
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFTOOL: REFERENCE-GUIDED TOOL CREATION FOR
KNOWLEDGE-INTENSIVE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can enhance their reasoning capabilities by us-
ing external tools. However, many tasks lack predefined tools. Prior works have
explored instructing LLMs to generate tools on their own, but such approaches
depend heavily on internal knowledge and struggle when tasks fall outside the
model’s knowledge scope. To address this limitation, we propose REFTOOL, a
reference-guided framework for automatic tool creation that leverages external
materials, such as textbooks and knowledge snippets. REFTOOL consists of two
modules: (1) tool creation, where LLMs generate executable tools from reference
content, validate them using illustrative examples, and organize them hierarchically
into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure
to select and apply the appropriate tools to solve problems. Experiments on causal-
ity, physics, and chemistry benchmarks demonstrate that REFTOOL outperforms
existing tool-creation and domain-specific reasoning methods by 12.3% on average
accuracy, while being cost-efficient and broadly generalizable to non-scientific
tasks, e.g., extremely low-resource language translation. Analyses reveal that
grounding tool creation in references produces accurate and faithful tools, and
that the hierarchical structure facilitates effective tool selection. REFTOOL en-
ables LLMs to overcome internal knowledge limitations, advancing generalizable
reasoning in knowledge-intensive domains.

1 INTRODUCTION

Chapter.7 Estimation

7.6 Inverse Probability Weighting

Initial Tool 
Generation

Tool Verification 
and Refinement

Description: Compute the average treatment effect (ATE) 

using inverse probability weighting based on estimated 

propensity scores. 

Function:

Example: (Problem, Solution, Answer)

Hierarchical Tool 
Selection

Solution 
Generation

Reference Material

Tools

compute_ate_ipw

trim_propensity_scores

Toolbox

Contains tools that can successfully 
execute and solve example problems

What is the average treatment effect 

(ATE) from T to Y?

Question

Selected Tools

Step 1. Category selection
Step 2. Tool selection within category

Solution

Answer the question with the tools

Tool Creation Tool Utilization

Figure 1: Overview of the REFTOOL framework, which consists of two modules: tool creation (left)
and tool utilization (right).

Tools play a critical role in enhancing the reasoning capabilities of large language models (LLMs),
particularly in scientific problem-solving like mathematical reasoning (Lu et al., 2023; Zhang et al.,
2023). By integrating external tools, LLMs can use off-the-shelf modules to complete subtasks and
execute precise computations, thereby improving their performance.

Despite their importance, such tools are not universally available across all scenarios. A prominent
line of work attempts to mitigate this limitation by instructing LLMs to generate their own tools

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

based on given problems (Qian et al., 2023; Cai et al., 2023; Wang et al., 2024b). However, these
methods would fall short when models lack the relevant expert knowledge, especially in specialized
and novel domains. For example, if an LLM is unfamiliar with how to estimate the causal effect from
a treatment variable to an outcome variable, it can hardly generate appropriate tools for such tasks.

To address this challenge, we propose REFTOOL, a reference-guided framework for automatic tool
creation. Unlike existing methods that rely on LLMs’ internal knowledge, REFTOOL leverages
external reference materials, such as textbooks and knowledge snippets, that naturally cover a broad
range of domains. As shown in Figure 1, REFTOOL consists of two modules: tool creation and tool
utilization. During tool creation, the framework employs LLMs to generate executable tools from
reference content. In the example, given a segment on Inverse probability weighting1 from a causal
inference textbook, the LLM produces tools like compute_ate_ipw according to the content. The
generated tools consist of descriptions, functions, alongside illustrative examples teaching models
when and how to use the tools. These examples also serve as validation cases, filtering out non-
functional or incorrect tools while retaining those that successfully solve the example problems. The
validated tools are organized into a hierarchical toolbox, mirroring the structure of the reference
material, or created by the model if the reference is unstructured.

During inference, REFTOOL guides the LLM to select tools from the toolbox hierarchically and
apply tools to solve problems. For an input question like what is the average treatment effect from
T to Y, the LLM navigates the toolbox hierarchy, selecting the Estimation category and then the
compute_ate_ipw tool within the category. Finally, the LLM generates the solution with the help of
the selected tool. By grounding tool creation and selection in external references rather than internal
knowledge, REFTOOL can construct and deploy tools beyond the model’s original capabilities,
enabling it to tackle tasks that would otherwise be infeasible.

We evaluate REFTOOL across three knowledge-intensive scientific domains: causality, physics,
and chemistry. With the help of textbooks, REFTOOL outperforms existing tool creation methods
by 13.0% on average, highlighting the value of incorporating external knowledge in tool creation.
REFTOOL also achieves an average accuracy improvement of 10.2% over domain-specific reasoning
methods (Pang et al., 2025; Ouyang et al., 2024; Tang et al., 2025). Unlike prior works that depend
on manually constructed toolsets or extensive trial-and-error on validation data, REFTOOL achieves
greater efficiency in both time and computational cost.

REFTOOL exhibits strong generalization. Akin to human learning knowledge, the generated tools are
not dataset-specific, but maintain robust performance across diverse datasets in the domain. REFTOOL
further proves effective in non-scientific tasks and with unstructured references. In extremely low-
resource language translation, it organizes unstructured grammar rules into a hierarchy and transforms
them into pseudo-code tools, yielding improved translation performance.

To summarize, we propose REFTOOL, a reference-guided framework for tool creation. REFTOOL has
the following advantages: (1) By leveraging reference materials, REFTOOL enables LLMs to generate
tools beyond their internal knowledge. (2) Experiments on diverse knowledge-intensive reasoning
tasks demonstrate that REFTOOL consistently improves performance over existing baselines. (3)
REFTOOL generates dataset-agnostic tools in a cost-efficient and human-free manner, demonstrating
the potential for extending the knowledge boundary of LLMs in real-time problem solving.

2 THE REFTOOL FRAMEWORK

REFTOOL operates in two stages: (1) constructing a hierarchical toolbox T from reference material
R, and (2) selecting and applying tools t ⊂ T to answer the input question q during inference. This
section introduces the method with a focus on scientific reasoning tasks, and §3.3 describes how the
method is adapted to non-scientific tasks.

2.1 THE TOOL CREATION MODULE

Knowledge Organization The first step in tool creation is to organize the knowledge from reference
materials into a structured form. In this work, we adopt a two-level hierarchy for knowledge
organization, which also defines how the generated tools are arranged.

1Inverse probability weighting is a common method for estimating causal effects.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Reference 
Material

Chapter.7 Estimation
7.6 Inverse Probability Weighting

Tool compute_ate_ipw

Description: Compute the average treatment effect (ATE) using inverse probability 

weighting based on estimated propensity scores. 

Function:

Example: 

……

……

- Answer: 2.0 

- Problem: Given treatment indicators T=[0, 1, 0, 1], observed outcomes Y=[2, 3, 

1, 4], and estimated propensity scores [0.2, 0.8, 0.2, 0.8], compute the average 

treatment effect (ATE) using IPW.

- Solution: 

Toolbox Category 7. Estimation
        Tool …, Tool 11. compute_ate_ipw

Figure 2: Example of a generated tool and its corresponding reference segment.

Many references, such as textbooks and technical documents, naturally follow a hierarchical orga-
nization that supports systematic knowledge acquisition. At the highest level, they are divided into
chapters (e.g., Estimation in the causal inference textbook), which are further decomposed into
sections (e.g., Inverse Probability Weighting), each addressing a specific technique, theorem,
or application within the broader chapter context. For such cases, we directly extract this inherent
structure and adopt the chapters as the first-level categories.

