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In this article, we develop a so-called profile likelihood ratio test (PLRT) based
on the estimated error density for the multiple linear regression model. Unlike
the existing likelihood ratio test (LRT), our proposed PLRT does not require
any specification on the error distribution. The asymptotic properties are devel-
oped and the Wilks phenomenon is studied. Simulation studies are conducted
to examine the performance of the PLRT. It is observed that our proposed PLRT
generally outperforms the existing LRT, empirical likelihood ratio test and the
weighted profile likelihood ratio test in sense that (i) its type I error rates are
closer to the prespecified nominal level; (ii) it generally has higher powers; (iii)
it performs satisfactorily when moments of the error do not exist (eg, Cauchy
distribution); and (iv) it has higher probability of correctly selecting the cor-
rect model in the multiple testing problem. A mammalian eye gene expression
dataset and a concrete compressive strength dataset are analyzed to illustrate
our methodologies.
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1 INTRODUCTION

The likelihood ratio test (LRT) has been widely adopted for assessing the goodness of fit of two competing statistical mod-
els based on the ratio of their likelihoods and its large sample distribution enjoys the Wilks theorem.1,2 It is noticed that
the LRT for multiple linear regression model assumes that the common density function of the error terms is known (eg,
normally distributed), which is, however, seldom satisfied in practical applications. To relax the distributional assumption
of the LRT, Peng et al3 proposed a test based on an empirical likelihood objective function for the hypothesis testing
problem of parameters. However, their method requires to split the sample into two parts and assumes the existence of
the second or higher order moments of the error terms.

The profile likelihood approach is another widely used method for estimating regression parameters in semipara-
metric models.4-13 Its basic idea is to replace the unknown density function by its nonparametric (kernel) estimate for
the given parametric components. That is, we treat the error density as an unknown nonparametric function and esti-
mate it via kernel smoothing. Based on the estimated error density, we propose the profile likelihood ratio test (PLRT)
for the hypothesis testing problem of parameters of interest in the multiple linear regression models. Our proposed PLRT
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performs well without the specification of the density function of the error term. It performs satisfactorily even when the
second or higher order moments of the error term do not exist (eg, Cauchy distribution).

The rest of this article is organized as follows. In Section 2, we introduce the PLRT. The Wilks theorems for simple and
composite null hypotheses will be shown and the power functions will be examined. We conduct simulation studies to
assess the performance of the proposed PLRT in Section 3. We illustrate the PLRT via two real datasets about mammalian
eye gene expression and concrete strength in Section 4. Some concluding remarks will be presented in Section 5. All
proofs and some simulation results are deferred to Supplementary Materials.

2 THE PLRT

2.1 The simple null hypotheses

Define Xi = (xi1, … , xip)T . Suppose (yi,Xi)n
i=1 are n independent samples from the following linear regression models:

yi = XT
i 𝛽 + 𝜖i, i = 1, … ,n,

where 𝛽 = (𝛽1, … , 𝛽p)T . We assume 0<Var(X1)<∞ and Xi is independent of 𝜖i(i = 1, … ,n). Denote 𝜖i(𝛽) = yi −∑p
j=1 xij𝛽j. Let f𝜖(𝛽) and f 0 be the probability density function of 𝜖1(𝛽) and the true density of 𝜖1, respectively. We have

f𝜖(𝛽∗) = f0.
Consider the following two-sided hypotheses:

H0 ∶ 𝛽 = 𝛽∗ vs H1 ∶ 𝛽 ≠ 𝛽∗, (1)

where 𝛽∗ = (𝛽∗1 , … , 𝛽∗p )T . Let y= (y1, … , yn) and X̃ = {Xi, i = 1, … ,n}. Ideally, if we know the true density function of
𝜖 (ie, f0(𝜖)), we can use the following LRT for testing the above hypotheses

𝜆(y, X̃) =
∏n

i=1 f0{𝜖i(𝛽)}∏n
i=1 f0{𝜖i(𝛽∗)}

,

where 𝛽 is the maximum likelihood estimate of 𝛽 based on the true density function. Under H0, 2 log 𝜆(y, X̃) con-
verges in distribution to the chi-square distribution with degrees of freedom p as n→∞, which is the well-known Wilks
phenomenon/theorem. At significance level 𝛼 with 0 < 𝛼 < 1, we reject H0 if 2 log 𝜆(y, X̃) ≥ 𝜒2

