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ABSTRACT

This paper develops the regularized conditional optimal transport for feature learn-
ing in an embedding space. Instead of using joint distributions of data, we intro-
duce conditional distributions to some reference conditional distributions in terms
of the Kullback-Leibler (KL) divergence. Using conditional distributions provides
the flexibility in controlling the transferring range of given data points. When the
alternating optimization technique is employed to solve our model, it is interest-
ing to find that conditional and marginal distributions have closed-form solutions.
Moreover, the use of conditional distributions facilitates the derivation of the gen-
eralization bound of our model via the Rademacher complexity, which character-
izes its convergence speed in terms of the number of samples. By optimizing the
anchors (centroids) defined in the model, we also employ optimal transport and
autoencoders to explore an embedding space of samples in the clustering prob-
lem. In the experimental part, we demonstrate that the proposed model achieves
promising performance on some learning tasks. Moreover, we construct a condi-
tional Wasserstein classifier to classify set-valued objects.

1 INTRODUCTION

Achieving effective features of data (Boroujeni et al., 2018; Wang et al., 2019; Qian et al., 2019)
is a fundamental task in data analysis, and feature learning has been explored in some fields such
as machine learning and computer vision. Feature learning aims at exploring a linear or nonlinear
transformation to map the original features into an embedding space by optimizing the defined
objective function. In the latent representation space, data can be explored, thereby providing some
benefits from various learning tasks (Su & Hua, 2019).

Earlier feature learning algorithms focus on how to develop effective handcrafted extractors for vi-
sualizing high-dimensional data and reducing the effect of the curse of dimensionality. Marginal
Fisher analysis (Yan et al., 2007) adopts a graph embedding framework to provide an intrinsic graph
with intra-class compactness and a penalty graph with inter-class separability. Max-min distance
analysis (Bian & Tao, 2011) achieves the low-dimensional data by maximizing the minimum pair-
wise distance. A robust linear discriminant analysis method based on the L, ; norm (Nie et al., 2021)
is developed to obtain robust projection features, and an effective iterative optimization algorithm
is derived to solve a general ratio minimization problem. In Flamary et al. (2018), Wasserstein dis-
criminant analysis from optimal transport (Li et al., 2021; Serrurier et al., 2021) is implemented by
employing the regularized Wasserstein distance to capture the global and local interactions between
classes.

Kernel-based methods that capture the nonlinear features of data have been developed to search for
an effective feature space by selecting proper kernel functions. Unlike classical dimensionality re-
duction methods, the embedding space of data may be an infinite-dimensional feature space since
data may be well separated in high-dimensional spaces. Kernel principal component analysis (PCA)
and kernel linear discriminant analysis(LDA) are two effective methods for achieving effective fea-
tures of data. To address the outliers of data, L; norm kernel LDA (Zheng et al., 2014) is developed
to achieve the nonlinear discriminant features of data. In unsupervised learning, finding effective
features contributes to the improvements in the performance of clustering. The classical k-means
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method is extended to the kernel k-means method in terms of the kernel trick. To capture multiple
feature representations of data, an effective strategy in multiple k-means clustering problems (Yao
et al., 2021) is adopted to select the optimal kernel from the prespecified kernels, and an alternating
minimization method is used to update the coefficients of the kernels and the cluster membership
alternatively. Multiple kernel k-means clustering methods with incomplete kernel matrices (MK-
CIK) (Liu et al., 2020) embed imputation and clustering into a unified learning framework. One
remarkable characteristic of MKCIK is that a complete base kernel matrix over all the samples is
not required.

Exploring the local and relevant information of da-
ta points is helpful for achieving discriminant fea-

tures of data (Nie et al., 2022; 2023). For each data /./. ’ \\
point, the conditional distribution of the data point W(ox,, p(y]x,)) [ & Jp(yix)
can characterize its local and relevant information. " : 0\‘)(' '
Figure 1 shows that there are three data points in the l'<* 4 Y
X space and nine data points in the Y space, where X N T Ry )
each data point in the X space is relevant to four da- W(0x,, p(y| X;Y)\\/;’ /\/

ta points in the Y space in terms of an appropriate B i Py \‘IP(va3>

structure such as proximity and topology. In super-
vised learning, data points with the same color in the
Y space belong to the same class. When the labels of
samples are available, in the Y space, there are four
data points whose labels are the same as the label of
1, two data points whose labels are the same as the
label of x5, and three data points whose labels are the
same as the label of 3. It is clear that the condition-
al distributions constructed by considering the label
information of data points are different from those
in unsupervised learning. For data points in the X
space, we can obtain their Dirac measures. Thus, we
can explore the Wasserstein distance between Dirac
measures and conditional measures' on two spaces’.
The Wasserstein distance from optimal transport (Li-
u et al., 2023; Fatras et al., 2021) can be used to describe the relationship between two probability
measures, and autoencoders can explore the latent space of data. Hence, we employ the optimal
transport and autoencoders to show how to transport information in an embedding space, which
gives a novel framework for learning effective features of data via optimal transport. For each data
point, we employ the conditional probability to constrain its transferring range. The merit of using
the conditional probability is that varying neighbors of different data points can be explored. To
reserve the information of data, we impose the reconstruction error of data on the objective function.
In addition, we discuss the properties of our model and extend our model to the clustering problem.
Finally, we perform the experiments on a series of data sets. The main contributions of this paper
are listed as follows.

W5 p(r 5 @ )

Figure 1: A simple example of conditional
optimal transport where the conditional prob-
ability is used to characterize the local infor-
mation of given data points. Each data point
in X can be modeled as a Dirac(point) mea-
sure. Data points in the same color in Y
are taken from the same class, and differen-
t conditional distributions can be construct-
ed for unsupervised and supervised learning.
W (64, ,p(y|x1)) denotes the Wasserstein dis-
tance between ¢, and p(y|x1).

e We propose a regularized conditional optimal transport framework for extracting the effec-
tive and useful features of data. In this framework, we employ conditional distributions to
capture the local behaviors of given data points and use the Kullback-Leibler divergence for
conditional distributions, which can consider prior knowledge of conditional distributions.

o We apply the alternating optimization technique to tackle the proposed model. It is not-
ed that marginal and conditional distributions have closed-form solutions. Moreover, we
derive the generalization bound of our model in terms of the Rademacher complexity and
generalize our model to find anchors in the embedding space, which is available for the
clustering problem.

e We perform a series of experiments on some classification and clustering problems to
demonstrate the effectiveness of our model. Moreover, we discuss how to modify our mod-

!The conditional probability of data points outside the transferring range is zero.
These two spaces may be the same.
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el to make it a classifier that can be used to classify set-valued objects, and this classifier
degenerates into the deep nearest-neighbor classifier.

2 REGULARIZED CONDITIONAL OPTIMAL TRANSPORT FOR FEATURE
LEARNING

2.1 PRELIMINARIES

Let two random vectors X € R™ and Y € R™ be taken from two probability spaces (X, ) and
(Y, v). Assume that Z is the latent space. The L, norm of a vector a = (a1, - , a,,) is denoted by
llall, = {/>_i~; |a;|". For measures x and v corresponding to X and Y, the Wasserstein distance
with the order 7 is defined in the following (Courty et al., 2017; Lin & Chan, 2023):

W)= it [ play)dna) n
el (V) Jxxy

where II(u, v) is the set of probability measures on X and Y with marginal measures x4 and v, and

p(z,y) denotes the distance between x € R™ andy € R™. W (u, v) is the potential cost of moving

mass from p and v, and the optimal solution provides the optimal transport plan. In real applications,

we usually obtain some sampled points in terms of probability measures p and v. That is, ;4 and v

are two discrete measures with a finite number of support points. Thus, u = >"" | a;6,, and v =

]?': b;6,., where 0, denotes the Dirac measure at the point x;, and a = (a1, - ,a,) and b =
J=1"7"Y; i
(b1, -+, by) are vectors in the probability simplex. Assume that {z1,--- , 2, } and {y1,-- ,yx} are

sampled data points from p and v, respectively. To effectively solve (1), a regularization term is
introduced and its discrete version is formulated:

n k B
ll’lfmb) Zi:l Zj:l P(l‘ia yj) Pij — )\I{(p)7 (2)

pi; €U(
where H(p) = — Y., Z§=1 pi; (Inp;; — 1) is the information entropy of p, U(a, b) = {p;;|ply =
a,p’l, = b}, and 1y is a k-dimensional vector whose elements are 1. The famous Sinkhorn

algorithm (Cuturi, 2013) can be employed to achieve the optimal transport plan with a faster com-
putation.

