
Primitive Vision: Improving Diagram Understanding in MLLMs

Shan Zhang 1 2 Aotian Chen 3 Yanpeng Sun 4 Jindong Gu 5 Yi-Yu Zheng 6 Piotr Koniusz 2 7 Kai Zou 6

Anton van den Hengel 1 8 Yuan Xue 3

Abstract
Mathematical diagrams have a distinctive struc-
ture. Standard feature transforms designed for
natural images (e.g., CLIP) fail to process them ef-
fectively, limiting their utility in multimodal large
language models (MLLMs). Current efforts to
improve MLLMs have primarily focused on scal-
ing mathematical visual instruction datasets and
strengthening LLM backbones, yet fine-grained
visual recognition errors remain unaddressed. Our
systematic evaluation on the visual grounding ca-
pabilities of state-of-the-art MLLMs highlights
that fine-grained visual understanding remains a
crucial bottleneck in visual mathematical reason-
ing (GPT-4o exhibits a 70% grounding error rate,
and correcting these errors improves reasoning
accuracy by 12%). We thus propose a novel ap-
proach featuring a geometrically-grounded vision
encoder and a feature router that dynamically se-
lects between hierarchical visual feature maps.
Our model accurately recognizes visual primi-
tives and generates precise visual prompts aligned
with the language model’s reasoning needs. In
experiments, PRIMITIVE-Qwen2.5-7B outper-
forms other 7B models by 12% on MathVerse
and is on par with GPT-4V on MathVista. Our
findings highlight the need for better fine-grained
visual integration in MLLMs. Code is available
at github.com/AI4Math-ShanZhang/SVE-Math.

1. Introduction
Diagrams are critical to many forms of communication,
from corporate reports to news media. Their construction is
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both an art and a science (see (Tufte, 1991) for a particularly
insightful exposition of the art). Despite their importance
in human communication, current visual feature transforms
frequently misinterpret diagrams, often hindering overall
model performance in the greater task.

The visual information represented in diagrams is crucial
in mathematical problem-solving. When humans perform
reasoning, visual thought facilitates detailed reasoning and
textual thought supports logical reasoning (Lehmann et al.,
2010). While Large Language Models (LLMs) have demon-
strated impressive capabilities in textual mathematical rea-
soning (Yu et al., 2023; Ying et al., 2024; Azerbayev et al.,
2023), their proficiency often diminishes when tasks require
integrating visual data (a.k.a., Multimodal Large Language
Models (MLLMs)). Recent advances in MLLM (Zhang
et al., 2024b; Shi et al., 2024; Kazemi et al., 2023) rely
mainly on constructing large-scale mathematical visual in-
struction datasets, which are costly and labor-intensive to
create and often involve the use of advanced models like
GPT-4o (OpenAI, 2023b) to generate diverse prompts for
synthetic datasets. Despite extensive effort, they still strug-
gle to perceive and ground basic geometric primitives in
mathematical diagrams.

We systematically analyzed MLLMs’ ability to describe
geometric entities using a meticulously collected set of 100
images from the Geo170K dataset (Gao et al., 2023a). We
then manually reviewed its responses to categorize the cor-
rect descriptions and error types. As demonstrated in Fig. 1a,
we observed that GPT-4o misperceived visual information
in approximately 70% of cases involving geometric entities.
Correcting these visual perception errors led to a 12% over-
all accuracy improvement on corresponding mathematical
questions (refer to Fig. 5a in the Appendix). This finding
highlights that misunderstanding of geometric primitives,
such as lines, circles, angles, boundaries, and junctions, re-
mains a critical bottleneck in the mathematical reasoning
capabilities of MLLMs.

To mitigate above challenges, we propose a novel PRIMI-
TIVE (PRImitives in the MathematIcal inTerpretatIon of
Visually Encoded information) , which shifts the focus from
scaling mathematical visual instruction datasets to enhanc-
ing fine-grained visual perception. Specifically, we train
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Figure 1: Performance of MLLMs on mathematical visual reasoning tasks from GeoQA test set. GPT-4o misperceives
geometric entities in 70% of cases (Fig. 1a). Providing optimal geometric information improves performance, while
excessive visual cues reduce top-1 accuracy—even below the baseline for text-only questions (Fig. 1c). Model performance
is highly sensitive to visual cue accuracy, with a -13.6% drop in GPT-4o’s top-1 accuracy when given incorrect bounding
box locations and shape names (Bbox+Shape) (Fig. 1b).

an auxiliary visual encoder, namely GeoGLIP (Geometric-
Grounded Language-Image Pre-training), tailored to rec-
ognize geometric primitives. While existing mathematical
datasets lack bounding box and pixel-level annotations, gen-
erating such training data is simple yet highly efficient, e.g.,
through the Matplotlib Python library. Furthermore, training
protocols for visual-centric tasks are more straightforward
than those for MLLMs.

Question:
As shown in the figure, AB
parallel to CD, then the degree
of angle BED is?
Choices:
A: 40° B: 80° C: 90° D: 100°

It is known that AB parallel to
CD, ∠ ABE=20°, ∠ CDE=60°.
Since parallel lines have equal
corresponding interior angles, we
have ∠BED = ∠CDE + ∠ABE =
80°. Therefore, the answer is B

Given AB parallel to CD, we need 
to find ∠BED. Since ∠ABE, 
∠BED, and ∠CED form a straight 
line, their sum is 180°. Substituting 
∠ABE=20° and ∠CED=60°, we 
h av e  2 0 ° +∠B E D +6 0 °=1 8 0 ° . 
Solving gives ∠BED=100°. Thus, 
the answer is D.

▷ GPT-4o struggles to correctly interpret mathematical el-
ements, leading to errors in reasoning and relational de-
scriptions in LLMs. By integrating GeoGLIP, PRIMITIVE
effectively grounds geometric elements and their spatial
relations (e.g., ∠CDE), enabling more accurate reasoning.
See the Appendix for additional examples.

Incorporating PRIMITIVE enables MLLMs to identify the
critical visual components of mathematical problems before
engaging in reasoning. Our hypothesis and specific designs
are inspired by observations illustrated in Fig. 1b and Fig. 1c.
Instructing MLLMs with fine-grained visual information,
such as junction points and object locations, improves top-
1 accuracy compared to providing only worded questions.
However, excessive visual cues reduce accuracy (-4.2% in

GPT-4o), emphasizing the importance of relevance (see
§ A.5 for a case study). Performance is also sensitive to
visual cue accuracy, with significant drops when given ran-
domly generated incorrect coordinates. Given GeoGLIP’s
inherent uncertainty in detecting geometric primitives, in-
stead of directly prompting LLMs with primitive locations
(e.g., hard coordinates; see §A.4 for ablation), we leverage
global pyramid feature maps that encode essential infor-
mation for pixel-to-shape detection. These visual cues are
dynamically selected by the designed feature router, gener-
ating the so-called visual soft prompts.

We evaluate PRIMITIVE on several public mathematical
benchmarks, and experimental results demonstrate its su-
perior performance compared to models of the same or
even larger sizes. Specifically, our model outperforms other
7B-parameter models and achieves comparable results to
advanced 13B-parameter MLLMs, all while using a smaller
dataset for visual training (40K) and 60K + 110K for align-
ment and instruct learning, compared to the 588K + 834K
dataset used in MAVIS (Zhang et al., 2024b). These results
highlight the effectiveness of our approach and underscore
the importance of precise visual perception in mathematical
visual reasoning. Our contributions are as follows:

• We design GeoGLIP to directly tackle the root cause of
geometrical visual recognition errors in mathematical
reasoning tasks by enhancing the visual encoder to
perceive geometric primitives. Compared with large-
scale mathematical instruction datasets, the training
data generation process is simple yet highly efficient.

• We design a connector mechanism that effectively inte-
grates the relevant geometric visual information into
the language model, boosting performance without
altering the reasoning components.
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• GeoGLIP integrates seamlessly with diverse LLM
backbones without modifying their reasoning compo-
nents. Extensive experiments demonstrate that PRIMI-
TIVE outperforms existing models of comparable and
larger sizes on math benchmarks.

2. Related Work
Multimodal Large Language Models for Mathematics.
Large Language Models (LLMs) have garnered significant
attention, with much research focused on text-based mathe-
matical problem-solving, expanding mathematical datasets
and utilizing data augmentation (Yu et al., 2023; Yue et al.,
2023b; 2024; Luo et al., 2023). Meanwhile, advancements
in vision-language alignment models, such as CLIP (Rad-
ford et al., 2021) and BLIP (Li et al., 2022a), have signifi-
cantly progressed multimodal tasks, leading to the develop-
ment of Multimodal Large Language Models (MLLMs) (Bai
et al., 2023; Gemini Team, 2023; Ye et al., 2023a; Lin et al.,
2023; Gao et al., 2024; Hu et al., 2024). With the rise
of instruction-following LLMs, LLaVA (Liu et al., 2024b)
projects visual tokens into LLMs using a linear layer, while
MiniGPT-4 (Zhu et al., 2023) reduces computation by re-
sampling visual tokens into fixed-length tokens.

