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ABSTRACT

In the image domain, excellent representations can be learned by inducing invari-
ance to content-preserving transformations, such as image distortions. In this pa-
per, we show that, for videos, the answer is more complex, and that better results
can be obtained by accounting for the interplay between invariance, distinctive-
ness, multiple modalities, and time. We introduce Generalized Data Transforma-
tions (GDTs) as a way to capture this interplay. GDTs reduce most previous self-
supervised approaches to a choice of data transformations, even when this was
not the case in the original formulations. They also allow to choose whether the
representation should be invariant or distinctive w.r.t. each effect and tell which
combinations are valid, thus allowing us to explore the space of combinations
systematically. We show in this manner that being invariant to certain transforma-
tions and distinctive to others is critical to learning effective video representations,
improving the state-of-the-art by a large margin, and even surpassing supervised
pretraining. We demonstrate results on a variety of downstream video and au-
dio classification and retrieval tasks, on datasets such as HMDB-51, UCF-101,
DCASE2014, ESC-50 and VGG-Sound. In particular, we achieve new state-of-
the-art accuracies of 72.8% on HMDB-51 and 95.2% on UCF-101.

1 INTRODUCTION

Recent works such as PIRL (Misra & van der Maatenl [2020), MoCo (He et al.l 2019) and Sim-
CLR (Tian et al.l 2019) have shown that it is possible to pre-train state-of-the-art image represen-
tations without the use of any manually-provided labels. Furthermore, many of these approaches
use variants of noise contrastive learning (Gutmann & Hyvarinenl 2010). Their idea is to learn a
representation that is invariant to transformations that leave the meaning of an image unchanged
(e.g. geometric distortion or cropping) and distinctive to changes that are likely to alter its meaning
(e.g. replacing an image with another chosen at random).

An analysis of such works shows that a dominant factor for performance is the choice of the transfor-
mations applied to the data. So far, authors have explored ad-hoc combinations of several transfor-
mations (e.g. random scale changes, crops, or contrast changes). Videos further allow to leverage the
time dimension and multiple modalities. For example, |Arandjelovic & Zisserman| (2017); |Owens
et al| (2016) learn representations by matching visual and audio streams, as a proxy for objects
that have a coherent appearance and sound. Their formulation is similar to noise contrastive ones,
but does not quite follow the pattern of expressing the loss in terms of data transformations. Oth-
ers (Chung & Zissermanl [2016; |Korbar et al., |2018;|Owens & Efros,[2018)) depart further from stan-
dard contrastive schemes by learning representations that can tell whether visual and audio streams
are in sync or not; the difference here is that the representation is encouraged to be distinctive rather
than invariant to a time shift.

Overall, it seems that finding an optimal noise contrastive formulation for videos will require com-
bining several transformations while accounting for time and multiple modalities, and understanding
how invariance and distinctiveness should relate to the transformations. However, the ad-hoc nature
of these choices in previous contributions make a systematic exploration of this space rather difficult.

In this paper, we propose a solution to this problem by introducing the Generalized Data Trans-
formations (GDT; fig. [I) framework. GDTs reduce most previous methods, contrastive or not, to
a noise contrastive formulation that is expressed in terms of data transformations only, making it
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Fig. 1: Schematic overview of our framework. A: Hierarchical sampling process of general-
ized transformations 7' = t,; o ... o t; for the multi-modal training study case. B: Subset of the
¢(T,T") contrast matrix which shows which pairs are repelling (0) and attracting (1) (see text for
details). C: With generalized data transformations (GDT), the network learns a meaningful em-
bedding via learning desirable invariances and distinctiveness to transformations (realigned here
for clarity) across modalities and time. The embedding is learned via noise contrastive estimation
against clips of other source videos. Illustrational videos taken from YouTube (Google, [2020).

simpler to systematically explore the space of possible combinations. This is true in particular for
multi-modal data, where separating different modalities can also be seen as a transformation of an
input video. The formalism also shows which combinations of different transformations are valid
and how to enumerate them. It also clarifies how invariance and distinctiveness to different ef-
fects can be incorporated in the formulation and when doing so leads to a valid learning objective.
These two aspects allows the search space of potentially optimal transformations to be significantly
constrained, making it amenable to grid-search or more sophisticated methods such as Bayesian
optimisation.

By using GDTs, we make several findings. First, we find that using our framework, most previous
pretext representation learning tasks can be formulated in a noise-contrastive manner, unifying pre-
viously distinct domains. Second, we show that just learning representations that are invariant to
more and more transformations is not optimal, at least when it comes to video data; instead, bal-
ancing invariance to certain factors with distinctiveness to others performs best. Third, we find that
by investigating what to be variant to can lead to large gains in downstream performances, for both
visual and audio tasks.

With this, we are able to set the new state of the art in audio-visual representation learning, with
both small and large video pretraining datasets on a variety of visual and audio downstream tasks.
In particular, we achieve 95.2% and 72.8% on the standardized UCF-101 and HMDB-51 action
recognition benchmarks.

2 RELATED WORK

Self-supervised learning from images and videos. A variety of pretext tasks have been proposed
to learn representations from unlabelled images. Some tasks leverage the spatial context in images
(Doersch et al., [2015; Noroozi & Favaro, [2016) to train CNNs, while others create pseudo clas-
sification labels via artificial rotations (Gidaris et al., [2018)), or clustering features (Asano et al.,
2020b; (Caron et al., 2018}, [2019; |Gidaris et al., |2020; Ji et al., [2018). Colorization (Zhang et al.,
2016; 2017)), inpainting (Pathak et al., 2016), solving jigsaw puzzles (Noroozi et al. |2017), as well
as the contrastive methods detailed below, have been proposed for self-supervised image represen-
tation learning. Some of the tasks that use the space dimension of images have been extended to
the space-time dimensions of videos by crafting equivalent tasks. These include jigsaw puzzles
(Kim et al., 2019), and predicting rotations (Jing & Tian, |[2018)) or future frames (Han et al., | 2019).
Other tasks leverage the temporal dimension of videos to learn representations by predicting shuf-
fled frames (Misra et al.,[2016), the direction of time (Wei et al.l 2018]), motion (Wang et al.||2019),
clip and sequence order (Lee et al.,[2017; | Xu et al.,|2019)), and playback speed (Benaim et al., 2020;
Cho et al.| [2020; [Fernando et all2017)). These pretext-tasks can be framed as GDTs.