2.2 PROBLEM FORMULATION

As shown in Figure 1, each data point in a space may locally or semantically correlate with many
data points in a space, and conditional distributions can characterize the information of given data
points. The theory of optimal transport provides a possible scheme for the movement of data points.
Autoencoders facilitate feature formations in an embedding space. For autoencoders, let fo(z) € R?
be an encoder with parameter 6 and its decoder be fz(z) with parameter 6. The functions g4(y) and
g3(z) consist of another autoencoder. In encoded spaces, we obtain the Dirac measure at fp(;),
denoted by d, (). We employ the conditional distribution p(g4(y)|z;) to characterize the informa-
tion of y relating to x;, and p(g4(y)|x;) can be considered as a push-forward measure induced by
¢. Data points in encoded spaces can be transported even if X and Y belong to different spaces. To
facilitate the learning of the conditional distribution, we adopt a convex combination of Dirac mea-

sures to construct p(ge(y)|x;). That is, y takes k values and p(gy(y)|x;) = Z?Zl Pj1i0g4(y;10)>

where p;|; is a nonnegative coefficient that satisfies E?Zl pjli = 1. y;,; may be semantical-
ly relevant to x;. This also ensures that p(gs(y)|z;) belongs to the Wasserstein space. Thus,
the rth-order Wasserstein distance between &y, .,y and p(g¢(y)|x;) can be achieved, denoted by
W, = Zle p(fo(i), 94(y;1:)) p;jji- To effectively learn p;; in the conditional distributions, we
define the regularized conditional optimal transport for the data point fy(x;), denoted by

. k f
min L; := ijl p(fo(xi), 96(y51:)) Pjji + MKL(p.jilla.)e), (3)

Pjli

where KL(p.;l|q.;) = Z?:l pjji In %‘Z, Z?:l qj|i = 1, q;); is the prior probability of transferring

x; 10 y;|; in the original space, and y; is the jth data point determined by x;. The Kullback-Leibler
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(KL) divergence (Bishop, 2007; Zhang et al., 2024) is employed to measure the difference between
{pj|i} and {g;};}. Since we introduce the conditional probability of z;, we can control the transfer-
ring range of x;. If x; is not allowed to be moved to y;|;, then we set g;; = 0. The nonnegative
hyperparameter A; controls the tradeoff between the transport cost and the KL divergence. The vari-
ables pj|;(j = 1,--- , k) need to be optimized, and they implicitly depend on the embedding spaces.
q4); 18 the prior conditional probability independent of embedding spaces. Interestingly, optimizing
(3) can also be regarded as a proximal algorithm to obtain the proximal operator(Li et al., 2023;
Gu et al., 2024; Zhang et al., 2024). Unlike those proximal operators we explore the conditional
distribution in a discrete form. In fact, one may replace the KL term in (3) with the f-divergence
(Zhang et al., 2024) between two distributions, which increases the flexibility of the model. For
computational convenience, we apply the KL divergence in (3). To explore the transport cost of all
data points, we define the following model:

min Ly =Y Lip; + AKL ; 4)
o Lu=3 . Lipi £ daKL(pll) (

where p; = p(;), >3, pi = 1, KL(pl|q)=3_;_, pi In £, g; is the prior probability of z; indepen-
dent of embedding spaces, and Ao is a nonnegative hyperparameter.

The first term in (4) denotes the transport cost, the second term is the KL divergence between {p; }
and {¢;}. If {z;} are sampled from the uniform distribution, i.e. p; = 1/n, we let Ay = 0 since
the KL term is constant. The introduction of g;|; and g; helps us use prior knowledge of data from
the original space. If no prior knowledge of data is available, g;; and ¢; may take the uniform
distribution. Here, we take student’s ¢ distribution as the probability of moving from x; to y;|; (Xie
et al., 2016) in the original space, denoted by

(1 + p(xiyy)7)

- - (5)
Z?:l(l + p(@i, y;0:)7) 7t

4j1i =

Note that g;|; depends on the original features instead of the embedding features. Generally, q;;
reflects information in the original space, but pj; can be learned in the embedding space. The
KL divergence does not meet the triangle inequality, so it is not a true distance measure. The KL
divergence is not symmetric since KL(p|q) # KL(q|p).

Unlike the Wasserstein distance from the optimal transport theory, we decompose the joint distribu-
tion into the product of two distributions, i.e. p; ; = p;p;|;.- Moreover, we utilize the conditional KL
divergence as the regularization term by introducing prior conditional probabilities of data points.
Note that trivial solutions of # and ¢ may be obtained if we do not impose additional constraints on
encoders. In order to address this problem, we add the reconstruction error of data to the objective
function by using decoders. Thus, we define the following model:

n,k

n
6.3 ¢r%in )L =L+ X3 > llzi — fafo(@i)llapi + X Y pivgiillvj — 9596 (wjio)ll2, (6)
sU,0,9,D5|4,Pi i=1

i,j=1
where \;(i = 3,4) are nonnegative hyperparameters. The last two terms in (6) involve the recon-
struction errors of xz; and y;|;. The continuous version of (6) can be found in appendixes. From (6),
we find that the loss function in the proposed model consists of the transport cost, reconstruction
errors of data and additional regularization terms. The framework is generic since we do not give
specific autoencoders and any transport cost can be used to replace p(). Note that in the above mod-
el, we assume that {x;} and {y;;} adopt different encoders and decoders. In fact, when {z;} and
{y;)i} are sampled from the same data source, we can take the same encoders and decoders. In this
paper, we only consider that {z;} and {y;;} take the same encoders and decoders, but we re-
serve more general notations for future extensions of our framework for different dimensions
of features from two data sources. Since we consider the conditional distribution of z;, we use it
to describe the local information of x;. That is, y;;(j = 1,--- , k) are taken from the &k neighbors
of z;. In supervised learning, we allow y;|; to be taken from the samples whose labels are the same
as (;h; labe(l) of z;. If {x;} and {y;);} are taken from the same data source, we let fo = g4, fg = G4
an 4 = U.
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2.3  OPTIMIZATION

Note that there are several groups of parameters to be optimized in our model. Moreover, some
parameters such as the conditional probability have additional constraints. Thus, the model of (6) is
a constrained and non-convex optimization problem. To solve our model, we resort to the alternating
optimization technique. Specifically, we alternatively optimize a group of variables by fixing other
groups of optimization variables. In the following, we will demonstrate how to divide these variables
into several groups and how to optimize them.