Building on these advancements, researchers have explore
visual mathematical problem-solving using MLLMs. Uni-
fied frameworks like UniGeo (Chen et al., 2022a), Uni-
Math (Liang et al., 2023), and GeomVerse (Kazemi et al.,
2023) expand multimodal mathematical datasets and im-
prove MLLM performance in geometry and diverse tasks.
Leveraging current datasets, G-LLaVA (Gao et al., 2023a)
constructed the Geo170K dataset, enhancing geometric
problem-solving and surpassing GPT-4V (OpenAI, 2023b)
on the MathVista benchmark (Lu et al., 2023) with only
7B parameters. GeoGPT4V (Cai et al., 2024a) further
improved model performance on MathVista and MathVi-
sion (Wang et al., 2024) by creating a high-quality geometric
problem dataset using GPT-4 and GPT-4V. MAVIS (Zhang
et al., 2024b) specializes in mathematical tasks with a three-
stage training pipeline including a math-specific vision en-
coder, while Math-LLaVA (Shi et al., 2024) introduced
MathV360K, a large-scale dataset with high-quality images
and diverse question-answer pairs to improve multimodal
mathematical reasoning. These math-specific MLLMs have
shown promising performance across several benchmark
datasets (Yue et al., 2023a; Zhang et al., 2024a).

Despite these advancements, MLLMs still face challenges
in multimodal mathematical tasks, particularly due to limi-
tations in visual perception (Sun et al., 2025). While CLIP
remains a common choice for many mathematical MLLMs
and is known to benefit multimodal tasks, its limitations
have also been identified. For instance, (Tong et al., 2024)
examines ‘CLIP-blind pairs’, revealing that visually distinct

images are often misinterpreted as similar, highlighting sys-
tematic shortcomings in CLIP’s visual perception. These
findings underscore the need for more specialized visual en-
coding methods tailored to mathematical contexts, as well
as more rigorous evaluations of MLLMs’ visual capabilities.

Open-Set Object Detection. Open-set object detection
identifies arbitrary classes using existing bounding box an-
notations and language generalization. Methods like OV-
DETR (Zareian et al., 2021), ViLD (Gu et al., 2022), Det-
CLIP (Yao et al., 2022), and Grounding DINO (Liu et al.,
2024d) integrate language models with detection frame-
works to improve category-specific detection. However,
these models often struggle with small-scale object detec-
tion due to insufficient fine-grained visual understanding.
GLIP (Li et al., 2022b) addresses this limitation by inte-
grating textual information with visual region features early
in the pipeline via a language-aware deep fusion mecha-
nism, enhancing region-level embeddings. GLIP improves
detection of smaller objects and demonstrates strong zero-
shot capabilities. While GLIP’s potential has been explored
in various fields (Surı́s et al., 2023; Peng et al., 2023; Li
et al., 2023), its application to mathematical reasoning, par-
ticularly in precise geometric entity description and fine-
grained detail identification in mathematical diagrams, re-
mains largely unexplored. Our work extends these con-
cepts, developing a geometric-grounded language-image
pre-training model (GeoGLIP) tailored for the unique de-
mands of visual mathematical reasoning.

Junction and Boundary Detection. Junction and bound-
ary detection are crucial in object recognition (Dollar et al.,
2006; Maire et al., 2008; Parida et al., 1998), and can play a
pivotal role in mathematical reasoning with geometric dia-
grams. Junctions represent points where lines intersect, and
boundaries delineate object shapes. Traditional methods like
Canny edge detection (Canny, 1986) and the Hough Trans-
form (Duda & Hart, 1972) struggle with complex diagrams
and fine-grained details required for accurate mathemati-
cal reasoning. Recent deep learning approaches, such as
junction detection networks (Huang et al., 2018), detect
key points by considering surrounding regions. Boundary
detection models like Field of Junctions (FoJ) (Verbin &
Zickler, 2021) use a bottom-up approach with ‘generalized
M-junctions’ to detect contours and junctions.

3. Methods
3.1. Overview

PRIMITIVE integrates visual understanding of geometric
primitives with textual analysis to enhance the model’s capa-
bility in solving mathematical problems involving visual el-
ements. As illustrated in Fig. 2, our pipeline builds upon the
LLaVA-1.5 (Liu et al., 2023b) architecture (refer to §A.1),
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Figure 2: The diagram presents the architecture of PRIMITIVE, highlighting key innovations in the geometric-grounded
vision encoder (GeoGLIP) and the feature router. Fine-grained visual understanding is achieved through a feature pyramid
comprising F 1∗

geo, F 3
geo, F 4

geo, F 5
geo (attention maps displayed on the left), capturing hierarchical visual features essential for

pixel-to-shape detection, respectively. The feature router dynamically adjusts the contribution of these features to generate
visual soft prompts. These prompts are then combined with CLIP visual tokens and textual inputs before being fed into the
language model (LLM), enabling accurate visual perception and enhanced mathematical reasoning.

introducing key innovations in the GeoGLIP and visual fea-
ture connector (additional implementations with DeepSeek-
Math-7B-Instruct (Shao et al., 2024), and Qwen2.5-Math-
7B-Instruct (Yang et al., 2024) are also provided). Feature
maps from different layers of the GeoGLIP encoder are
processed through the connector, where a feature router
optimally integrates the feature pyramid into visual soft
prompts by leveraging geometric information. These vi-
sual prompts are then fused with CLIP vision tokens, either
along the sequence dimension or the channel dimension,
and aligned with text embeddings via projection layers for
visual understanding. Since channel-wise fusion offers bet-
ter computational efficiency and comparable performance to
sequence-based fusion in our experiments, we set channel-
wise fusion as the default approach.

3.2. Geometric-Grounded Language-Image Pre-training

Our proposed GeoGLIP extends GLIP (Li et al., 2022b)
to perform shape grounding, boundary and junction detec-
tion tasks with no human annotations. The architecture of
GeoGLIP is shown in Fig. 8 of the Appendix. For shape
grounding, we follow the same pipeline structure as the
original GLIP model for bounding box detection (refer to
§A.2 for pipeline details) but train it on the mathematical
domain. The training datasets are discussed in Sec. 3.4.

The feature pyramids in the visual encoder capture different
levels of diagram information: higher-resolution features
are responsible for fine-grained pixel detection, while lower-
resolution features capture semantic information necessary
for shape detection. To further enhance fine-grained visual

perception, we use a cross-resolution mixture to integrate
low-resolution features into high-resolution ones, aiding
boundary and junction detection (as discussed below).

Boundary and junction detection. GLIP-T utilizes Swin-
Tiny as its backbone, producing a five-level feature pyramid
{F i

geo}i∈{1,2,3,4,5}, where each level’s resolution is progres-
sively downscaled by a factor of 2. To enrich the high-
resolution features with semantic information, we first pass
the high-resolution tensor F 2

geo (as the Query) and the low-
resolution tensor F 4

geo (as the Key and Value) to a Multi-
Head Self Attention (MHSA) module. The resulting feature
maps are upsampled by a factor of 2 and element-wise added
to F 1

geo, producing F 1∗

geo. The rationale behind this design
is to fully integrate the hierarchical object concepts at vari-
ous scales produced by the downsampling layers with the
high-resolution spatial information encoded by the initial
embedding layer. Taking F 1∗

geo as input, we then adopt two
decoders for boundary and junction detection (see Fig. 9).

The boundary decoder consists of two successive percep-
tion blocks, each comprising an upsampling operation using
nearest-neighbor interpolation, followed by a 3× 3 convo-
lution (Conv2d), batch normalization (BN2d), and ReLU
activation. The final output is resized to the original image
resolution using bilinear upsampling. A junction represents
the intersection of lines, determined by the intersection co-
ordinates and the orientations of the lines. Accordingly,
our junction decoder has two branches. The first branch
estimates the confidence of a junction falling within each
grid cell of the original image (using a 60× 60 grid) and its
relative position to the cell’s center coordinates. The second
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Figure 3: Process for generating synthetic data with box- and pixel-level annotations, used to tranin our GeoGLIP visual
encoder. ‘Text’ is a random string of alphanumeric characters with a length between 1 and 10, placed alongside other
geometric objects, i.e., circles and rectangles. Refer to Fig. 6 in the Appendix for the detailed flow chart.

branch predicts the orientations of the intersecting lines and
their confidence in falling into one of 15 evenly spaced bins
within each grid cell, where each bin covers 24 degrees,
ensuring the full 360-degree range is divided evenly (15
bins × 24 degrees = 360 degrees). In the junction decoder,
the input F 1∗

geo is first processed through a perception block,
where it is upsampled to a resolution of 60 × 60. Then,
two separate Conv2D units predict the cell confidence and
location, with output sizes of 60× 60× 1 and 60× 60× 2,
respectively. Additionally, two other Conv2D units predict
the bin confidence and orientation, both producing outputs
of 60× 60× 15. For further details, refer to training step 1
in §A.6.1 and the pipeline in Fig. 9 of the Appendix.