Multi-modal learning. Videos, unlike images, are a rich source of a variety of modalities such
as speech, audio, and optical flow, and their correlation can be used as a supervisory signal. This
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idea has been present as early as 1993 (de Sal [1994). Only recently, however, has multi-modal
learning been used to successfully learn effective representations by leveraging the natural corre-
spondence (Alwassel et al., 2020; |Arandjelovic & Zisserman, 2017; Asano et al., 2020a; |Aytar et al.,
2016; Morgado et al [2020; [Owens et al [2016) and synchronization (Chung & Zisserman, 2016
Korbar et al., 2018 (Owens & Efros, |2018)) between the audio and visual streams. A number of
recent papers have leveraged speech as a weak supervisory signal to train video representations (Li
& Wang, [2020; Miech et al., |2020; Nagrani et al., [2020; |Sun et al [2019aZb) and recently |Alayrac
et al.| (2020), which uses speech, audio and video. Other works incorporate optical flow and other
modalities (Han et al.| |2020; Liu et al., |2019; [Piergiovanni et al., [2020; Zhao et al., 2019) to learn
representations. In (Tian et al.,[2019)), representations are learned with different views such as differ-
ent color channels or modalities) to induce invariances. In contrast, our work analyses multi-modal
transformations and examines their utility when used as an invariant or variant learning signal.

Noise Contrastive Loss. Noise contrastive losses (Gutmann & Hyvarinen, 2010; Hadsell et al.
2006) measure the similarity between sample pairs in a representational space and are at the core of
several recent works on unsupervised feature learning. It has been shown to yield good performance
for learning image (Chen et al., 2020b; He et al., 2019; [Hénaff et al.l 2019; Hjelm et al.| 2019} [Li
et al., 2020; Misra & van der Maaten, |2020; |Oord et al., 2018}, [Tian et al.l 2019; 2020; Wu et al.,
2018) and video (Han et all 2019} |Li & Wang, [2020; Miech et al., [2020; Morgado et al.| 2020;
Sohn, [2016} |Sun et al., [2019a)) representations, and circumvents the need to explicitly specify what
information needs to be discarded via a designed task.

We leverage the noise contrastive loss as a learning framework to encourage the network to learn
desired invariance and distinctiveness to data transformations. The GDT framework can be used to
combine and extend many of these cues, contrastive or not, in a single noise contrastive formulation.

3 METHOD

A data representation is a function f : X — R” mapping data points x to vectors f(x). Repre-
sentations are useful because they help to solve tasks such as image classification. Based on the
nature of the data and the task, we often know a priori some of the invariances that the represen-
tation should possess (for example, rotating an image usually does not change its class). We can
capture those by means of the contrast functio c(x1,22) = Of(ay)=f(xs)» Where c(xy,22) =1
means that f is invariant to substituting xo for 1, while ¢(z1,22) = 0 means that f is distinc-
tive to this change. Any partial knowledge of the contrast ¢ can be used as a cue to learn f, but
¢ is not arbitrary: in order for ¢ to be valid, the expression ¢(x1,z2) = 1 must be an equiva-
lence relation on X, i.e. be reflexive c(x,z) = 1, symmetric ¢(x1,x2) = ¢(z2,21) and transitive
o(x1,x2) = c(x2,23) = 1 = c(1,23) = 1. This is justified in Appendix[A.T|and will be important
in establishing which particular learning formulations are valid and which are not.

We introduce next our Generalized Data Transformations (GDTs) framework by generalizing two
typical formulations: the first is analogous to ‘standard’ methods such as MoCo (He et al., [2019)
and SimCLR (Chen et al.,[2020b) and the second tackles multi-modal data.

Standard contrastive formulation. Recall that the goal is to learn a function f that is compatible
with a known contrast ¢, in the sense explained above. In order to learn f, we require positive
(¢(x1,x2) = 1) and negative (c(x1,z2) = 0) example pairs (z1,22). We generate positive pairs
by sampling z; from a data source and then by setting o = g(x1) as a random transformation of
the first sample, where g € G is called a data augmentation (e.g. image rotation). We also generate
negative pairs by sampling x; and x5 independently.

It is convenient to express these concepts via transformations only. To this end, let D =
(x1,...,2n5) € XN be a collection of N i.i.d. training data samples. A Generalized Data Transfor-
mation (GDT) T : XN — Z is a mapping that acts on the set of training samples D to produce a new
sample z = T'D. Note that the GDT is applied to the entire training set, so that sampling itself can
be seen as a transformation. In the simplest case, Z = X and a GDT T = (4, g) extracts the sample
corresponding to a certain index ¢ and applies an augmentation g : X — X toit,i.e. TD = g(x;).

"We use the symbol § to denote the Kronecker delta.
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Usually, we want the function f to be distinctive to the choice of sample but invariant to its aug-
mentation. This is captured by setting the contrast ¢(7, T’)E] to ¢((i,g), (i',4")) = ;= Given a
batch T = {T1,...,Tk} of K GDTs, we then optimize a pairwise-weighted version of the noise-
contrastive loss (Chen et al.| [2020b; (Gutmann & Hyvirinen, 2010; |Oord et al.l |2018; Tian et al.,
2019; Wu et al., [2018]), the GDT-NCE loss:

o N exp (£(TD). f(T'D)/p
ATy == 2, dn Tl log (st e Gad fmoms) O

Here, the scalar p is a temperature parameter and the weights w(T,T") are set to dpps in order
to discount contrasting identical transformations, which would result in a weak learning signal.
Minimizing eq. (1) pulls together vectors f(T'D) and f(T'D) if ¢(T,T") = 1 and pushes them
apart if ¢(T,T") = 0, similar to a margin loss, but with a better handling of hard negatives (Chen
et al., 2020b; [Khosla et al., [2020; [Tian et al.| 2019) When using a single modality, T = T” and
positive pairs are computed from two differently augmented versions.

Multi-modal contrastive formulation. We now further extend GDTs to handle multi-modal data.
In this case, several papers (Arandjelovic & Zissermanl [2017; |Aytar et al., 2016} Korbar et al.,
2018; |Owens et al., 2016; Wei et al.l 2018) have suggested to learn from the correlation between
modalities, albeit usually not in a noise-contrastive manner. In order to encode this with a GDT, we
introduce modality projection transformations m € M. For example, a video x = (v, a) has a visual
component v and an audio component a and we we have two projections M = {m,, m, } extracting
respectively the visual m, (x) = v and audio m,(x) = a signals. We can plug this directly in eq.
by considering GDTs T' = (i,m) and setting TD = m(x;), learning a representation f which is
distinctive to the choice of input video, but invariant to the choice of modalityﬂ

General case. Existing noise contrastive formulations learn representations that are invariant to
an ad-hoc selection of transformations. We show here how to use GDTs to build systematically new
valid combinations of transformations while choosing whether to encode invariance or distinctive-
ness to each factor. Together with the fact that all components, including data sampling and modality
projection, are interpreted as transformations, this results in a powerful approach to explore a vast
space of possible formulations systematically, especially for the case of video data with its several
dimensions.