For unstructured references like knowledge snippets, we ask an LLM to construct the hierarchy based
on the content. The model first proposes category names and then assigns reference segments to
appropriate categories. After the conversion from unstructured reference material to structured ones,
we apply the same general method introduced in the following to create tools.

Initial Tool Generation Given a reference segment, such as a section si ∈ R, the LLM is instructed
to generate executable tools based on its content. Each tool consists of three key components, as
illustrated in Figure 2. First, a description provides a natural language summary of the tool’s purpose.
Second, a function offers a Python implementation of the tool, including comments that explain
its parameters and return values. Finally, an example demonstrates the tool’s usage, comprising a
problem, a piece of solution code where the tool is invoked, and the expected answer. The model
prioritizes examples from the reference text when available, otherwise generating an appropriate
example by itself. The LLM is asked to generate at most m tools for each section. To ensure proper
formatting, the prompt includes a human-written tool example from a different domain.

Tool Verification and Refinement Each tool is verified through execution testing and output
verification using the model-generated demonstration example. The solution code should run without
errors, and the output should match the expected answer. Failed tools trigger a refinement step, where
the failure information is provided to the LLM to refine the tool. Finally, the valid tools are organized
hierarchically into a toolbox.

2.2 THE TOOL UTILIZATION MODULE

Hierarchical Tool Selection During inference, REFTOOL performs hierarchical retrieval to select
tools for question q through two phases:

• Category Selection: Given the toolbox categories C, the model is instructed to select at most nc

relevant categories c ⊂ C for the question q.
• Tool Selection within Category: For each selected category ci, the model is given access to all

tools from the toolbox T associated with that category, including their descriptions, functions, and
demonstration examples. It is then prompted to select up to nt relevant tools t, or none if no tools
are deemed applicable.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Statistics of the reference materials and created tools. “Avg. Lines” indicates the average
lines of tool functions.

Domain Book # Categories # Sections # Tools Avg. Lines

Causality Introduction to Causal Inference (Neal, 2020) 11 55 84 24
Physics University Physics (Ling et al., 2016) 44 284 515 16
Chemistry Atkins’ Physical Chemistry (Atkins et al., 2023) 19 90 158 17

Solution Generation The selected tools are then integrated into the reasoning process. We incorpo-
rate the tools with two reasoning paradigms: single-turn Program-of-Thoughts (PoT) reasoning (Chen
et al., 2023a) and multi-turn ReAct-style agent reasoning (Yao et al., 2022). For both paradigms, the
model receives selected tools in the initial prompt and is instructed to invoke them when appropri-
ate. When no suitable tools are identified, REFTOOL defaults to standard PoT or ReAct reasoning,
ensuring graceful degradation for questions outside the reference domain.

3 EXPERIMENTS

We conduct experiments on three knowledge-intensive scientific domains: causality, physics, and
chemistry. This section introduces the experimental setup, presents the performance of REFTOOL,
and validates its generalizability to other datasets and non-scientific domains.

3.1 EXPERIMENTAL SETUP

Datasets We employ the following evaluation benchmarks: (1) Causality: QRData-causal (Liu
et al., 2024a), where each question is accompanied by one or multiple datasheets. Models are asked
to analyze the datasheets and answer causal questions. (2) Physics: TheoremQA-physics (Chen et al.,
2023b), covering broad topics of university-level physics. (3) Chemistry: SciBench-chemistry (Wang
et al., 2024a), focusing on three sub-datasets (chemmc, quan, and matter) related to physical and
quantum chemistry.2

We maintain consistent evaluation protocols (like answer extraction methods and tolerance rates) with
the original benchmarks (see Appendix A.1 for details) and report accuracy as our primary metric.

Reference Materials Analogous to humans preparing for an exam by reading relevant textbooks,
we select reference materials that have a similar domain of knowledge to the evaluation datasets.

For causality, we choose Introduction to Causal Inference (Neal, 2020), which provides a detailed
description of main causal inference topics like causal discovery and estimation. For physics, as
university physics is a broad domain, we choose the three-volume textbook University Physics (Ling
et al., 2016), which covers the core concepts of physics like mechanics, thermodynamics, and modern
physics. For chemistry, given that the benchmark is in physical chemistry, we choose a famous
physical chemistry textbook Atkins’ Physical Chemistry (Atkins et al., 2023).3 Table 1 (left) provides
detailed statistics. Note that none of the evaluation questions originate from these books, and none of
these books contain code directly.

Implementation Details We employ GPT-4o (Hurst et al., 2024) for tool creation, and evaluate
four prevalent LLMs for tool utilization: Llama-3.1-70B (Dubey et al., 2024), Gemini-1.5-Pro (Team
et al., 2024), GPT-4 (OpenAI, 2023), and GPT-4o.

During tool creation, we set m = 2 tools per section across all domains. This can be adjusted
based on each section’s length and information density. For tool utilization, we employ a default
configuration of selecting nc = 1 category and nt = 1 tool. As QRData and TheoremQA do not
have a validation set, we use the default setting for the causality and physics domains. For chemistry,
we perform grid search over nc ∈ [1, 2] and nt ∈ [1, 2] on the validation set of SciBench, and choose
nc = 1 and nt = 2. Additional details and prompt templates can be found in Appendices A.2 and F.

2We omit the other sub-dataset atkins because its question source overlaps with our reference material.
3Quantum chemistry is a subdomain of physical chemistry, and is also introduced in this textbook.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison in causality (QRData), physics (TheoremQA), and chemistry
(SciBench). Numbers are in percentages (%), with the best performance for each model in bold.

Method Accuracy
Llama-3.1-70B Gemini-1.5-Pro GPT-4 GPT-4o Average

Causality
LATM 33.5 32.3 27.0 20.9 28.4
Creator 14.9 29.7 39.4 39.8 31.0
TroVE 23.8 33.5 34.2 36.4 32.0
PoT 33.1 41.3 34.2 39.8 37.1
PoT + RAG 29.7 36.4 37.5 42.0 36.4
PoT + REFTOOL 36.8 43.9 38.7 46.8 41.6

ReAct 30.1 47.6 50.9 46.5 43.8
ReAct + RAG 32.3 46.8 48.0 49.1 44.1
ReAct + REFTOOL 33.5 48.3 51.3 52.0 46.3

Physics
LATM 38.9 33.3 39.8 30.6 35.7
Creator 40.4 57.0 35.1 40.4 43.2
TroVE 33.3 58.8 35.1 48.2 43.9
Physics Reasoner 48.2 50.9 42.1 33.3 43.6
PoT 48.2 57.9 45.6 57.0 52.2
PoT + RAG 44.7 57.0 44.7 57.9 51.1
PoT + REFTOOL 53.5 58.8 49.1 57.9 54.8

Chemistry
LATM 31.4 25.1 45.0 35.7 34.3
Creator 40.1 60.0 46.9 43.3 47.6
TroVE 38.6 65.6 39.2 52.7 49.0
StructChem 37.9 50.2 29.7 40.5 39.6
ChemAgent 48.2 65.5 52.5 58.9 56.3
PoT 46.9 62.3 51.8 58.9 55.0
PoT + RAG 48.1 63.7 54.1 56.6 55.6
PoT + REFTOOL 49.5 66.4 53.4 61.3 57.7

Baseline Methods We compare against the following baselines: (1) General reasoning methods
including Program-of-Thoughts (PoT) for single-turn reasoning and ReAct for multi-turn reasoning;4
(2) Retrieval-augmented generation (RAG) methods using the same reference books employed for tool
creation; (3) General-purpose tool creation methods including LATM (Cai et al., 2023), Creator (Qian
et al., 2023), and TroVE (Wang et al., 2024b); (4) Domain-specific reasoning methods including
Physics Reasoner (Pang et al., 2025), StructChem (Ouyang et al., 2024), and ChemAgent (Tang et al.,
2025). Detailed descriptions of the baselines are in Appendix A.3.