3.3. Connector Design

Selecting key visual cues enhances mathematical visual
problem-solving, while redundant information can hinder
it. To manage feature contributions, we propose a dynamic
feature router R, implemented as a Multi-Layer Perceptron
(MLP). The router takes spatially averaged pooled feature
maps from each level of GeoGLIP (F̄ i

geo ∈ R1×256)and the
CLIP feature map (F̄clip ∈ R1×1,024) as input, calculating
routing weights for each feature ({wi}i∈{1,2,3,4} ∈ R1×4).
This serves as a soft router (Puigcerver et al., 2024), with
alternative router types like sparse and constant routers dis-
cussed in Sec. 4. The soft router’s process is defined as:

F̂ i
geo = wi ·MLP ⊚ G ⊚ F i

geo, wi = σ ⊚R([F̄ i
geo, F̄clip]),

(1)
where F i

geo is resized (G) to match the spatial dimensions of
Fclip and processed by an MLP to align its channel dimen-
sions. The symbol ⊚ denotes the operation flow from right
to left. The scalar routing weights wi are then applied to
the respective features. Depending on the fusion strategy
with Fclip, the final F̂geo is generated either by element-wise
addition of the weighted features F̂geo =

∑4
i=1 F̂

i
geo, where

the weights wi are normalized (σ) using the function Soft-
Max (i.e.,

∑4
i=1 w

i = 1), or by channel-wise concatenation
of the weighted features, where the weights are processed
through a Sigmoid function.

Next, we explore strategies for fusing the soft prompts
F̂geo with Fclip, either sequence-wise or channel-wise. In
the sequence-wise method, additional tokens are added
after the CLIP tokens, extending the sequence length.

Seq.-wise Cha.-wise

P Projector �𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

PP P

In contrast, channel-
wise fusion combines
all visual tokens along
the channel dimension,
maintaining the same
sequence length. To
enable the subsequent
LLM to understand these visual components, the fused vi-
sual tokens are then fed into projection layers, which project
the visual modality into the LLM’s embedding space. Fol-
lowing the LLaVa-1.5 approach, we employ highly effec-
tive MLP projectors (linear layer + GELU + linear layer,
a.k.a., mlp2x gelu) for this task. In the sequence-wise ap-
proach, two separate projectors are applied for CLIP and soft
prompts, respectively. For example, the projection matrices
for the two linear layers, per projector, Φ1 and Φ2, have
sizes of 1, 024×4, 096 and 4, 096×4, 096, where 4, 096 cor-
responds to the text embedding dimension. In the channel-
wise approach, a single projector (Φ1 ∈ R5,120×4,096 and
Φ2 ∈ R4,096×4,096) is used to process the combined visual
tokens.

3.4. Training Samples for Visual-centric GeoGLIP

To enable GeoGLIP to perceive fine-grained mathematical
elements, we supervise its training using datasets with box-
and pixel-level annotations. The model is trained with a clas-
sical detection loss Ldet (Eq. 2), a junction loss Ljunc (Eq.
3), and a boundary loss Lbodr (the ℓ2 loss between predicted
heatmap values and ground truth values). The detection loss
Ldet is applied to the shape grounding task, using synthetic
images and FigureQA (Kahou et al., 2018) training data
annotated with bounding boxes and shape names (left panel
of Fig. 3) . These annotations are stored in a COCO-style
JSON file for seamless integration with standard GLIP. See
§A.3 for details on the synthetic data engine and dataset
statistics (Figures 5b and 5c).
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For boundary and junction detection tasks, we leveraged
off-the-shelf models (Huang et al., 2018; Verbin & Zickler,
2021) to extract junctions and boundaries as ground truth.
In addition to our synthetic samples, we incorporated the
public dataset Geo170K (Chen et al., 2021b) and generated
the corresponding ground truth. Specifically, junction labels
include intersection coordinates and line orientations. As
noted, each grid cell and bin are responsible for predicting
the coordinates and the orientations, and we have 60 × 60
cells&15 bins per cell. The labels are formatted as JPij =
(xij , cij , {θijk, cθijk}Kk=1), where xij denotes the junction
center coordinates, cij ∈ {0, 1} indicates the presence of a
junction, θijk is the angle of the k-th bin, and cθijk ∈ {0, 1}
is the indicator for that bin (right panel of Fig. 3).

4. Experiments
4.1. Experimental Setup

Implementation details. Our work follows a structured
three-stage training pipeline, including multi-task visual
perception training for GeoGLIP, visual-language alignment,
and mathematical instruction tuning for MLLMs (refer to
§A.6.1 for training & implementation details).

In summary, for multi-modal training, we freeze GeoGLIP
encoder in Stage 2 and train only the projection layers to
align diagram-language pairs. In Stage 3, we unfreeze both
projection layer and LLM for instruction-following tuning.
Our GeoGLIP together with a pre-trained CLIP ViT-L are
integrated into the language models LLAMA-2, DeepSeek-
Math-7B-Instruct, and Qwen2.5-Math-7B-Instruct. Images
are resized to 448× 448 pixels for CLIP and 1000× 1000
for GeoGLIP. We train PRIMITIVE for one epoch for cross-
modal alignment and two epochs for instruction tuning on
Geo170K (Gao et al., 2023a), evaluating on GeoQA. For
fair comparison, we train on MathV360k (Shi et al., 2024)
with a batch size of 16 for one epoch, evaluating on Math-
Vista (Lu et al., 2023) and MathVerse (Zhang et al., 2024a).

Evaluation benchmarks and metric. We evaluate PRIMI-
TIVE on three public benchmarks: MathVerse (Zhang et al.,
2024a), GeoQA (Gao et al., 2023a), and MathVista (Lu
et al., 2023). MathVerse focuses on multi-modal reasoning,
combining text and diagrams. GeoQA emphasizes geomet-
ric reasoning, and MathVista includes diverse tasks, e.g.,
IQTest, PaperQA, and IconQA, covering various problem-
solving domains. The predicted answers are compared to
ground truths to determine top-1 accuracy, following the
respective dataset protocols.

4.2. Main Results

Table 1 presents the comparison results on the testmini set of
MathVerse, where PRIMITIVE-7B achieves state-of-the-art
performance among all models using LLaMA2-7B as the

base LLM, with a 5.5% improvement and achieves com-
parable top-1 accuracy to the most powerful open-source
LLaVA-NeXT (8B) (Liu et al., 2024a) despite being smaller
in size (19.3% vs. 21.2%). When using DeepSeek-Math-7B-
Instruct (Shao et al., 2024) as the base LLM, our model’s
performance further increases by an additional +3.1%. No-
tably, even on the challenging MathVista benchmark, our
model outperforms the advanced SPHINX-Plus-13B (Gao
et al., 2024), and is on par with close-sourced GPT-4V (Ope-
nAI, 2023b), as shown in Table 2. These results highlight the
critical role of fine-grained visual perception in advancing
mathematical reasoning capabilities in MLLMs. Tables 3
and 4 report our model’s performance on plane geometry
and function analysis tasks, respectively. Compared to the
second-best model, MAVIS (Zhang et al., 2024b), which
is trained on an 8× larger mathematical visual instruction
dataset, PRIMITIVE with LLaMA2-7B demonstrates supe-
rior reasoning and generalization capabilities. As menon-
strated by these comparisons, constructing large instruction
datasets for training MLLMs is labor-intensive and costly,
whereas synthetic datasets for training visual-centric tasks
offer a more scalable and efficient alternative.

Baseline Comparison. The effectiveness of geometric
soft visual prompts is validated through a comparison be-
tween PRIMITIVE-7B and G-LLaVA across Tables 1-3.
Both models utilize the same LLM (LLaMA2-7B) and
instruction training dataset, ensuring a controlled evalua-
tion. PRIMITIVE-7B demonstrates clear improvements
with +7.7% on MathVerse +12.3% on MathVista, and +2.8
% on GeoQA. To further evaluate generalizability and effec-
tiveness across different LLMs, we extend the comparison
to two additional base models, e.g., Deepseek-Math-7B and
Qwen-Math-7B, on the MathVista benchmark, as shown in
Table 5b, where ‘(–)’ denotes variants without geometric
soft visual prompts.

The above variants are math-specific models trained
solely on mathematical text-diagram pairs (MathV360K
& Geo170K). In contrast, generic models like Qwen2.5-VL-
7B are pre-trained on large-scale multimodal instruction
data (2TB+), enabling broader reasoning capabilities. To
assess the effectiveness of our method in a generalist setting,
we perform an ablation study on Qwen2.5-VL-7B. Specifi-
cally, we fine-tune both the projector and LLM using LoRA
on MathV360K & Geo170K. Under this setup, integrating
soft visual prompts yields performance gains, whereas direct
fine-tuning slightly reduces performance (Table 5c).

4.3. Ablation Analysis

Hierarchical feature maps & feature router types. The
lowest-resolution feature maps F 5

geo (semantic-rich) assist
in shape grounding (Fig. 4a), while highest-resolution fea-
ture maps F 1

geo (geometric-rich) aid pixel-level boundary
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Table 1: Results on testmini set of MathVerse with the accuracy metric. The highest results for closed-source and
open-source MLLMs are highlighted in red and blue respectively.