In order to do so, note that to write the contrastive loss eq. , we only require: the contrast ¢(7', 7"),
the weight w(7T,T”) and a way of sampling the transformations 7 in the batch. Assuming that each
generalized transformation 7' = tp; o - -- o t; is a sequence of M transformations ¢,,, we start by
defining the contrast ¢ for individual factors as:

c(tm,th,) = {

1, if we hypothesize invariance,
0t,,=t: , if we hypothesize distinctiveness.

2)
The overall contrast is then ¢(T,T") = Hn]\le ¢(tm, t,,). In this way, each contrast ¢(t,,, t,,) is an
equivalence relation and so is ¢(T,T") (see Appendix |A.1)), making it valid in the sense discussed
above. We also assume that w (7, 7") = 1 unless otherwise stated.

Next, we require a way of sampling transformations 7 in the batch. Note that each batch must con-
tain transformations that can be meaningfully contrasted, forming a mix of invariant and distinctive
pairs, so they cannot be sampled independently at random. Furthermore, based on the definition
above, a single ‘distinctive’ factor in eq. (2)) such that ¢,,, # ¢/, implies that ¢(T',7") = 0. Thus, the
batch must contain several transformations that have equal distinctive factors in order to generate a
useful learning signal.

A simple way to satisfy these constraints is to use a hierarchical sampling scheme (fig. [T) First,
we sample K instances of transformation ¢;; then, for each sample ¢;, we sample K instances

Note that, differently from the previous section, we have now defined c on transformations 7" rather than
on samples z directly. In Appendix|A.1} we show that this is acceptable provided that ¢(T', T") = 1 also defines
an equivalence relation.

3We can think of eq. as a softmax cross-entropy loss for a classification problem where the classes are
the equivalence classes 7 /c of transformations.

“For this, as f must accept either a visual or audio signal as input, we consider a pair of representations
f = (fv, fa), one for each modality.
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of transformation ¢; and so on, obtaining a batch of K = Hff:l K,, transformations 7. In this
manner, the batch contains exactly K s X --- X K, transformations that share the same first m
factors (t1 = t},...,t, = t,,). While other schemes are possible, in Appendix we show that
this is sufficient to express a large variety of self-supervised learning cues that have been proposed
in the literature. In the rest of the manuscript, however, we focus on audio-visual data.

3.1 EXPLORING CONTRASTIVE AUDIO-VISUAL SELF-SUPERVISION

Within multi-modal settings, video representation learning on audio-visual data is particularly well
suited for exploring the GDT framework. Especially compared to still images, the space of transfor-
mations is much larger in videos due to the additional time dimension and modality. It is therefore
an ideal domain to explore how GDTs can be used to limit and explore the space of possible trans-
formations and their quality as a learning signal when used as variances or invariances. In order to
apply our framework to audio-visual data, we start by specifying how transformations are sampled
by using the hierarchical scheme introduced above (see also Figure[I). We consider in particular
GDTs of the type 7' = (i, 7, m, g) combining the following transformations. The first component
1 selects a video in the dataset. We sample K; > 2 indices/videos and assume distinctiveness,
so that ¢(i,i") = d;—». The second component 7 contrasts different temporal shifts. We sample
K, = 2 different values of a delay 7 uniformly at random, extracting a s clip x;, starting at time
7. For this contrast, we will test the distinctiveness and invariance hypotheses. The third component
m contrasts modalities, projecting the video x;, to either its visual or audio component m(x;; ).
We assume invariance ¢(m, m’) = 1 and always sample two such transformations m,, and m, to
extract both modalities, so K,,, = 2. The fourth and final component g applies a spatial and aural
augmentation 'D = g(m(x;;)), also normalizing the data. We assume invariance ¢(g,g’) = 1
and pick K, = 1. The transformation g comprises a pair of augmentations (g,, g, ), where g, (v) ex-
tracts a fixed-size tensor by resizing to a fixed resolution a random spatial crop of the input video v,
and g, (a) extracts a spectrogram representation of the audio signal followed by SpecAugment (Park
et al., 2019) with frequency and time masking. These choices lead to K = K; K, K, K, = 4K;
transformations 7" in the batch 7.

Testing invariance and distinctiveness hypotheses. The transformations given above combine
cues that were partly explored in prior work, contrastive and non-contrastive. For example, [Korbar,
et al. (2018)) (not noise-contrastive) learns to detect temporal shifts across modalities. With our for-
mulation, we can test whether distinctiveness or invariance to shifts is preferable, simply by setting
o(r,7') =lore(r,7') = 6, (this is illustrated in fig.[T). We can also set w(r,7') = 0 for 7 # 7/
to ignore comparisons that involve different temporal shifts. We also test distinctiveness and invari-
ance to time reversal (Wei et al.| 2018)), which has not previously been explored cross-modally, or
contrastively. This is given by a transformation r € R = {rg,r1}, where 7 is the identity and
r1 flips the time dimension of its input tensor. We chose these transformations, time reversal and
time shift, because videos, unlike images, have a temporal dimension and we hypothesize that these
signals are very discriminative for representation learning.

Ignoring comparisons. Another degree of freedom is the choice of weighting function w(T,T").
Empirically, we found that cross-modal supervision is a much stronger signal than within-modality
supervision, so if 7" and 7" slice the same modality, we set w(T,T") = 0 (see Appendix for ablation).

Understanding combinations. Finally, one may ask what is the effect of combining several dif-
ferent transformations in learning the representation f. A first answer is the rule given in eq.
to combine individual contrasts ¢(¢,,,t,,) in a consistent manner. Because of this rule, to a first
approximation, f possesses the union of the invariances and distinctivenesses of the individual fac-
tors. To obtain a more accurate answer, however, one should also account for the details of the batch
sampling scheme and of the choice of weighing function w. This can be done by consulting the
diagrams given in fig.[T|by: (1) choosing a pair of transformations T; and T}, (2) checking the value
in the table (where 1 stands for invariance, O for distinctiveness and - for ignoring), and (3) looking
up the composition of T; and T in the tree to find out the sub-transformations that differ between
them as the source of invariance/distinctiveness.
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4 EXPERIMENTS

We compare self-supervised methods on pretraining audio-visual representations. Quality is as-
sessed based on how well the pretrained representation transfers to other (supervised) downstream
tasks. We first study the model in order to determine the best learning transformations and setup.
Then, we use the latter to train for longer and compare them to the state of the art.

