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Abstract—We study the problem of the signal recovery for
the class of stationary bandlimited Gaussian processes when the
measured information is given in terms of signal level crossings.
Level-crossing data collection is based on signal amplitude
sampling with error-free timing information and it is a preferable
sampling paradigm due to its low-power consumption. In this
paper, we develop a reconstruction method that incorporates not
only level-crossings samples but also the additional information
on the signal derivative. The signal derivative, however, is not
observed and we utilize the Slepian model for the process
behavior after crossings the given level. The model consists of the
linear regression function with the universal Rayleigh component
that characterizes the signal slope and a non-stationary Gaussian
noise process. The existing methods for signal recovery with
derivatives assume that both the signal and its derivatives are
observed and they form the observation set. Our approach
yields the improved reconstruction accuracy and provides a
new strategy for a general class of event-driven data analysis
algorithms.

I. INTRODUCTION

The signal recovery and detection from samples is the
fundamental problem in signal analysis and communication.
When a signal has a known form and specified spectral
properties like bandlimitedness its reconstruction from the
time-domain regularly spaced samples is the classical topic
in signal analysis [1], [2]. When the signal has an unknown
form, it is appropriate to consider the signal as a sample
function of a random process. When the signal statistics (like
correlation structure) are known, this knowledge can often be
used to design suitable reconstruction and detection methods
from irregularly spaced samples. In this paper we assume that
the underlying signals are modelled as stationary band-limited
Gaussian processes. The problem of recovery of stochastic
signals from time-domain non-uniform samples has received
some attention in the literature [3], [4], [5], [6]. An alternative
approach for signal acquisition is relied on level-crossing
generated samples [7], [8], [9], [10], [11] that provide a low-
power consumption strategy for signal sampling. Moreover,
the level-crossing samples supply the fine local characteriza-
tion of the underlying signal with a fewer number of irregularly
spaced samples than it is required by the classical time-domain
Shannon sampling theorem. The use of stochastic modeling
of various signal and system models has been remarkable
effective in data science and dynamic systems [4], [5]. The
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challenging problem within this framework is to incorporate
a priori knowledge about the signal shape [6]. The important
information about the signal form is provided by its derivative
and its incorporation in the recovery algorithm can increase the
estimation accuracy and to gain the further knowledge about
properties like monotonicity and the signal sign. The problem
of signal reconstruction which allows a combination of signal
samples and samples of its derivative has been studied in the
machine learning and statistical literature [12], [13]. In this pa-
per, we examine the reconstruction problem that incorporates
not only signal level-crossings samples but also the additional
information on the signal derivative. Nevertheless, contrary to
the aforementioned publications the signal derivative is not
observed and we approximate the signal slope information
(derivative) at the given crossing point by the so-called Slepian
model [8], [14], [15], [16], [17]. The Slepian model is the
universal signal slope approximation at level-crossings. The
model consists of two independent terms where one depends
on the level value and the other on the universal Rayleigh
distributed random component that characterizes the signal
slope. We show that the use of the Slepian model improves the
accuracy of signal recovery and provides a promising tool for
incorporating other local signal properties like local extrema.
The remainder of the paper is organized as follows. Section
2 introduces the basic concepts of the optimal mean-squared-
error (MSE) stochastic signal recovery theory. This includes
both the cases of observed signal samples and its derivatives.
Section 3 examines the signal estimation from level-crossings
samples. In particular, the Slepian model is introduced and
its use in the reconstruction process is examined. Section 4
gives an illustrative numerical example. The detailed proofs of
our results and extensive simulations studies will be presented
elsewhere.

II. OPTIMAL SIGNAL RECOVERY WITH DERIVATIVE
INFORMATION

We represent the uncertainty about the signal form by the
stationary Gaussian stochastic process {X(t), 0 ≤ t ≤ T}
with (without loss of generality) zero mean and covariance
function R(τ), where R(0) = σ2 is the process variance. The
signal is assumed to be bandlimited with the bandwidth ω0.
We assume that the process X(t) has smooth trajectories such
that its derivative X(1)(t) is well defined. It is known [14]
that X(1)(t) is also the stationary Gaussian process with the



covariance function −R(2)(τ), where µ2 = −R(2)(0) is the
variance of X(1)(t) and it is often named as the second spectral
moment of X(t). It worth mentioning that for bandlimited
processes µ2 is proportional to the signal bandwidth ω0. The
measured information about the signal X(t) is represented by
the vector XN = [X(t1), . . . , X(tN )]T of samples of X(t) at
the given time instants {tk}. In the signal recovery problem
one wishes to predict X(t) based on XN . The stochastic MSE
signal estimation theory [18], [3] suggests that one should
consider the conditional process ZN (t) = X(t)|XN . In fact,
the mean value of ZN (t) defines the optimal MSE predictor
X̂(t) with the minimal MSE given by σ2