Model Base
LLM

All
Text

Dominant
Text
Lite

Vision
Intensive

Vision
Dominant

Vision
Only

Acc Acc Acc Acc Acc Acc

Baselines

Random Chance - 12.4 12.4 12.4 12.4 12.4 12.4
Human - 67.7 71.2 70.9 61.4 68.3 66.7

LLMs

ChatGPT (Ouyang et al., 2022) - 26.1 33.3 18.9 - - -
GPT-4 (OpenAI, 2023a) - 33.6 46.5 46.5 - - -

Closed-source MLLMs

Qwen-VL-Plus (Bai et al., 2023) - 11.8 15.7 11.1 9.0 13.0 10.0
Gemini-Pro (Gemini Team, 2023) - 23.5 26.3 23.5 23.0 22.3 22.2
Qwen-VL-Max (Bai et al., 2023) - 25.3 30.7 26.1 24.1 24.1 21.4
GPT-4V (OpenAI, 2023b) - 39.4 54.7 41.4 34.9 34.4 31.6

Open-source MLLMs

LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 7.6 8.8 7.6 7.4 7.4 6.9
SPHINX-Plus (Gao et al., 2024) LLaMA2-13B 12.2 13.9 11.6 11.6 13.5 10.4
SPHINX-MoE (Gao et al., 2024) Mixtral-8×7B (Jiang et al., 2024) 15.0 22.2 16.4 14.8 12.6 9.1
G-LLaVA (Gao et al., 2023a) LLaMA2-7B 16.6 20.9 20.7 17.2 14.6 9.4
InternLM-XC2. (Dong et al., 2024) InternLM2-7B (Cai et al., 2024b) 16.5 22.3 17.0 15.7 16.4 11.0
ShareGPT4V (Chen et al., 2023b) Vicuna-13B 13.1 16.2 16.2 15.5 13.8 3.7
Math-LLaVA (Shi et al., 2024) Vicuna-13B 19.0 21.2 19.8 20.2 17.6 16.4
LLaVA-NeXT (Li et al., 2024) LLaMA3-8B (Meta, 2024) 19.3 24.9 20.9 20.8 16.1 13.8
PRIMITIVE-7B LLaMA2-7B 21.2 26.4 23.2 22.9 18.0 15.4
PRIMITIVE-Deepseek-7B Deepseek-math-7B (Shao et al., 2024) 24.3 31.1 26.9 25.6 19.3 17.5
PRIMITIVE-Qwen2.5-7B Qwen-math-7B (Academy, 2023) 28.5 36.9 34.1 31.4 25.1 15.2

Table 2: Results on testmini set of MathVista with the accuracy metric. The highest results for closed-source and
open-source MLLMs are highlighted.

Model Base
LLM

All FQA GPS MWP TQA VQA

Acc Acc Acc Acc Acc Acc

Baselines

Random Chance - 17.9 18.2 21.6 3.8 19.6 26.3
Human - 60.3 59.7 48.4 73.0 63.2 55.9

Closed-source MLLMs

Qwen-VL-Plus (Bai et al., 2023) - 43.3 54.6 33.5 31.2 48.1 51.4
GPT-4V (OpenAI, 2023b) - 49.9 43.1 50.5 57.5 65.2 38.0

Open-source MLLMs

mPLUG-Owl2 (Ye et al., 2023b) LLaMA-7B 22.2 22.7 23.6 10.2 27.2 27.9
MiniGPT-v2 (Chen et al., 2023a) LLaMA2-7B (Touvron et al., 2023) 23.1 18.6 26.0 13.4 30.4 30.2
G-LLaVA (Gao et al., 2023a) LLaMA2-7B 25.1 19.1 48.7 3.6 25.0 28.7
LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 27.7 23.8 22.7 18.9 43.0 30.2
SPHINX-Plus (Gao et al., 2024) LLaMA2-13B 36.7 54.6 16.4 23.1 41.8 43.0
PRIMITIVE-7B LLaMA2-7B 37.4 31.9 53.9 29.0 41.4 30.8
PRIMITIVE-Deepseek-7B Deepseek-math-7B (Shao et al., 2024) 48.7 37.6 63.0 48.7 48.1 35.8
PRIMITIVE-Qwen2.5-7B Qwen-math-7B (Academy, 2023) 50.4 38.7 67.3 58.1 51.2 31.8

detection but still fail to capture fine details (Fig. 4b). Our
cross-resolution mixture method, producing F 1∗

geo, achieves
superior fine-detail perception (Fig. 4c). See §A.4 for a
detailed analysis and more variants. We then examine three

types of routers: constant, sparse, and the default soft router
R (Tab. 6a). The constant router assigns equal weights
wi = 0.25 to each F i

geo, while the sparse router selects one
feature map of GeoGLIP with wi ∈ {0, 1}. As expected, in
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Table 3: Comparison of geometric numerical answer
accuracies (%) on GeoQA.

Model Accuracy (%)

Random Chance 25.0
Frequent Guesses 32.1

Top-10 Accuracy
NGS (Chen et al., 2021a) 56.9
DPE-GPS (Cao & Xiao, 2022) 62.7
SCA-GPS (Ning et al., 2023) 64.1

Top-1 Accuracy
Geoformer (Chen et al., 2022b) 46.8
UniMath (Liang et al., 2023) 50.0
G-LLaVA (Gao et al., 2023a) 64.2
MAVIS-7B (Zhang et al., 2024b) 66.7
PRIMITIVE-7B 67.0
PRIMITIVE-Deepseek-7B 72.8
PRIMITIVE-Qwen2.5-7B 79.6

Table 4: Comparison of model performance on Func-
tionQA of MathVista.

Model Accuracy (%)

Random Chance 22.5

Closed-source MLLMs
CoT GPT-4 (OpenAI, 2023a) 35.0
PoT GPT-4 (OpenAI, 2023a) 37.0
Multimodal Bard (Google, 2023) 45.5
GPT-4V (OpenAI, 2023b) 69.5

Open-source MLLMs
LLaVA (Liu et al., 2023b) 20.5
LLaMA-Adapter V2 (Gao et al., 2023b) 32.0
LLaVA-NeXT (Liu et al., 2024a) 33.7
SPHINX-MoE (Gao et al., 2024) 34.6
MAVIS-7B (Zhang et al., 2024b) 40.3
PRIMITIVE-7B 40.5
PRIMITIVE-Deepseek-7B 45.1
PRIMITIVE-Qwen2.5-7B 53.3

Table 5: Comparison of top-1 accuracies (%) on GeoQA w.r.t. different visual encoder variants (Table 5a). Table 5b shows
top-1 accuracy on testmini set of MathVista w.r.t. with (PRIMITIVE) or without our soft visual prompts (PRIMITIVE (-))
across different LLM base models. Table 5c shows the instantiation of our method on the Qwen2.5-VL-7B.

Type Encoders Accuracy (%)

Dual encoders GLIP+CLIP 65.3

Dual encoders GeoGLIP+CLIP 67.0

Single encoder GeoGLIP 66.1

Single encoder CLIP 64.2

(a)

Model Base LLM Acc (All)

G-LLaVA LLaMA2-7B 25.1
PRIMITIVE LLaMA2-7B 37.4

PRIMITIVE-Deepseek(-) DeepSeek-math-7B 42.3
PRIMITIVE-Deepseek DeepSeek-math-7B 48.7

PRIMITIVE-Qwen2.5(-) Qwen2.5-math-7B 44.0
PRIMITIVE-Qwen2.5 Qwen2.5-math-7B 50.4

(b)

Model
MathVista MathVerse

Acc(all) Acc(all)

Qwen2.5-VL-7B 68.2 49.2

PRIMITIVE-Qwen2.5-VL(-) 65.0 45.3

PRIMITIVE-Qwen2.5-VL 69.7 51.0

(c)

(a) (b) (c)

Figure 4: Hierarchical features capture different levels of
geometric information, dynamically weighted by the fea-
ture router. Semantic-rich feature F 5

geo effectively perceives
geometric shapes but lacks sufficient resolution for bound-
ary localization (Fig. 4a), while geometric-rich feature F 1

geo
enhances pixel-level boundary detection (Fig. 4b). The
cross-resolution feature F 1∗

geo captures fine-grained visual
cues (Fig. 4c), enhancing boundary detection.

the sparse router, F 1∗

geo with rich visual information, achieves
the highest accuracy (hierarchical attention maps in Fig. 2).
The soft router outperforms the others, demonstrating its
effectiveness for dynamic routing of multiple signals.

Necessity of CLIP & Impact of visual encoder variants.
We present a comprehensive analysis of visual encoder vari-

Table 6: Ablation results w.r.t. top-1 accuracy on GeoQA.
Tab. 6a shows results for feature router types; Results for
connector designs are shown in Fig. 6b.

Seq.-wise Cha.-wise

Constant R 63.9 62.8

Sparse R

F 1∗
geo → 64.2 → 64.9

F 3
geo → 61.1 → 61.8

F 4
geo → 61.9 → 62.3

F 5
geo → 61.9 → 61.6

Soft R 66.6 67.0

(a)

Shared param.

(b)

ants, with a summary of their impact shown in Table 5a. We
designed a variant that excludes the CLIP visual encoder,
relying solely on our soft prompts from the GeoGLIP vi-
sual encoder. This resulted in an accuracy drop from 67.0%
to 66.1%, though it still outperformed the CLIP encoder
alone (64.2%). These results demonstrate that while CLIP
lacks fine-grained perception, its general visual features still
benefit text-visual alignment in MLLM training.

Impact of math-specific fine-tuning for GeoGLIP. We
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leveraged the hierarchical pyramid features from the GLIP
visual encoder (fine-trained on natural image datasets, such
as MS COCO). The results are shown in Table 5a. To ensure
a fair comparison, we utilized feature maps with the same
resolution: the first layer with the largest resolution and
the last three layers with smaller resolutions. This resulted
in a performance drop from 67.0% to 65.3%, with only
a minimal +1.1% gain over G-LLaVA. The slight boost
likely stems from integrating high-resolution vision features,
which are not sensitive to geometric details, as GLIP fails
to detect basic geometric shapes (Fig. 10). We also fine-
tune DETR-based Grounding DINO (Liu et al., 2024c) as
GeoDINO, reducing top-1 accuracy on GeoQA from 67.0%
to 66.1% (vs. GeoGLIP). See §A.4 for analysis.