Self-supervised pretraining. For pretraining, we consider the standard audio-visual pretraining
datasets, Kinetics-400 (Kay et al., [2017) and AudioSet (Gemmeke et al., 2017, and additionally,
the recently released, VGG-Sound dataset (Chen et al., [2020a). Finally, we also explore how our
algorithm scales to even larger, less-curated datasets and train on IG65M (Ghadiyaram et al., 2019)
as done in XDC (Alwassel et al ., [2020).

Our method learns a pair of representations f = (f,, fa)
for visual and audio information respectively and we refer
to Appendix [A.6|for architectural details.

Table 1: Learning hypothesis ab-
lation. Results on action classifi-
cation performance on HMDB-51 is
shown for finetuning accuracy (Acc)
and frozen action retrieval (recall@5).

Downstream tasks. To assess the visual representation
fv,» we consider standard action recognition benchmark

datasets, UCF-101 (Soomro et al., 2012) and HMDB-
51 (Kuehne et al.,[2011b). We test the performance of our
pretrained models on the tasks of finetuning the pretrained
representation, conducting few-shot learning and video
action retrieval. To assess the audio representation f,, we
train a linear classifier on frozen features for the common
ESC-50 (Piczakl 2015) and DCASE2014 (Stowell et al.,
2015) benchmarks and finetune for VGG-Sound (Chen

GDT can leverage signals from both
invariance and stronger variance trans-
formation signals, that sole data-
sample (DS) variance misses.

DS TR TS Mod. Acc r@5
SimCLR: DS-variance only

. . . : (a) v V. 47.1 325

et al.}|2020a). The full details are given in the Appendix. () v i V395 31.9

) v i V469 345

4.1 ANALYSIS d v i i V 466 334
OF GENERALIZED TRANSFORMATIONS GDT- 1-variance

. . . e) v - - AV 56.9 49.3

In this section, we conduct an extensive §tudy on each ® v i - AV 56.149.7

parameter of the GDT transformation studied here, 7' = (@ v - i AV 572452

(i,7,m,g), and evaluate the performance by finetuning (h) v i i AV 56.6 44.8

our network on the UCF-101 and HMDB-51 action recog- -

nition benchmarks GDT: 2-variances

’ i) v i v AV 57.546.8

Sample distinctiveness and invariances. First, we ex- G) v v i AV 57.0 46.2

periment with extending SimCLR to video data, as shown (k) v v AV 58.0 50.2

in Tablema)—(d). This is an important base case as it is the D v v . AV 58.2 50.2
standard approach followed by all recent self-supervised GDT: 3-variances

PP y p M v v v AV 60.0 47.8

methods (Chen et al., [2020b; He et al., 2019; Wu et al.,
2018)).

For this, consider GDT of the type T' = (i, m, 7, g) described above and set K; = 768 (the largest
we can fit in our setup), K, = 1 (only visual modality) and K, = 1 and only pick a single time shift
K, = 1. We also set all transformation components to invariance (c¢(t,,, t,,,) = 1) except the first
that does sample selection. Comparing row (a) to (b-d), we find that adding invariances to time-shift
(TS) and time-reversal (TR) consistently degrades the performance compared to the baseline in (a).

GDT variances and invariances Our framework allows fine-grained and expressive control of
which invariance and distinctiveness are learned. To demonstrate this flexibility, we first experiment
with having a single audio-visual (AV) invariance transformation, in this case data-sampling (DS),
ie. T = (i,7,m,g). We find immediately an improvement in finetuning and retrieval performance
compared to the SimCLR baselines, due to the added audio-visual invariance. Second, we also find
that adding invariances to TR and TS does not yield consistent benefits, showing that invariance to
these transformations is not a useful signal for learning.

In rows (i-1), we explore the effect of being variant to two transformations, which is unique to our
method. We find that: (1) explicitly encoding variance improves representation performance for the
TS and TR transformations (58.0 and 58.2 vs 56.9). (2) Ignoring (-) the other transformation as
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Table 2: Retrieval and Few Shot Learning. Re- Table 3: Audio classification. Down-

trieval accuracy in (%) via nearest neighbors and few stream task accuracies on standard audio

shot learning accuracy (%) via training a linear SVM classification benchmarks.

on fixed representations.

HMDB UCF Method Acc%
1 20 1 20 DCESC

%Random 3.0 45 23 68 ConvRBM (Sailor et al.L[2017) - 86.5
"S3DRot (Jing & Tianl2018) - - 15.047.1 AVTS (Korbar et al., 2018) 94 82.3
g DMC (Hu et al.|[2019) - 826
<|GDT (ours) 13.420.826.349.4 XDC|[Alwassel et al|(2020) 95 84.8
3 ClipOrder (Xu et al, 2019) 7.6 48.8 14.151.1 AVID (Morgado et al }2020) 96 89.2
-4 VCP (Cho et al.}[2020) 7.6 53.618.653.5 GDT (ours) 98 88.5
& GDT (ours) 25.475.057.4 88.1 Human (Piczak} 2015) - 813

opposed to forcefully being invariant to it works better (58.2 vs 57.0 and 58.0 vs 57.5). Finally,
row (m), shows the (DS, TR, TS)-variance case, yields the best performance when finetuned and
improves upon the initial SImCLR baseline by more than 12% in accuracy and more than 15% in
retrieval @5 performance. (DS, TR, TS) Compared to row (1), we find that using three variances
compared to two does give boost in finetuning performance (58.2 vs 60.0), but there is a slight
decrease in retrieval performance (50.2 vs 47.8). We hypothesize that this decrease in retrieval
might be due to the 3-variance model becoming more tailored to the pretraining dataset and, while
still generalizeable (which the finetuning evaluation tests), its frozen features have a slightly higher
domain gap compared to the downstream dataset.

Intuition While we only analyse a subset of possible transformations for video data, we neverthe-
less find consistent signals: While both time-reversal and time-shift could function as a meaningful
invariance transformation to provide the model with more difficult positives a-priori, we find that
using them instead to force variances consistently works better. One explanation for this might be
that there is useful signal in being distinct to these transformations. E.g., for time-reversal, opening
a door carries different semantics from from closing one, and for time-shift, the model might profit
from being able to differentiate between an athlete running vs an athlete landing in a sandpit, which
could be both in the same video. These findings are noteworthy, as they contradict results from the
image self-supervised learning domain, where learning pretext-invariance can lead to more transfer-
able representations (Misra & van der Maaten, 2020). This is likely due to the fact that time shift
and reversal are useful signals that both require learning strong video representations to pick up on.
If instead invariance is learned against these, the “free” information that we have from construction
is discarded and performance degrades. Instead, GDT allows one to leverage these strong signals
for learning robust representations.

