has analytic EM updates and empirically EM updates are efficient. The random transformation y = g(x) is speci-
fied as a random orthogonal transformation, i.e., y = Ax with A generated with scipy.stats.ortho group.rvs.

Following the interesting side-products revealed above, we employ a bi-level optimization, i.e., 5 training steps are performed
in one matching before moving on to the next. Fig. 2 of the main manuscript shows that big cooperative learning exploits the
available data information from diverse perspectives to conquer the mode-covering local-optima dilemma of the conventional
joint FKL minimization.

C. Details on the 25-GMM Simulations on Reverse KL Minimization
We resort to Stochastic Gradient Descent (SGD) for the optimization of the mode seeking reverse KL (RKL) minimization.
We set the hyperparameter σ2 of q(x) to 0.05. For simplicity, we parameterize pθ(x) as

pθ(x) =
∑25

i=1

1

25
N (x|µi,LiL

T
i ), (10)

where θ = {µi,Li}25i=1 and Li is a lower-triangular matrix. {µi}s are randomly initialized with N (−5, 0.01) such that
all 25 components are initialized to the lower left corner of q(x) (see Fig. 3 of the main manuscript); accordingly, the
conventional RKL minimization likely suffers from severe mode collapse/seeking (i.e., all 25 components model the one
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Big Cooperative Learning to Conquer Local Optima

(a) KL(pθ(y1|y2)||q(y1|y2)),y = Ax with diverse rotation A
and different settings of y2

(b) EU(A)U(y2)KL(pθ(y1|y2)||q(y1|y2))

Figure 6. Demonstration of the principle of diverse conditional matching. (a) Transformed conditional matching has a loss
surface diversely changing with different rotations and conditions. (b) Optimization with an uniformly sampled condi-
tional matching may already conquer local optima, delivering an appealing averaged loss surface. See the supplementary
Figure Tailored Simulation video condition.gif.

lower left component of q(x); see Fig. 3 of the main manuscript). Such a challenging initialization highlights the remarkable
power of exploration of the presented big cooperative learning.

Our big cooperative learning is specified to include the joint, all marginal, diverse conditional, and random orthogonally
transformed marginal and conditional matching tasks. For SGD optimization, we use a learning rate of 0.1, a mini-batch
of 100 (i.e., 100 samples from pθ(x) are used to calculate a stochastic gradient) Fig. 3 of the main manuscript proves
that big cooperative learning delivers remarkable power of exploration that conquers the mode-seeking (or mode-collapse)
local-optima dilemma of the conventional joint RKL minimization.
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Big Cooperative Learning to Conquer Local Optima

Figure 7. Demonstration of the power of multi-scale noising. Multi-scale noising (when applicable) serves as a new dimension for
transformations applicable in big cooperative learning. Note the local optima gradually vanish with the increasing noise variance σ2,
but the local surfaces surrounding the global optimum are also gradually flattened. It’s expected that different characteristics among
multi-scale noising would deliver cooperation.
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