1−𝛼(p).
In practice, ones seldom know the true density of 𝜖. Given 𝛽, the density function of 𝜖(𝛽) can be readily estimated by

f̂ 𝜖(𝛽)(−i)(u) =
1

nh
∑
l≠i

K
{

𝜖l(𝛽) − u
h

}
,

where K(⋅) is a scalar kernel function. The bandwidth parameter h can be selected by the following
maximum-estimated-likelihood cross-validation method

ĥ = arg max
h>0

n∑
i=1

log

{
1

nh
∑
k≠i

K
(
𝜖k(𝛽) − 𝜖i(𝛽)

h

)}
,

where 𝛽 is any consistent estimate of 𝛽.
The PLRT statistic for hypotheses (1) can then be defined by

𝜆P(y, X̃) =

∏n
i=1 f̂

𝜖(𝛽MPL)(−i){𝜖i(𝛽
MPL)}∏n

i=1 f̂ 𝜖(𝛽∗)(−i){𝜖i(𝛽∗)}
, (2)

where

𝛽
MPL = arg max

𝛽

1
n

n∑
i=1

log f̂ 𝜖(𝛽)(−i){𝜖i(𝛽)}.
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Remark 1. Let a be any constant. Since

f̂
𝜖(𝛽MPL)(−i)(𝜖i(𝛽

MPL)) = 1
nh

∑
l≠i

K

{
𝜖l(𝛽

MPL) − 𝜖i(𝛽
MPL)

h

}

= 1
nh

∑
l≠i

K

{
{𝜖l(𝛽

MPL) + a} − {𝜖i(𝛽
MPL) + a}

h

}

and

f̂ 𝜖(𝛽∗)(−i)(𝜖i(𝛽∗)) =
1

nh
∑
l≠i

K
{

𝜖l(𝛽∗) − 𝜖i(𝛽∗)
h

}
= 1

nh
∑
l≠i

K
{

{𝜖l(𝛽∗) + a} − {𝜖i(𝛽∗) + a}
h

}
,

location shift of the error term has no effect on the PLRT. That is, E(𝜖|X) = 0 is not required for our PLRT. The PLRT
performs based on the estimated density function of the error and thus D(𝜖|X) < ∞ is not required for our proposed PLRT.
It is expected that the PLRT works well for, for example, Cauchy error.

Remark 2. The simulation studies in Supplementary Materials show that our proposed PLRT is robust to the choice of
bandwidth. In practice, we can use the maximum-estimated-likelihood cross-validation method to get the bandwidth
parameter.

Let 𝜒2(p) be the chi-square distribution with p degrees of freedom. The following theorem reports the Wilks
phenomenon of the PLRT.

Theorem 1. Suppose Conditions (1) to (7) in Appendix hold. Under H0, we have

2 log 𝜆P(y, X̃)
L
→ 𝜒2(p).

Given any significance level 𝛼 with 0 < 𝛼 < 1, we can therefore reject H0 if 2 log 𝜆P(y, X̃) ≥ 𝜒2
1−𝛼(p). For PLRT in (2), we

use the MPL estimator 𝛽MPL. The usage of the MPL estimator is crucial in order to enjoy the Wilks phenomenon for PLRT.
For example, this phenomenon may not hold when the ordinary least squares estimator is used. The kernel function used
does not affect the Wilks phenomenon of PLRT. Moreover, the simulation studies in Supplementary Materials show that
the performance of our PLRT is robust to the choice of kernel function. In practice, the kernel function may be selected
by the leave-one-out cross-validation method. For details, see Supplementary Materials.

We next consider the power function of the proposed PLRT. By Theorem 1 above and Theorem 2 in Chen et al,14 the
power function of PLRT (denoted as 𝜙P(𝛽;n)) can be shown to be

P𝛽{2 log 𝜆P(y, X̃) ≥ 𝜒2
1−𝛼(p)} = P𝛽

⎧⎪⎨⎪⎩2 log

∏n
i=1 f̂

𝜖(𝛽MPL)(−i){𝜖i(𝛽
MPL)}∏n

i=1 f̂ 𝜖(𝛽∗)(−i){𝜖i(𝛽∗)}
≥ 𝜒2

1−𝛼(p)
⎫⎪⎬⎪⎭

= P𝛽

[
2

n∑
i=1

log f̂
𝜖(𝛽MPL)(−i){𝜖i(𝛽

MPL)} − 2
n∑

i=1
log f̂ 𝜖(𝛽)(−i){𝜖i(𝛽)}

≥ 𝜒2
1−𝛼(p) − 2nM(𝛽, 𝛽∗) + Op(n

1
2 )
]

