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ABSTRACT

Zero-shot anomaly detection (ZSAD) is crucial for detecting anomalous patterns
in target datasets without using training samples, specifically in scenarios where
there are distributional differences between the target domain and training data
or where data scarcity arises because of restricted access. Although recently pre-
trained vision-language models demonstrate strong zero-shot performance across
various visual tasks, they focus on learning class semantics, which makes their di-
rect application to ZSAD challenging. To address this scenario, we propose Glo-
calCLIP, which uniquely separates global and local prompts and jointly optimizes
them. This approach enables the object-agnostic glocal semantic prompt to effec-
tively capture general normal and anomalous patterns without dependency on spe-
cific objects in the image. We refine the text prompts for more precise adjustments
by utilizing deep-text prompt tuning in the text encoder. In the vision encoder, we
apply V-V attention layers to capture detailed local image features. Finally, we
introduce glocal contrastive learning to improve the complementary learning of
global and local prompts, effectively detecting anomalous patterns across various
domains. The generalization performance of GlocalCLIP in ZSAD was demon-
strated on 15 real-world datasets from both the industrial and medical domains,
achieving superior performance compared to existing methods.

1 INTRODUCTION

Anomaly detection (AD) involves identifying abnormal data that deviate from normal data patterns.
It has become a crucial technology in various industries, such as manufacturing and healthcare
(Bergmann et al., 2019; 2020; Roth et al., 2022; Xie et al., 2023; Liu et al., 2023a). Traditional AD
methods operate through one-class classification that involves learning normal patterns from a sin-
gle class (Sohn et al., 2020; Zavrtanik et al., 2021; McIntosh & Albu, 2023; Liu et al., 2023c). This
approach effectively focuses on learning normal data within a single class; however, its industrial
application is severely limited due to the following challenges: (1) A separate model needs to be
trained for each class, which is both time-consuming and costly. Additionally, the model requires
retraining when a new class is introduced, leading to inefficiency. (2) There may be distributional
differences between the training data and the actual test environment data. The discrepancy between
the previously learned normal patterns and the target data can degrade the generalization perfor-
mance of the model, particularly when the target domain has little relevance to the training data. (3)
In cases where data access is restricted due to confidentiality, gathering sufficient training data may
be difficult, potentially resulting in overfitting or underfitting because of the inability to fully learn
normal patterns (Liu et al., 2023b). Recent research has focused on zero-shot anomaly detection
(ZSAD) to address these issues. ZSAD enables the detection of anomalous patterns across various
classes and domains without relying on training data from the target domain. ZSAD has been ef-
fectively applied in various fields owing to the emergence of large-scale pre-trained models, such as
vision-language models (VLMs). Among existing VLMs, Contrastive Language-Image Pre-training
(CLIP) simultaneously learns images and text, demonstrating strong zero-shot performance in di-
verse areas, including industrial visual inspection, medical image analysis, video understanding, and
robotic vision (Radford et al., 2021; Yao et al., 2021; Tschannen et al., 2023; Geng et al., 2023; Guo
et al., 2023; Zhao et al., 2023; Ni et al., 2022; Sontakke et al., 2024). However, CLIP relies heavily
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on global information from images, reducing its applicability to ZSAD (Jeong et al., 2023; Chen
et al., 2023). To address this issue, Jeong et al. (2023) proposed window-based patches through
a multi-scale approach to detect pixel-level anomalies and introduced a compositional prompt en-
semble (CPE) to tackle the challenges of finding optimal prompts. Furthermore, Zhou et al. (2023)
proposed an object-agnostic prompt that simplifies prompt design by reducing dependency on class
semantics and suggested diagonally prominent attention map layer for extracting local features in
CLIP. Cao et al. (2024) introduced hybrid prompts for ZSAD by incorporating both static and dy-
namic learnable prompts into CLIP. Despite these advances, the attempts to learn representations by
separating between global and local prompts remain underexplored. As seen in the susceptibility of
CLIP to pixel-level detection, it is evident that global and local representation capture slightly dif-
ferent aspects of the object. Motivated by this gap, we focus on an approach inspired by Zhou et al.
(2023) to effectively leverage prompt learning while integrating a larger architectural framework. By
doing so, we aim to bridge the gap between global and local representation, enabling more robust
anomaly detection. In this study, we propose GlocalCLIP, a refine approach designed to overcome
the limitations of existing methods by distinctly separating and complementarily learning global
and local prompts. Specifically, we design an object-agnostic glocal semantic prompt that applies
to both normal and anomalous cases, enabling contextual anomaly detection while explicitly sepa-
rating global and local prompts. In the text encoder, we utilize deep-text prompt tuning by inserting
learnable tokens for fine-grained text prompts. In the vision encoder, we adopt the value-value (V-
V) attention mechanism, enabling more precise learning of fine-grained features from local regions
(Vaswani, 2017; Zhou et al., 2023; Li et al., 2024). Finally, we propose a glocal contrastive learning
to address the insufficient complementarity between independently learned global and local prompts
and to jointly optimize their integration. Through experiments on 15 real-world image datasets, Glo-
calCLIP demonstrates enhanced anomaly detection performance and strong generalization, even in
the presence of discrepancies between the training data and the target domain.

The contributions of this paper are summarized as follows.

• We introduce a novel ZSAD approach named GlocalCLIP, a refined framework to explic-
itly separate global and local prompts through an object-agnostic glocal semantic prompt
design. This design enables the learning of prompts that generalize across a wide range of
normal and anomalous patterns without being tied to specific object classes, allowing the
model to effectively detect fine-grained visual anomalies.

• We address the insufficient complementarity between global and local prompts by intro-
ducing a glocal contrastive learning approach. Through joint optimization of global and
local prompts, this approach effectively aligns them to capture both global and local visual
features, thereby enhancing the robustness of ZSAD.