3.2 RESULTS

Toolbox Construction Table 1 (right) demonstrates statistics of tools created. On average, 73%
of initially generated tools pass validation directly, with an additional 14% tools succeeding after
refinement. We assess tool quality through human evaluation in §4.3.

Main Results The performance comparison in Table 2 demonstrates REFTOOL’s superior perfor-
mance across all domains, achieving the highest average accuracy.5 For each of the three domains,
REFTOOL’s accuracy (aggregated across all four LLMs) is significantly higher than all baseline
methods at the significance level α = 0.05. Notably, REFTOOL surpasses all tool creation methods
by an average margin of 13.0%, highlighting the advantage of references in tool creation.

4While ReAct demonstrates effectiveness on QRData by allowing error correction through multi-turn
interactions (Liu et al., 2024a), our preliminary experiments (Appendix Table 7) show limited benefits for
physics and chemistry domains, likely due to the simpler code solutions without data analysis and fewer
execution errors. Consequently, we omit ReAct for these domains.

5Chemistry results are averaged over three sub-datasets, with sub-dataset performance in Appendix Table 8.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

While RAG incorporates the same reference materials, it fails to consistently enhance the performance.
This suggests that direct retrieval struggles to effectively extract and apply relevant knowledge, while
REFTOOL’s tool format and hierarchical organization enable better utilization of reference materials.

Among domain-specific methods, Physics Reasoner and StructChem perform inferior to PoT, with
their complex format requirements leading to suboptimal adaptation on some models. Although
ChemAgent approaches REFTOOL’s performance, it needs significantly higher computational costs,
as discussed in §4.2.

Performance on Reasoning Models We also conduct a small-scale experiment to evaluate if
REFTOOL works for reasoning models. We apply REFTOOL on o1-mini (Jaech et al., 2024), and
Appendix Table 9 shows that its average accuracy improves by 4.3% over PoT. This indicates that
REFTOOL is also compatible with reasoning models, supplementing their knowledge and skills.

Robustness of Tool Creation We validate whether REFTOOL remains effective when using alter-
native LLMs for tool creation. Appendix Table 10 shows that creating tools with Gemini-1.5-Pro and
Llama-3.1-70B-Instruct also achieves superior performance compared to baseline methods.

3.3 GENERALIZABILITY OF REFTOOL

Table 3: Performance of REFTOOL on extremely low-resource language translation (%).

BLEU / chrF++ Zhuang → Chinese Chinese → Zhuang AverageLlama-3.1-70B Qwen-2.5-72B Llama-3.1-70B Qwen-2.5-72B

Whole Grammar Book 32.6 / 35.2 43.7 / 42.6 28.0 / 60.8 34.9 / 64.2 34.8 / 50.7
Retrieval from Whole Book 33.6 / 35.3 45.3 / 43.1 26.0 / 54.2 39.2 / 66.5 36.0 / 49.8
Rule-by-Rule Retrieval 42.6 / 43.0 47.4 / 46.8 36.1 / 66.4 40.6 / 69.9 41.7 / 56.5
Rule-by-Rule Retrieval w. Code 36.4 / 45.1 56.9 / 55.7 35.3 / 64.8 47.0 / 74.3 43.9 / 60.0
REFTOOL 52.2 / 49.6 57.2 / 54.1 54.2 / 71.6 52.5 / 71.1 54.0 / 61.6

We validate the generalizability of REFTOOL by examining (1) whether tools created for one dataset
can be reused across other datasets in the same domain, and (2) whether the framework remains
effective in non-scientific domains and when handling unstructured reference materials.

Tool Reusability We conduct experiments on another physics dataset SciBench-fund (Wang et al.,
2024a) to validate the generalizability of tools created. Appendix Table 11 shows that on SciBench-
fund, REFTOOL outperforms all zero-shot baseline methods and matches 4-shot Physics Reasoner,
using the same tools as in the evaluation of TheoremQA. Since REFTOOL is dataset-agnostic, tools
developed for one domain can be readily applied to other datasets within that domain.

Applying REFTOOL to Extremely Low-Resource Language Translation Extremely low-
resource (XLR) language translation is a representative non-scientific knowledge-intensive task,
where LLMs, lacking prior knowledge of the XLR language, are tasked with translation using re-
sources such as dictionaries, parallel sentences, and grammar rules. Grammar rules are crucial for
guiding the translation (Tanzer et al., 2024; Team et al., 2024), and in this experiment, we explore
whether REFTOOL can help LLMs better select and apply these rules.

We experiment on Zhuang–Chinese translation using the ZHUANGRULES dataset (Zhang et al.,
2025)6, which provides 109 grammar rules. The rules are presented in an unstructured format,
making it difficult to identify the relevant ones. To address this, we ask the LLM to organize the
rules into a two-level hierarchy. Despite limited prior knowledge of Zhuang, the model leverages its
general linguistic knowledge to propose categories such as Numerals and Quantifiers and Word
Order and Sentence Structure.

We then apply REFTOOL to create tools for each grammar rule. Since the goal is to facilitate
rule understanding rather than execution, the tools are represented as pseudo Python code. During
verification, the LLM assesses whether the tool functions correctly apply to examples, rather than
real code execution.

6Zhuang is a language spoken by the Zhuang people of Southern China.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Ablation results (%). (sim) indicates selecting with text similarity.

Method Accuracy
Llama-3.1-70B Gemini-1.5-Pro GPT-4 GPT-4o Average

Causality
PoT + RAG 29.7 36.4 37.5 42.0 36.4
PoT + Hierarchical RAG 36.8 38.7 43.5 36.8 39.0
PoT + REFTOOL (sim) 30.5 36.1 46.1 39.4 38.0
PoT + REFTOOL 36.8 43.9 38.7 46.8 41.6

Physics
PoT + RAG 44.7 57.0 44.7 57.9 51.1
PoT + Hierarchical RAG 44.7 64.0 44.7 55.3 52.2
PoT + REFTOOL (sim) 45.6 62.3 43.0 56.1 51.8
PoT + REFTOOL 53.5 58.8 49.1 57.9 54.8

We compare with previous XLR translation methods, including prompting LLMs with the Whole
Grammar Book, Retrieval from Whole Book, Rule-by-Rule Retrieval (which examines each rule
individually), and Rule-by-Rule Retrieval w. Code (which converts rules into pseudo code). Consistent
with the settings of Zhang et al. (2025), we use GPT-4o to construct and organize the tools, and
evaluate performance on two open-source LLMs: Llama-3.1-70B and Qwen-2.5-72B (Yang et al.,
2024). More implementation details are in Appendix A.4.

Results in Table 3 showcase that REFTOOL outperforms all baselines on average, with an increase of
10.1% in BLEU and 1.6% in chrF++. By organizing rules hierarchically, creating tools to facilitate
understanding of the rules, and verifying and revising the tools for better quality, REFTOOL enhances
the translation performance. This highlights the broad applicability of REFTOOL to non-scientific
domains and its effectiveness in handling unstructured reference materials.

4 ANALYSIS

In this section, we further analyze the effectiveness of REFTOOL through: ablation study of key
components (§4.1), cost analysis (§4.2), human evaluation of tool quality (§4.3), and case study of
how REFTOOL helps LLMs to answer questions (§4.4).

4.1 ABLATION STUDY

We design two variants of REFTOOL to analyze its key components: code-form tool creation and
hierarchical selection. (1) PoT + Hierarchical RAG: Substitutes REFTOOL’s code-form tools with
raw text segments while preserving the hierarchical structure. This maintains the three-step reasoning
process of category selection, intra-category text retrieval, and solution generation. (2) PoT +
REFTOOL (sim): Retains the tool creation but replaces hierarchical selection with similarity-based
retrieval. Tool descriptions are encoded into embeddings, with the most similar tool selected for each
problem, mirroring standard RAG approaches but using tools instead of text.