= 1 − F(𝜒2
1−𝛼(p) − 2nM(𝛽, 𝛽∗); p)(1 + op(1)),

where 𝜒2
1−𝛼(p) is the 1 − 𝛼 quantile of 𝜒2(p), F(x; p) is the cumulative distribution function of 𝜒2(p) and M(𝛽, 𝛽∗) ∶=

∫ f𝜖(𝛽)(v) log f𝜖(𝛽)(v)dv − ∫ f𝜖(𝛽∗)(v) log f𝜖(𝛽∗)(v)dv. Since M(𝛽, 𝛽∗) is positive when the true value of the regression coefficient
is 𝛽, by Lemma 1 of Chen et al,14 we have

𝜙P(𝛽;n) → 1 as n → ∞,
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F I G U R E 1 The power as functions of d = |𝛽 − 𝛽∗| for PLRT
and LRT. LRT, likelihood ratio test; PLRT, profile likelihood ratio
test [Colour figure can be viewed at wileyonlinelibrary.com]

for 𝛽 ≠ 𝛽∗. This result indicates that the PLRT can achieve high power provided that the sample size is large enough.
On the other hand, the power function of the LRT (denoted as 𝜙(𝛽;n)) is given by

P𝛽{2 log 𝜆(y, X̃) ≥ 𝜒2
1−𝛼(p)} = 1 − F(𝜒2

1−𝛼(p) − 2nM1(𝛽, 𝛽∗); p)(1 + op(1)),

where M1(𝛽, 𝛽∗) ∶= ∫ f𝜖(𝛽)(v) log f𝜖(𝛽∗)(v)dv − ∫ f𝜖(𝛽∗)(v) log f𝜖(𝛽∗)(v)dv. We first compare the power functions of the PLRT
and LRT when the error terms follow the normal distribution. Without loss of generality, we assume that 𝛽 is
one-dimensional, X1 ∼ N(0, 𝜎2

1) and 𝜖1 ∼ N(0, 𝜎2
2 ). The power functions of the PLRT and LRT can be, respectively, shown

to be

𝜙P(𝛽) = 1 − F

(
𝜒2

1−𝛼(1) − n log

{
1 +

𝜎2
1 (𝛽 − 𝛽∗)2

𝜎2
2

}
; 1

)
(1 + op(1)), and

𝜙(𝛽) = 1 − F

(
𝜒2

1−𝛼(1) −
n𝜎2

1(𝛽 − 𝛽∗)2

𝜎2
2

; 1

)
(1 + op(1)).

Since log
[
{𝜎2

1 (𝛽 − 𝛽∗)2}∕𝜎2
2 + 1

]
− {𝜎2

1 (𝛽 − 𝛽∗)2}∕𝜎2
2 < 0, the LRT is always more powerful than the PLRT for 𝛽 ≠ 𝛽∗

and the error following the normal distribution. When |𝛽 − 𝛽∗| < 𝜖 with 𝜖 being small, the LRT and PLRT have similar
powers. To illustrate the effect of d = |𝛽 − 𝛽∗| on the power functions of the LRT and PLRT, we plot their corresponding
power functions in Figure 1 with n= 100 and 𝛼 = 0.05 when both X1 and 𝜖1 follow (a) N(0, 1); and (b) Student t distribution
with 3 degrees of freedom. Under normal distribution, the power functions of the LRT and PLRT perform similarly. How-
ever, the PLRT obviously outperforms the LRT (based on normal distribution) when the error actually follows nonnormal
distribution (T-distribution). Detailed calculations can be found in Supplementary Materials.