N = E[var[ZN (t)]].
Under the Gaussian model the optimal MSE estimate X̂(t) is
a linear function of XN and the conditional process ZN (t)
is the nonstationary Gaussian process. In fact, using standard
formulas for the conditional multivariate Gaussian distribution
we have

X̂(t) = (R−1b(t))TXN , (1)

where R = E[XNX
T
N ] and b(t) = E[X(t)XN ], i.e.,

R represents the covariance matrix of the data vector XN

and b(t) is the vector of covariances between X(t) and
XN . Hence, R = [R(ti − tj)] and b(t) = [R(t − ti)]. It
is also worth observing that X̂(t) in (1) interpolates data,
i.e., X̂(tk) = X(tk). This is the well known fact in the
stochastic kriging theory [4]. The interpolation property can
be harmful due to the data uncertainty and numerical stability
and one needs some degree of smoothing. This is easily
avoided by some sort of regularization, i.e., when the matrix
R is replaced by its regularized version (R + λI) for some
λ > 0. The improved reconstruction accuracy can be obtained
by incorporating the additional information on the examined
class of signals. In particular, the signal derivative provides
the valuable information about the signal local variability.
Hence, let the observed information be [XN , X̊N ], where
X̊N = [X(1)(t1), . . . , X(1)(tN )]T are the samples of the sig-
nal derivative. Analogously as before we need to consider the
conditional process WN (t) = X(t)|XN , X̊N . Some algebra
shows that the mean value of WN (t) being the optimal MSE
predictor of X(t) can be written as

X̃(t) = (P11b(t)+P21d(t))TXN+(P12b(t)+P22d(t))T X̊N ,
(2)

where the vector d(t) = E[X(t)X̊N ] represents the co-
variance between X(t) and the derivative data, i.e., it has
components [−R(1)(t − ti)]. Also {Pij} are the matrices
defining the block matrix P that is the inverse of the observed
data covariance matrix Σ. The matrix Σ has the following
block structure

Σ =

[
R Q
QT S

]
,

where S = E[X̊NX̊
T
N ] is the covariance of the signal

derivatives that consists of the elements {−R(2)(ti − tj)}.
Also Q = E[XNX̊

T
N ] is the covariance between the signal

samples and its derivative samples, i.e., it has the entries
{−R(1)(ti − tj)}, where R(1)(0) = 0. The matrices R,S

and Σ are symmetric and positively defined, whereas Q is
skew-symmetric as QT = −Q. The MSE of the optimal
predictor X̃(t) is given by τ2N (t) = σ2−c(t)T Σ−1c(t), where
c = [b(t),d(t)]T . It can be shown that τ2N (t) is much smaller
than the MSE of the predictor in (1) revealing the benefits of
using the derivative information in the reconstruction process.
Nevertheless, in practical situations it is difficult to obtain the
derivative information about the signal and one commonly
confines the reconstruction to the signal data only. In this
paper we employ the information about the process not in
the form of the classical time-domain sampling but from sam-
ples generated by level-crossings. The level-crossing sampling
provides the universal way of characterizing the signal slope.
This is summarized by a Slepian model that describes the
behavior of the process in the neighborhood of crossings
of the pre-selected levels or other pre-specified events (like
local extrema). In the case of level-crossings and stationary
Gaussian models the Slepian model consists of a linear re-
gression function with the universal Rayleigh component that
characterizes the signal slope and being independent on the
selected crossing levels. Hence, our goal is to approximate
the conditional process WN (t) that yields the predictor X̃(t)
in (2) by the following process

WS
N (t) = X(t)|data at level crossings, crossing rates. (3)

The information given in this conditional process includes the
crossing values, i.e., X(t) ∈ Θ, where Θ = {u1, . . . , uL} is
the set of the predefined levels and crossing rates (derivatives)
to be approximated by the Slepian model. The theory of level-
crossings including the Slepian model is discussed in Section
3. An example of the multiple-level data set is illustrated in
Fig.1.

Fig. 1. Multiple-level data set

III. SIGNAL RECOVERY FROM LEVEL CROSSINGS

The set of level crossings {t ∈ [0, T ] : X(t) = u}
for the fixed level u has been examined since the seminal
work of Rice [14], [9], [7]. In particular, for the stationary
Gaussian signal the average number of the u–crossings (de-
noted as Nu(T )) is given by the Rice formula E[Nu(T )] =
Tπ−1(µ2/σ

2)1/2 exp(−u2/2σ2). Assuming (without loss of
generality) that σ2 = 1 this allows us to estimate the critical
parameter µ2 from the zero crossings. In fact, πN0(T )/T is



the unbiased estimate of
√
µ2 [11]. The problem of signal

reconstruction from level crossings requires, however, more
detailed information about the behavior of the process at the
vicinity of crossing times {tk}. This additional information
can be provided by the events Ek = {X(tk), X(1)(tk)}. Using
the special case of (2) we note that the optimal predictor of
X(t+ tk) based on Ek is given by