Table 4 shows the ablation results. Due to computational constraints, we focus on causality and
physics domains with single-turn reasoning. By comparing PoT + REFTOOL with PoT + Hierarchical
RAG, as well as PoT + REFTOOL (sim) with PoT + RAG, we observe an average 1.9% accuracy gain
of tools over textual knowledge, confirming that the code form of tools enhances model understanding
and application of knowledge.

By comparing PoT + REFTOOL with PoT + REFTOOL (sim), as well as PoT + Hierarchical RAG
with PoT + RAG, we find that hierarchical selection outperforms similarity-based retrieval by 2.6%
on average, demonstrating its effectiveness in knowledge retrieval.

4.2 COST ANALYSIS

Table 5 shows that REFTOOL greatly saves cost compared with two representative tool-augmented
methods, and the comparison with a broader range of models is in Appendix B.6. Compared with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Cost analysis of representative tool-augmented methods (with GPT-4o as the base model).
“Human” indicates that the step is done by humans and the cost is unknown.

Domain Method Time (min.) Cost ($)
Toolbox Construction Inference Toolbox Construction Inference

Physics Physics Reasoner Human 75 Human 3.5
PoT + REFTOOL 5 2 6.9 1.5

Chemistry ChemAgent 1233 536 79.3 41.3
PoT + REFTOOL 3 6 3.5 1.4

Physics Reasoner which iteratively refines the reasoning process, REFTOOL reduces inference time by
97% and cost by 57%. The improvements are even more pronounced when compared to ChemAgent’s
divide-and-retry strategy: REFTOOL cuts both toolbox construction time and inference time by 99%.
The guidance of references enables REFTOOL to achieve great performance without repeatedly trying,
offering a scalable solution for complex reasoning tasks.

4.3 HUMAN EVALUATION OF TOOL QUALITY

Table 6: Tool quality assessment (%). Example correctness is evaluated only if the function is correct.

Domain Faithful Function Correct Example Correct Useful

Causality 95 95 100 90
Physics 90 90 100 90
Chemistry 90 90 89 95

We conduct human evaluation to assess the quality of created tools along four dimensions. (1)
Faithfulness: Whether the tool accurately reflects the source material. (2) Function Correctness:
Whether the tool function meets the tool description and is implemented correctly. (3) Example
Correctness: Whether the example solution uses the function properly and returns the right answer.
(4) Usefulness: The practical utility of the tool for solving relevant problems without being too narrow.
We randomly sample 20 tools for each domain from the toolbox, and ask a human expert who has
studied corresponding courses to annotate them.

As shown in Table 6, all aspects are satisfied by ≥ 89% tools, indicating that most tools are faithfully
derived from the references, correctly implemented, and useful in application. Chemistry tools show
slightly lower quality due to the domain’s complexity. When LLMs lack foundational knowledge, they
may misinterpret nuanced concepts, like mistaking the meaning of a coefficient. We further analyze
the alignment between LLM-selected tools and those chosen by domain experts in Appendix C.

4.4 CASE STUDY

Figure 3 demonstrates a case where GPT-4o correctly answers a question with REFTOOL. When
presented with the causal discovery problem, the model successfully navigates to the relevant category
Causal discovery from observational data and selects the appropriate causal_direction_fit tool,
generating the correct solution code. In contrast, without tool assistance, the model incorrectly uses
R-squared values to infer causal relationships, leading to a wrong prediction. The detailed version of
the case, along with physics and chemistry cases,is in Appendix D.

5 RELATED WORK

Automatic Tool Creation The automatic creation of tools for LLMs aims to overcome the limita-
tions of relying solely on pre-existing tools. Most works generate tools in code format, while some
generate skills or workflows in the format of abstract actions (Wong et al., 2024) or non-executable
text (Wang et al., 2024c). Existing methods can be broadly categorized into two paradigms: (1)
generating temporary, task-specific tools for individual queries (Qian et al., 2023), and (2) construct-
ing reusable toolsets based on training or testing data (Cai et al., 2023; Wang et al., 2024b). These

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Wrong solution when reasoning with PoT

(b) Correct solution when reasoning with PoT + RefTool

Input

Data Description: The data set in flow.csv offers continuous 

measurements of expression levels of multiple phosphorylated proteins 

and phospholipid components in human immune system cells ...

Question: Which cause-and-effect relationship is more likely?

A. pakts473 causes pmek B. pmek causes pakts473

C. No causal relationship exists

Please answer with A, B, or C.

Program of Thoughts (PoT)

Answer: AAnswer: A The magnitude of the R-squared 

value does not indicate causality!

Tool Causal Direction Fit

Fit a linear model in the causal direction and compute residuals to 

test for independence between the input variable and residuals.

PoT + RefTool

Selected Category: Causal Discovery from Observational Data

Selected Tool: Causal Direction Fit

Answer: CAnswer: C

Figure 3: Example case of GPT-4o with (right) and without (left) REFTOOL.

methods have demonstrated success in mathematical reasoning (Qian et al., 2023; Cai et al., 2023),
visual question answering (Yuan et al., 2024; Wang et al., 2024b), and agent-based tasks (Wang
et al., 2025; Zheng et al., 2025). Unlike previous works, which primarily rely on LLMs’ internal
knowledge, our method utilizes external references to create tools, enabling applications beyond the
models’ inherent knowledge scope.

Tool-Augmented Reasoning Tool-augmented reasoning enhances LLMs’ reasoning capabilities
by integrating external tools, particularly for tasks requiring specialized knowledge or complex
computation. Some studies manually curate a small set of high-quality tools (Gu et al., 2024; Lu
et al., 2025), while others (Qin et al., 2024; Liu et al., 2024b) utilize large-scale APIs from platforms
like RapidAPI or API-Bank (Li et al., 2023).

However, the large number of tools makes selecting the right one challenging. Prior work often relies
on embedding similarity (Qin et al., 2024; Yuan et al., 2024), which may fail to capture implicit
relationships when the required knowledge is not explicitly stated. In contrast, REFTOOL organizes
tools within a hierarchical structure that mirrors systematic knowledge organization, enabling effective
retrieval. Du et al. (2024) adopt a related strategy using RapidAPI’s categorization for tool selection,
whereas REFTOOL proves effective with both inherent structures in reference materials and structures
constructed by LLMs.

6 CONCLUSION

We present REFTOOL, a framework that enhances LLM reasoning through reference-guided tool
creation. Unlike prior approaches that rely solely on models’ internal knowledge, REFTOOL generates
code-form tools from references such as textbooks and unstructured snippets, validates them through
examples, and organizes them into a hierarchical toolbox for effective selection. Experiments across
causality, physics, and chemistry domains show consistent improvements over existing tool-creation
and domain-specific reasoning methods, while maintaining computational efficiency. Moreover,
REFTOOL generalizes beyond scientific domains, showing effectiveness in extremely low-resource
language translation. By grounding tool creation and selection in authoritative references, REFTOOL
enables LLMs to go beyond the limitations of their internal knowledge, yielding accurate and broadly
applicable tools. This points to a promising paradigm for extending the knowledge boundaries of
LLMs and equipping them to address emerging knowledge-intensive tasks in real time.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide the source code in the supplementary material, and will release it to the public.