2.2 The composite null hypotheses

Let 𝛽∗ be the true parameter of 𝛽 (p × 1) and 𝛽∗ ∈ Interior(Θ) with Θ being a compact subset of Rp. Consider the following
hypothesis testing problem:

HC
0 ∶ 𝛽 ∈ Θ0 vs HC

1 ∶ 𝛽 ∈ Θ ⧵ Θ0. (3)

We assume that there exists a bijection g= (g1, … , gp) between Ψ0 and Θ0 such that Θ0 = {𝛽 ∶ 𝛽 = g(𝜑) with
𝜑 ∈ Ψ0}, where Ψ0 is a r-dimensional subspace of Rr (r < p) and gi(i= 1, … , p) is second differentiable with
support Ψ0.

http://wileyonlinelibrary.com
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Under HC
0 , the profile likelihood estimate of 𝜑 can be obtained by

�̂�MPL
0 = arg max

𝜑∈Ψ0

1
n

n∑
i=1

log f̂ 𝜖{g(𝜑)}(−i)[𝜖i{g(𝜑)}],

where 𝜖i{g(𝜑)} = yi − XT
i g(𝜑). The profile likelihood estimate of 𝛽 can be written as 𝛽MPL

0 = g(�̂�MPL
0 ) under HC

0 . We can
then define the PLRT statistic for (3) as

𝜆PC (y, X̃) =

∏n
i=1 f̂

𝜖(𝛽MPL)(−i){𝜖i(𝛽
MPL)}∏n

i=1 f̂
𝜖(𝛽MPL

0 )(−i){𝜖i(𝛽
MPL
0 )}

.

The following theorem shows that the PLRT also enjoys the Wilks phenomenon under the composite null hypotheses.

Theorem 2. Suppose Conditions (1) to (7) in Appendix hold. Under HC
0 , we have

2 log 𝜆PC (y, X̃)
L
→ 𝜒2(p − r).

3 NUMERICAL STUDIES

In this section, we conduct several simulation studies to examine the type I error rate and power performance of our
proposed PLRT, the LRT with error following N(0, 𝜎2), the empirical likelihood ratio test (ELRT),15 and the weighted
profile likelihood ratio test (WPLRT) proposed by Huang.16 Our proposed PLRT and the WPLRT are implemented based
on the Gaussian kernel function (ie, K(u) = exp(−u2∕2)∕

√
2𝜋).

3.1 Study 1

We first consider the following simple linear regression model

yi = xi𝛽 + 𝜖i, i = 1, … ,n.

Here, we assume xi ∼ i.i.d. N(0, 42) and the error (ie, 𝜖i) follows (a) N(0, 3); (b) the mixture of normal variates:
0.9N(0, 1)+ 0.1N(0, 102); (c) the Student t distribution with 3 degrees of freedom; (d) the chi-squared distribution with 3
degrees of freedom; and (e) the standard Cauchy distribution with n= 100 or 200.

We consider the following simple hypothesis testing problem

HS1
0 ∶ 𝛽 = 3 vs HS1

1 ∶ 𝛽 ≠ 3

at the significance level of 𝛼 being 0.05.
Data are generated with 𝛽 = 2.5+ 0.01d, d= 0, … , 100. For all 𝛽’s, the number of replications is 1000 for each sample

size and each error distribution. Figure 2 reports the empirical powers for 𝛽’s based on 1000 replications for the four tests.

3.2 Study 2

We consider the following multiple linear regression model

yi = xi1𝛽1 + xi2𝛽2 + xi3𝛽3 + 𝜖i, i = 1, … ,n.

Here, (x1, x2, x3) follows the multivariate normal distribution N(0,Σx) with (Σx)i,j = 0.5|i−j| for 1≤ i, j≤ 3 and the error
(ie, 𝜖i) follows those distributions considered in Study 1 with n= 100 or 200.

We consider the following simple hypothesis testing problem

HS2
0 ∶ 𝛽1 = 3 vs HS2

1 ∶ 𝛽1 ≠ 3

at the significance level of 𝛼 being 0.05.
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F I G U R E 2 Empirical power functions for different errors in Study 1. : LRT based on normal distribution ; : ELRT;15 :
WPLRT;16 —: PLRT. ELRT, empirical likelihood ratio test; LRT, likelihood ratio test; PLRT, profile likelihood ratio test; WPLRT, weighted
profile likelihood ratio test [Colour figure can be viewed at wileyonlinelibrary.com]

Data are generated with 𝛽1 = 1 + 0.01d, d = 0, … , 400 and (𝛽2, 𝛽3) = (1.5, 2). For all 𝛽1’s, the number of replications
is 1000 for each sample size and each error distribution. Figure 3 reports the empirical powers for 𝛽1’s based on 1000
replications for the four tests.