(a): Update p;|; by fixing other variables. In this step, when we fix 6, 6, ¢, ¢, and p;, we solve the
following model:

min Z” ) i)s 96 (Y512)) Pipjli + M ZizlpiKL(p-qu-u)Jr

Pjli
n,k
/\42 ij= p1pj|z||y]\z g$g¢(yj\i)‘|2'

It is noted that (7) is a strongly convex optimization problem. Hence, it has a unique solution. It is
of interest to note that it has a closed-form solution, denoted by

qjiexp(— (L;ﬁ ]|7)/>\1)
Zf 1 Qj|i6xp(*(Lj|l J|1)/)‘1)
where L7 = p(fo(x:), 9o(y51:))" and LT = Aallysi — 9596 (yj12)|l2-

(7

(®)

bjli =

(b): Update p; by fixing other variables. Given 6,0, ¢, ¢, and Pj|i» We achieve p; by solving the
following problem:

n,k F n
min Y " p(fo(xi), 96 (Ws1)) Pipsii + M Y piKL(p.jilla) + AKL(pllg)+
Di 1,j=1 i=1 9)
n _ n,k _ (
As Yl = Fafo(w)llapi + Aa Zi,j:l PipjiillYii — 9596 (Yj13)ll2-
It is observed that the objective function in (9) is strongly convex. Thus there exists a unique solution
of p;. The closed-form solution is denoted by
s — e ((LE" + L) [ho)
b i gieap(— (L5 + L§0) [A2)
% k T enre k =
where Li}j = Zj:l p(fG(xi)alkb(yj\i)) pjj; and L =M Zj:l pj\iHyj\i - %gqb(yj\i)\b +
Asllzi — fafo(xi)ll2 + KL(p.jillq.:)-

(c): Update 6,0, ¢, ¢ by fixing other variables. In this step, we try to learn the parameters of autoen-
coders. Specifically, we solve the following optimization problem:

min Z p(fo(w:), 90(i)) Pipjii + As Y. pillwi — fafo(w:)|a+
(99¢¢) ,j= 1 =1 (1])

(10)

)\42 _ Ppitillyii = 9596(Yj10) [2-

Note that the objective function in (11) is nonconvex. We cannot obtain the global optimal solution.
We generally update these parameters of models through the chain rule in the framework of neural
networks. In this work, we resort to automatic differentiation to learn these parameters.

For completeness, we summarize the main

steps of solving the proposed model in Al- ~Agorithm 1: Optimization algorithm to (6)

gorithm 1. It is found that step 2.1 in- - Gjven x,, 41> 5> and initialize p; = q;, pji = 4
volves the computational complexity of 7. For t=1 to T do

O(H{Hzn) in each iteration, step 2.2 in- 2.1: solve (11) to achieve its parameters (6,0, ¢, 3);
volves O(nk(m + d)) and step 2.3 is 2.2: solve (7) to achieve p;;;

O(n(m + d)), where H; is the maximum 2.3: solve (9) to achieve p;:

number of hidden units of layers and Hs is 3: Output: the encoders and decoders.

the number of layers. In addition, the con-
vergence of Algorithm 1 comes from the
fact that it belongs to the block coordinate descend method(Razaviyayn et al., 2012).
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2.4 THEORETICAL ANALYSIS OF OUR MODEL

In this subsection, we theoretically analyze some properties of our model. There are several param-
eters in our models. We observe that limy, 0 pjji = ¢jj; and limy, o pi = ¢; if p;); and p;
are defined in (8) and (10). This indicates that if parameters A; and Ay approach the positive infinity,
pj); and p; will have the same distributions as prior distributions. If prior distributions are uniform
distributions, the optimal transport plan will be uniform distributions. In such a case, the objective
function of our model makes the trade-off between the reconstruction error and the transport cost.
Note that when deriving the generalization bound of our model, we do not consider the expectation
with respect to the random variable Y. Here we assume that Y has the support consisting of k£ data
points. For given x;, we need to find k data points yy|;, - - , yx|;- These k data points are varying
for different x;. Evidently, it is different from the fixed sampled points y;, - - - , yx in the optimal
transport theory. To explore the effect of the parameters of networks, we study the generalization
bound of our model based on the assumptlon that S = {x1,--- ,z,} are independent and identical-
ly distributed samples, i.e., p; = --. First we define the empmcal loss as done in Maurer & Pontil
(2010) when A4 takes the zero value

LS(H 6) := min — {Z _, Pjlip (fo(wi), fe(yall))

Dji

A1 Zi:l KL(p.llq.:) + Zi:l Asllzs — fafo(w)ll2}- (12)
Noteithat there are several differences between Equations (6) and (12). Here, we let fo = g¢
and f; = 9. Moreover, we do not consider the reconstruction error of yy;, - - - , yx|; since they

are taken from the space that z; belongs to. In addition, we assume that p; in (12) is taken from the
uniform distribution. Let L(6, @) be the expected loss corresponding to (12). We make the following
assumptions.

AO: the distance measure has the form of p(x,y) = p(x — y) and ¢(x) has the Lipschiz constant {;
Al: x; and y;); are bounded, i.e., IM such that ||x;||2 < M and ||y;j;|l2 < M;

A2: || falla € M and || fs||2 < M hold for parameters 0 and 0 in a parameter space;

A3:if g5, =0, pj;s = 0.

The assumption AQ holds if the metric is induced by the norm in a normed space and the data are
taken from a compact space. For example, p(z, y) takes the form of the L, norm. The assumptions
Al and A2 are reasonable since the data we deal with are bounded. The assumption A3 ensures
that the KL divergence is well defined. Now we show the uniform deviation bound of the objective
function in (12) by using the following theorem.

Theorem 1. Under the above assumptions, with probability at least 1 — T, the following inequality
holds for 0 and 8 in proper parameter spaces:

Ls(6,0) < L(6,0) + 4V2M Ry + 2vV2Ry + x4 _l;ngT (13)
where M, = (QMK)T e X1 = M Ry Esa supg Zt 1|Zz 10t (fo(x:))e,

Ry =EgotsupggAsd iy | >, Jlt(fefg( ))t| Oit denotes the Rademacher random variable,
Eg denotes the expectation with respect to S, and fo(x;): denotes the t-th element of the vector

Jo(xs).

R, denotes the Rademacher complexity of the encoder fjy (+), and Ry denotes the Rademacher com-
plexity of the encoder-decoder f5fo(-). In the case of a single-layer linear network, if the parameters
of the network satisfy 670 = I, and § = 07, then we have R; < kdM/\/n and Ry < dM/+/n.
It has been proved in Truong (2019) that the Rademacher complexity of deep learning models is of
order O(1/+/n) under proper conditions. Thus, R; and Ry have the order of O(1/+/n).

2.5 EXTENSIONS TO THE CLUSTERING PROBLEM

In the above section, we assume that z; is transported to data points yy;,- - ,¥kl;- Lhese da-
ta points are taken from the class of z; or from k-neighbors of x;. This implicitly uses pri-
or knowledge from the original data. Without using prior knowledge, are they learned from
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the data via some optimization methods? This may be a trivial thing since the number of
{yjjli = 1,---,n,j = 1,--- ,k} is much bigger than that of {z;|i = 1,---,n} as shown in
Figure 1. To avoid triviality, we can impose additional constraints on {y;|;} to reduce the num-
ber of {y;;}. In supervised learning, we may consider that the data points in the same class
are transported to unknown data points(anchors). That is, y;; = y;p; if x5 and z; are from the
same class. In unsupervised learning where the labels of samples are not available, we may con-
sider the case where all the data points {x;|i = 1,--- ,n} are transported to unknown data points
{yjli = 1,--- Kk}, ie. y; = yji = yjl2 = -+ = Yj|n. Thus, the conditional distribution is de-
noted by p(g4(y)|zi) = Z§:1 D;1i0g4(y,)» Where pjj; and y; need to be learned. Instead of finding
{y;j|lj = 1,--- ,k} in the original space, we explore unknown data points in an embedding space
and let z; = g4(y;)(j = 1,--- , k). Since we directly look for {z;} in the embedding space, we do
not need to consider the encoder g, and the decoder g;. Thus, the following model is formulated to
learn {z;} in an embedding space of data in an unsupervised way.

a n,k _ n
min L= pip(fo(xi),2) pjji + A1) piKL(p.sllg.)+
(0,0,p5:,Pi,25) Zmzl 3 Fil Zz:1 | |

S Aapilli — fafo(wa)lls + AKL(pllg). (14)

Note that z1, - - - , 25 are optimization variables in an embedding space. We refer to 21, - , zx as
anchors. These anchors can also be taken as the cluster centroids of data in the embedding space if
k is equal to the number of clusters. In such a case, the conditional probability p;; can be regarded
as the probability of x; closing to z;. We also employ the alternating optimization method to solve
(14), which can be found in appendixes. The conditional probability p;; and marginal probability
p; have closed-form solutions in each step. In such a case, we can learn the anchors (centroids)
in the embedding space by using autoencoders. The main aim of designing our model of (14) is
to obtain features in the embedding space in an unsupervised way. Here, we employ (14) to learn
the embedding space of data and perform the possible clustering tasks in the embedding space. In
fact, pretrained autoencoders may be employed to initialize the weights of autoencoders. When data
points are independent and identically distributed, we can explore the generalization bound of our
model of (14). To this end, we define the following empirical loss.

al _ . nk 1 -
L§(0,0,2)) :==min Y " —p(fo(w:) = 2)) pspa

Pjli in,j=1mn

A n no o\ _
+ gl > KL@iille) +> ;3”%' — fofo(xi)ll2- (15)

Let L¢(6,0, z;) be the expected loss corresponding to ig(a, 0, z;). We give the following Theorem
2 to characterize the generalization bound of (15).