• Comprehensive experiments validate the effectiveness and generalization capability of Glo-
calCLIP on 15 real-world datasets, covering a diverse range of classes from both industrial
and medical domains, and demonstrate its strong performance and ability to generalize
across various categories.

2 RELATED WORK

2.1 PROMPT LEARNING

Prompt learning has emerged as a key technique to optimize the performance of VLMs for specific
scenarios by incorporating carefully designed prompts into input images or text. Initially, prompt
engineering utilized static prompt templates to guide VLMs. However, these static prompts often
struggle with generalization due to their rigidity and vulnerability to diverse data distributions (Zhou
et al., 2022b;a) To mitigate this limitation, methods such as CPE were proposed, combining multiple
pre-defined prompts to improve robustness across varied data domains (Jeong et al., 2023). Recent
advancements introduced learnable tokens to enable dynamic adaptation in prompt design. Zhou
et al. (2022b) proposed the context optimization (CoOp) method, which integrates learnable tokens
into text prompt, enhancing the expressiveness of prompts beyond static templates. Furthermore,
Li et al. (2024) extended this concept with a semantic concatenation approach, generating multiple
negative samples in prompt learning. Notably Zhou et al. (2023) introduced an object-agnostic
prompt learning framework that learns generalized features for both normal and anomalous cases
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(a) (b)

Figure 1: (a) The refinement of prompt design, showing how normal and anomaly prompts are
transformed into global and local semantic prompts. (b) Spider chart comparing pixel-level AUPRO
scores across differenct CLIP-based methods on various datasets.

without relying on specific object semantics, as shown in the left part of Fig 1(a). Building upon
this foundation, we propose a novel semantic-aware prompt design strategy that transforms these
object-agnostic prompts into global and local semantic prompts, as shown in right part of Fig 1(a),
enabling more comprehensive feature extraction while maintaining object-agnostic properties.

2.2 ZERO-SHOT ANOMALY DETECTION WITH CLIP

CLIP consists of text and vision encoders, where the vision encoder is composed of multilayer
networks based on ViT (Dosovitskiy, 2020). For ZSAD, CLIP generates a text embedding tc ∈ RD

by passing a text prompt T, which incorporates the class c from the target class set C, through the text
encoder. T follows the format A photo of a [class], where [class] represents the target
class name. The vision encoder takes an input image xi and extracts visual features, where the class
token fi ∈ RD, referred to as [cls] token, is treated as global visual embedding. Additionally,
patch token fm

i ∈ RH×W×D, extracted from detailed regions of the image, are used as local visual
embedding. The probability of xi belonging to class c is calculated based on the cosine similarity
between tc and fi, as shown in the following expression (Zhou et al., 2023):

p(y = c|xi) = P (tc, fi) =
exp(< tc, fi > /τ)∑
c∈C exp(< tc, fi >)/τ)

, (1)

where τ represents the temperature hyperparameter and < ·, · > represents the cosine similarity.
In this study, we assume that object-agnostic prompts are necessary when using CLIP for ZSAD.
Under this assumption, we designed two text prompts to distinguish between normal and anomalous
conditions and performed anomaly detection by calculating the anomaly probability based on their
similarities. Consequently, tc is represented by two types of text embeddings, where one is the
normal text embedding tn and the other is the abnormal text embedding ta. The anomaly score was
denoted as P (ta, fi). For local visual embeddings, the probabilities of the normal and anomalous
conditions for each pixel (j, k), where j ∈ [1, H] and k ∈ [1,W ], are calculated as P (tn, f

m(j,k)
i )

and P (ta, f
m(j,k)
i ). These probabilities are then used to obtain the normal and anomaly localization

maps, Sn ∈ RH×W and Sa ∈ RH×W , respectively.

3 GLOCALCLIP: OBJECT-AGNOSTIC GLOBAL-LOCAL PROMPT LEARNING

3.1 APPROACH OVERVIEW

We proposes the GlocalCLIP, which explicitly separates global and local prompts to learn general
normal and anomalous features in a complementary manner. The overall structure is shown in Fig.
2 and comprises four steps: (1) Text Encoder: Prompts from the object-agnostic glocal semantic
prompt are passed through the text encoder to generate both global and local text embeddings. (2)
Vision Encoder: The input image is processed by the vision encoder, which returns the global and
local visual embeddings through the [CLS] and patch token, respectively. (3) Anomaly Scoring:
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Figure 2: Overview of GlocalCLIP. The object-agnostic glocal semantic prompt enable the text en-
coder to extract complementary embeddings. Glocal contrastive learning aligns these embeddings to
enhance anomaly detection performance. The model optimizes global and local margins to generate
anomaly scores and similarity maps, effectively identifying abnormal regions.

Anomaly scores are calculated by measuring the similarity between global visual embedding and
global text embedding, as well as between local visual embedding and local text embedding. (4)
Glocal Contrastive Learning: Complementary learning is achieved through contrastive learning be-
tween global and local text embeddings. During inference, anomaly detection and localization are
achieved by computing an anomaly score and generating a localization map.

3.2 OBJECT-AGNOSTIC GLOCAL SEMANTIC PROMPT DESIGN

In GlocalCLIP, we propose an object-agnostic glocal semantic prompt design to capture sub-
tle contextual differences between normal and anomalous situations. These prompts are gen-
erated by concatenating a suffix indicating an anomaly with a base prompt that represents
normal conditions. For example, appending the suffix with a crack in the corner
to the normal prompt A crystal clear window transforms it into an anomaly prompt,
A crystal clear window with a crack in the corner. Thus, GlocalCLIP can
learn both the fine details of an object and its defects through semantic changes in prompts. The
text prompts are expressed as follows:

pn = [Ni][object]

pa = [Ni][Aj ][damaged][object].