3.3 Study 3

We adopt the model in Study 2 and consider the following hypothesis testing problem

HS3
0 ∶ 𝛽1 = 3, 𝛽2 = 1.5 vs HS3

1 ∶ 𝛽1 ≠ 3, 𝛽2 ≠ 1.5

at the significance level of 𝛼 being 0.05.

http://wileyonlinelibrary.com
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F I G U R E 3 Empirical power functions for different errors in Study 2. : LRT based on normal distribution ; : ELRT;15 :
WPLRT;16 —: PLRT. ELRT, empirical likelihood ratio test; LRT, likelihood ratio test; PLRT, profile likelihood ratio test; WPLRT, weighted
profile likelihood ratio test [Colour figure can be viewed at wileyonlinelibrary.com]

To examine the type I error rate behavior, we generate data with 𝛽1 = 3, 𝛽2 = 1.5 and 𝛽3 = 2. The number
of replications is 1000 for each sample size and each error distribution. To examine the power perfor-
mance, we generate randomly five hundred (𝛽1, 𝛽2)’s with 𝛽1 ∼ U(2, 4) and 𝛽2 ∼ U(0.5, 2.5). We similarly cal-
culate the rejection probability (empirical power) at each of the five hundred (𝛽1, 𝛽2)’s, and then take the
average. Table 1 reports the empirical type I error rates and powers based on 1000 replications for all the
four tests.

http://wileyonlinelibrary.com
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Type I error Power

Method n = 100 n = 200 n = 100 n = 200

N(0, 3)

PLRT 0.051 0.052 0.796 0.904

WPLRT 0.052 0.055 0.799 0.901

ELRT 0.044 0.040 0.791 0.887

LRT 0.048 0.051 0.818 0.904

0.9N(0, 1)+ 0.1N(0, 102)

PLRT 0.049 0.050 0.850 0.938

WPLRT 0.051 0.047 0.844 0.934

ELRT 0.141 0.099 0.536 0.646

LRT 0.058 0.054 0.478 0.689

T distribution df = 3

PLRT 0.050 0.054 0.860 0.940

WPLRT 0.051 0.054 0.859 0.943

ELRT 0.063 0.056 0.787 0.894

LRT 0.061 0.056 0.803 0.911

Chi-squared df = 3

PLRT 0.052 0.047 0.817 0.936

WPLRT 0.057 0.055 0.781 0.918

ELRT 0.062 0.054 0.598 0.767

LRT 0.061 0.063 0.632 0.803

Standard Cauchy

PLRT 0.052 0.053 0.593 0.640

WPLRT 0.064 0.061 0.328 0.335

ELRT 0.292 0.306 0.394 0.395

LRT 0.067 0.070 0.132 0.126

Abbreviations: ELRT, empirical likelihood ratio test; LRT, likelihood ratio test; PLRT, profile
likelihood ratio test; WPLRT, weighted profile likelihood ratio test.

T A B L E 1 The empirical type I errors and
powers in Study 3

3.4 Study 4

We adopt the model in Study 2 and consider the following hypothesis testing problem

HS4
0 ∶ 𝛽1 = 3, 𝛽2 = 1.5, 𝛽3 = 2 vs HS4

1 ∶ 𝛽1 ≠ 3, 𝛽2 ≠ 1.5, 𝛽3 ≠ 2

at the significance level of 𝛼 being 0.05.
To examine the type I error rate behavior, we generate data with 𝛽1 = 3 , 𝛽2 = 1.5, and 𝛽3 = 2. The number of replica-

tions is 1000 for each sample size and each error distribution. To examine the power performance, we generate randomly
five hundred (𝛽1, 𝛽2, 𝛽3)’s with 𝛽1 ∼ U(2, 4), 𝛽2 ∼ U(0.5, 2.5), and 𝛽3 ∼ U(1, 3). We calculate the empirical rejection proba-
bility (empirical power) at each of the five hundred (𝛽1, 𝛽2, 𝛽3)’s, and then take the average. Table 2 reports the empirical
type I error rates and powers based on 1000 replications for the four tests.