4.2 COMPARISON TO THE STATE OF THE ART

Given one of our best learning setups from Sec. @.1] (row (1)), we train for longer and compare our
feature representations to the state of the art in common visual and aural downstream benchmarks.

Downstream visual benchmarks.

For video retrieval we report recall at 1, 5, 20 retrieved samples for split-1 of the HMDB-51 and
UCF-101 datasets in table 2] (the results for recall at 10 and 50 are provided in the Appendix). Using
our model trained on Kinetics-400, GDTsignificantly beats all other self-supervised methods by a
margin of over 35% for both datasets.

For few-shot classification, as shown in table 2] we significantly beat the RotNet3D baseline on
UCF-101 by more than 10% on average for each shot with our Kinetics-400 pretrained model.

For video action recognition, we finetune our GDT pretrained network for UCF-101 and HMDB-51
video classification, and compare against state-of-the-art self-supervised methods in table ] When
constrained to pretraining on the Kinetics datasets, we find that our GDT pretrained model achieves
very good results, similar to[Morgado et al.|(2020) (developed concurrently to our own work). When
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Table 4: State-of-the-art on video action recognition. Self- and fully-supervisedly trained methods
on UCF-101 and HMDB-51 benchmarks. We follow the standard protocol and report the average
top-1 accuracy over the official splits for finetuning the whole network. Methods with T: use video
titles as supervision, with *: use ASR generated text. See table[A.3|for an extended version including
recent/concurrent works.

Method Architecture  Pretraining  Top-1 Acc%
HMDB UCF
Full supervision (Alwassel et al.|[2020) R(2+1)D-18 Kinetics-400  65.1 94.2
Full supervision (ours) R(2+1)D-18 Kinetics-400 70.4 95.0
Using Kinetics
AoT (Wei et al., [2018) T-CAM Kinetics-400 - 79.4
XDC (Alwassel et al., [2020) R(2+1)D-18 Kinetics-400 52.6 86.8
AV Sync+RotNet (Xiao et al.,|[2020) AVSlowFast Kinetics-400 54.6 87.0
AVTS (Korbar et al., [2018|) MC3-18 Kinetics-400  56.9 85.8
CPD (Li & Wang, [2020)™* 3D-Resnet50 Kinetics-400 57.7 88.7
AVID (Morgado et al., [2020) R(2+1)D-18 Kinetics-400  60.8 87.5
GDT (ours) R(2+1)D-18 Kinetics-400  60.0 89.3
Using other datasets
MIL-NCE (Miech et al., [2020)* S3D HowTolOOM 61.0 91.3
AVTS (Korbar et al.,|2018)) MC3-18 AudioSet 61.6 89.0
XDC (Alwassel et al., [2020) R(2+1)D-18 AudioSet 63.7 93.0
AVID (Morgado et al., [2020) R(2+1)D-18 AudioSet 64.7 91.5
ELo (Piergiovanni et al., [2020) R(2+1)D-50x3 Youtube-2M  67.4 93.8
XDC (Alwassel et al., [2020) R(2+1)D-18 1G65M 68.9 95.5
GDT (ours) R(2+1)D-18 VGGSound 61.9 89.4
GDT (ours) R(2+1)D-18 AudioSet 66.1 92.5
GDT (ours) R(2+1)D-18 1G65M 72.8 95.2

constrained to pretraining on the AudioSet (Gemmeke et al., 2017) dataset, we also find state-of-
the-art performance among all self-supervised methods, particularly on HMDB-51.

We get similar performance to XDC on UCF-101. Lastly, we show the scalability and flexibility of
our GDT framework by pretraining on the IG65M dataset (Ghadiyaram et al., [2019). With this, our
visual feature representation sets a new state of the art among all self-supervised methods, particu-
larly by a margin of > 4% on the HMDB-51 dataset. On UCF-101, we set similar state-of-the-art
performance with XDC. Along with XDC, we beat the Kinetics supervised pretraining baseline
using the same architecture and finetuning protocol.

For audio classification we find that we achieve state-of-the-
art performance among all self-supervised methods on both Tuple 5: VGG-Sound.
DCASE2014 (DC) and ESC-50 (ESC), and also surpass super- Audio classification metrics af-
vised performance on VGG-Sound with 54.8% mAP and 97.5% (er full-finetuning.

AUC (see Tab.[5).

Method mAP AUC &

5 CONCLUSION Supervised 51.6 96.8 2.63
GDT (ours) 54.8 97.5 2.77

We introduced the framework of Generalized Data Transforma-

tions (GDTs), which allows one to capture, in a single noise-contrastive objective, cues used in sev-
eral prior contrastive and non-contrastive learning formulations, as well as easily incorporate new
ones. The framework shows how new meaningful combinations of transformations can be obtained,
encoding valuable invariance and distinctiveness that we want our representations to learn. Follow-
ing this methodology, we achieved state-of-the-art results for self-supervised pretraining on standard
downstream video action recognition benchmarks, even surpassing supervised pretraining. Overall,
our method significantly increases the expressiveness of contrastive learning for self-supervision,
making it a flexible tool for many multi-modal settings, where a large pool of transformations exist
and an optimal combination is sought.
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A APPENDIX

A.1 THEORY

Full knowledge of the contrast function ¢ only specifies the level sets of the representation f.

Lemma 1. The contrast c(x1,22) = 0f(z,)=f(x,) defines f = vo f up to an injection v : X/ f — Y,
where X/ f is the quotient space and f : X — X/ [ is the projection on the quotient.

Proof. This is a well known fact in elementary algebra. Recall that the quotient X'/ f is just the
collection of subsets X C X where f(x) is constant. It is easy to see that this is a partition of X’.
Hence, we can define the map fiXef (x) where z is any element of X (this is consistent since
f(z) has, by definition, only one value over X). Furthermore, if ¢ : z — X = {z € X : f(z') =
f(x)} is the projection of z to its equivalence class X, we have f(z) = f(u(z)). O

Lemma 2. ¢(x1,x2) = 1 is an equivalence relation if, and only if, there exists a function f such
that c(:cl, Ig) = 5f(w1):f(;c2)-

Proof. If ¢(x1,22) = 1 defines an equivalence relation on X, then such a function is given by
the projection on the quotient f : X — X/c = ). On the other hand, setting c(z1,22) =
0 f(z1)=f(xs) = 1 for any given function f is obviously reflexive, symmetric and transitive because
the equality f(z1) = f(x2) is. O

The following lemma suggests that defining a contrast ¢(7,T") on transformations instead of data
samples is usually acceptable.