The robust of GeoGLIP. To assess the robustness of PRIM-
ITIVE in junction and boundary detection, we evaluated it
on a custom set of 500 mathematical diagrams with vari-
ous visual distortions. Standard metrics from natural image
tasks are adopted: junction detection is measured by recall
with a confidence threshold of 0.65, and boundary detection
by Intersection over Union (IoU), computed from binarized
maps (threshold=200) via pixel-wise logical AND/OR be-
tween predictions and ground truth. We applied the follow-
ing distortions: 1) Gaussian Noise: Added with a variance
of 0.3 to simulate noisy conditions; 2) Resolution change:
Reduced the shortest image dimension from 800 to 400 pix-
els; 3) Line style modification: Replaced solid lines with
dashed lines.

As shown in Table 7, GeoGLIP exhibits strong robustness
to resolution and line width variations, attributed to training-
time augmentations such as randomized line width, horizon-
tal flipping, center cropping, and ratio-preserving resizing.
The model is more sensitive to Gaussian noise, with a 4.6%
drop in junction recall and 3.1% in boundary IoU. Dashed
lines increase false positive junction detections, resulting in
a 3.2% drop in performance. These results highlight both
the strengths and limitations of the current system and moti-
vate further improvements in data generation and training
strategies to better handle diverse visual distortions.

Table 7: Robustness of GeoGLIP under visual distortions.

Distortion Type Recall % IoU %

None (w/o) 85.6 92.3
+ Gaussian Noise 81.0 89.2
+ Resolution Change 85.2 91.9
+ Line Width Variation 85.9 92.3
+ Dashed Lines 82.4 92.7

Impact of Detection Errors on Reasoning Accuracy. To
assess how detection errors affect downstream reasoning,
we introduced Gaussian noise (variance=0.3) to evaluation
images on the GeoQA benchmark. Table 8 reports top-
1 accuracy with or without distortion. Our three variants

Table 8: Effect of Gaussian noise on GeoQA top-1 accuracy.

Model Acc. (w/o) Acc. (w/ Gau. Noise)

PRIMITIVE 67.0 65.7
PRIMITIVE-Deepseek 72.8 71.0
PRIMITIVE-Qwen2.5 79.6 76.9
PRIMITIVE (-) 64.2 61.1
PRIMITIVE (-)-Deepseek 66.1 61.9
PRIMITIVE (-)-Qwen2.5 72.3 67.2

show modest drops of -1.3, -1.8, and -2.7, respectively. In
contrast, their CLIP-based counterparts (PRIMITIVE (-))
exhibited larger declines, indicating that CLIP encoders are
more sensitive to noise and propagate less reliable visual
signals to the reasoning module.

Connector designs. We examine the impact of the number
of projection experts. The default channel concatenation
setup utilizes a single expert with a mlp2x gelu. In the
multi-expert ablation, where two sequential mlp2x gelu
are applied, the top-1 accuracy drops from 66.98% to
64.32% (-2.66%), as shown in Fig.6b. For sequence-wise
fusion, which uses two separate projectors by default, we ab-
late shared parameters across these projectors, making them
act as a single-projection expert. Fig. 6b shows that the
multi-expert setup enhances sequence-wise performance
compared to shared parameters (a.k.a., a single expert),
boosting accuracy from 64.32% to 66.58% (+2.26%). We
hypothesize that the improvement in sequence-wise fusion
may stem from the added flexibility in handling hetero-
geneous inputs, whereas in channel-wise fusion, it could
introduce unnecessary complexity and redundancy.

More ablation studies. See §A.5 for case studies and
§A.6.2 for efficiency analysis.

5. Conclusion
We mitigate the limitations of current mathematical MLLMs
by directly tackling their deficiency in perceiving geometric
primitives, which are essential for visual mathematical rea-
soning. We proposed PRIMITIVE, a novel approach that
enhances mathematical visual reasoning by integrating a
geometry-aware visual encoder trained through multi-task
objectives. Our method avoids the labor-intensive process of
building large-scale mathematical visual instruction datasets,
offering a more efficient and scalable solution. By designing
a feature router that dynamically adjusts the contribution
of each visual cue, we generate soft prompts that guide
the language model toward better mathematical reasoning
without overwhelming it with redundant or irrelevant visual
data. Extensive experiments across three public mathemati-
cal benchmarks validate the effectiveness of PRIMITIVE.
We believe our work offers a new paradigm for solving
mathematical problems in a visual context, emphasizing the
critical role of fine-grained primitive visual grounding.
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Impact Statement
This paper presents a novel approach aimed at advancing
the field of Multimodal Large Language Models (MLLMs)
for mathematical reasoning tasks. Our work focuses on
enhancing fine-grained visual perception through the pro-
posed GeoGLIP framework, addressing a critical bottleneck
in current MLLMs’ performance. Our systematic analysis
and ‘apples-to-apples’ comparison provide critical insights
for future research, highlighting the need for more effective
integration of fine-grained visual understanding in MLLMs.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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A. Appendix
In this supplementary material, we illustrate the related background for our method (§ A.1), provide a detailed description
for GeoGLIP (Geometric-Grounded Language-Image Pre-training) pipeline (§ A.2), explain the process of synthetic data
generation, and outline the datasets used for training GeoGLIP (§ A.3), present more ablation studies of PRIMITIVE
(§ A.4), offer case studies that illustrate the practical application of our feature router mechanism and chain-of-thought
(CoT) reasoning results (§ A.5), demonstrate the training details/efficiency of PRIMITIVE (§ A.6) and examine our model’s
limitations while outlining potential directions for future work (§ A.7).

A.1. Background

Grounded Language-Image Pre-training (GLIP). GLIP (Li et al., 2022b) unifies detection and grounding by reformulating
object detection as phrase grounding. It accepts paired image-text inputs, where the text consists of candidate detection
categories, such as the 80 COCO object class names joined by ‘.’, i.e., person. bicycle. car. · · · toothbrush. In GLIP,
object classification logits in the box classifier (traditional object detection) are replaced with word-region alignment scores,
computed as the dot product between region visual features and phrase language features. GLIP operates as a two-stage
detector, composed of: 1) A Swin Transformer as a visual encoder, which extracts features FI of images XI and passes FI

to a Region Proposal Network (RPN) to generate region coordinates, and then corresponding region features OI are cropped
from FI ; 2) A pre-trained BERT model as the language encoder, to embed the input text XL into token embeddings PL; 3)
A language-aware deep fusion module FusIL that fuses OI and PL in the last few encoding layers. The final alignment
scores Sground, calculated as:

OI = RPN(Swin(XI)), PL = BERT(XL), O′
I , P

′
L = FusIL(OI , PL) Sground = O′

I , P
′⊤
L .

Large Language and Vision Assistant (LLaVA). We adopt (Large Language and Vision Assistant) LLaVA’s architecture
(Liu et al., 2023b) as the basis. LLaVA leverages the complementary strengths of pre-trained large language models and
visual encoders to perform multi-modal tasks, consisting of a large language model fϕ (Vicuna (Chiang et al., 2023)), a
vision encoder (CLIP, ViT-L/14) (Radford et al., 2021), and a projection layer. The projection layer projects the visual
embedding from the vision encoder into the text embedding space. LLaVA begins by processing an input image XI through
the CLIP visual encoder, which extracts visual features FI = CLIP(XI). To bridge the gap between the image features and
the language model’s word embedding space, LLaVA applies a simple linear projection matrix Φ, converting visual features
FI into visual tokens HI , which are compatible with the language embedding space:

HI = Φ · FI , with FI = CLIP(XI)

The visual tokens HI and language instruction tokens PL are passed into the language model for joint reasoning and
language generation as fϕ([HI , PL]).

A.2. GeoGLIP

The GeoGLIP pipeline is shown in Fig. 8, where the RPN and language-aware deep fusion details are omitted for clarity.
The GeoGLIP takes image-text paired as input: an image containing geometric shapes and a text listing the shape classes
(i.e., ‘circle. trapezoid. triangle. . . . line.’). These inputs are processed by the GeoGLIP encoder, which generates feature
pyramids at multiple scales (F 1

geo, F
2
geo, F

3
geo, F

4
geo, F

5
geo). Each feature pyramid contains different levels of detail, capturing

varying levels of geometric information. These features are then routed to three separate detectors: 1) Shape Detector:
identifies and localizes basic geometric shapes by generating bounding boxes for objects within the image; 2) Junction
Detector: detects junctions or intersections of geometric entities in the image; 3) Boundary Detector: identifies boundaries
of geometric shapes, refining their outlines for more accurate representation. The combination of the feature pyramids with
task-specific detectors allows GeoGLIP to perform fine-grained visual tasks in a mathematical context.