Theorem 2. As with the assumptions in Theorem 1, with probability at least 1 — T, the following
inequality holds for 0,0, z; in proper parameter spaces:

15(0,0.2)) < L°(0,0, 2;) + 2V2M\ Ry + 2V2 Ry + XX

7 (16)

= 7 ) d n
where M, = 77(2M€)T715, X1 = 2(2M)n+4/\3M _IZHT, Ry = EsoLsupy 3 [ Y oulfo(wi))l,
i=1 i=1

X2 = 2V2M,Mdk, R, = ESJ% Supg g A3 S I i fafo(zi))il, oir denotes the
Rademacher random variable, Eg denotes the expectation with respect to S, and fy(x;); denotes
the t-th element of the vector fo(x;).

Compared to Theorem 1, an additional term Y, appears in Theorem 2 due to the optimization
of anchors (centroids). It is found that the upper bound of the empirical loss depends on the number
of anchors. Our generalization bound has a similar form to the bound in the k-means (Maurer &
Pontil, 2010). A tighter upper bound of the kernel k-means can be found in Yin et al. (2022) by
using the infinity vector contraction (Foster & Rakhlin, 2019).
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3  EXPERIMENTAL RESULTS

3.1 EXPERIMENTS ON SUPERVISED LEARNING

We perform the experiments on some data sets to obtain effective representations of features for clas-
sification tasks. In experiments, 1, - - ,x, consist of the training set and yj“( j=1,--- k) are
taken from the samples that have the same label as x;. It is found that some face data sets belong to
the small-sample-size problem since the number of each class in the training set is much smaller than
the dimension of the samples. When our model adopts one linear layer, we refer to our model as lin-
ear conditional Wasserstein supervised learning (LCWSL). When our model contains several linear
layers and ReLU functions, we refer to our model as deep conditional Wasserstein supervised learn-
ing (DCWSL). The dimension of embedding spaces in our model is equal to the number of classes.
We compare our model with several kernel-based methods including kernel discriminant analysis
(KDA)(Zheng et al., 2014), kernel discriminant analysis based on the L; norm (KDAL1)(Zheng
et al., 2014) and regularized kernel discriminant analysis (RKDA) (Diaz Vico & Dorronsoro, 2020).
In addition, deep Fisher discriminant analysis (DFDA) (Diaz Vico & Dorronsoro, 2020) and deep
Wasserstein discriminant analysis (DWDA) (Su et al., 2022) are tested. Since our model is employed
to explore the latent space in supervised learning, we adopt the nearest neighbor (NN) classifier with
the Euclidean norm. Experimental results on the data sets are shown in Table 1 and experimental
details are in appendixes.

Table 1: Error rates (%) of various methods and their standard deviations on data sets

data sets KDA KDALI RKFDA DFDA DWDA LCWSL DCWSL
Dna 10.18£2.37 9.74£2.46 9.56£2.35 9.41£3.05 9.49£2.27 9.58+£2.47 9.21£2.35
Pendigits ~ 7.36%+1.29 6.25+1.04 6.174+3.24 6.27+2.08 6.32+£2.38 6.20+1.45 6.05+1.38
Iris 4.00+2.28 3.33+2.04 3.33£2.04  4.00£2.28 3.33£2.04 3.33£2.04 2.56+1.78
Satimage  24.574+2.26 24.38+2.67 24.69+£3.05 16.77£2.59 16.86+£2.62 23.46£2.77 16.57+2.61
Waveform  22.26+1.72 20.34£1.51 20.11£1.47 20.19£1.52 19.87+£2.24 20.21+1.85 19.02+1.76
ORL 8.76+2.12 8.53£2.09 8.36+£2.24  10.46+2.37 10.554+2.16  8.21+245 10.38+1.92
Yale 7.52£3.50 7.44+£3.95 7.26+3.41  11.47£3.09 11.90£3.51 7.20£1.05  11.93+1.55
UMIST 8.97+2.25 8.76£2.34 8.45£3.02  10.56+3.50 10.784+3.05  8.21+2.92  10.334+2.06
COIL 8.45+2.21 9.43+1.65 8.22+1.69 8.13£2.02 8.06+1.72 8.19+£1.98 8.08+1.23
MSRA 10.12£1.05  9.56+0.98 9.35+0.97 9.43£1.02 9.46+1.15 9.21+1.98 9.72£1.09

From Table 1, we can see that deep learning models such as DFDA, DWDA and DCWSL perform
poorly on ORL, Yale and UMIST data sets. This comes from the fact that overfitting occurs since
there are not enough training samples to learn the parameters of deep learning models. However,
LCWSL obtains better performance than other methods on these face data sets. It is found that
KDAL1 is superior to KDA on these data sets since KDAL1 is robust to outliers. DFDA and DWDA
do not explore the reconstruction error of samples, whereas DCWSL makes use of the reconstruction
error of the samples. Overall, it is more reasonable to use conditional distributions to transport data
points in an embedding space.

3.2 CLUSTERING EXPERIMENTS

We verify the proposed model on some data sets in terms of clustering tasks. We use the normalized
mutual information (NMI) to show the performance of the clustering methods. We also implement
kernel k-means (KKM)(Paul et al., 2022), kernel fuzzy k-means (KFKM)(Paul et al., 2022), kernel
power k-means(KPKM) (Paul et al., 2022), the deep clustering model based on the ¢ distribution
(DEC) (Xie et al., 2016), the improved DEC(IDEC) based on autoencoders (Guo et al., 2017), and
the deep fuzzy k-means method (DFKM) (Zhang et al., 2020). Since the aim of our framework of
(14) is to search for the embedding space of data in terms of autoencoders, we can use any clustering
method after the embedding space of data is obtained. Here, we perform the spectral clustering on
obtained features, where the number of neighbors is 5. In such a case, we refer to our model as
deep conditional Wasserstein plus spectral clustering (DCWSC). Table 2 shows the NMI of various
methods where we list the best result of each method. From Table 2, we note that our model is supe-
rior to other models since we optimize anchors to learn features in an embedding space. Note that
deep-learning models such as DEC, IDEC and DFKM jointly learn data embedding and clustering.
KKM, KFKM, and KPKM make use of kernel functions to learn the embedding space. It is found
that the features based on deep learning models are better than those from kernel functions. The
experimental results show that feature learning via optimal transport and autoencoders is effective
for unsupervised learning.
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Table 2: NMI values (%) of various methods on some data sets