REFERENCES

Peter William Atkins, Julio De Paula, and James Keeler. Atkins’ physical chemistry. Oxford university
press, 2023.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. In The Twelfth International Conference on Learning Representations, 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023a.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023b.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls. In International Conference on Machine Learning, pp. 11812–11829. PMLR,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
ArXiv preprint, abs/2407.21783, 2024.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie Tang, Jayanth Srinivasa, Hugo Latapie, and
Yu Su. Middleware for llms: Tools are instrumental for language agents in complex environments.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pp. 7646–7663, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. ArXiv preprint,
abs/2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3102–3116,
2023.

Samual J Ling, Jeff Sanny, William Moebs, Gerald Friedman, Stphen D Druger, Alice Kolakowska,
David Anderson, Daniel Bowman, Dedra Demaree, Edw Ginsberg, et al. University Physics.
OpenStax, 2016.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. In Findings of the Association for Computational Linguistics ACL 2024, pp. 9215–9235,
2024a.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
Toolnet: Connecting large language models with massive tools via tool graph. arXiv preprint
arXiv:2403.00839, 2024b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36:43447–43478, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271, 2025.

Brady Neal. Introduction to causal inference, 2020.

OpenAI. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023.

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Yejin Choi, Jiawei Han, and Lianhui Qin.
Structured chemistry reasoning with large language models. In International Conference on
Machine Learning, pp. 38937–38952. PMLR, 2024.

Xinyu Pang, Ruixin Hong, Zhanke Zhou, Fangrui Lv, Xinwei Yang, Zhilong Liang, Bo Han, and
Changshui Zhang. Physics reasoner: Knowledge-augmented reasoning for solving physics prob-
lems with large language models. In Proceedings of the 31st International Conference on Compu-
tational Linguistics, pp. 11274–11289, 2025.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool creation for
disentangling abstract and concrete reasoning of large language models. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In The Twelfth International Conference on Learning Representations, 2024.

Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou,
Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. Chemagent: Self-updating library in large language
models improves chemical reasoning. arXiv preprint arXiv:2501.06590, 2025.

Garrett Tanzer, Mirac Suzgun, Eline Visser, Dan Jurafsky, and Luke Melas-Kyriazi. A benchmark
for learning to translate a new language from one grammar book. In The Twelfth International
Conference on Learning Representations, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. ArXiv preprint, abs/2403.05530, 2024.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models. In Forty-first International Conference on
Machine Learning, 2024a.

Zhiruo Wang, Graham Neubig, and Daniel Fried. Trove: Inducing verifiable and efficient toolboxes for
solving programmatic tasks. In International Conference on Machine Learning, pp. 51177–51191.
PMLR, 2024b.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024c.

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing programmatic skills
for agentic tasks. arXiv preprint arXiv:2504.06821, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary Siegel, Jiahai Feng, Noa Korneev, Joshua B
Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural language
guidance. In The Twelfth International Conference on Learning Representations, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, Hao Peng, and Heng Ji. Craft: Customizing
llms by creating and retrieving from specialized toolsets. In 12th International Conference on
Learning Representations, ICLR 2024, 2024.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evaluat-
ing and improving tool-augmented computation-intensive math reasoning. Advances in Neural
Information Processing Systems, 36:23570–23589, 2023.

Chen Zhang, Jiuheng Lin, Xiao Liu, Zekai Zhang, and Yansong Feng. Read it in two steps: Translating
extremely low-resource languages with code-augmented grammar books. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3977–3997,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.
doi: 10.18653/v1/2025.acl-long.202. URL https://aclanthology.org/2025.acl-long.202/.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

A IMPLEMENTATION DETAILS

A.1 EVALUATION PROTOCOL

We adopt the original benchmarks’ evaluation code for consistency. The tolerant rate of numerical
questions is 3% for QRData, 4% for TheoremQA, and 5% for SciBench.

A.2 THE REFTOOL FRAMEWORK

By default, each tool’s demonstration example is included during solution generation. For the
causality domain, we omit the example because QRData questions involve data analysis and differ
significantly in format from the examples.

The model versions are Llama-3.1-70B-Instruct, gemini-1.5-pro-002, gpt-4-1106-preview
and gpt-4o-2024-11-20. The temperature of all models is set to 0. The maximum output tokens are
set to 2048 for initial tool generation, refinement, and solution generation, and 512 for hierarchical
tool selection. Experiments are conducted on 8 NVIDIA A800 GPUs.

A.3 BASELINE METHODS

• General reasoning methods: We implement Program-of-Thoughts (PoT) for single-turn reasoning
and ReAct for multi-turn reasoning. We also experiment with direct reasoning and Chain-of-
Thought (Wei et al., 2022) on GPT-4 in Appendix B.1, but they are excluded from main comparisons
due to inferior performance.

• Retrieval-augmented generation (RAG) methods: To investigate if LLMs can directly learn
from reference materials, we enhance both PoT and ReAct with RAG, using the same reference
books employed for tool creation. The books are segmented into subsections, and the segment with
the highest similarity to the question embedding is retrieved. Reference documents are segmented
by subsections. Subsections exceeding 1,000 tokens are further divided into 1,000-token chunks.
These segments are then processed using the text-embedding-3-large embedding model to
generate text embeddings. During inference, we compute the embedding for each question and
select the text with the highest similarity score to include in the model’s prompt.

• General-purpose tool creation methods: (1) LATM (Cai et al., 2023), which crafts reusable tools
for each task based on a few demonstrations; (2) Creator (Qian et al., 2023), which dynamically
creates tools for each question; and (3) TroVE (Wang et al., 2024b), which uses and refines a
toolbox iteratively during test time. Since LATM requires 6 instances for training and validation, we

12

https://aclanthology.org/2025.acl-long.202/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

randomly sample these from the test set and evaluate on the remaining data, and all other baselines
are evaluated in a zero-shot setting. For Creator, we provide a tool example from a different domain
(math) in the tool creation prompt.

• Domain-specific reasoning methods: (1) Physics Reasoner (Pang et al., 2025), which man-
ually constructs a formula set and instructs LLMs to retrieve formulas during reasoning; (2)
StructChem (Ouyang et al., 2024), which instructs LLMs to generate formulas before reasoning;
and (3) ChemAgent (Tang et al., 2025), which builds a library of memories by extensive trial-
and-error on validation data. We use GPT-4o for library construction to align with REFTOOL’s
setting. We do not compare with web search methods as answers may be searched directly from
the Internet.

A.4 THE XLR LANGUAGE TRANSLATION EXPERIMENT

When organizing the rule structure, we allow the LLM to place one rule into multiple categories
if necessary. This is because some rules cover different aspects simultaneously. For example, the
rule In Zhuang, the word “dwg” is a copular verb. In simple sentences expressing
affirmative judgment, “dwg” is usually omitted. However, when expressing negation,
“dwg” cannot be omitted, and the negative word “mbouj” must be placed before the
copular verb “dwg.” (translated from Chinese) is placed under both categories Word Order and
Sentence Structure and Negation. To ensure that the rules are fully unstructured in advance, we
shuffle the rules before asking the LLM to organize them.

Because the rules are already acompanied with parallel examples, we only ask the LLM to create
tool function in initial tool generation, and use the parallel examples in tool verification. Since all
rules are collected by human experts, the tool verification is only to select tools that need further
refinement, and we do not filter out any tools after refinement.

In hierarchical selection, we ask the LLM to select at most nc = 4 categories and nt = 2 tools under
each category. On average, 3.5 rules are selected for Chinese → Zhuang translation and 3.4 rules for
Zhuang → Chinese translation, comparable to the rule-by-rule retrieval methods.

During translation, we provide the word-to-word dictionary of the source sentence to LLMs in all
methods. And each rule is accompanied with 2 parallel examples.

B ADDITIONAL RESULTS

B.1 PERFORMANCE OF MORE BASELINE METHODS

Table 7: Performance of more baseline methods on GPT-4. Numbers are in percentages (%).