Normal prompt pn and anomaly prompt pa are designed in binary form, following an object-agnostic
prompt structure. Here, [Ni] (i ∈ [1, E]) denotes a learnable token for normal conditions, represent-
ing the general state of each object. While, [Aj ] (j ∈ [1, L]) denotes a learnable token for abnormal
conditions, indicating defects or damage specific to each object. Instead of focusing on learning
class semantic within an image, these prompts are designed to capture both global and local features
that distinguish normal from anomalous conditions. By utilizing the term object in a generalized
context, the design enables the prompts to learn object-agnostic representations, facilitating a more
generalized approach to anomaly detection without reliance on class-specific semantics. In this con-
text, the term damaged is manually incorporated into the anomaly prompt to explicitly represent
anomalous conditions. By explicitly separating these prompts into global and local contexts, they
can be defined as follows:
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gn = [Ng
i ][object]

ga = [Ng
i ][A

g
j ][damaged][object]

ln = [N l
i ][object]

la = [N l
i ][A

l
j ][damaged][object].

Here, gn and ga represent the global prompts for normal and abnormal conditions, respectively,
while ln and la correspond to the local prompts for the same conditions. The learnable tokens used in
each prompt, [Ng

i ], [N
l
i ] and [Ag

j ], [A
l
j ] (i ∈ [1, E], j ∈ [1, L]), correspond to normal and abnormal

states. This separation is designed to learn features from different perspectives in anomaly detection.
The global prompts capture the overall context of the image to determine normality or abnormality,
while the local prompts focus on fine-grained characteristics of localized defects, such as scratches
or contamination. This explicit design enables accurate anomaly detection across various domains
by effectively capturing both global and local details. The effect of the learnable prompts when
varying their positions is detailed in Appendix C.

3.3 GLOCAL CONTRASTIVE LEARNING

To learn between global and local prompts in a complementary manner, we propose a glocal con-
trastive learning mechanism that aligns text embeddings across different semantic levels. The glocal
contrastive learning (GCL) named Lgcl operates on triplets of prompts, where global prompt serves
as an anchor to regulate its relationship with local prompts. This design choice is motivated by the
hierarchical nature of visual understanding: global prompts capture the overall image context, while
local prompts refine this understanding with fine-grained details. The loss is formulated as:

Lgcl = ∥a− p∥22+max(0,margin − ∥a− n∥2)2, (2)

where a, p, and n represent the embeddings of anchor, positive, and negative prompts respectively,
and margin determines the minimum required distance between anchor and negative prompts. In
GCL, the global normal prompt serves as the anchor, encouraging the local normal prompt to move
closer as a positive example, while the local anomaly prompt is pushed farther away as a negative
example. Similarly, when the global anomaly prompt is used as the anchor, the local anomaly
prompt is brough closer, and the local normal prompt is pushed farther away. This dual alignment
ensures that prompts are learned relative to the semantic context of global normality and abnormality.
Consequently, the loss function minimizes the distance between semantically similar prompts and
maximizes it for dissimilar ones, enabling the model to learn discriminative features where the global
context aids the refinement of local details. The total glocal contrastive loss is defined as:

Ltotal
gcl = Lnormal

gcl + Lanomaly
gcl , (3)

where Lnormal
gcl focuses on aligning prompts under normal conditions, and Lanomaly

gcl operates on
anomaly conditions.

3.4 DEEP-TEXT PROMPT TUNING

We utilized deep-text prompt tuning by inserting learnable tokens into each layer of the text encoder,
refining text embeddings and enhancing their interaction with visual embeddings. Specifically, at
the i-th layer, the learnable token tlearnablei is concatenated with the text embedding ti to adjust the
text embedding. This process is represented as follows:

t′i = [tlearnablei , ti].

The updated text embeddings in each layer are passed to the next layer, allowing more detailed text
information can be learned using a new tlearnablei token in each layer. Then the text embeddings are
aligned with visual features, enabling a more accurate detection of normal and anomaly patterns.
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3.5 GLOBAL-LOCAL VISUAL FEATURES

In vision encoder, ViT is used to obtain global and local visual embeddings to effectively learn
global and local visual features. The original ViT captures a global feature using a [CLS] token,
while local visual embedding is derived from patch token. In GlocalCLIP, a V-V attention is applied
instead of the conventional QKV attention layer to detect fine defects by focusing on local regions.
V-V attention replaces both the query and key with the same value, intensifying the correlation
among local features. As a result, this modification focus on the fine details of the image, facilitating
the detection of subtle anomaly patterns. V-V attention is calculated using

Attention(V, V, V ) = softmax(V V T /
√
D)V,

where V represents the patch token embedding of the vision encoder, and D denotes the dimension
of the visual embedding. The depth at which the V-V attention layer starts to be applied can be
adjusted as a hyperparameter to control the focus on local regions.