Lemma 3. If¢(T,T’) = 1 defines an equivalence relation on GDTs, and if TD =TD' =T =T’
(i.e. different transformations output different samples), then setting c(T' D, T'D) = ¢(T,T") defines
part of an admissible sample contrast function.

Proof. If x = T'D, 2’ = T'D are obtained from some transformations 7" and 7", then these must be
unique by assumption. Thus, setting c(x, ') = ¢(T,T") is well posed. Reflectivity, symmetry and
transitivity are then inherited from the latter. O

Lemma 4. Let c(t;,,t),) = 1 be reflexive, symmetric and transitive. Their product ¢(T,T") =
1Y, ¢(tm,t.,) = has then the same properties.

m=1
Proof. The reflexive and symmetric properties are obviously inherited. For the transitive property,
note that ¢(7',7") = 1 if, and only if, Vm : ¢(t,,, t,,) = 1. Then consider:

(T, T)=c(T,T")=1 = VYm:c(tm,t,,)=c(t,,, tn)=1

= VYm:cltm,th)=1 = cT,7")=1.
O

A.2 GENERALITY OF GDT

Here, we show that our GDT formulation can encapsulate and unify other self-supervised works in
the literature. We break it down it into two sections:

Mapping contrastive to GDT contrastive Recently, a number of papers have presented con-
trastive formulations for image representation learning such as, NPID (Wu et al.,2018)), PIRL (Misra
& van der Maaten, 2020), MoCo (He et al.,[2019) and SimCLR (Chen et al., 2020b). These meth-
ods are all essentially built on what we have introduced as the “data-sampling transformation”
T = (i, 9), that samples an image with index 7 and applies augmentation g. For NPID, MoCo and
SimCLR, the main objective is to solely be distinctive to the image index, hence K = K; K, = B
(i.e. the batchsize B) for NPID, due to the use of a memorybank and K = K;K, = 2B for
SimCLR and MoCo. For PIRL, one additional transformation to be invariant to is added. For ex-
ample, in the case of rotation, the PIRL encodes sample-distinctiveness to the non-rotated inputs
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K = K;K,; = B in the memorybank, while the rotated examples are used for constructing both
invariance to the original inputs, as well as sample distinctiveness.

Non-contrastive to GDT contrastive reduction. In non-contrastive self-supervised formulations,
one trains ®(x) = y to regress y from x, where y is some “pretext” task label. These labels can be
obtained from the data, e.g. arrow of time (Wei et al., 2018)), rotation (Gidaris et al., [2018}; Jing &
Tian, [2018), shuffled frames (Misra et al., [2016), jigsaw configurations (Kim et al., [2019; Noroozi
et al.| 2017), or playback speed (Benaim et al.| 2020j |Cho et al.,[2020).

We can reduce these pretext tasks to GDTs in two ways. The first ‘trivial’ reduction amounts to
interpreting the supervision y as an additional pseudo-modality. Consider for example RotNet; in
this case, the label y should record the amount of rotation applied to the input image. We can
achieve this effect by starting from data z = (x,0) where x is an image and 0 a rotation angle.
We then sample transformation ¢, (rotation) and define its action as ¢,(z) = (¢,(x),t,(0)) where
t.(0) = r is simply the rotation angle applied and ¢, (z) the rotated image. We consider modality
slicing transformations m,,(z) = x and m,(z) = r. To form a batch, we sample GDTs of the
type T = (i,t,.,m), where ¢ is sampled at random, for each 4, ¢, is exhaustively sampled in a
set of four rotations (0, 90, 180, 270 degrees) and, for each rotation ¢,., m is also exhaustively
sampled, for a total of K;K,K,, = 8K; transformations in the batch. We define ¢(T,T") =
c((iytr,m), (¢, t,m’)) = 8=, (note that we do not learn to distinguish different images; GDTs
allow us to express this case naturally as well). We define w(7T',T") = ;=i Omm/ so that images
are treated independently in the loss and we always compare a pseudo modality (rotated image) with
the other (label). Finally, the network f,.(r) = e, € {0, 1}* operating on the label pseudo-modality
trivially encodes the latter as a 1-hot vector. Then we see that the noise-contrastive loss reduces to

o exp<f(tr(xi))7€r>
zz‘: 27;1 i > exp(f(tr(xi)), er) €)]

which is nearly exactly the same as a softmax loss for predicting the rotation class applied to an
image.

There are other reductions as well, which capture the spirit if not the letter of a training signal. For
instance, in RotNet, we may ask if two images are rotated by the same amount. This is an interesting
example as we do not wish to be distinctive to which image sample is taken, only to which rotation is
applied. This can also be captured as a GDT because the sampling process itself is a transformation.
In this case, the set of negatives will be the images rotated by a different amount, while the positive
example will be an image rotated by the same amount.

Thus, pretext task-originating transformations that have not even been explored yet can be put into
our framework and, as we show in this paper, be naturally combined with other transformations
leading to even stronger representations.

A.2.1 POTENTIAL APPLICATION TO TEXT-VIDEO LEARNING

While we focus on audio-visual representation learning due to the multitude of potentially in-
teresting learning signals, it is also possible to apply our framework to other multi-modal set-
tings, such as video-text. Instead of a ResNet-9 as audio encoder, a text-encoder such as word-
embeddings (Mikolov et al.,|2013}; |Pennington et al.,|2014) with an MLP or a transformer (Vaswani
et al.,[2017) can be used for encoding the textual inputs and we can train with a cross-modal NCE
loss as done currently for audio-visual representation learning in our GDT framework. While the vi-
sual transformations can be kept as described in the paper, we can use transformations for text, such
as sentence shuffling (Wei & Zou, 2019)), or random word swaps (Wei & Zou, [2019). Moreover, un-
like prior works in the literature (Alayrac et al., 2020; |Li & Wang|, |2020; |[Miech et al.| [2019), which
mostly focused on model and loss improvements for video-text learning, our framework would al-
low us to investigate whether it is more desirable to encode either invariance or disctinctiveness to
these text transformations for effective video-text representation learning.

A.3 MODALITY ABLATION

In Table we provide the results of running our baseline model (sample-distinctiveness only)
within-modally instead of across modalities and find a sharp drop in performance.
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Table A.1: Multi-modal learning, m,,.

Modalities HMDB UCF
Epochs 50 100 50 100

Within-modal 29.1 32.9 68.3 72.2
Cross-modal 55.1 56.9 85.1 87.9

A.4 DATASET DETAILS

The Kinetics-400 dataset (Kay et al.,|2017) is human action video dataset, consisting of 240k training
videos, with each video representing one of 400 action classes. After filtering out videos without
audio, we are left with 230k training videos, which we use for pretraining our model.