R(t)

σ2
X(tk)− R(1)(t)

µ2
X(1)(tk). (4)

For the data derived from the multiple level-crossings we set
X(tk) = u(tk), u(tk) ∈ Θ, whereas the derivative X(1)(tk)
can be approximated by averaging over a large number of
observations of the events {Ek}. It was shown by Slepian [14],
[8], [15], [17], [16], that the empirical distribution of X(1)(tk)
over an increasing number of the events {Ek} at the points of
the crossings tends to the Rayleigh random variable η with
the parameter µ2. The average value of η is (πµ2/2)1/2 or
−(πµ2/2)1/2 depending whether we have the upcrossing or
downcrossing event, respectively. The aforementioned results
and (4) lead to the Slepian model for the optimal predictor of
X(t) in the neighborhood of the crossing time tk

Sk(t) =
R(t− tk)

σ2
u(tk)−mk

R(1)(t− tk)

µ2
ηk, (5)

where mk = 1 or mk = −1 for the upcrossing or the
downcrossing events, respectively. It is an important to note
that ηk is the universal Rayleigh model of the signal derivative
that is independent on the given level set Θ. Thus, the formula
in (5) is the linear regression model with the random slope.
Note that Sk(tk) = u(tk) and S(1)k (tk) = mkηk. Hence, the
Slepian model reproduces the position and the approximate
slope of the process. It is worth noting that for signals with
large bandwidth (large µ2) the second term in (5) is of
the smaller order than the first one. On the other hand for
u(tk) = 0 (zero-crossings) the second term in (5) plays the
critical role. The residual process X(t)−Sk(t) of the Slepian
model is the zero mean nonstationary Gaussian process with
the variance

τ2k (t) = σ2 − R2(t− tk)

σ2
− (R(1)(t− tk))2

µ2
. (6)

Let us note that τ2k (tk) = 0 and τ2k (t)→ σ2 as t− tk →∞.
The latter means that for long times after crossings times the
Slepian signal model tends to the original stationary process.
The aforementioned results allow us to formulate the recon-
struction formula derived from the conditional process in (3).
This is based on the universal Slepian model of approximating
the crossing rates. The prediction rule is the formal version of
(2) where the exact values of {X(1)(tk)} are substituted by the
Rayleigh random variables {ηk} , whereas the signal values
{X(tk)} by {u(tk)}. Hence, we have

X̃S(t) = (P11b(t) + P21d(t))TUN

+ (P12b(t) + P22d(t))TmT
NηN , (7)

where UN = [u(t1), . . . , u(tN )]T , u(tk) ∈ Θ and ηN =
[η1, . . . , ηN ]T with mN being the ±1 vector of the crossings
signs. Also N stands for the total number of level crossings
in [0, T ]. The components of the Rayleigh slope vector ηN
can be in practical implementations replaced by the average
value ±(πµ2/2)1/2. Also there is a formal way of detecting
the crossing signs based on the sign of R(1)(t)X(0), where
we assume that X(0) is observed. The theoretical analysis of
the estimate X̃S(t) in (7) reveals that we have the following
fundamental bounds

MSE(X̃) ≤MSE(X̃S) ≤MSE(X̂),

where X̂(t) is the reconstruction based only on the signal
observations (see (1)), whereas X̃(t) utilizes the additional
information of the true signal derivatives (see (2)). The dif-
ference between X̃S(t) and X̃(t) depends on the number
and distribution of the used level-crossings and the signal
bandwidth. In fact, the MSE between {ηk} and {X(1)(tk)}
is proportional to µ2 and as we have already mentioned µ2

depends linearly on the signal bandwidth. Hence, for the small
bandwidth we have MSE(X̃S) 'MSE(X̃).

IV. NUMERICAL EXAMPLES

In order to illustrate the above results let us consider the
low-pass bandlimited Gaussian signal with R(τ) = sinc(ω0τ)
and the corresponding moments σ2 = 1 and µ2 = ω2

0/3. This
process represents the case of the lack of a priori information
about the signal shape (except the bandlimitedness) since its
spectral density is flat. In Fig. 2 we show the reconstruction
error as a function of the level u in the case of the three-
level symmetric crossings data set, i.e., when Θ = {−u, 0, u}.
We display the accuracy of the reconstructions methods X̂(t),
X̃(t) and X̃S(t). It is plain that the accuracy gets worst with an
increasing value of u as the number of crossings points (level-
crossing rate) decreases. The small value of u also reduces the
accuracy due to the presence of the highly correlated samples
and inability of representing peak values of the signal. This
suggests an interesting problem of designing the proper level
crossing set Θ.

Fig. 2. The reconstruction accuracy versus u for the three-level set.
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