Method Accuracy
Causality Physics Chemistry

Direct Reasoning 33.1 14.0 32.8
CoT 41.3 10.5 35.4
PoT 34.2 45.6 51.8
ReAct 50.9 41.2 54.6

Previous works also compare with pure-text baselines like direct reasoning and Chain-of-Thought
(CoT) (Wei et al., 2022), but as our preliminary experiment in Table 7 shows that these methods are
much inferior to PoT on GPT-4, we do not add them into the baselines in the main paper. While CoT
achieves high performance on the causality domain, this results from educated guessing on multiple-
choice questions, with none of the numerical questions being answered correctly. This deviates
from QRData’s original goal of conducting data-based quantitative reasoning. Direct reasoning
outperforms CoT in physics because, despite the instruction to answer directly, the model still
generates intermediate reasoning steps for most questions.

As the code of solving physics and chemistry problems is simpler and successful executes in most
cases, multi-turn reasoning is not that necessary in such scenarios, therefore we do not implement the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

multi-turn settings ReAct and React+REFTOOL. Table 7 also shows that ReAct introduces limited
improvement or even negative influence on these domains.

B.2 SUB-DATASET PERFORMANCE OF SCIBENCH-CHEMISTRY

Table 8: Performance of sub-datasets of SciBench-chemistry. Numbers are in percentages (%).

Method Accuracy
Chemmc Matter Quan Average

Llama-3.1-70B
LATM 40.6 23.4 30.3 31.4
Creator 50.0 34.0 36.4 40.1
TroVE 50.0 44.7 21.2 38.6
StructChem 50.0 21.3 42.4 37.9
ChemAgent 60.5 44.7 39.4 48.2
PoT 65.8 44.7 30.3 46.9
PoT + RAG 63.2 44.7 36.4 48.1
PoT + REFTOOL 63.2 48.9 36.4 49.5

Gemini-1.5-Pro
LATM 28.1 17.0 30.3 25.1
Creator 73.7 63.8 42.4 60.0
TroVE 81.6 63.8 51.5 65.6
StructChem 57.9 38.3 54.5 50.2
ChemAgent 78.9 66.0 51.5 65.5
PoT 78.9 59.6 48.5 62.3
PoT + RAG 78.9 63.8 48.5 63.7
PoT + REFTOOL 81.6 66.0 51.5 66.4

GPT-4
LATM 53.1 42.6 39.4 45.0
Creator 60.5 46.8 33.3 46.9
TroVE 55.3 31.9 30.3 39.2
StructChem 36.8 19.1 33.3 29.7
ChemAgent 68.4 46.8 42.4 52.5
PoT 68.4 44.7 42.4 51.8
PoT + RAG 65.8 51.1 45.5 54.1
PoT + REFTOOL 71.1 46.8 42.4 53.4

GPT-4o
LATM 43.8 36.2 27.3 35.7
Creator 55.3 38.3 36.4 43.3
TroVE 71.1 44.7 42.4 52.7
StructChem 55.3 29.8 36.4 40.5
ChemAgent 78.9 55.3 42.4 58.9
PoT 78.9 55.3 42.4 58.9
PoT + RAG 76.3 51.1 42.4 56.6
PoT + REFTOOL 76.3 53.2 54.5 61.3

Table 8 shows the performance of sub-datasets of SciBench-chemistry. While performance varies
due to each sub-dataset’s small scale, REFTOOL demonstrates effectiveness in most cases.

B.3 PERFORMANCE ON REASONING MODELS

Table 9: Performance of o1-mini. Numbers are in percentages (%), with the best performance for
each model shown in bold.

Method Accuracy
Causality Physics Chemistry

PoT 44.2 56.1 60.5
PoT + REFTOOL 50.2 57.9 65.6

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 9 shows REFTOOL’s performance on o1-mini (with the specific version o1-mini-2024-09-12),
where it improves average accuracy by 4.3% over PoT. This indicates REFTOOL’s compatibility with
reasoning models, effectively supplementing their knowledge and capabilities.

B.4 PERFORMANCE OF USING DIFFERENT MODELS AS THE TOOL CREATION MODEL

Table 10: Performance of REFTOOL using Gemini-1.5-Pro and Llama-3.1-70B as the tool creation
model. Numbers are in percentages (%), with the best performance for each model shown in bold.

Method Accuracy
Llama-3.1-70B Gemini-1.5-Pro GPT-4 GPT-4o Average

Physics
Physics Reasoner 48.2 50.9 42.1 33.3 43.4
Creator 40.4 57.0 35.1 40.4 43.2
PoT 48.2 57.9 45.6 57.0 52.2
PoT + RAG 44.7 57.0 44.7 57.9 51.1
PoT + REFTOOL (GPT-4O) 53.5 58.8 49.1 57.9 54.8
PoT + REFTOOL (GEMINI) 48.2 58.8 47.4 58.8 53.3
PoT + REFTOOL (LLAMA) 49.1 60.5 50.0 57.0 54.2

Chemistry
Creator 40.1 60.0 46.9 43.3 47.6
StructChem 37.9 50.2 29.7 40.5 39.6
ChemAgent 48.2 65.5 52.5 58.9 56.3
PoT 46.9 62.3 51.8 58.9 55.0
PoT + RAG 48.1 63.7 53.7 56.6 55.5
PoT + REFTOOL (GPT-4O) 49.5 66.4 53.4 61.3 57.7
PoT + REFTOOL (GEMINI) 48.3 64.9 52.5 61.6 56.8
PoT + REFTOOL (LLAMA) 49.5 62.4 53.2 57.3 55.6

To assess the robustness of REFTOOL’s tool creation module, we experiment with Gemini-1.5-Pro
and Llama-3.1-70B-Instruct as alternative tool creation LLMs. As Table 10 shows, using these LLMs
for tool creation also achieves superior performance compared to baseline methods. This demonstrate
REFTOOL’s robustness to the choice of base model and its compatibility with open-source models,
which is particularly important when working with sensitive or proprietary reference materials.

Compared to GPT-4o-created tools, a relatively lower ratio of Gemini-1.5-Pro and Llama-3.1-70B-
Instruct created tools passes the validation. For example, in physics, GPT-4o achieves 82% direct
validation success with 8% succeeding after refinement, while Gemini-1.5-Pro achieves 54% direct
success with 24% succeeding after refinement. Although refinement helps recover about one-quarter
of tools, approximately 20% still get filtered out, potentially leading to incomplete knowledge
coverage and slightly lower overall performance compared to GPT-4o-created tools.

B.5 PERFORMANCE ON ANOTHER PHYSICS DATASET: SCIBENCH-FUND

Table 11: Performance on another physics dataset: Scibench-fund. Numbers are in percentages (%),
with the best performance for each model shown in bold.

Method Accuracy
Llama-3.1-70B Gemini-1.5-Pro GPT-4 GPT-4o Average

Physics Reasoner 56.3 59.2 63.4 36.6 53.9
Creator 56.3 70.4 53.5 57.7 59.5
PoT 53.5 69.0 59.2 73.2 63.7
PoT + RAG 54.9 73.2 59.2 73.2 65.1
PoT + REFTOOL 57.7 73.2 64.8 74.6 67.6
Physics Reasoner (4-shot) 62.0 73.2 63.4 71.8 67.6

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We evaluated REFTOOL on another physics dataset SciBench-fund (Wang et al., 2024a) with 71
questions, to test tool generalizability.7 Table 11 shows that REFTOOL outperforms all zero-shot
baselines and matches 4-shot Physics Reasoner’s performance using the same tools in the evaluation
of TheoremQA. This demonstrates REFTOOL’s dataset-agnostic nature, where domain-specific tools
can be applied across different datasets.