VGGSound (Chen et al}2020a)) is a recently released audio-visual dataset consisting of 200k short
video clips of audio sounds, extracted from videos uploaded to YouTube. We use the training split
after filtering out audio (170k) for pretraining our model.

Audioset (Gemmeke et al., [2017) is a large-scale audio-visual dataset of 2.1M videos spanning 632
audio event classes. We use the training split (1.8M) for pretraining our model.

IG65M (Ghadiyaram et al., |2019) is a large-scale weakly supervised dataset collected from a social
media website, consisting of 65M videos of human action events. We use the all the videos in the
dataset for pretraining.

HMDB-51 (Kuehne et al.,|2011a)) consists of 7K video clips spanning 51 different human activities.
HMDB-51 has three train/test splits of size 5k/2k respectively.

UCF-101 (Soomro et al.l 2012)) contains 13K videos from 101 human action classes, and has three
train/test splits of size 11k/2k respectively.

ESC-50 (Piczakl [2015) is an environmental sound classification dataset which has 2K sound clips
of 50 different audio classes. ESC-50 has 5 train/test splits of size 1.6k/400 respectively.

DCASE2014 (Stowell et al., [2015)) is an acoustic scenes and event classification dataset which has
100 training and 100 testing sound clips spanning 10 different audio classes.

A.5 PREPROCESSING DETAILS

The video inputs are 30 consecutive frames from a randomly chosen starting point in the video.
These frames are resized such that the shorter side is between 128 and 160, and a center crop of
size 112 is extracted, with no color-jittering applied. A random horizontal flip is then applied with
probability 0.5, and then the inputs’ channels are z-normalized using mean and standard deviation
statistics calculated across each dataset.

One second of audio is processed as a 1 x 257 x 99 image, by taking the log-mel bank features with
257 filters and 199 time-frames after random volume jittering between 90% and 110% is applied to
raw waveform, similar to (Arandjelovic & Zisserman,2017)). The spectrogram is then Z-normalized,
as in (Korbar et al. 2018)). Spec-Augment is then used to apply random frequency masking to
the spectrogram with maximal blocking width 3 and sampled 1 times. Similarly, time-masking is
applied with maximum width 6 and sampled 1 times.

A.6 PRETRAINING DETAILS

We use R(2+1)D-18 (Tran et al., 2018)) as the visual encoder f, and ResNet (He et al., [2016) with
9 layers as the audio encoder f, unless otherwise noted; both encoders produce a fixed-dimensional
output (512-D) after global spatio-temporal average pooling. Both vectors are then passed through
two fully-connected layers with intermediate size of 512 to produce 256-D embeddings as in (Bach-
man et al.,[2019) which are normalized by their L2-norm (Wu et al., [2018)). The embedding is used
for computing the contrastive loss, while for downstream tasks, a linear layer after the global spatio-
temporal average pooling is randomly intialized. For NCE contrastive learning, the temperature p
is set as 1/0.07. For optimizing these networks, we use SGD. The SGD weight decay is 10~° and
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the SGD momentum is 0.9. We use a mini-batch size of 12 on each of our 64 GPUs giving an
effective batch size of 768 for distributed training. The initial learning rate is set to 0.01 which we
linearly scale with the number of GPUs, after following a gradual warm-up schedule for the first 10
epochs (Goyal et al.| 2017). For both Kinetics and VGG-Sound, we train for 200 epochs (3 days),
while for Audioset and IG65M, we train for 50 epochs (5 days) and 2 epochs (7 days) respectively.

A.7 ABLATION EXPERIMENT DETAILS

For the ablations, we only train for 100 epochs on the Kinetics-400 dataset.

For both downstream tasks, we only evaluate on the first fold each but found the performance be-

tween folds to be close (within 1-2%).

A.8 FULL VIDEO ACTION RETRIEVAL TABLE

In Table[A.2] we show the full table on video action retrieval and compare to several of our models,

pretrained on different datasets.

Table A.2: Full retrieval table.

HMDB UCF

Recall @ 1 5 10 20 50 1 5 10 20 50
Supervised (Kinetics) 49.1 74.4 839 90.6 96.4 86.9 94.6 96.5 98.1 99.0
ST-Puzzle (Kim et al.l[2019) - - - - — 19.7 28.5 33.5 40.0 494
OPN (Lee et al.,|2017) - - - - - 199 28.7 34.0 40.6 51.6
ST Order (Buchler et al.,2018) — - - - — 257 36.2 422 49.2 59.5
ClipOrder (Xu et al.,|2019) 7.6 229 344 48.8 689 14.1 30.3 404 51.1 66.5
SpeedNet (Benaim et al.|2020) - - - - — 13.0 28.1 37.5 49.5 65.0
VCP (Luo et al.,|2020) 7.6 244 363 53.6 764 18.6 33.6 42.5 53.5 68.1
VSP (Cho et al., [2020) 10.3 26.6 38.8 54.6 76.8 24.6 41.9 51.3 62.7 76.9
GDT (Kinetics) 254 51.4 639 75.0 87.8 57.4 73.4 80.8 88.1 92.9
GDT (VGG-Sound) 28.4 55.1 67.2 79.3 91.1 63.4 79.6 85.0 90.1 95.2
GDT (Audioset) 30.6 58.0 69.8 79.9 91.0 65.9 82.6 88.2 92.2 96.6
GDT (IG65M) 36.1 61.1 70.8 79.7 92.1 75.7 87.2 90.7 93.5 96.6
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A.9 FULL VIDEO ACTION RECOGNITION TABLE

Table A.3: State-of-the-art on action recognition. Self-supervised and supervised methods on
UCF101 and HMDB51 benchmarks. We follow the standard protocol and report the average top-1
accuracy over the official splits and show results for finetuning the whole network. Note that we find
the supervised baseline to be around 6% and 2% better than reported in (Alwassel et al., [2020) as
we use a different finetuning strategy. Methods with T indicate the additional use of video titles as
supervision. Methods with * use ASR generated text. Methods in gray are concurrent works.