In Fig. 9, we illustrate detailed designs about junction and boundary detectors:

• Junction Detector: The detector processes the feature F 1∗

geo through a decoder, identifying the confidence of junction
points within each grid cell and their relative positions. It also predicts the orientations and confidence levels of
intersecting lines within the grid, split into multiple angular bins to cover the 360-degree range.
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Figure 5: Fig. 5a presents the statistics of top-1 accuracy after manually correcting the visual perception errors shown in
Fig.1a of the main paper, which initially caused incorrect answers to mathematical questions. Specifically, we restated the
output of GPT-4o w.r.t. each type of visual recognition error and calculated the accuracy of its answers. Overall, correcting
these visual perception errors led to an approximate 12% increase in accuracy on the corresponding mathematical questions.
Fig. 5b and Fig. 5c present the data statistics for synthetic math-specific datasets, including the distribution of geometric
shapes/classes and the number of objects per image. Each geometric object has a 70% probability of being assigned an
alphanumeric text, leading to a higher proportion of the ‘Text’ class.
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Figure 6: The flow diagram depicts the process for generating synthetic math-specific datasets, along with visualizations of
the generated data samples.

• Boundary Detector: It employs two successive perception blocks and upsampling operations to restore the feature map
to the original image resolution for boundary decoding.

Both detectors use multi-resolution feature maps from the GeoGLIP encoder, and specific design for each task is optimized
to capture relevant geometric properties, contributing to enhanced mathematical visual reasoning. Refer to § 3.2 of main
paper for more details.
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A.3. Training Dataset for GeoGLIP

Notably, our synthetic math-specific datasets differs from the traditional mathematical instruction datasets, and we do
not create or use any additional self-generated instruction datasets beyond the publicly available Geo170K (Gao et al.,
2023a) and MathV360K (Shi et al., 2024) datasets for MLLM training. Instead, our synthetic samples, annotated with
box/pixel-level details, are exclusively utilized to train the GeoGLIP. Compared to constructing mathematical instruction
datasets, our synthetic data generation process is significantly more efficient and resource-friendly. It does not require
manual labeling, as all data can be programmatically generated, e.g., through the Matplotlib Python library. In contrast,
constructing instruction datasets often relies on GPT-4o to create diverse prompts and necessitates human intervention,
making the process labor-intensive and costly.

Shape grounding. To generate synthetic datasets for object grounding tasks, we employ an automated Python-based
approach that efficiently creates images containing geometric shapes and text with associated bounding boxes, class labels,
and annotations. The geometric categories include shapes like circles, ellipses, rectangles, triangles, parallelograms,
trapezoids, and text. A variable number of basic geometric shapes and alphanumeric text elements are generated, with
font sizes dynamically adjusted according to text length. These shapes are randomly distributed within a 1000×1000 pixel
canvas, while text is positioned either inside or adjacent to the shapes with a 70% probability. Bounding boxes are then
calculated for each shape and text element, ensuring they remain within image bounds. Finally, shapes and text are assigned
class labels and coordinates, saved in a COCO-style JSON file for seamless integration with standard GLIP. Fig. 6 shows the
detailed flow diagram. Fig. 5b and Fig. Fig. 5c present the data statistics for synthetic math-specific datasets, including
the distribution of geometric shapes and the number of objects per image. In addition to 10,000 synthetic images, we
incorporated 20,672 images from the FigureQA training dataset with bounding box annotations for the shape grounding task.

Junction and boundary detection. We utilized off-the-shelf models (Huang et al., 2018; Verbin & Zickler, 2021) to extract
junctions and boundary as ground truth on both our synthetic dataset and public Geo170K training images (9,426 diagrams).
We then designed junction and boundary heads, parallel to the object detection head, with all tasks sharing the same visual
encoder. Through this multi-task learning approach, our GeoGLIP can perceive rich visual information in the mathematical
domain.

A.4. Quantitative analysis

GeoGLIP detection visualizations. Fig. 10 illustrates shape detection results on Geo170K, FigureQA and our synthetic
test dataset, while Fig. 11 presents the results for boundary and junction detection. Our detector successfully localizes basic
geometric shapes and junction points while providing pixel-level boundary results in most cases. However, in complex
scenarios such as overcrowded or occluded settings, the detector may struggle. Moreover, in junction detection, some failure
cases involve numerous detections but with low accuracy. This issue arises due to noisy ground truth during the training
phase, as manually labeling junctions is tedious and time-consuming. To address this, we use an off-the-shelf model (Huang
et al., 2018) to generate ground-truth labels for junction detection. However, since this model was trained on images of
man-made environments, it faces an out-of-domain challenge when applied to geometric objects, resulting in labels that are
not fully accurate. Improving the accuracy of these labels would significantly enhance junction detection performance.

Effect of cross-resolution mixture. We designed four additional variants to demonstrate the effectiveness of our cross-
resolution mixture approach. Recall that we have five feature levels {F i

geo}i∈{1,2,3,4,5} with different resolutions, each
with different resolutions, ranging from geometric-rich to semantic-rich information. The cross-resolution mixture aims to
generate the input F 1∗

geo for the boundary and junction decoders, with the expectation that F 1∗

geo captures more informative
visual information to benefit boundary and junction detection tasks.

Using boundary detection as an example, we first used the semantic-rich F 5
geo as input to the boundary decoder. As shown

in Fig. 7a, the decoder fails to generate clear boundaries, resulting in a blurred output. Next, we used the geometric-rich
F 1

geo, which performs better (Fig. 7b), showing some visible boundaries. To further enhance the results, we applied
a cross-resolution attention mechanism (classic Multi-Head Self-Attention, MHSA) between F 2

geo and F 4
geo, improving

boundary detection as seen in Fig. 7d. Since boundary detection benefits from geometric-rich information, we upsampled
the cross-correlated features by a factor of 2 and added them element-wise with F 1

geo, producing the best visualization results,
especially for finer details (Fig. 7e). Finally, to assess the importance of cross-resolution attention, we replaced it with
element-wise addition. As expected, the boundaries became blurred (Fig. 7c) due to the reduced receptive field. Replacing
addition with the attention mechanism yields similar boundary results but decreases shape grounding performance from
95.3% to 92.4% mAP on our synthetic test set. Therefore, our mixture process integrates both cross-resolution attention and
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Figure 7: Qualitative boundary visualization results. Semantic-rich features with the lowest resolution lead to blurred
boundaries (Fig. 7a), while geometric-rich features with the highest resolution improve clarity (Fig. 7b). The cross-resolution
mixture yields the best results (Fig. 7e), compared with using either element-wise addition (Fig. 7c) or MHSA alone (Fig. 7d).
Zoom in for best view.

(a) (b) (c) (d) (e)

addition operations.

Necessity of GLIP architecture. GLIP is an open-set object detector capable of identifying arbitrary classes by matching
visual features with corresponding language embeddings. Unlike traditional object detectors with learnable classification
weights, GLIP’s multi-modal architecture offers greater generality to novel objects and surpasses previous traditional
object detectors. To evaluate alternatives, we replaced GLIP with another open-set object detector, Grounding DINO (Liu
et al., 2024c), and fine-tuned it on our math-specific dataset. Experimentally, we found that Grounding DINO struggles to
effectively detect small-scale geometric primitives. We hypothesize that this limitation stems from architectural differences.
Grounding DINO, as a DETR-based detector, relies exclusively on the last-layer features of its visual encoder for cross-
attention with query embeddings during final detection. In contrast, GLIP, as a Faster-RCNN-based detector, leverages
multi-scale features for both bounding box regression and classification, enabling superior small-object detection capabilities.
When integrating the fine-tuned Grounding DINO encoder into our pipeline, the top-1 accuracy on the GeoQA benchmark
dropped from 67.0% to 66.1%, further supporting GLIP’s advantages for our tasks.

Instructing LLMs with coordinates of primitives. We have conducted experiments for directly providing geometric-
relevant information to the model. Since no existing mathematical instruction datasets include detailed location information
for geometric objects (e.g., bounding box coordinates or junction points), we generated this data by inferring Geo170K
training images using GeoGLIP to extract the relevant location information. This information was appended to the special
token ⟨image⟩ as supplementary descriptions for each image, using instructions such as: “there is a bounding box at
⟨x, y, w, h⟩ or there is a junction at ⟨x, y⟩ with lines directions ⟨θ⟩”. When tested on the Geo170K test set of the GeoQA
benchmark, the top-1 accuracy dropped from 67.0% to 63.2%. This result is close to the variant of our constant router 62.8%
(assigning equal weights to all features in Table 6a). This performance drop is consistent with our systematic analysis in Fig.
1b and Fig. 1c: Inaccurate instructions would harm the performance, and relevance is key—excessive visual cues interfere
with problem-solving.

A.5. Case studies

Selective visual information helps reasoning. Fig. 12 showcases GPT-4o’s responses based on additional visual information
from geometric primitives, alongside the question, choices, and diagram ⟨image⟩ as inputs. We provide hard-coded
coordinates for bounding boxes and junctions using instructions such as: “there is a bounding box at ⟨x, y, w, h⟩ (the
normalized center point and width/height)” with shape names ⟨geometric shape⟩ (if shape information is provided), or
”candidate junction point ⟨x, y⟩. For boundary information, we use “⟨boundary image⟩ is the boundary sketch related to
the main diagram” as instructions. The right side visualizes the provided visual cues in the original geometric diagram
for clarity, though these images are not input into GPT-4o. Fig. 12 highlights the importance of providing relevant visual
prompts for each case; otherwise, redundant information may interfere with the solving process. For example, in case 1,
bounding box coordinates per object can be distracting when solving a perimeter question compared to junction locations. In
contrast, pixel-level visual information (boundary) aids the model in perceiving complex geometric shapes, such as polygons
and circles, and is beneficial for calculating overlap regions, while relying on junctions may lead to biased answers. In
practice, selecting supporting information for each case is labor-intensive and requires the involvement of math experts.
We address this challenge by using the feature router, which automatically learns which fine-grained visual information is
important during the training stage.
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Response comparison. Fig. 13 presents case studies comparing our PRIMITIVE-Deepseek-7B with GPT-4o on the
MathVerse testmini set. These examples highlight the strengths of PRIMITIVE-Deepseek-7B in providing precise geometric
visual information, enabling clear and logically grounded mathematical reasoning in its responses. For instance, our model
demonstrates sensitivity to the positions of individual points/junctions, effectively capturing the relationships between
different lines. As shown in Fig. 13a, it successfully identifies angle 1 and its relationship with angle BEF, enabling correct
reasoning and answers. In contrast, GPT-4o fails to recognize these relationships, leading to flawed reasoning and incorrect
answers.