B.6 COST ANALYSIS

Table 12: Cost analysis of tool-augmented and domain-specific methods (with GPT-4o as the base
model). “Human” indicates that the step is done by humans and the cost is unknown. As Creator and
Trove create tools during inference, they do not have a seperate toolbox construction cost.

Domain Method Time (min.) Cost ($)
Toolbox Construction Inference Toolbox Construction Inference

Physics

LATM 1 4 0.1 1.2
Creator - 59 - 3.3
TroVE - 22 - 1.6
Physics Reasoner Human 75 Human 3.5
PoT + REFTOOL 5 2 6.9 1.5

Chemistry

LATM 1 4 0.1 1.1
Creator - 49 - 2.6
TroVE - 52 - 7.5
StructChem - 142 - 8.7
ChemAgent 1233 536 79.3 41.3
PoT + REFTOOL 3 6 3.5 1.4

Table 12 shows that REFTOOL is highly efficient during inference, compared with all the tool creation
and domain-specific reasoning baseline methods. Only LATM costs less than REFTOOL, but its
performance is much inferior to REFTOOL. Even when including tool creation costs, REFTOOL
remains more efficient than most tool-augmented methods. Furthermore, because the tools are
reusable, the creation cost is amortized and remains fixed regardless of the number of inference
instances.

C HUMAN EVALUATION: CONSISTENCY OF TOOL SELECTION WITH HUMANS

Table 13: Consistency of tool selection with humans (%). Category selection consistency is calculated
as the fraction of questions where human and model select the same category. Tool selection
consistency is the fraction where their tools overlap, given they both choose tools from the same
category.

Domain Consistency Llama-3.1-70B Gemini-1.5-Pro GPT-4 GPT-4o

Causality Category Selection 100 95 100 100
Tool Selection within Category 94 100 91 94

Physics Category Selection 80 80 75 76
Tool Selection within Category 53 56 44 69

Chemistry Category Selection 55 65 72 75
Tool Selection within Category 60 67 40 90

We compare human and LLM tool selection by having experts simulate the hierarchical selection
process. For each domain, we randomly sample 20 questions where models consistently use tools.

In the tool selection process, given a question, annotators are first asked to select at most one category
from the given book, and none if no category is relevant to the question. If they select a category,

7We excluded two other SciBench-physics sub-datasets as they require advanced thermodynamics and particle
dynamics knowledge beyond our reference textbook’s scope.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Reference 
Material

Chapter.11 Causal Discovery from 

Observational Data

11.2 Semi-Parametric Causal Discovery

Input

Data Description: The data set in flow.csv offers continuous 

measurements of expression levels of multiple phosphorylated 

proteins and phospholipid components in human immune 

system cells ...

Question: Which cause-and-effect relationship is more likely?

A. pakts473 causes pmek B. pmek causes pakts473

C. No causal relationship exists

Please answer with A, B, or C.

Program of Thoughts (PoT)

Solution:

Answer: A

PoT + RefTool

Selected Category: Causal Discovery from Observational 

Data

Selected Tool: Causal Direction Fit

Solution:

Answer: C

Tool Causal Direction Fit

Description: Fit a linear model in the causal direction and compute 

residuals to test for independence between the input variable and residuals.

Function: 

The magnitude of the R-squared 

value does not indicate causality!

(a) Wrong solution when reasoning with PoT (b) Correct solution when reasoning with PoT + RefTool

Figure 4: Example case of GPT-4o on a causal problem with (right) and without (left) REFTOOL.
This is the detailed version of Figure 3

they are then asked to select one tool within the category if it is the most useful, select two tools
only if they are equally useful, and select none if none of the tools are useful. For each domain, we
randomly sample 20 questions where most models (at least 3 out of 4) choose to use tools. All human
annotators are fairly paid.

Consistency Metrics For category selection, the consistency is computed as:

Consistencycategory =
|{human and model select the same category}|
|{both human and model select a category}|

.

And for tool selection, the consistency is computed as

Consistencytool =
|{overlap exists between tools selected by human and model}|
|{both human and model select tools within the same category}|

.

Table 13 shows the consistency between LLMs and human experts. Agreement is higher in category
selection than in tool selection, supporting our hierarchical selection step which narrows down the
tool search space with a high consensus. Across domains, causality shows the strongest consistency
in both category and tool selection, owing to more direct questions with keywords like average
treatment effect that clearly indicate the relevant knowledge. In contrast, physics and chemistry
questions often involve indirect formulations that make it harder for models to identify the required
knowledge.

Gemini-1.5-Pro and GPT-4o demonstrate better alignment with human experts, mirroring their
superior PoT performance which reflects stronger internal domain knowledge. While Llama-3.1-70B
and GPT-4 show weaker consistency with humans in physics and chemistry tool selection, their
chosen tools are still valuable as relevant knowledge is recalled. In cases where these models select
the same category as humans but different tools, we observe a 17% accuracy improvement from tool
usage compared to the PoT baseline. Appendix D provides a concrete example.

D CASE STUDY

Figure 4 provides the detailed causality case discussed in §4.4, while Figures 5 and 6 show physics
and chemistry cases. These cases illustrate how REFTOOL helps LLMs solve problems when standard

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Reference 
Material

Chapter.22 Electric Charges and Fields

5.1 Electric Charge
Input

Question: Point charges q1=50μC and  q2=−25μC are 

placed 1.0 m apart. What is the force on a third charge 

q3=20μC placed midway between q1 and q2?

Program of Thoughts (PoT)

Solution:

Answer: 18.0

PoT + RefTool

Selected Category: Electric Charges and Fields

Selected Tool: Electrostatic Force

Solution:

Answer: 53.9

Tool Electrostatic Force

Description: Calculate the electrostatic force between two charges using 

Coulomb's law.

Function: 

(a) Wrong solution when reasoning with PoT

(b) Correct solution when reasoning with PoT + RefTool

Did not consider the direction of 

forces!

Figure 5: Example case of Gemini-1.5-Pro on a physical problem with (right) and without (left)
REFTOOL.

Reference 
Material

Chapter.8 Atomic structure and spectra

8.1 Hydrogenic atoms

Input

Question: The positron has charge +e and mass equal to the electron mass. 

Calculate in electronvolts the ground-state energy of positronium-an "atom" 

that consists of a positron and an electron.

Program of Thoughts (PoT)

Solution:

Answer: -42.7

PoT + RefTool

Selected Category: Atomic structure and spectra

Selected Tool: Calculate Ionization Energy

Solution:

Answer: -6.8

Tool Calculate Ionization Energy

Description: Calculate the ionization energy of a hydrogenic atom using 

the Rydberg constant and Planck's constant.

Function: 

(a) Wrong solution when reasoning with PoT (b) Correct solution when reasoning with PoT + RefTool

Wrong equation!

Expert Solution

Answer: -6.8

Figure 6: Example case of Llama-3.1-70b on a chemical problem with (right) and without (left)
REFTOOL.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

PoT fails. Notably, in Figure 6, while the selected tool doesn’t directly solve the question, it provides
relevant knowledge for the LLM to solve the question in a roundabout way (through the ionization
energy of hydrogen), which is different from the expert solution but also leads to the correct answer.

E THE USE OF LLMS

We use LLMs in polishing the writing, but LLMs do not play a significant role like research ideation
or writing the content directly.

F PROMPTS

Figure 7 - Figure 11 demonstrate the prompts of REFTOOL.

Prompts of the general-reasoning baselines as shown in Figure 12 and Figure 13 are designed with
reference to the QRData and SciBench papers. Prompts for ReAct are the same as the QRData paper.