Method Architecture Pretrain Dataset Top-1 Acc%
HMDB UCF
Full supervision R(2+1)D-18  ImageNet 46.7 82.8
Full supervision (Alwassel et al}2020) ~ R(2+1)D-18  Kinetics-400 65.1 942
Full supervision (ours) R(2+1)D-18  Kinetics-400 70.4 950
Full supervision (Tran et al.} 2018) R(2+1)D-34  Kinetics-400 745 968
Using UCF
Shuffle and Learn (Misra et al., 2016) CaffeNet UCF 18.1 502
VGAN (Vondrick et al| VGAN Flickr - 52.1
LT-Motion (Luo et al.[[2017 VGG-16 UCF - 53.0
Geometry (Gan et al.}[2019) CaffeNet UCF 233 55.1
OPN (Lee et al.[[2017] VGG UCF 23.8 563
ST Order (Buchler etm 2018) CaffeNet UCF 25.0 58.6
i CaffeNet UCF 26.7  59.1
R(2+1)D-18  UCF 322 663
VGG-16 UCF 33.0 705
Using Kinetics
ClipOrder (Xu et al., {2019 R(2+1)D-18  Kinetics-400 309 724
MotionPre ang et al.,|2019 C3D Kinetics-400 334 612
RotNet3D (Jing & Tian, |2 3D-ResNetl8 Kinetics-600 33.7 629
ST-Puzzle (Kim et al., 2019) 3D-ResNetl8 Kinetics-400 337 658
DPC (Han et al.} 2019 3D-ResNet34  Kinetics-400 35.7 5.7
VPS (Cho et al.} 2020) R3D Kinetics-400 36.8 74.8
SpeedNet (Benaim et al} 13D Kinetics-400 437 66.7
AoT i 2018) T-CAM Kinetics-400 - 79.4
CBT (S 2019a) S3D Kinetics-600 446 795
Multisensory (Owens & Efros} 2018) 3D-ResNetl18  Kinetics-400 - 82.1
XDC (Alwassel et al.|[2020) R(2+1)D-18  Kinetics-400 52.6 86.8
AV Sync+RotNet (Xiao et al., 2020) AVSlowFast  Kinetics-400 54.6 87.0
AVTS (Korbar et al. MC3-18 Kinetics-400 569 858
CPD (Li & Wang, 2020)"™ 3D-Resnet50  Kinetics-400 57.7 88.7
AVID (Morgado et al.,[2020 R(2+1)D-18  Kinetics-400 60.8 87.5
CoCLR (Han et al.[[202( S3D Kinetics-400 62.9 90.6
GDT (ours) R(2+1)D-18  Kinetics-400 60.0 89.3
Using other datasets
L3-Net (Arandjelovic & Zisserman,[2017) VGG-16 AudioSet 402 723
Speech2Action* (Nagrani et al.; [2020) S3D-G MovieDataset 58.1 -
DynamoNet (Diba et al.[2019) ResNext101  Youtube8M 58.6 873
MIL-NCE (Miech et al.| * S3D HowTo100M 61.0 913
AVTS (Korbar et al., |20 MC3-18 AudioSet 61.6 89.0
XDC (Alwassel et al.[[2020) R(2+1)D-18  AudioSet 63.7 93.0
AVID (Morgado et al., 2020 R(2+1)D-18  AudioSet 64.7 915
MMV™ (Alayrac et al. llﬁ% R(2+1)D-18  Audioset 701 915
ELo (Piergiovanni et al.|[2020) R(2+1)D-50x3 Youtube-2M 674 938
XDC (Alwassel et al.| [2020) R(2+1)D-18  IG65M 689 955
MMV"™ (Alayrac et al. |202(,)|) TSM-50x2 AudioSet+HT100M 75.0 952
GDT (ours) R(2+1)D-18  VGGSound (170K) 619 894
GDT (ours) R(2+1)D-18  AudioSet (1.7M) 66.1 92.5
GDT (ours) R2+1)D-18  IG65M 72.8 952
GDT (ours) (only finetune fc) R2+1)D-18  IG65M 55.1 854
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A.10 EVALUATION DETAILS

All evaluation code is provided in the Supplementary Material.

Video During training, we take 10 random clips of length 32 frames from each video. For video
clip augmentations, we follow a standard protocol as in (Korbar et al., [2018)). During evaluation, we
uniformly sample 10 clips from each video, average softmax scores, and predict the class having the
highest mean softmax score. We then measure the mean video top-1 accuracy across all videos and
all official folds. During training, we use SGD with initial learning rate 0.0025, which we gradually
warm up to 2 - 1072 in the first 2 epochs. The weight decay is set to 5 - 10~3 and momentum to 0.9.
We use a mini-batch size of 32 and train for 12 epochs with the learning rate multiplied by 5 - 10~2
at 6 and 10 epochs. We compare our GDT pretrained model with both self-supervised methods,
and supervised pretraining, and report average top-1 accuracies on UCF101 and HMDB-51 action
recognition task across three folds in table[A.3]

Few-shot classification We follow the protocol in (Jing & Tian, 2018) and evaluate our our
GDT pretrained network using few-shot classification on the UCF-101 dataset, and additionally
on HMDB-51. We randomly sample n videos per class from the train set, average the encoder’s
global average pooling features from ten clips per training sample and measure classification accu-
racy performance on the validation set using a k-nearest neighbor classifier, with & set to 1.

Retrieval We follow the standard protocol as outlined in (Xu et al.,[2019). We use the split 1 of
UCF101, and additionally HMDB-51. We uniformly sample 10 clips per video, and average the
max-pooled features after the last residual block for each clip per video. We use these averaged
features from the validation set to query the videos in the training set. The cosine distance of
representations between the query clip and all clips in the training set are computed. When the
class of a test clip appears in the classes of k nearest training clips, it is considered to be correctly
predicted. We report accuracies for £ = 1,5, 10, 20,50 and compare with other self-supervised
methods on UCF101 and HMDB-51 in table[A2]

Audio We extract 10 equally spaced 2-second sub-clips from each full audio sample of ESC-
50 (Piczakl [2015) and 60 1-second sub-clips from each full sample of DCASE2014 (Stowell et al.,
2015). We save the activations that result from the audio encoder to quickly train the linear classi-
fiers. We use activations after the last convolutional layer of the ResNet-9 and apply a max pooling
with kernelsize (1,3) and stride of (1,2) without padding to the output. For both datasets, we then
optimize a L2 regularized linear layer with batch size 512 using the Adam optimizer (Kingma & Ba,
2015) with learning rate 1 - 10~%, weight-decay set to 5 - 10~% and the default parameters. The clas-
sification score for each audio sample is computed by averaging the sub-clip scores in the sample,
and then predicting the class with the highest score. The mean top-1 accuracy is then taken across
all audio clips and averaged across all official folds. For VGG-Sound (Chen et al.| [2020al), we fol-
low their evaluation metrics but follow a much shorter training schedule as our model is pretrained.
We optimize the network with batch size 128 using the Adam optimizer (Kingma & Bal [2015) with
learning rate 1 - 10~ for the pretrained backbone and 1 - 102 for the newly randomly initialized
linear layer, weight-decay set to 1 - 107° and the default parameters. We drop the learning rate at
10 and 20 epochs and train for 30 epochs, which takes less than 10h on a single Nvidia GTX 1080
Titan GPU.
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