data sets KKM KFKM KPKM DEC IDEC DFKM DCWSC
Dna 40251246  42.55£3.17 46.34£2.81 49224270 49.4613.10 48261292 50.21+2.86
Pendigits =~ 72.46+2.23  73.82+£1.90 73.25+£2.24 72.35+£2.72 72.36+2.67 77.85£1.90 80.55+1.79
Iris 76.74£2.50  77.83+2.89 78.35+3.01 80.79+2.68 81.44+2.71 80.25+£3.05 88.46+2.96
Satimage  62.33 £3.05 62.254+3.23  63.35+3.19 65.56+3.52 65.26+3.43  68.33+£3.66  70.05+3.25
Waveform  27.2242.04  28.46+2.17 30.51+2.51 30.114+2.62 34.61+2.73 35.14+2.29 38.16+2.14
ORL 62.45+£2.78  63.64+3.07 65.5743.12 70.65+2.46 70.24+2.71 69.33£2.66 80.63+3.41
Yale 60.22 +4.52 61.25+4.23 63.33+4.62 65.12+4.02 64.18+4.19 65.26+4.31 73.224+4.51
UMIST 7235+£3.12  72.334£3.25 76.594+3.28 81.26+3.42 80.36+3.30 82.35+£3.66 87.18+3.20
COIL 78.69+2.21  80.42+2.32  82.62+2.44 90.124+2.50 90.254+2.36 86.261+2.68  92.351+2.23
MSRA 56.1242.02  58.2442.12  57.2242.29 60.22+2.30 62.214+2.19  59.23+2.26 61.264+2.25

3.3 EXPERIMENTS ON TWO LARGE-SCALE DATA SETS

We find that on small-scale data sets, using a one-layer network sometimes obtains much better
performance than using multiple-layer networks. Does this phenomenon occur on large-scale data
sets? In the following experiments, we find that this phenomenon does not occur. Here we select
two large-scale image data sets (MNIST and FashionMNIST) to evaluate the proposed model. The
aim of using these two data sets is that we do not need to employ complex networks to achieve rela-
tively good performance. Unlike the deep learning models based on data augmentation, we only use
our autoencoders to achieve the embedding features. The training samples are employed to select
the parameters of models and test samples are used to measure the performance of models. In our
experiments, we adopt a large batch size of 2000. Since there are a large number of samples in the
training set, we employ the class-mean classifier in the classification task. In the kernel-based meth-
ods, 100 anchors taken from the k-means algorithms are employed to compute kernel matrices since
computing kernel matrices for all the samples is impossible. Table 3 lists the experimental results
from classification and clustering tasks. From Table 3, we note that the performance of DCWSL in
the classification experiments is much better than that of LCWS. It shows that using multiple-layer
networks is beneficial for large-scale data sets. It is clear that our method is superior to other meth-
ods since we explore the transferring range of data in the embedding space via conditional optimal
transport. In the clustering experiments, we observe that our model outperforms other models since
we employ conditional distributions to learn the optimal anchors.

Table 3: Classification (error rate) and clustering (NMI) on two large-scale data sets

classification KDA KDALI RKFDA DFDA DWDA LCWSL DCWSL
MNIST 10.30£2.12  12.15£2.57 9.55%£1.86 9.39+2.32 8.86E2.73 9.19£2.26 8.21£2.31
Fashion 12.30+£3.49 14.36+3.89 11.79£4.01 11.2243.37 10.35+3.58 10.4143.3 9.21+3.17

Clustering KKM KFKM KPKM DEC IDEC DFKM DCWSC
MNIST 5433+253 59.40£2.67 5837£2.49 67.46+£256 79.21£2.73 70.23£2.12 81.24+2.51
Fashion 46.62+3.72  47.3943.69 50.28+3.10 54.35+3.53 56.454+3.44 54.374+2.76  62.08+3.16

3.4 CLASSIFICATION OF SET-VALUED OBJECTS

Here we modify our model to make it capable of handling set-valued classification problems. For set-
valued classification problems, each object contains many examples. Unlike previous experiments,
we assume that the set {x1,--- ,z,} is a set-valued object containing n examples in the validation
set or test set. For the data point z;, we can obtain its k neighbours y;, -+, yx); and these k
neighbours are from the training set. Since we know the labels of yy;, - -+, yx; in the training set,
we assign the label of x; to the label of y;|; with the largest p;);(j = 1,--- , k). Thus, we obtain
the label of each example in a set-valued object. Finally, the majority voting strategy is employed to
achieve the label of the set-valued object. We refer to our model as the deep conditional Wasserstein
classifier (DCWC). Our model will degenerate into the deep nearest-neighbor classifier if each object
only contains an example and the parameter \; approaches the positive infinity. Here we need to use
the validation set to learn the embedding space of data and hyperparameters. In the test stage, we
fix the parameters of autoencoders and optimize p;|;. We test DCWC on two medical image sets in
binary classification problems (Yang et al., 2021). We use 780 images from the breast image set and
4708 images from the pneumonia image set. To evaluate the performance of DCWC, we compare
it with several set-valued data classification methods such as the second-order cone programming
(SOCP) approach (Shivaswamy et al., 2006), the sparse approximated nearest point (SANP) method
(Hu et al., 2011), regularized collaborative representation classification (RCRC) (Zhu et al., 2014),
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support measure machines(SMMs) (Muandet et al., 2012), and support function machines (SFMs)
(Chen et al., 2017). Figure 2 shows experimental results on two medical image sets.

As can be seen from Figure 2, SFMs are not superior to DCWC since SFMs generally give sparse
support vectors. It is found that DCWC yields the best performance on these data sets since DCWC
explores the weight of each example in the set-valued objects. Among these methods, SFMs are
sampling-based methods. SANP, RCRC and SMMs explore all possible representations of images.
If the representations of images contain distorted features, these distorted features will affect the
performance of classifiers. Our DCWC makes use of the conditional optimal transport and recon-
struction errors of data to achieve effective features. The experimental results indicate that it is
reasonable to employ the optimal transport theory to classify set-valued data.

25

22.45

Error rates(%)

SANP  RCRC SCOP  SFMs  SMMs DCWC SANP  RCRC  SCOP  SFMs  SMMs DCWGC
Methods Methods

(a) Breast data (b) Pneumonia data

Figure 2: Experimental results on medical image data sets.

4 RELATED WORK

Many feature learning methods based on the deep architectures of neural networks have been devel-
oped. Multi-layer learning models (Yuan et al., 2015) have been proposed to deal with the scene
recognition problem, and they are available in an unsupervised way. The deep semi-nonnegative
matrix factorization (Trigeorgis et al., 2014) can find the latent representation of data in a low-
dimensional space, and the new description can improve the clustering performance of data. Deep
Fisher discriminant analysis (Diaz Vico & Dorronsoro, 2020) takes advantage of deep neural net-
works to capture the nonlinear features of data. To deal with sequence data, deep order-preserving
Wasserstein discriminant analysis (Su et al., 2022) achieves a nonlinear transformation by maximiz-
ing the inter-class distance and minimizing the intra-class distance. The Wasserstein autoencoder
(Tolstikhin et al., 2018) was proposed to achieve a generative model of data distributions. However,
these feature learning methods do not explore their generalization bounds.

Kernel k-means clustering methods can deal with the nonlinear structure of data in unsupervised
learning. For bounded random vectors, the expected excess clustering risk was studied in the work
(Maurer & Pontil, 2010). An upper generalization bound of the kernel k-means method in a reduced
space (Yin et al., 2022) is derived in terms of the Rademacher complexity. The deep clustering model
via the ¢ distribution (DEC) (Xie et al., 2016) has been proposed. The improved DEC (IDEC) (Guo
et al., 2017) used autoencoders to enhance the performance of DEC. However, the generalization
bounds of DEC and IDEC are not explored.

5 CONCLUSIONS AND FURTHER WORK

In this paper we have introduced a feature learning framework relying on optimal transport and
autoencoders. The use of the conditional probability in the proposed model is to make each data
point adapt to its neighborhood, and this may well be suitable for the characteristics of data. The
experimental results on real data sets demonstrate the feasibility of the proposed model on some
classification and clustering tasks. Since the performance of the proposed model is affected by
autoencoders, how to select proper autoendcoders for data sets is worth exploring. In the future, we
will focus on the problem of how to employ advanced autoencoders to improve our model to deal
with complex data sets in the real world.