Prompt for Category Generation

Here are rules related to {task}. Your task is to identify top-level categories for organizing
these rules.
Read through all the rules and determine the major branches of {task} they represent. Ideally
there should be about 10-15 top-level categories. One rule can be in multiple categories if
necessary (at most two).
Output only the names of these categories as a JSON list.
{segments}

Prompt for Assigning Reference Segments to Categories

Here is a rule related to {task} and the category names that have been identified:
Categories:
{categories}
Rule: {rule}
Your task is to classify this rule into at most two categories and create a descriptive name for
this rule under each category.
Output in JSON format where:
- The keys are the category names that this rule belongs to
- The value is the name of the rule under this category (a concise, descriptive name)
Example output:
{{
"Category 1": "Descriptive rule name for Category 1",
"Category 2": "Descriptive rule name for Category 2"
}}
Note: The rule should be classified into 1-2 categories maximum.

Figure 7: Prompt template for knowledge organization.

Prompt for Initial Tool Generation

Please extract the skills from the following text. The text is a section from the chapter
{chapter} of the book {book}.
Each skill is a python function with comments of parameters and returns, accompanied by a
description and a demonstration example of using the skill.
Please limit the number of skills to 2, and organize the skills in a list of json objects.
Please implement the function, and *do not* leave it as a placeholder. Note the indent in

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

code is 4 spaces. All packages used should be imported inside the function. The function
should be self-contained.
If the text contains examples, you are encouraged to use the examples in the text, otherwise
please design examples by yourself. The answer to the example question is encouraged to be
numerical.
NOTE THAT THE SKILL PYTHON CODE SHOULD NOT BE SPECIFIC TO/ONLY
APPLIED TO THE CHOSEN EXAMPLE! PLEASE GENERATE GENERAL SKILL
CODE.
The output should be in *complete* json structure, starting with ’[’ and ending with ’]’.

Example output:
[{
"description": "Compute the expected return using the Capital Asset Pricing Model (CAPM)
formula.",
"function": """def expected_return(rf, beta, rm):
\"\"\"
Parameters:
- rf (float): The risk-free rate.
- beta (float): The beta of the portfolio.
- rm (float): The return on the market.
Returns:
- float: The expected return.
\"\"\"
return rf + beta * (rm - rf)""",
"example": {
"question": "Suppose a stock has the following information. It is listed on the London stock
exchange and operates throughout Europe. The yield on a UK 10 year treasury is 2.8%. The
stock in question will earn 8.6% as per historical data. The Beta for the stock is 1.4, i.e., it
is 140% volatile to the changes in the general stock market. What is the expected rate of
return?",
"solution": """def solution():
# Given values.
rf = 0.028 # The yield on a UK 10 year treasury
beta = 1.4 # The stock is 140% volatile to the changes in the general stock market
rm = 0.086 # The stock in question will earn 8.6% as per historical data
# Calculate the expected return .
result = expected_return(rf, beta, rm)
# Return the result.
return result""",
"answer": 0.109
}}]

Text:
{text}

Figure 8: Prompt template for initial tool generation.

Prompt for Tool Refinement

Please revise the skill according to the feedback.
The skill is a python function with comments of parameters and returns, accompanied by a
description and a demonstration example of using the skill. Please try to keep the original
intent of the skill, and modify the description/function/example to address the feedback.
Note the indent in code is 4 spaces. All packages used should be imported inside the function.
The function should be self-contained. The answer to the example question is encouraged to

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

be numerical.
NOTE THAT THE SKILL PYTHON CODE SHOULD NOT BE SPECIFIC TO/ONLY
APPLIED TO THE CHOSEN EXAMPLE! PLEASE GENERATE GENERAL SKILL
CODE.
The output should be in *complete* json structure as the original skill, starting with ’{’ and
ending with ’}’.

Original Skill:
{skill}

Feedback:
{feedback}

Figure 9: Prompt template for tool refinement.

Prompt for Category Selection

You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question using the provided data.
The question can be found below. Given the table of content of the book {book}, please
select the chapters that you find useful in solving the question.
Please provide an explanation supporting your choice. At the last line of your response,
format the number of the chapters with a list, like ’[0]’. Limit the number of chapters to at
most 1. Output ’[]’ if none of the chapters are useful. The last line should start with ’[’ and
end with ’]’.

Question:
{question}

Table of Content:
{table_of_content}

Response:

Prompt for Tool Selection within Category

You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question.
The question and the list of skills can be found below. Please select the skills that you find
useful in solving the question
Please provide an explanation supporting your choice. At the last line of your response,
format the number of the skills with a list, like ’[0]’. Limit the number of skills to at most
2. Output ’[]’ if none of the skills are useful. The last line should start with ’[’ and end with ’]’.

Question:
{question}

List of skills:
{tools}

Response:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10: Prompt template for tool selection.

Prompt for Solution Generation

You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question below. Please write python code to answer the question. Please encase
the Python code within triple backticks. You can use any python library you imported. The
returned value of the code is supposed to be the answer. The format of the code should be
“‘python
def solution():
# import libraries if needed

# write code to get the answer

# return answer
“‘

Question:
{question}

Please note that we provide you several functions for the above question. If the
functions are related to the question, you are encouraged to use the functions to solve the
question. The functions will also be provided in execution, so just call them. *DO NOT*
define the functions again or import the functions.

Functions:
{tools}

Response:

Tool Template

Function Description:
{description}

Function:
{function}

Example Question:
{example_question}

Example Solution:
{example_solution}

Figure 11: Prompt template for solution generation. For evaluation of QRData, the data description
and ten lines of the shuffled data are also added to the prompt along with the question.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for PoT

You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question below. Please write python code to answer the question. Please encase
the Python code within triple backticks. You can use any python library you imported. The
returned value of the code is supposed to be the answer. The format of the code should be
“‘python
def solution():
# import libraries if needed

# write code to get the answer

# return answer
“‘

Question:
{question}

Response:

Figure 12: Prompt template for PoT. For evaluation of QRData, the data description and ten lines of
the shuffled data are also added to the prompt along with the question.

Prompt for CoT

You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question below. Please provide a clear and step-by-step solution to answer the
question. Do not write any code in your answer. Conclude the answer by stating ”The answer
is therefore \boxed{[ANSWER]}.”

Question:
{question}

Response:

Prompt for Direct Reasoning

You are a data analyst and good at quantitative reasoning. You are required to respond
to a quantitative question below. Directly answer by stating ”The answer is therefore
\boxed{[ANSWER]}.”

Question:
{question}

Response:

Figure 13: Prompt templates for CoT and direct reasoning. For evaluation of QRData, the content of
the data (shuffled and truncated to the first 3500 tokens) is also added to the prompt along with the
question. For evaluation of SciBench, the prompt also states “The question will specify the unit of
measurement, which should not be included in the answer. Express the final answer as a decimal
number with three digits after the decimal point.”

23


	Introduction
	The RefTool Framework
	The Tool Creation Module
	The Tool Utilization Module

	Experiments
	Experimental Setup
	Results
	Generalizability of RefTool

	Analysis
	Ablation Study
	Cost Analysis
	Human Evaluation of Tool Quality
	Case Study

	Related Work
	Conclusion
	Implementation Details
	Evaluation Protocol
	The RefTool Framework
	Baseline Methods
	The XLR Language Translation Experiment

	Additional Results
	Performance of More Baseline Methods
	Sub-dataset Performance of SciBench-chemistry
	Performance on Reasoning Models
	Performance of Using Different Models as the Tool Creation Model
	Performance on Another Physics Dataset: SciBench-fund
	Cost Analysis

	Human Evaluation: Consistency of Tool Selection with Humans
	Case Study
	The Use of LLMs
	Prompts