3.6 TRAINING AND INFERENCE

The training loss is composed of three complementary components: global loss Lglobal, local loss
Llocal and glocal contrastive loss Ltotal

gcl defined in Section 3.3. The global and local loss components
in our training objective are inspired by the design principles of Zhou et al. (2023), which effectively
balances anomaly detection and localization tasks. The total training loss is defined as:

Ltotal = Lglobal +
∑

Mk∈M LMk

local+λLtotal
gcl , (4)

where M denotes a set of intermediate layers used for extracting local features, and λ is a hyper-
parameter controlling interaction between global and local prompt. Lglobal is computed using the
binary cross-entropy. Next, Llocal, which is based on the predicted and actual anomaly regions in
each measurement, is given by

S
(j,k)
n,Mk

= P (ln, f
m(j,k)
i,Mk

), S
(j,k)
a,Mk

= P (la, f
m(j,k)
i,Mk

), where j ∈ [1, H], k ∈ [1,W ]. (5)

S
(j,k)
n,Mk

and S
(j,k)
a,Mk

denote the similarities corresponding to the normal and anomalous cases, respec-
tively. Furthermore, let S ∈ RH×W be the ground-truth localization mask, where Sj,k = 1 denotes
that a pixel is anomalous, and Sj,k = 0 otherwise. The local loss, Llocal, is calculated using

Llocal = Focal(Up([Sn,Mk
, Sa,Mk

]), S)+Dice(Up(Sn,Mk
), I−S)+Dice(Up(Sa,Mk

), S), (6)

where Focal(·, ·) and Dice(·, ·) represent the loss functions proposed by Ross & Dollár (2017)
and Li et al. (2019), respectively. Focal loss assigns higher weights to important samples in im-
balanced data, while dice loss is used to reduce the difference between the predicted and actual
anomaly regions. Up(·, ·) and [·, ·] represent upsampling and channel-wise concatenation, re-
spectively, and I denotes a matrix with all elements equal to 1. During inference, anomaly de-
tection and localization are performed based on the anomaly score and localization map, as de-
scribed in Eq. 1. The anomaly localization map, denoted as Map ∈ RH×W , is computed as
Map = Gσ(

∑
Mk∈M( 12 (I −Up(Sn,Mk

)) + 1
2Up(Sa,Mk

))), where Gσ represents a Gaussian filter
and the parameter σ controls the smoothing effect.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets To evaluate the performance of the proposed GlocalCLIP model, we conducted exper-
iments on 15 real-world datasets from various industrial and medical domains. For the industrial
domains, we used the MVTec AD (Bergmann et al., 2019), VisA (Zou et al., 2022), MPDD (Jezek
et al., 2021), BTAD (Mishra et al., 2021), SDD (Tabernik et al., 2020), and DTD-Synthetic (Aota
et al., 2023) datasets. In the medical domains, we employed the ISIC (Gutman et al., 2016) dataset
for skin cancer detection. The CVC-ClinicDB (Bernal et al., 2015) and CVC-ColonDB (Tajbakhsh
et al., 2015) datasets for colon polyp detection. Furthermore, the Kvasir (Jha et al., 2020) and Endo
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Table 1: Comparisons of ZSAD performance on industrial domain. The best performance is bold
red and the second-best is bold blue. The mean values summarize overall performance across all
datasets.

Task Category Datasets |C| CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP

Image-level
(AUROC, AP)

Obj &texture MVTec AD 15 (83.3, 92.4) (90.4, 95.6) (82.1, 91.4) (91.5, 96.2) (91.2, 95.9) (91.7, 96.4)

Obj

VisA 12 (71.7, 76.6) (75.6, 78.8) (77.7, 81.5) (81.4, 84.9) (81.7, 84.0) (83.7, 86.2)
MPDD 6 (71.2, 78.2) (61.5, 69.2) (76.0, 78.3) (76.9, 81.4) (72.1, 76.0) (77.6, 82.0)
BTAD 3 (82.7, 86.5) (68.2, 70.9) (77.7, 77.7) (87.5, 90.7) (90.2, 90.6) (89.8, 92.2)
SDD 1 (74.0, 57.5) (84.3, 77.4) (80.8, 71.0) (85.3, 81.6) (81.2, 72.6) (86.6, 84.5)

Texture DTD-Synthetic 12 (73.7, 89.7) (95.1, 97.7) (96.2, 98.1) (93.7, 97.3) (97.8, 99.0) (93.7, 97.3)
Mean (76.1, 80.2) (79.2, 81.6) (81.8, 83.0) (86.1, 88.7) (85.7, 86.4) (87.2, 89.8)

Pixel-level
(AUROC, PRO)

Obj &texture MVTec AD 15 (38.2, 8.8) (82.3, 61.9) (44.4, 11.1) (91.0, 81.9) (89.4, 37.8) (91.4, 82.8)

Obj

VisA 12 (47.9, 16.1) (73.2, 51.1) (42.1, 12.2) (95.3, 85.1) (95.5, 77.8) (95.9, 87.5)
MPDD 6 (42.5, 19.8) (71.2, 40.5) (33.7, 14.1) (96.2, 87.5) (96.4, 62.2) (96.6, 89.0)
BTAD 3 (39.5, 7.8) (72.7, 27.3) (28.1, 6.5) (94.5, 73.6) (94.8, 32.5) (96.1, 77.9)
SDD 1 (38.7, 10.1) (68.8, 24.2) (24.4, 8.3) (90.6, 67.0) (71.7, 17.6) (93.1, 72.4)

Texture DTD-Synthetic 12 (37.6, 15.0) (79.5, 51.5) (14.8, 3.0) (97.8, 91.1) (98.7, 80.0) (98.2, 92.5)
Mean (40.7, 12.9) (74.6, 42.8) (31.3, 8.5) (94.2, 81.0) (91.1, 51.3) (95.2, 83.7)

Table 2: Comparisons of ZSAD performance on medical domain. The best performance is bold
red and the second-best is bold blue. The mean values summarize overall performance across all
datasets. Image-level medical datasets do not provide segmentation ground truth, differentiating
them from the pixel-level medical datasets.