We have the following observations based on the four studies:

(i) For normally distributed errors, the resultant empirical type I errors, and powers of the four tests are very close;



YAN et al. 127

T A B L E 2 The empirical type I errors and
powers in Study 4

Type I error Power

Method n = 100 n = 200 n = 100 n = 200

N(0, 3)

PLRT 0.050 0.054 0.916 0.952

WPLRT 0.051 0.055 0.917 0.950

ELRT 0.074 0.071 0.915 0.961

LRT 0.050 0.051 0.921 0.961

0.9N(0, 1)+ 0.1N(0, 102)

PLRT 0.050 0.055 0.951 0.981

WPLRT 0.052 0.056 0.950 0.971

ELRT 0.205 0.156 0.760 0.825

LRT 0.056 0.058 0.627 0.810

T distribution df = 3

PLRT 0.049 0.048 0.960 0.978

WPLRT 0.048 0.052 0.950 0.975

ELRT 0.107 0.080 0.938 0.968

LRT 0.059 0.058 0.924 0.964

Chi-squared df = 3

PLRT 0.049 0.048 0.935 0.980

WPLRT 0.058 0.056 0.911 0.968

ELRT 0.110 0.086 0.820 0.932

LRT 0.070 0.065 0.799 0.935

Standard Cauchy

PLRT 0.054 0.052 0.587 0.611

WPLRT 0.061 0.062 0.462 0.475

ELRT 0.259 0.327 0.549 0.587

LRT 0.060 0.060 0.160 0.157

Abbreviations: ELRT, empirical likelihood ratio test; LRT, likelihood ratio test; PLRT, profile
likelihood ratio test; WPLRT, weighted profile likelihood ratio test.

(ii) For nonnormally distributed errors, the PLRT generally controls its type I error rates better than the other methods
in the sense that the PLRT yields empirical type I error rates closer to the preassigned nominal level (ie, 0.05) than
the other methods;

(iii) The PLRT is generally more powerful than the other methods, especially when the errors deviate from the normal
distribution (eg, the mixture of normal variates: 0.9N(0, 1)+ 0.1N(0, 102), the Student t distribution with 3 degrees
of freedom, the chi-squared distribution with 3 degrees of freedom and the standard Cauchy distribution). When the
error density is wrongly specified, the maximum likelihood estimators based on normal error may be inefficient or
inconsistent. Thus, the resultant LRT based on normal distribution can lose power.17 PLRT is based on the estimated
error density while ELRT is based on mean of the error. In other words, PLRT adopts more information and should
be more powerful than ELRT. Moreover, the WPLRT relies on mean of the error but our proposed PLRT is invariant
to location shift of errors, thus the PLRT performs better than WPLRT for the chi-squared error;

(iv) Since LRT, ELRT, and WPLRT all assume the existence of the error mean, the three tests can lose power, for example,
for Cauchy error. The PLRT is based on the estimated error density and thus performs well even when moments
(eg, mean and variance) do not exist (eg, Cauchy distribution).

In conclusion, our proposed PLRT has better performance than the other three methods.
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3.5 Study 5

We consider the multiple testing problem in this study. Consider the following linear regression model:

yi =
m∑

j=1
xij𝛽j + 𝜖i, i = 1, … ,n.

We have simultaneous null hypotheses Hj ∶ 𝛽j = 0 (j = 1, … ,m) to be tested and control the false discovery rate
(FDR) at level 𝛼. The Benjamini-Hochberg procedure18 based on PLRT can be summarized as follows:

Step 1. For Hj, we construct the PRLT at the significance level of 𝛼 and compute the p-value as pj for j= 1, … , m.
Step 2. We arrange these p-values in ascending order and denote them as p(1), … , p(m). Their corresponding null

hypotheses are H(1), … , H(m).
Step 3. Find the largest k such that p(k) ≤

k
m
𝛼.

Step 4. Reject the null hypotheses for all H(j) for j= 1, … , k.
Set m= 5. Let (x1, x2, x3, x4, x5)T follow the multivariate normal distribution N(0,Σx) with (Σx)i,j = 0.5|i−j| for

1≤ i, j≤ 5 and the errors follow the distributions considered in Study 1 with n= 100 or 200. Data are generated with
(𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) = (3, 1.5, 2, 2.5, 3.5). We consider the following simultaneous multiple hypothesis testing problem

HS5
0 ∶ 𝛽i = 0 vs HS5

1 ∶ 𝛽i ≠ 0, i = 1, … , 5.

with FDR at level 𝛼 = 0.05. The number of replications is 1000 for each sample size and each error distribution. The
Benjamini-Hochberg procedure based on LRT, ELRT, and WPLRT can be conducted similarly.