10
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A THE CONTINUOUS VERSION OF (6) IN OUR PAPER

Here, we give a continuous version of (6) which provides insights into understanding our discrete
version. The following framework is used to extract effective features of data.

minL(0,0,6,6,p(g4(y)|z),p(x))) := /p(fe(w‘),g¢(y))fp(g¢(y)Iw)p(w)dxder
" / ()KL (g0 (1) |2)]19(g0 () |2))da + AKL(p(2)]lg(x))+ (17
A / e — Fy fo (@) lladpt + Aa / 1y - G596) l2dv.

where  KL(p(go()l0)llaylz) = [plgs(y)z) n 22804y, KL(p(z)llg(z)) =
[ p(z Z 8) dz, q(y|x) and ¢(z) are prior (conditional) probabilities in the original space,
and )\Z(z = 1,---,4) are nonnegative hyperparameters. p(g,(y)|z) is actually the induced

distribution of ¢(y)|z) via the encoder g,. The first term in (17) denotes the transport cost in the
embedding space. The second term is the Kullback-Leibler (KL) divergence to control conditional
probabilities between p(gq4(y)|x) and ¢(y)|x). The third term is the KL divergence between p(x)
and ¢(x). The last two terms involve the reconstruction errors of data = and y. Trivial solutions of
6,6, ¢, o may be obtained if we do not employ the reconstruction error of data or the regularization
terms for these parameters. From (17), we find that the loss function in the proposed model
consists of the transport cost, reconstruction errors of data and additional regularization terms. The
framework is generic since we do not give specific autoencoders and any transport cost can be used
to replace p(). That is, we can employ some existing autoencoders to our framework.

B THE PROOF OF THEOREM 1
Lemma 1. For any r > 1 and two vectors x and y with proper dimensions, we have
llz + yllr < [lzflr + Iyl (18)

Lemma 2 (Yin et al., 2022). Let x1, - - - , x,, be n data points, and let F' be a class of vector-valued
functions f : X — R® and h;: R* — R be functions with the Lipschitz constant {. Then we
have

EsupXZorz (f(x) <\f€EsupZZcr” fi)j (19)

feF iz feriS o

where 0;; is an independent doubly indexed Rademacher sequence and (f;); is the j-th component

of f(i).
Lemma 3 (Kuritsyn, 1986). Let a be a vector containing m elements. The following Khintchine
inequality holds
A,(Yad)E < (B oial")r < Bo(Y_af)z, (20)
i=1 i=1 i=1

where A, and B, are constants depending on r. When r = 1, we have B, = 1.

To give the generalization bound of L (6, 0), we rewrite Lg(6,0) by removing p;i- Thus, Ls(6,6)
can be formulated as

=—fZIanJ|1exp o) = Folys))"2a) + 30 22 o — ool
=1
2n

Let S’ be the data set where only a data point is different from the data set S, e.g., T,. Let ﬁ5(6‘, 0)
denote the empirical loss from S’. Let us define the following functions:

1/’5 = SuP(L(avé) - i—/S(eve_))v (22)
6,0

14
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W = sup(L(9,0) — Ls/(6,0)). (23)
0,0
From (22) and (23), we have
LW . ;
[¥s —dis| < [Ls(8,0) — Ls:(8,0)] = ~ S;\leP\ — XY gjexp(—p(fo(s) — folyjis)™ /A1)
) j=1

k
+Asn ) asiexp(=p(fo(@s) = fo(y;10)"/ M) + Nalles — fafolws)llz = AsllZs — fafo(s)l2]

j=1
1 k ) k _
< {510 S s exp(—p(fo ) = Fo(w1:))7]+ 5up haIn Y s exp(—p(fo @) = Fo(we))|
j=1 J=1
+sup Asl|zs — fgfo(zs)ll2 + sup As||Zs — f5.fo(Zs)]l2}-
6,0 0,0
(24)
From assumptions of A0 in our paper, we have
p(fe(xs) - f@(yj\s))F = @(f@(xs) - fG(yjIS))F' (25)
Note that the function ¢() is Lipschitz continuous and its Lipschitz constant is £. Hence, we have
o(fo(zs) — fo(yjis)) < Ul fo(ws) — fo(yjs)ll- (26)
From || fo(¢)|l2 < M and || fo(yjj¢) [l < M, we have
Il fo(zs) — fo(yjs)ll2 < 2M. (27)
Similarly, we have B
s — fafo(xs)ll2 < 2M. (28)

From (24), (26), and (28), we have

k.
1 _
s — sl < —{I\n Y gz exp(=(2M0)7/A)|
) = (29)

7 202ML)" + 4XsM
+|>\11n2qﬂiexp(—(2M€) /A1) +2032M ) < ( )n s

Jj=1

In the following, we consider the expectation of 1 g with respect to the data set S, denoted by

Es(¥s):

Es((¢s)) = Es(S;lg(L(@é) — Ls(6.9)))

1) n k ) " )
< QES,U% sup{D _ —MioiIn Y g exp(—p(fo(@i) = foly;1))" /M) + A3 D oillws — fafo(zi)ll=}

0,0 =1 j=1 i=1
(2) 1 n k ) n B
< 2Bso sup{D i Y qjiip(fo(x:) = fo(ysi)™ + s D oillwi — fafa(wi)ll2}
0,6 =1 j=1 i=1
(3) 1 n k N 1 n _
< 2Bso Sl;pzai > ajjip(folwi) = foly;)™ + 25,0 sup A3 > aillwi — fafo(wi)lla-
i=1 j=1 9,0 i=1

(30)
In (30), the first inequality comes from the symmetrization of random variables, and the second

inequality uses Jensen inequality from the fact that —Inx is a convex function. Note that the Lips-
chitz constant of the norm || - || is 1. The function ||z||” is not Lipschitz continuous if the variable
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x takes the inﬁpite values. However, with the assumptions we provide, there exists the constant
My = #(2M0)" "1 such that p(fs(z;) — fo(y;1:))" is Lipschitz continuous. Using Lemma 2, we
have

n d

(1) i
Es(¢s) % QES,olS ZZULtZQﬂz\[Ml fo(@i) = fo(yj1i)t)
j=1

n
6.0 521 t=1
n m

+ QES,U%supAgz V20i:(f5fo(x:))s

0,0 i=1 t=1

(2) 1 n d k
< QES,GE SI;PZ Zazt ZQﬂz\[Ml(f‘g(zl))
Jj=1

i=1 t=1

0,60 =1 t=1
3 1 n d n d k
< 285, sup DS i VIM (folwi))i + 20 sup > > oit ) 451V 2Ma (= Folys)e)
noe o i=1t=1  j=1
+2Fg,— sup)\g,ZZ\fUzt fefo( i)t
n o, i=1 t=1
(4) =

Mg

Uit\/éMl (fQ(xz)) + QESUf SUPZ Zazt Z qj'ZfMl f@(xz) )

1
<2ES0’E gpz 1t=1 1
i= Jj=

1=

,_.
~
Il

—

n m

+2Esgfsup)\322\f0n fafe( i)t

6,6 =1 t=1

3D

In (31), the first inequality uses Lemma 3, and the second inequality uses the property of sup. The
k
third inequality uses the fact that ) ¢;; = 1. Since y;|; depends on x;, we assume that y;|; is an

j=1
independent copy of x;. Hence, the fourth inequality is to replace y;|; with z;. From (31), we have

Es(vs) < 2Esg—supZ|ZazMMl folz:))e \+2Esg—supZ|Zalth1 —fo(:)0)]

t=1 =1 t=1 =1
+2E5,,~ supngZfo—n (fafo(z:))e] <4fM1Esg—supZ|Zm folxi))il
6,0 t=1 =1 t=1 =1

1 _
+ 2\/§ES,OE Saué_? A3 Z \ Z oi(fafo(wi))el.
5 t=1 =1
(32)

From (32), we find that the upper bound of Fg(¢s) depends on the Rademacher complexity of
the encoders and decoders. From (29) and (32), we obtain that with probability at least 1 — 7, the
following inequality holds for € and @ in proper parameter spaces by using McDiarmid inequality:

—logT
2n

Ls(6,0) < L(6,0) + 4V/2M Ry + 2vV2R, + x1 (33)
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N7 ) d n
where Y, = 2EMIHAM R ES,U%SUPQZ|ZUit(fG(xi))t

n

, and R, =

m

n —
ES,O'%SUPB,é A3 Z 2%Uit(f§f0(xi))t‘~
t i=

=1
C OPTIMIZATION OF (14) IN OUR PAPER

In the following, we use the alternative optimization method to solve the optimization model:

~ n,k

min(G,é,pﬂumej)L = Zi,j:l pip(fe(xi)’ Zj)ipj‘i—‘r

n " - 34)
A1 Zi:l piKL(p.jillg. i) + 21:1 Aspillzi — fafo(zi)ll2 + AKL(p||q).