Task Category Datasets |C| CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP

Image-level
(AUROC, AP) Brain

HeadCT 1 (84.8, 82.1) (81.8, 78.9) (72.1, 74.8) (90.8, 92.2) (67.0, 65.0) (91.7, 92.8)
BrainMRI 1 (88.6, 87.0) (86.6, 84.1) (76.9, 78.0) (95.4, 96.0) (36.0, 56.2) (95.7, 96.2)

Br35H 1 (90.2, 85.7) (80.5, 74.0) (77.9, 72.8) (97.1, 96.8) (42.1, 46.7) (97.3, 97.1)
Mean (87.9, 84.9) (83.0, 79.0) (75.6, 75.2) (94.4, 95.0) (48.4, 56.0) (94.9, 95.4)

Pixel-level
(AUROC, PRO)

Skin ISIC 1 (65.6, 33.5) (83.4, 5.5) (34.5, 2.6) (87.4, 74.5) (84.4, 54.5) (88.9, 76.3)

Colon

CVC-ColonDB 1 (52.5, 18.3) (64.8, 28.4) (42.3, 3.6) (88.5, 79.3) (88.0, 63.9) (89.5, 82.2)
CVC-ClinicDB 1 (53.0, 25.9) (70.3, 32.5) (47.9, 5.4) (93.0, 81.6) (94.4, 73.5) (93.3, 84.0)

Kvasir 1 (45.9, 13.3) (69.7, 24.5) (47.7, 7.9) (93.2, 59.9) (94.6, 26.2) (94.3, 65.9)
Endo 1 (42.8, 12.5) (68.2, 28.3) (44.0, 5.4) (94.1, 86.9) (95.2, 72.8) (95.1, 89.2)

Thyroid TN3K 1 (39.1, 10.2) (70.7, 39.8) (48.6, 4.8) (78.2, 49.7) (69.8, 30.0) (80.5, 52.7)
Mean (49.8, 19.0) (71.8, 26.5) (44.2, 5.0) (89.1, 72.0) (87.7, 53.5) (90.3, 75.1)

(Hicks et al., 2021) datasets were employed for polyp identification, and the TN3k (Gong et al.,
2021) dataset was used for thyroid nodule detection. For brain tumor detection, we used HeadCT
(Salehi et al., 2021), BrainMRI (Salehi et al., 2021), and Br35H (Hamada., 2020) datasets. More
details about the datasets and their analysis can be found in Appendix A.

Comparison Methods and Evaluation Metrics We compared our model with state-of-the-art
(SOTA) models, including CLIP (Radford et al., 2021), WinCLIP (Jeong et al., 2023), CoOp (Zhou
et al., 2022b), AnomalyCLIP (Zhou et al., 2023), and AdaCLIP (Cao et al., 2024). The evalution
was based on the the area under the receiver operating characteristic curve (AUROC) to assess the
anomaly detection performance. In addition, for a more detailed analysis, we used the average
precision (AP) for anomaly detection precision and AUPRO (Bergmann et al., 2020) to evaluate
the anomaly localization accuracy. AUROC indicates how the model distinguishes between normal
and abnormal states, AP measures the precision of anomaly detection, and AUPRO evaluates how
accurately the model localizes anomalous regions.

Implementation details We adopted the VIT-L/14@336px CLIP model1 as the backbone. All
parameters of the CLIP model were kept frozen, and the lengths of the normal and anomaly learnable
prompt for both global and local prompts were set to 13 and 10, respectively. The depth of the deep-
text prompts was 12 for prompt tuning in the text space, and their length was set to 4. The V-V
attention layer was applied at a depth of 6, and multiple patch tokens were used, evenly drawn from
the outputs of layers 6, 12, 18, 24. For training the GlocalCLIP, we used the MVTec AD dataset
for the industrial domain and the Clinic DB for the medical domain. After training, we evaluated
the performance on different datasets. For the MVTec AD, we trained the model using the VisA
test data, and for the CVC-Clinic DB, we trained the model using the CVC-Colon DB. To ensure
equal comparison, all benchmark models were trained and evaluated using the same setting, and
results were reported at the dataset level by averaging performances across each sub-dataset. All
experiments were conducted on a single NVIDIA RTX 4090 24 GB GPU. More details can be
found in Appendix B.

1https://github.com/mlfoundations/open clip
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Figure 3: Comparison of ZSAD results across industrial and medical domains. The first row displays
input images from the industrial domain (Hazelnut, Bottle, Metal plate, Leather, Pcb1, Blotchy, and
Electrical commutators) and the medical domain (HeadCT, BrainMRI, Endo). The second row
presents the ground truth anomaly regions for each image. The remaining rows show the anomaly
heatmaps generated by different models: CLIP, WinCLIP, CoOp, AnomalyCLIP, AdaCLIP, and
GlocalCLIP.

4.2 MAIN RESULTS

Quantitative comparison As shown in Table 1, GlocalCLIP demonstrated superior ZSAD per-
formance across six industrial datasets, including diverse objects, backgrounds, and anomaly types.
Since CLIP and CoOp focus on object class semantics, their performance is inferior for anomaly
localization. On the other hand WinCLIP shown better pixel-level performance than CLIP and
CoOp by utilizing multi-scale window patches and CPE. AnomalyCLIP achieved advanced per-
formance in both image- and pixel-level tasks through its object-agnostic prompt and specialized
architecture. Similarly, AdaCLIP exhibited slightly lower or comparable scores. Our method, Glo-
calCLIP, demonstrated superior performance by employing a simple yet effective glocal semantic
prompt. Compared to AnomalyCLIP, advantage of GlocalCLIP lies in leveraging global and local
prompts that learn slightly different representations and complement each other effectively, thereby
enhancing the understanding of normal and anomalous patterns. The generalization performance
of GlocalCLIP in medical domain was evaluated using nine different datasets, as shown in Table
2. GlocalCLIP achieved the best performance on the HeadCT, BrainMRI, Br35H, ISIC, CVC-
ColonDB, and TN3K datasets. Additionally, it ranked first or second on the remaining datasets
and first on mean score. These results highlight the effectiveness of glocal semantic prompting in
delivering generalization capabilities for ZSAD across both the industrial and medical domains.