Table 3 reports the average number of nonzero coefficients by the four tests based on 1000 replications. It shows that
our proposed PLRT has higher probability of correctly selecting the correct model than the other three methods for the
multiple testing problem under consideration. It is noted that LRT, ELRT, and WPLRT break down for error with infinite
variance (eg, Cauchy distribution).

4 REAL DATA ANALYSIS

In this section, we apply our proposed methodology to analyze two datasets, namely, the mammalian eye gene expression
dataset and concrete compressive strength dataset. For each dataset, we have more than one hypotheses simultaneously
and thus use the controlling FDR method18 in multiple testing to control the type I error rates for our PLRT and the other
methods.

4.1 The mammalian eye gene expression dataset

In this subsection, we apply our proposed methodologies to analyze an example regarding the gene expression and regu-
lation in the mammalian eye.19 Briefly, Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disease characterized
primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities.20-22 The current preva-
lence of BBS in Newfoundland is approximately 1 in 18 000.23 Beales et al20 found that the progress of BBS is rapid, with a
mean of 7 years from diagnosis to blindness. BBS expression varies and its diagnosis is often difficult. TRIM32 is recently
found to cause BBS, that is, the mutation (P130S) in TRIM32 gives rise to BBS. For this reason, TRIM32 is also some-
times called BBS11.22 The regulatory mechanisms shared by related genes would likely cause their expression to respond
to biological variations in a coordinated fashion.22 Hence, we are interested in finding those genes whose expression are
correlated with TRIM32.

The dataset includes 120 subjects with 18 976 genes being observed for each subject. We conduct an initial screen-
ing for the dataset, that is, we select 200 genes with top values of gene-expression variances.24 We then use our PLRT
to test whether each of the 200 gene has a significant impact on TRIM32. The null and alternative hypotheses are
𝛽i = 0 and 𝛽i ≠ 0, respectively, for i= 1, … , 200. Our method suggests that 81 genes are correlated to TRIM32 at the
FDR of 0.00001.18,25 It is noteworthy that the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins,
https://string-db.org/) suggests that 73 of the 81 selected genes are correlated to TRIM32, and our test further suggests

https://string-db.org/
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T A B L E 3 The average number of nonzero coefficients in Study 5 Number of nonzero

Method n = 100 n = 200

N(0, 3)

PLRT 5.000 5.000

WPLRT 5.000 5.000

ELRT 5.000 5.000

LRT 5.000 5.000

0.9N(0, 1)+ 0.1N(0, 102)

PLRT 5.000 5.000

WPLRT 4.999 5.000

ELRT 4.511 4.895

LRT 4.904 4.993

T distribution df = 3

PLRT 5.000 5.000

WPLRT 5.000 5.000

ELRT 4.951 4.989

LRT 4.986 4.995

Chi-squared df = 3

PLRT 4.999 5.000

WPLRT 4.998 4.999

ELRT 4.912 4.996

LRT 4.994 4.998

Standard Cauchy

PLRT 4.999 5.000

WPLRT 3.876 3.889

ELRT 1.921 2.005

LRT 1.936 1.229

Abbreviations: ELRT, empirical likelihood ratio test; LRT, likelihood ratio
test; PLRT, profile likelihood ratio test; WPLRT, weighted profile
likelihood ratio test.

that genes “LOC102546420,” “Cnpy1,” “Gosr1,” “Krtap14l,” “Fabp12,” “Serpine3,” “Fam120c,” “Ramac” may also be
correlated with gene TRIM32.

4.2 The concrete compressive strength dataset

This dataset contains 1030 observations. We are interested in the relationships between the concrete compressive strength
(Y ) and the following covariates: Cement (X1), Blast Furnace Slag (X2), Fly Ash (X3), Water (X4), Superplasticizer (X5),
Coarse Aggregate (X6), Fine Aggregate (X7), Age (X8). We use the PLRT, LRT with error following N(0, 𝜎2), ELRT and
WPLRT to test whether each covariate has a significant impact on concrete compressive strength. Specifically, the null
and alternative hypotheses are 𝛽i = 0 and 𝛽i ≠ 0, respectively, for i= 1, … , 8.