(a): Update pj; by fixing other variables. When we fix ¢, 0, zj and p;, we solve the following model:
n,k _ n
ming,; Zi,j:l p(fo(xi), 25) Pipjji + M Zi:l piKL(p.jillg.1)- (35)

It is noted that (35) is a strongly convex optimization problem. It is of interest to note that it has a
closed-form solution, denoted by

Qj|i€$p(*L?ﬁ-/>\1)

- TS (36)
ijl (Jj\imp(*Lj“/)\l)

Pjli =
where L?ﬁ- = p(fo(zs),2)".

(b): Update p; by fixing other variables. Given 6,6, zj, and p;|;, we achieve p; by solving the
following problem:

. n,k - n
ming, > p(fa(w)2) pipgi + 2 Y pKL(llas) + A KL(pllo)+

A3 Z;l s — fofo(xs)ll2pi-

It is observed that the objective function in (37) is strongly convex. Thus, there exists a unique
solution to p;. The closed-form solution is denoted by

giexp(—(L7" + L§"°) /A2)
izt giexp(—(L{¥ + L) [A2)”
where L¥ = Y5 p(fo(w:), 2) pjji and L™ = Aglai — Fofo(wi)ll2 + KL(p.jil g.1:)-

(c): Update z; by fixing other variables. If p takes the Euclidean distance and 7 = 2, z; has the
following solution:

(37

(38)

pi =

Dy Qin\ifG(xi).

= (39)
D i1 4l

zZj =

(d): Update 6 and 6 by fixing other variables. In this step, we try to learn the parameters of autoen-
coders. Specifically, we solve the following optimization problem:

n,k _ n _
min g, gy Zm:l p(fo(xi), 25) Pipjji + A3 Zi:l pillzi — fofo(xi)ll2. (40)

Note that the objective function in (40) is nonconvex. We cannot obtain the global optimal solution.
We generally update these parameters of models through the chain rule in the framework of neural
networks. In this work, we resort to automatic differentiation to learn these parameters. For the sake
of completeness, we summarize the main steps of solving (34) in Algorithm 2.
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Algorithm 2: Optimization algorithm to (34)
1. Given A;, g;);» qi» and initialize p; = q;, pjj; = ¢y
2: For t=1to T do B
2.1: solve (40) to achieve the parameters (6, 6);
2.2: solve (35) to achieve pj;;
2.3: solve (37) to achieve p;;
2.4: use (39) to achieve z;;
3: Output: the encoders and decoders.

D THE PROOF OF THEOREM 2

We obtain L (6, 6, z;) by removing P;jj;. Thus, L5(6,0, z;) can be formulated as
L§(60,6,2)) Z At an a1 exp(—p(fo (i), z)" /M) + Z [z = fafo(zi)ll2. (41)

Let S’ be the data set where only a data point is different from the data set S, e.g., Ts. Let ﬁg(@, 0)
denote the empirical loss from S’. Let us define the following functions:

s = sup (L(6,0) — L&(6,0)), (42)
0,0,z
v = QS;}P‘(L(Q 0) — L&/ (6,0)). (43)

From (42) and (43), we have
1 . _ . _
Vs — sl < |L(0, 9) —L5/(6,0)|

k
_1 sup | — Ay lnijnexp( p(folxs), 2)" /A1) + M 1ﬂij|z'eXP(*P(fe(fs),Zj))F/)\l)

n99zj

j=1 j=1
+Asllzs — fafo(ws)llz — AsllZs — fafo(Ts)lz|
k ) k )
< {3up|A11anj|zeXp (fe(xs),zj)T//\l)l+§up|A1anqjuexp(—p(fe(xs),Zj)r/h)l
i j=1 2 j=1
+sup Asllzs — fafo(zs)ll2 + sup Asl|Zs — fofo(s)ll2}-
6,0 0,0
(44)
Using the assumption of A0 in our paper, we have
p(fo(zs), Zj)F = ¢(fo(zs) — Zj)F' (45)
From || fo(z:)|] < M and ||z;]] < M, we have
p(fo(zs),2)" < (2ML)". (46)
Similarly, we have B
s — fafo(xs)ll2 < 2M. (47)
Thus, (44) leads to
1 b )
|1hs — ] < Al InY g exp(—(2ML)7/Ay))|
j=1
g ; 48)
+ |\ 1DZQj‘ieXp(—(2M€)T/)\1)| + 2X32M} (
j=1
22MO)" + 4XsM
- n
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In the following, we consider the expectation of 1s with respect to the data set .S, denoted by
Es(¥s)
Es(vs) = Es(sup (L(0,0,2;) — L%(0,0, 2;)))

094
(1) 1 _ n _
< 2B5, sup {Z ~oi\ 1an]|zexp p(fo(@i),2)7 /M) + s Y aillwi = fafo(w:)ll2}
092, i=1 j=1 =1

(2
< QESU* sup {Zazij\zp fo xz) Z] +/\3Z‘71”x1 fefB(xz)” }

99zJ i=1 j=1 i=1
3) 1 r 1
< QESUE sup Zglijllp Jo(x:), ZJ) +2Es,— SUPASZWHZZ f@f(?(xz)”Q

0.0,z =1 j=1 6,0 =1
(49)

In (49), the first inequality comes from the symmetrization of random variables, and the second in-
equality uses Jensen inequality from the fact that —inz is a convex function. Note that the Lipschitz
constant of the norm || - || is 1, but the function ||z||” is not Lipschitz if the variable x takes the
infinite values. However, with the assumptions we provide, there exists the constant A7 such that
p(fo(wi),y;)" is Lipschitz continuous. Using Lemma 2, we have

d

k
Es(vs) < QESU—supZ Unijh\fMl (fo(@i) — 2j)
1

ZJ'th j=1

+ QESUE sup A3 ZZ \[Uzt fefe(xz))

=1 t=1

d k d k
<2Es(,fsupz Ulthm\/ﬁMl (fo(z ))t+2E50 sup ZUthq;|1\/§M1 (—2j)¢
i=1 t=1 j=1 Zii=1t=1 j=1

+2Esa*5up As > V20 fafa(w)
6,0 =1 t=1
(3) n d n d k
< 2ES U*SUPZZU“;\/»Ml f0 wl))t+2ESO' SUPZ Uth(JJ\z\[Ml zj)
=1 t=1 Zi4=1t=1 Jj=1
1 n m _
+2Eg,—supAs Y > V20u(fafo(xi):
Moo  iSiim1
(50)

In (50), the first inequality comes from Lemma 2, and the second inequality uses the property of
sup. The third inequality uses the fact that Z?Zl ;)i = 1. From (50), we have

(Q/JS) < 2ESU*SHPZ|ZUzt\/>M1 f0 ‘r’b)) |

t=1 =1

+2Eg,,— supZZIzJ IIZOn\waJ\IJr?Esg supAgZIZ\fan Tafo(zi))s]

‘]tljl 6,6 t=1 =1

<2[M1ESafsupZ|Zgzt f9 :CZ |+2\[M1ME ZZ|ZU1tq]|z

t=1 1i=1 tljlzl

+2Esﬂfsup A3 E | E \[Ult fafG(ml)) ‘
9.0 i=
=1 =1 51)
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Further we have

d n

1 2/ 2M, Mdk

Es(tbs) < 2V2My Es o~ sup > > ol fol@)e + =———
t=1 =1

+ 2ES,U% sup As > | Y V20 (f5fo(i))el.