Fig. 14 and Fig. 15 present a Chain-of-Thought (CoT) comparison among PRIMITIVE-Deepseek-7B, GPT-4V, and
InternVL2. The results clearly demonstrate that providing geometry-aware visual cues significantly aids LLMs in under-
standing the relationships between geometric elements, thereby enhancing the entire reasoning process. In contrast, the other
two MLLMs fail to achieve this level of understanding, leading to incorrect reasoning and outcomes. This demonstrates that
without accurately recognizing visual elements, even strong LLMs struggle with reasoning tasks. As shown in GPT-4V’s
output, its initial misidentification of mathematical elements results in an incorrect Chain-of-Thought (CoT) response.

A.6. Mathematical Visual Training and Efficiency

A.6.1. TRAINING DETAILS

Our work follows a structured three-stage training pipeline, including multi-task visual perception training for GeoGLIP,
visual-language alignment, and mathematical instruction tuning for MLLMs.

Stage 1: To enable the visual encoder in GeoGLIP to ground geometric entities in mathematical diagrams, we utilize
synthetic and FigureQA training images annotated with bounding boxes for the grounded pre-training. Specifically, we
fine-tune a pre-trained GLIP-T model (with Swin-Tiny as the backbone), adhering to the GLIP detection loss defined as:

Ldet = Lrpn + Lcls + Lreg (2)

where Lrpn refines the region proposals generated by the RPN, Lcls applies binary sigmoid loss to alignment scores, and
Lreg uses smooth ℓ1 loss for bounding box regression.

Following the process in (Huang et al., 2018), for the junction detection task, the input image is divided into mesh grids,
with each grid cell responsible for detecting a junction if its center falls within the cell. Each ij-th cell predicts a confidence
score cij , indicating the likelihood of a junction in that cell. Since a junction represents the intersection of lines, the number
of predictions per cell varies depending on the number of lines intersecting. To capture orientations, each cell is further
divided into K equal bins (default K = 15), with each bin spanning 24 degrees to cover the full 360-degree range. Each
junction is represented as JPij = (xij , cij , {θijk, cθijk}Kk=1), where xij denotes the junction center coordinates, cij ∈ [0, 1]

is the confidence score for the presence of a junction, θijk is the angle of the k-th bin, and cθijk is the confidence score for
that bin.

The loss function for junction detection consists of four terms. Given a set of ground truth junctions JP = jp1, . . . , jpN in
an image, the loss function is formulated as:

Ljunc = λloc · (Lc
loc + Lb

loc) + λconf · (Lb
conf + Lb

conf ). (3)

The default values for the weights in Eq. 3 are λloc = 0.1 and λconf = 1, where the superscripts c and b refer to cell and
bin, respectively. Specifically, we apply the binary cross-entropy loss for both Lc

conf and Lb
conf , and use ℓ2 loss to measure

the relative position of the predictions against the ground truth for Lc
loc and Lb

loc. Refer to (Huang et al., 2018) for more
details. In the boundary detection task, Lbodr minimizes the ℓ2 loss between the estimated heatmap values and the ground
truth values.

Our final loss function for multi-task visual perception training is defined as:

Lvis = Ldet + Ljunc + 5 · Lbodr, (4)

where the weight for Lbodr is set to 5, while the weights for Ldet and Ljunc are kept at 1.

Stage 2 & 3: During both phases, we freeze the GeoGLIP encoder. In Stage 2, we train only the projection layers to
align diagram-language pairs. In Stage 3, we unfreeze both the projection layer and the LLM to perform comprehensive
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instruction-following tuning, culminating in PRIMITIVE-7B. For these two stages, we employ the conventional LLaVA
loss, formulated as:

Lllm = −
L∑

t=1

log p
[
St
tar|fϕ(s

(<t)
tar , Sin, I)

]
, (5)

where fϕ denotes the model parameterized by ϕ, I corresponds to the figure, Star and Sin represent the target and input
sentences, respectively; St

tar refers to the t-th token of the target output, and L denotes the sequence length.

Training is conducted on 8 A100 GPUs with a batch size of 32. The base learning rate is set to 1× 10−5 for the language
backbone and 1 × 10−4 for all other parameters, and it is decreased by a factor of 0.1 at 67% and 89% of the total
training steps. We employ the same data augmentation strategies as GLIP, including random horizontal flipping and aspect
ratio-preserving resizing with a minimum size of 800 pixels.

For multi-modal training, we freeze the GeoGLIP encoder. In Stage 2, we train only the projection layers to align
diagram-language pairs. In Stage 3, we unfreeze both the projection layer and the LLM to perform comprehensive
instruction-following tuning. Our GeoGLIP together with a pre-trained vision transformer (CLIP ViT-L)(Radford et al.,
2021) are integrated into the language models LLAMA-2(Touvron et al., 2023), DeepSeek-Math-7B-Instruct (Shao et al.,
2024), and Qwen2.5-Math-7B-Instruct (Yang et al., 2024), respectively. Images are padded to squares and resized to
448× 448 pixels with a white background for processing by CLIP, and to 1000× 1000 pixels for processing by GeoGLIP.
We train PRIMITIVE for one epoch for cross-modal alignment and two epochs for instruction tuning on the Geo170K(Gao
et al., 2023a) dataset, evaluating the model on GeoQA (Gao et al., 2023a). For fair comparison, we train our model on
MathV360k (Shi et al., 2024) using a batch size of 16 for one epoch with an initial learning rate of 3× 10−5, evaluating on
MathVista (Lu et al., 2023) and the minitest set of MathVerse (Zhang et al., 2024a).

A.6.2. EFFICIENCY

PRIMITIVE-7B introduces minimal computational overhead, as detailed in the below comparison Table 9. The GeoGLIP
and Connector contribute an additional parameter size of 32.65MB and 8.73MB, and the Projectors accounting for 16.13MB.
The inference time per sample increases slightly, from 19.80s to 20.04s (+0.24s). Training is conducted on 8 A100 GPUs
with a batch size of 128 using the MathV360K dataset, which includes 40K images and 360K question-answer pairs. The
total training time shows only a marginal increase, from 10.35h to 10.54h (+0.19h), demonstrating scalability for larger
models and datasets.

Table 9: Comparison of computational overhead and parameter size for G-LLaVA and PRIMITIVE.

#Parameter size GeoGLIP Connector Projectors Time (inference/sample) Time (training/MathV360K)
G-LLaVA - - 16.52MB 19.80s 10.35h

PRIMITIVE 32.65MB 8.73MB 31.20MB 20.04s 10.54h

A.7. Limitations and Further research

Our research aims to offer a new perspective on solving mathematical visual reasoning problems by first training a vision-
centric model to provide visual prompts for LLMs, rather than focusing on creating large visual instruction fine-tuning
datasets for MLLMs. Despite the effectiveness of our approach, there are several limitations to consider. First, the reliance
on synthetic data for visual tasks may not fully capture the complexity of real-world geometric problems, potentially limiting
generalization to more diverse datasets. Additionally, while the feature router provides automatic selection of relevant visual
cues, it may not always perfectly align with human intuition or domain-specific knowledge, particularly in cases requiring
more intricate reasoning.

For future research, one promising direction is to extend our method by incorporating real-world mathematical datasets to
improve generalization and robustness. However, this will require some human labeling processes, as existing mathematical
datasets lack detailed box or pixel-level annotations. Incorporating such annotations would provide a more accurate and
fine-grained understanding of visual elements in mathematical problems, allowing models to better generalize to real-world
scenarios. Developing efficient semi-automated labeling techniques or combining expert annotations with synthetic data
could also help reduce the manual effort required. With improved detection performance, we may explore more advanced
methods for designing soft prompts, such as object-level prompts/visual tokens. Further refinement of the feature router,
such as combining it with interpretable methods to better understand its decision-making process, could also enhance
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<text>
circle. trapezoid. 
triangle. … line. 