Qualitative comparison Fig. 3 shows a comparison of anomaly localization maps across the test
domain datasets. In the industrial domain, images containing various defect types, such as hazel-
nuts, toothbrushes, bottles, metal plates, leather, pcb1, and blotchy. CLIP, CoOp, and WinCLIP
struggle to capture fine-grained local anomaly regions. CLIP misinterprets normal and anomalous
regions, demonstrating the need for adjustment in ZSAD applications. AnomalyCLIP demonstrated
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Figure 4: Visualization of anomaly localization maps using global prompts with and without GCL.
The first row shows sample images from the industrial domain, and the second row provides the
true anomaly regions. The third row displays localization maps generated without GCL, where the
global prompt struggles to precisely localize pixel-level anomalies. The last row shows localization
maps generated with GCL, where the model demonstrates improved detection of both global and
local anomalies, effectively localizing fine-grained anomalous regions.

Table 3: Module ablation

Module Industrial domain Medical domain
Pixel-level Image-level Pixel-level Image-level

Base (33.4, 9.0) (80.3, 82.5) (47.1, 25.0) (89.3, 88.9)
+F1 (92.2, 80.0) (80.6, 83.0) (73.1, 46.6) (89.5, 89.2)
+F2 (95.0, 82.4) (85.6, 88.3) (90.0, 74.5) (94.6, 95.2)
+F3 (95.3, 84.0) (86.2, 88.5) (90.2, 74.4) (89.8, 91.1)
+F4 (95.3, 83.3) (86.7, 89.3) (90.3, 74.8) (94.9, 95.4)

Table 4: Prompt design ablation
Prompt

type
Semantic

design
Industrial domain Medical domain

Pixel-level Image-level Pixel-level Image-level

Single ✗ (94.2, 81.0) (86.0, 88.7) (89.1, 72.0) (94.4, 95.0)
✓ (94.3, 81.2) (85.9, 88.5) (89.2, 71.7) (94.5, 95.0)

Glocal ✗ (95.2, 83.5) (86.8, 89.3) (90.2, 74.6) (95.0, 95.5)
✓ (95.2, 83.7) (87.2, 89.8) (90.3, 75.2) (95.2, 95.6)

reasonable performance; however, it occasionally failed to capture certain anomaly regions that re-
quired a broader global perspective. In the medical domain, visualization results from the HeadCT,
BrainMRI, and Endo datasets. CLIP and CoOp faced difficulties detecting anomalies, and while
AdaCLIP performed well in certain cases, it failed to fully capture defects in some medical images.
The explicit separation of global and local prompts in GlocalCLIP enables it to learn the distribu-
tion of normal and anomalous samples independently, and then enhance complementary learning,
resolving the trade-off between image- and pixel-level performances caused by a lack of comple-
mentary information. Consequently, GlocalCLIP achieves the best ZSAD performance across both
industrial and medical domains, demonstrating its generalization capability.

4.3 ABLATION STUDY

Module ablation We conducted a series of module comparison experiments to demonstrate the
effectiveness of the key components of GlocalCLIP by evaluating the performance impact of each
major module through module addition. Table 3 presents the comparison, where the base model is
the standard CLIP. The modules are as follows: F1 is V-V attention with multilayer structure; F2 in-
volves semantic prompt design with deep-text prompt tuning; F3 separates global and local prompts;
and F4 applies glocal contrastive loss for complementary learning. The prompts of the base model
were set to A photo of a [class] and A photo of a damaged [class], While the
baseline performed well with global visual information, it lacked the precision required to detect
local anomalies. Adding F1 significantly improved detection performance for local regions. F2 al-
lowed for a more precise anomaly detection through prompt learning. F3 enhanced the performance
by separately learning the global and local information. Finally, F4 improved the generalization by
enabling complementary learning between global and local embeddings. These results confirmed
that each component played a critical role in improving ZSAD performance by supporting the learn-
ing of both global and local information.

Prompt design ablation We evaluated the effect of object-agnostic glocal semantic prompt de-
sign settings. Table 4 presents comparisons across different prompt types and semantic designs.
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The results show that the glocal semantic prompt design enables more accurate learning of diverse
visual patterns between normal and abnormal samples, leading to improved anomaly detection per-
formance. Specifically, the glocal prompt design consistently outperforms the single prompt design
across both industrial and medical domains at the pixel and image levels. Additionally, semantic
prompt design outperforms the default setting.

Reverse global-local prompts with glocal contrastive learning We visualized glocal contrastive
learning (GCL) on global and local prompts through visual comparisons, as shown in Fig. 4. The
figure presents pixel-level anomaly localization maps with and without GCL. Specifically, w/ GCL
shows localization maps generated from global prompts trained with GCL, while w/o GCL depicts
results without GCL. Without GCL, the maps capture some local features, reflecting an understand-
ing of local anomalies, but mainly focus on the overall image, resulting in less precise localization.
In contrast, GCL incorporates local information, enabling complementary learning between global
and local features. Balancing global and local performance was challenging during experiments, as
enhancing one often came at the expense of the other. This challenge motivated the separation of
global and local prompts during training, followed by GCL integration to unify their complementary
strengths. As a result, prompts trained with GCL improved anomaly detection and localization by
effectively capturing features at both global and local levels. These findings highlight the comple-
mentary nature of global and local prompts in understanding and localizing anomalies.