0,0 t=1 i=1

In (52), we use Lemma 3 to obtain the last inequality. From (52), we find that the upper bound
of Es(1g) depends on the number of anchors, and Rademacher complexities of the encoders and
decoders. From (48) and (52), we obtain that with probability at least 1 — 7, the following inequality

holds for 0, 6, and z; in proper parameter spaces by using McDiarmid inequality:

L(0,0 7 +
L§(0,0,2) < L(6,6,2) + 2V2M Ry + 2V2R; + xlﬁm 53
where i = CGGMIZERWM, Johrooy, = 2VAMiMdk, R =

Es .ot supy S0 | S0, 0it(fo(z:))e], and Ry = Eg o 2 supg g A3 Sopy | 50, 0t (fafo(wi))el-

E EXPERIMENTAL SETTING AND ADDITIONAL EXPERIMENTS FOR OUR
MODEL

All experiments are conducted on a PC with an Intel Core i7- CPU and a RTX 3080 GPU. The
structure of encoders we use in this paper is a fully-connected network with the form of [m, 500,
500, 2000, d] and the decoder is a mirror of the encoder, where m is the dimension of input data
and d is the dimension of the latent space. The popular ReLU functions are employed in each layer.
We employ Adam (Kingma & Ba, 2015) as the backpropagation optimizer. In the experiments, p
takes the L2 norm, ¥ = 2, and Ay = 1000. We let A4, = 0 due to the use of the same encoders. The

parameters \; and A3 are selected from the set {10?,i = —3,—2,---,2, 3}. In the classification
experiments, we need to determine & in (6) in our paper. Note that x4, - - - , x,, consist of the training
set and yj“(j = 1,--- , k) are taken from the samples that have the same label as x;. We think

that the samples in the same class are neighbors. Thus, k£ will be determined by the number of
samples in each class. As a result, k will vary since the number of samples in each class is different
in the training set. In the clustering experiments, £ in the model of (15) is set to be the number of
clusters. We find that good performance can be obtained by this setting since the encoder has strong
representations of features.

The outer loop is 10 iterations and the inner loop for autoencoders is run with an Adam optimizer
for 100 epochs, with an initial learning rate of 0.001. In the data sets except for two large-scale data
sets , all data sets are handled with a full-batch mode. For the large-scale data sets, the batch size is
2000.

The data sets from the UCI repository are Dna (180 attributes /3 classes /2000 samples), Pendigits
(16/10/7494), Satimage (36/6/4435), Iris(4/3/150), and WaveForm (21/3/5000). In addition, we also
explore four face image data sets and an object data set. The ORL face database contains 40 distinct
persons and each person has taken 10 different images. The UMIST face database contains 564 face
images of 20 distinct subjects. The Yale face database contains 165 images of 15 individuals. The
COIL database contains 1440 images with black background of 20 objects. The MSRA face data
set consists of 1799 images of 12 subjects. All the images are normalized to a resolution of 32 x 32
pixels for computational efficiency. For each data set from the UCI repository, we randomly choose
fifty percent samples to form the training set and the rest is used as the test set. The performance
of each model is evaluated over twenty random splits of each data set. The additional five runs are
employed to select the parameters of each model.

The MNIST data set contains 60,000 training samples and 10,000 test samples, and the FashionM-
NIST data set has 60,000 training samples and 10,000 test samples. The dimension of samples in
these two data sets is 784.

For set-valued objects, we employ the features extracted from a pre-trained convolutional neural
network (CNN), i.e., ReNet18, and the features are taken from the layer of resSb-relu. The extracted
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features of each image have a tensor representation of 7 x 7 x 512 dimensions. To reduce the com-
putational cost, we pre-process the features of each image. That is, we perform the mean operation
along the first axis and downsample the features with a factor of 4 along the third axis. Thus, we ob-
tain the features whose dimensions are 7 x 128. Namely, each image can be regarded as a set-valued
object containing seven examples with 128 dimensions. We randomly choose 50% of the samples
as the training set, 30% of the samples as the validation set, and the other images as the testing set.
Experimental results are averaged over 10 runs.

For the large-scale FashionMNIST data set, we carry out the experiment to check the effect of
reduced dimensions and the number of neighbors. Figure 3 (a) denotes the correct rates of DCWSL
with the change of reduced dimensions, and Figure 3 (b) shows the correct rate of DCWSL as the
number of neighbors varies. From Figure 3 (a), we observe that the reduced dimensions affect
the performance of DCWSL. But when the dimensions of the samples exceed 10, our model can
achieve good performance. From Figure 3 (b), we can see that it is not necessary to employ too
many neighbors to obtain good better performance since we consider the samples from the same
class. In addition, we visualize 2000 samples in a two-dimensional space via t-SNE. Figure 4 shows
the experimental results. Figure 4 (a) denotes the visualization of original images via t-SNE, and
Figure 4 (b-d) denote the results of DCWSL in the case of different iterations. As can be seen from
Figure 4, the embedding features in a two-dimensional space from DCWSL are well separated.

Correct rates(%)
Correct rates(%)

5 10 15 20 25 30 35 40 45 50 55 0 50 100 150
Reduced dimensions the number of neighbours

(a) Correct rates versus reduced dimensions (b) Correct rates versus the number of neighbors

Figure 3: Performance of our model on the FashionMNIST data set

There are several parameters in the proposed model since these parameters determine trade-offs in
several terms. We let A\;=1000 so that {p;|¢ = 1,---,n} approach uniform distributions. If we
consider that 1, - - - , yx are taken from xq,--- ,x,, then we set Ay = 0. In such a case, we first
explore the effect of different A\; and A3 on supervised learning tasks. To this end, we randomly
choose half of samples from each person to form the training set and others are used for testing
on the ORL data set. Assume that the reduced dimension is equal to the number of classes (40)
and the parameters \; and A3 take values from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Thus each
parameter takes seven values. We also report the experimental results over ten runs. Figure 5 shows
the experimental results on the classification problem, where the x-axis denotes the parameter \g,
the y-axis denotes the parameter A\, and the z-axis denotes the error rate of our model.

As can be seen from Figure 5, the error rates of the proposed model vary with the change of pa-
rameters. It is found that the error rates of our model are very high when the parameter A3 takes
relatively small values. We observe that A3 is more sensitive than A; in affecting the performance of
the model. From Figure 5, we see that the running time of our model is affected by the parameters.
Figure 6 shows the experimental results on the clustering problem. From Figure 6, we find that the
parameters affect the performance of DCWSP in the clustering problem. Overall, the experiments
indicate that we need to select proper parameters to attain the best performance in real applications.
In fact, the cross-validation is often employed to select optimal parameters.
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(a) visualization of original images via t-SNE
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(d) visualization from our model at the tenth iteration via t-SNE

Figure 4: Visualization of 2000 images on the FashionMNIST data set
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error rates (%)

/\‘a in log scale . A, in log scale
,\1 in log scale A, in log scale

(a) Error rates of LCWSC (b) the time of LCWSC

Figure 5: Performance of LCWSC with varying parameters

NMI(%)

Ay in log scale A4 in log scale
A1 in log scale A in log scale

(a) NMI of DCWSP (b) the time of DCWSP

Figure 6: Performance of DCWSP with varying parameters

23