<image> Encoder (GeoGLIP)

𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒1

𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒2

𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒3

𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒4

𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒5

Deep Fusion

BERT

Shape Detector Junction Detector Boundary Detector

Figure 8: GeoGLIP pipeline. A geometric multi-task detector. GeoGLIP simultaneously detects multiple tasks, including
basic geometric shapes, junctions, and boundaries, utilizing multi-scale features to capture fine-grained geometric entities.

the model’s performance. By making the feature router more transparent, we could gain insights into how it selects and
prioritizes visual cues, allowing for fine-tuning that aligns better with human intuition and task-specific requirements. This,
in turn, would allow for more informed adjustments, leading to better generalization and accuracy in complex mathematical
problem-solving scenarios.
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Figure 9: Designs for the junction and boundary detectors: We first use an attention mechanism (MHSA) to fuse two-scale
features, followed by upsampling and addition with the highest resolution features, resulting in F 1∗

geo. Separate perception
blocks are then applied for junction and boundary detection. For junction detection, the detector provides cell confidence
(C), cell location (X), bin confidence (Cθ), and bin orientation (θ). Green check-marked features indicate candidate features
for soft prompts, with D,W,H representing channel dim., and spatial resolution (width&height).
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No labels

(a) (b) (c)

Figure 10: The visualization of shape detection on FigrueQA, Geo170K and our synthetic test dataset. The left panel (a)
displays accurate shape detection results generated by GeoGLIP where even small-scale x-ticks are correctly recognized
(zoom in 280% for details). GeoGLIP successfully classifies bars in histograms and rectangular shapes in geometric
diagrams. The middle panel (b) represents failure cases, with all errors highlighted using a magnifying glass. For instance, in
the first row figure, the cyan line is misrecognized, and three crowded lines are incorrectly grouped within a single bounding
box. The results in the last panel (c) are generated by the original GLIP, trained on natural images. It is evident that most
geometric shapes are misclassified as lines or text, and GLIP struggles to recognize small-scale objects, where GeoGLIP
excels.

(a) (b)
Figure 11: The visualization of junction and boundary detection results. The left panel (a) illustrates accurate detections,
while the right panel (b) represents failure cases. Junction detection failures frequently exhibit redundant detections.
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Question: Find the perimeter of the figure. Round to the nearest tenth 
if necessary.
Choices: (A) 20 (B) 21 (C) 24 (D) 25

Case 1: Junction Point Scenario

GPT-4o: (D) X 
GPT-4o with Junction Point: (C) ✓ 

Question: The segment is tangent to the circle. Find x. Round to 
the nearest tenth.
Choices: (A) 7.5 (B) 8.5 (C) 9.2 (D) 13.0

Case 2: Bounding Box Scenario

GPT-4o: (A) X 
GPT-4o with Bounding Box: (B) ✓ 

Question: Circle J has a radius of 10 units, Circle K has a radius 
of 8 units, and BC = 5.4 units. Find CK.
Choices: (A) 2.4 (B) 2.6 (C) 2.8 (D) 4

Case 3: Bounding Box & Shape Scenario

GPT-4o: (C) X 
GPT-4o with Bounding Box & Shape: (B) ✓ 

Question: Find the area of the shaded region formed by the circle 
and regular polygon. Round to the nearest tenth.
Choices: (A) 76.4 (B) 237.8 (C) 266.6 (D) 314.2

Case 4: Boundary Scenario

GPT-4o: (C) X 
GPT-4o with Boundary: (A) ✓ 

GPT-4o with Bounding Box: (D) X 

GPT-4o with Bounding Box & Shape: (D) X 

GPT-4o with Boundary: (A) X 

GPT-4o with Junction Point: (B) X 

X

X

X

X

✓

✓

✓

✓

Required Information Distracting Information

Required Information

Required Information

Required Information

Distracting Information

Distracting Information

Distracting Information

Figure 12: A case study on the Geo170K dataset (Gao et al., 2023a) highlights the importance of providing relevant visual
information for each math visual question answer. Zoom in for best view.

Question:
As shown in the figure, AB parallel CD,
straight line EF intersects AB at point E,
intersects CD at point F, EG bisects angle
BEF, and it intersects CD at point G,
angle 1 = 50.0, then angle 2 is equal to?

Choices:
A: 50° B: 60° C: 65° D: 90°

Since AB is parallel to CD, we have 
the relationships: ∠1+∠ BEF = 180°, 
∠1 = 50°, ∠BEF = 130°. Also, since 
EG bisects ∠BEF, we have ∠BEG = 
1/2 ∠BEF = 65°. Therefore, ∠2 = 
∠BEG = 65°. Thus, the answer is C

Since AB is parallel to CD and EF is a
transversal, the alternate interior angles
are equal. Thus, ∠BEF=∠EFG=50°. EG 
bisects ∠BEF, which means ∠BEF= 
∠GEF=25°. Because ∠EFG and ∠EGF
are supplementary (they form a linear
pair along EG), ∠EGF=50°-25°=25°.
Finally, ∠2=∠GEF+∠EGF=50°. Thus,
the answer is A

(a)

Question:
As shown in the figure, given that
angle P = 50.0, then the size of
angle ACB is?

Choices:
A: 65° B: 60° C: 55° D: 50°

Connect OA and OB. Since PA and PB
is a tangent to circle O, we have ∠OAP
= ∠ OBP = 90°. Also, ∠ P = 50°.
Therefore, ∠AOB = 360° - 90° - 90° -
50° = 130°. Thus, ∠ACB = 1/2 ∠AOB =
65°. Therefore, the answer is A

Using the tangent-secant theorem, the 
angle between a tangent and a chord 
(∠APB) equals the angle subtended by 
the chord in the alternate segment 
(∠ACB). Given ∠APB=50°, it follows 
that ∠ACB=50°. Thus, the size of 
∠ACB is 50°, and the correct option is 
D.

(b)

Figure 13: Response comparison of our PRIMITIVE-Deepseek-7B and GPT-4o. Refer to the main text for detailed analysis.
Zoom in for best view.
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Question:
If the ratio of the length of
AB to the length of EB is 5:1,
and the area of the triangle
BED is 5𝑎𝑎2 + 10, what is the
area of triangle ABC?
Choices:
A: 5𝑎𝑎2 + 10   
B: 25𝑎𝑎2 + 50   
C: 25𝑎𝑎2 + 100   
D: 𝟏𝟏𝟏𝟏𝟓𝟓𝒂𝒂𝟏𝟏 + 𝟏𝟏𝟓𝟓𝟐𝟐
E: Cannot be determined

PRIMITIVE

Since AB:EB=5:1, we have
AB=5 × EB

Therefore, the ratio of the areas of
∆ABC to ∆BED is equal to the
square of the ratio of AB to EB,
which is (AB/EB)²=25

The area of ∆ABC is 25 ×
5𝑎𝑎2 + 10 = 125 × 𝑎𝑎2 + 250

Therefore, the answer is D 

GPT-4V

The ratio of the length of AB to 
EB is given as 5:1. This means 
AB = 5 × EB

The area of  ∆ A B C is 5 ×
5𝑎𝑎2 + 10 = 25 × 𝑎𝑎2 + 50

Therefore, the answer is B

The ∆ABC and ∆EBC share the 
same height from point C

∠A is congruent to ∠BED and ∠C 
is congruent to ∠D, so we can 
conclude that ∆ABC is similar to 
∆BED

Thus, the ratio of their areas is the 
same as the ratio of their bases 
(AB to EB), which is 5:1

InternVL2

Since AB:EB=5:1, we have
AB=5 × EB

E is a point on AB, and ED is 
parallel to AC. When a line is 
drawn parallel to one side of a 
triangle and intersects the other 
two sides, it forms a similar 
triangle. Therefore, ∆ ABC is 
similar to ∆BED

Since AB:EB=5:1, the ratio of 
areas will be 5²:1=25:1

The area of ∆ABC is �
�

5𝑎𝑎2 +
10 × 25 = 125 × 𝑎𝑎2 + 250
Therefore, the answer is D

Figure 14: Chain-of-Thought (CoT) response comparison of our PRIMITIVE-Deepseek-7B, GPT-4V and InternVL2. Refer
to the main text for detailed analysis. Zoom in for best view.

Question:
As shown in the figure, when 
angle OBC = 40.0, the degree 
of angle A is?

Choices:
A: 50° B: 55° C: 60 D: 65°

PRIMITIVE GPT-4V

The image shows a circle with a 
central angle ∠OBC, and we 
know that the measure of a 
central angle is equal to the 
measure of the arc it intercepts. 
So, the arc BC would also 
measure 40 degrees.

InternVL2

The figure shows a circle with 
center O, and points A, B, and C 
on the circumference. Angle 
OBC is given as 40 degrees.

In a circle, the angle subtended by 
an arc at the center is twice the 
angle subtended at any point on 
the circumference on the same 
side of the arc. This is known as 
the Inscribed Angle Theorem

∠OBC is 40 degrees. ∠A is the 
angle subtended by the arc BC at 
point A. Based on the Inscribed 
Angle Theorem, ∠A is half of 
∠OBC= 40°/ 2 = 20°. The given 
choices do not include 20°

As shown in the figure, OB = 
OC, ∠ OBC = 40°, therefore 
∠OCB = ∠OBC = 40°

∠ COB = 180° - 40° - 40° = 100°

Therefore  ∠A = 1/2 ∠COB = 50°. 
So the answer is A

So, if the arc BC is 40 degrees, 
then angle A, which is an 
inscribed angle intercepting that 
arc, would be half of that

Therefore  ∠A = 1/2 ∠OCB = 20°. 
However, this result does not seem 
to match any of the given options

Figure 15: Chain-of-Thought (CoT) response comparison of our PRIMITIVE-Deepseek-7B, GPT-4V and InternVL2. Refer
to the main text for detailed analysis. Zoom in for best view.
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