5 CONCLUSION

In this study, we propose a novel ZSAD approach named GlocalCLIP, which detects anoma-
lies through the unique strategy of explicitly separating global and local prompts. By training
these prompts in a complementary manner, GlocalCLIP effectively captures fine-grained features.
Prompts trained using object-agnostic glocal semantic prompt design and glocal contrastive learning
demonstrated strong generalization performance across various domains, achieving impressive re-
sults in both the medical and industrial sectors. Experimental results from 15 diverse image datasets
confirmed that GlocalCLIP outperforms SOTA models in ZSAD and surpasses existing CLIP-based
models. While this study focused on visual anomaly detection, expanding the method to accom-
modate a wider range of anomaly scenarios, including logical errors, is necessary. Future research
should address approaches to bridge the modality gap between images and text. The novel per-
spective introduced by GlocalCLIP is expected to contribute significantly to advancements in this
field.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, our Appendix includes five main sections. Appendix A outlines dataset
statistics, while Appendix B details the implementation of GlocalCLIP and baseline reproduction.
Appendix C covers additional ablations on hyperparameters and the effect of anomaly prompt. Ap-
pendices D and E provide visualizations and ZSAD performance on data subsets.
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Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. Advances
in Neural Information Processing Systems, 36, 2024.
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A DATASETS

Dataset overview In this study, we evaluated the performance of GlocalCLIP on 15 public datasets
from both industrial and medical domains. The test sets of each dataset were used for validation,
with detailed dataset-specific information provided in Table 5. To ensure consistency, standard
normalization techniques from OpenCLIP were applied across all datasets, and image sizes were
standardized to a resolution of (518, 518) for uniform visual feature map resolution.

Industrial dataset analysis In this study, we utilized datasets that include a variety of objects and
texture-based anomalies. A key distinction between MVTec AD and VisA lies in the composition of
the objects within their images. MVTec AD primarily consists of single-object images, where each
image focuses on a single object and its potential defects. In contrast, VisA often includes images
containing multiple instances of objects from the same class (e.g., candles, capsules, macaroni), as
well as defects that overlap between objects (e.g., cashew, fryum, pipe fryum). This multi-object
setting in VisA increases the complexity of anomaly detection, as defects may be localized to only
one of several objects. When training on MVTec AD and testing on VisA, performance improved
by separating global and local prompts, as a single prompt is less effective at identifying anomalies
spread across multiple objects. In such complex scenarios, distinguishing between global and local
prompts allows for more precise detection of localized defects.

B IMPLEMENTATION DETAILS AND BASELINE METHODS

B.1 IMPLEMENTATION DETAILS

In this study, we adopted the VIT-L/14@336px CLIP model as the backbone, kept all parameters
frozen. Across all datasets, the normal prompt length was set to 13, the anomaly prompt length
to 10, and the deep-text prompt length and depth to 4 and 12, respectively. The margin was set to
0, lambda to 1, and the Gaussian filter size σ to 8, except in specific cases. For MVTec AD, the
abnormal suffix length was set to 13, and the depth was set to 9. Additionally, for VisA, BTAD,
and SDD, lambda was set to 0. In the medical datasets, the deep-text prompt length was set to 2
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Table 5: Key statistics on the datasets used.

Domain Dataset Category Modalities |C| Normal and
anomalous samples

Industrial

MVTec AD Obj &texture Photography 15 (467, 1258)
VisA

Obj

Photography 12 (962, 1200)
MPDD Photography 6 (176, 282)
BTAD Photography 3 (451, 290)
SDD Photography 1 (181, 74)

DTD-Synthetic Texture Photography 12 (357, 947)

Medical

ISIC Skin Photography 1 (0, 379)
CVC-ClinicDB

Colon

Endoscopy 1 (0, 612)
CVC-ColonDB Endoscopy 1 (0, 380)

Kvasir Endoscopy 1 (0, 1000)
Endo Endoscopy 1 (0, 200)

TN3K Thyroid Radiology
(Utralsound) 1 (0, 614)

HeadCT

Brain

Radiology
(CT) 1 (100, 100)

BrainMRI Radiology
(MRI) 1 (98, 155)

Br35H Radiology
(MRI) 1 (1500, 1500)

for Colon DB. For HeadCT, Kvasir, and Endo, a deep-text prompt length of 2 provided the best
performance. Furthermore, for Br35h and Brain MRI, a lambda value of 0.01 was optimal, while
for Th3k, a lambda of 0.1 performed better. The training epoch was set to 15, and the learning rate to
0.001, using the adam optimizer with β1 and β2 set to 0.5 and 0.999, respectively. All experiments
were conducted on PyTorch-2.0.0 with a single NVIDIA RTX 4090 GPU.

B.2 BASELINE METHODS

To demonstrate the superiority of GlocalCLIP, we compared its performance with several SOTA
models in ZSAD. The details of the implementations and reproductions for each baseline method
are as follows:

• CLIP (Radford et al., 2021). CLIP is a vision-language model that learns to asso-
ciate images with corresponding text descriptions through contrastive learning. We em-
ploy text prompt templates for ZSAD as A photo of a normal [class] and
A photo of a damaged [class], where [class] denotes the target class name.
The anomaly score is computed according to Eq. 1. For anomaly localization, this com-
putation is extended to local visual embeddings. All parameters were kept the same as
specified in their paper.

• WinCLIP (Jeong et al., 2023). WinCLIP is a SOTA model for ZSAD that applies a window-
based approach to CLIP to enhance anomaly detection. Additionally, they propose a com-
positional prompt ensemble by utilizing a large number of prompt templates. All parame-
ters were kept the same as specified in their paper.

• CoOp (Zhou et al., 2022b). CoOp is a context optimization method for vision-
language models that learns optimal prompts to improve performance across vari-
ous downstream tasks. We used a text prompt design as [V1][V2]...[VN ][class] and
[W1][W2]...[WN ][damaged][class] for equal comparison on ZSAD. All parameters
were kept the same as specified in their paper.

• AnomalyCLIP (Zhou et al., 2023). AnomalyCLIP is a SOTA model for ZSAD that intro-
duces object-agnostic prompt design. Additionally, they propose DPAM, which uses V-V
attention for accurate localization of anomalous regions. All parameters are kept the same
as specified in their paper.