Table 4 reports the testing results at the FDR 0.05. We also use the adaptively penalized maximum profile likeli-
hood (AMPL) method14 to estimate the coefficients. The ELRT15 suggests that water is not significant for the concrete
compressive strength. However, Swanmy26 and Yeh27 suggested that water is very important. Both LRT and WPLRT
conclude that all covariates are significant at FDR being 0.05, while our proposed PLRT suggests that Superplasticizer,
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Covariate PLRT WPLRT ELRT LRT Coeff

Cement + + + + 0.113

Blast Furnace Slag + + + + 0.096

Fly Ash + + + + 0.079

Water + + − + −0.245

Superplasticizer − + − + 0.000

Coarse Aggregate − + − + 0.000

Fine Aggregate − + − + 0.000

Age + + + + 0.114

Note: “+” means this covariate has a significant impact on concrete compressive strength, otherwise
“−.” “coeff” represents the estimated coefficient by AMPL.
Abbreviations: AMPL, adaptively penalized maximum profile likelihood; ELRT, empirical likelihood
ratio test; LRT, likelihood ratio test; PLRT, profile likelihood ratio test; WPLRT, weighted profile
likelihood ratio test.

T A B L E 4 The results for analyzing the
concrete compressive strength dataset

Coarse Aggregate and Fine Aggregate are not significant, which are consistent with the results by the AMPL method.
Moreover, the conclusions made by PLRT are consistent with those of Swanmy26 and Yeh.27

5 DISCUSSION

We develop a so-called PLRT for testing the coefficients in the multiple linear regression model. Unlike the existing LRT,
our proposed PLRT does not need to specify the error distribution. Our simulation results support that it performs better
than the LRT in terms of power when the error distribution for LRT is wrongly specified, and also outperforms the ELRT
and WPLRT. The PLRT can be applied to the situations that involve the simultaneous testing of multiple hypotheses, see
the simulation studies and real data analysis. We observed in the simulation studies that the PLRT performs much better
than the WPLRT for Cauchy error. However, the WPLRT can be substantially improved by replacing the l2 constraint with
the l1 constraint for heavy-tailed errors (eg, Cauchy distribution), which is worth future investigation. Moreover, it is of
great interest to pursue the parameter hypothesis testing problem in the framework of profile likelihood for longitudinal
data11 in the future.

The simulation studies in the Supplementary Materials show that our proposed PLRT performs very well when the
error is no longer additive. We are interested in investigating the theoretical properties and the comprehensive numerical
performances of the PLRT under the nonadditive model framework in the future.
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APPENDIX

In order to investigate the Theorems in this article, we give the following regular conditions.

(1): f𝜖(𝛽)(⋅) has a continuous second-order derivative with respect to each u and each 𝛽 ∈  , where  is a neighbor-
hood of 𝛽∗. 𝛽∗ ∈ interior(Θ) with Θ being a compact subset of Rp.

(2): f𝜖(𝛽∗)(⋅) has support R and is uniformly continuous.
(3): K(⋅) is uniformly continuous with modulus of continuous W k, twice continuously differentiable, of bounded

variation V(K) and absolutely integrable. K(⋅) is symmetric, ∫ K(u)du = 1, ∫ uK(u)du = 0 and ∫ u3K(u)du = 0.
(4): ∫ |u log |u|| 1

2 |dK(u)|<∞, sup |K(u)|<∞, sup |K′(u)|<∞ and ∫ K2(u)du<∞. lim
u→∞

|K(u)u| = 0, lim
u→∞

|K(u)u2| = 0,
lim
u→∞

|K′(u)u| = 0 and lim
u→∞

|K′(u)u2| = 0.
(5): E[sup𝛽∈Θ| log f𝜖(𝛽){𝜖1(𝛽)}|] < ∞, E[sup𝛽∈N ||𝜕[log f𝜖(𝛽){𝜖1(𝛽)}]∕𝜕𝛽||] < ∞,

E[sup𝛽∈N ||𝜕2[log f𝜖(𝛽){𝜖1(𝛽)}]∕𝜕𝛽𝜕𝛽T||] < ∞.

(6): The density of X, that is, f X(⋅) is bounded away from 0 and ∞ and is Lipschitz continuous on its compact support.
(7): nh5∕(log n)2 → ∞, nh8 → 0, and n1− bh→∞ for some b> 0.