• AdaCLIP (Cao et al., 2024). AdaCLIP is a SOTA model for ZSAD model that introduces
hybrid prompts, combining both static and dynamic prompts. All parameters were kept the
same as specified in their paper.
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(a) (b)

(c) (d)

Figure 5: Hyperparameter analysis. (a) is the length of normal learnable prompt, (b) is the length of
anomaly learnable prompt, (c) is the length of deep-text prompts, and (d) is the depth of deep-text
prompts. Image- and pixel-level performance (AUROC, AUROC) is reported for MVTec AD and
VisA datasets, presented on the left and right sides of each subplot, respectively.

C ADDITIONAL ABLATIONS

Hyperparameter ablation The results of the hyperparameter experiments are presented in Fig.
5, where we evaluate performance variations across four key hyperparameters. Fig. 5a illustrates
that a normal learnable prompt length of 13 provides robust performance. Similarly, as shown in
Fig. 5b, an anomaly prompt length of 13 is found to be optimal. Fig. 5c indicates that setting the
length of the deep-text prompt to 4 achieves optimal results. Lastly, Fig. 5d demonstrates the effect
of varying the depth of the deep-text prompt layers in the text encoder, with an optimal depth of 12
layers maximizing performance, while a shallower depth leads to reduced performance.

Module ablation based on AnomalyCLIP To assess the effectiveness of the proposed ap-
proach compared to AnomalyCLIP, we conducted an ablation study, as summarized in Table 6.
The results demonstrate that incorporating each module progressively improves performance.

Table 6: Module ablation based on AnomalyCLIP

Module Industrial domain Medical domain
Pixel-level Image-level Pixel-level Image-level

AnomalyCLIP (94.2, 81.0) (86.1, 88.7) (89.1, 72.0) (94.4, 95.0)
+ Semantic design (95.0, 82.4) (85.6, 88.3) (90.0, 74.5) (94.6, 95.2)

+ Global-local branch (95.3, 84.0) (86.2, 88.5) (90.2, 74.4) (89.8, 91.1)
+ GCL (95.3, 83.3) (86.7, 89.3) (90.3, 74.8) (94.9, 95.4)

Adding the Semantic design mod-
ule led to notable enhancements,
with pixel-level performance increas-
ing from 94.2 to 95.0 in the industrial
domain and from 89.1 to 90.0 in the
medical domain. Furthermore, the
addition of the Global-local branch
and GCL modules resulted in even
greater performance gains. This combination achieved the highest performance across all domains
and evaluation metrics, highlighting the ability of the Global-local branch and GCL to facilitate
more precise feature learning.

Table 7: Anchor prompt ablation

Anchor prompt Industrial domain Medical domain
Pixel-level Image-level Pixel-level Image-level

Local prompt (95.1, 83.0) (86.6, 89.0) (90.2, 74.8) (94.8, 95.3)
Global prompt (95.3, 83.3) (86.7, 89.3) (90.3, 74.8) (94.9, 95.4)

Anchor prompt ablation To demon-
strate the effectiveness of the anchor
prompt design, which incorporates hierar-
chical semantics, we conducted an abla-
tion study summarized in Table 7. The
results clearly indicate that the global
prompt consistently outperforms the local
prompt across all domains and evaluation metrics. These findings demonstrate that using a global
prompt as the anchor enables a more comprehensive representation of features, leading to better
overall performance.
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Table 9: Comparison of normal and anomaly prompt positions in ZSAD performance within the
industrial domain.

Task Category Datasets |C| [N ][obj][A] [A][N ][obj] [N ][A][obj]

Image-level
(AUROC, AP)

Obj &texture MVTec AD 15 (91.6, 96.3) (91.6, 96.3) (91.7, 96.4)

Obj

VisA 12 (83.5, 86.0) (83.7, 86.2) (83.7, 86.2)
MPDD 6 (77.7, 82.1) (78.0, 82.2) (77.6, 82.0)
BTAD 3 (88.9, 90.7) (89.0, 92.3) (89.8, 92.2)
SDD 1 (86.5, 83.4) (86.7, 84.7) (86.6, 84.5)

Texture DTD-Synthetic 12 (93.7, 97.3) (93.7, 97.3) (93.7, 97.3)
Mean (87.0, 89.3) (87.0, 89.8) (87.2, 89.8)

Pixel-level
(AUROC, PRO)

Obj &texture MVTec AD 15 (91.4, 82.5) (97.6, 83.3) (91.4, 82.8)

Obj

VisA 12 (95.9, 87.6) (95.9, 87.4) (95.9, 87.5)
MPDD 6 (96.5, 88.6) (96.6, 89.1) (96.6, 89.0)
BTAD 3 (96.1, 78.9) (96.1, 78.4) (96.1, 77.9)
SDD 1 (93.3, 71.0) (93.2, 71.2) (93.1, 72.4)

Texture DTD-Synthetic 12 (98.2, 92.2) (98.2, 92.4) (98.2, 92.5)
Mean (95.2, 83.5) (95.3, 83.6) (95.2, 83.7)

Table 10: Comparison of normal and anomaly prompt positions in ZSAD performance within the
medical domain.

Task Category Datasets |C| [N ][obj][A] [A][N ][obj] [N ][A][obj]

Image-level
(AUROC, AP) Brain

HeadCT 1 (91.8, 93.1) (92.3, 93.5) (91.7, 92.8)
BrainMRI 1 (95.8, 96.2) (95.8, 96.2) (95.7, 96.2)

Br35H 1 (97.4, 97.2) (97.3, 97.1) (97.3, 97.1)
Mean (95.0, 95.5) (95.1, 95.6) (94.9, 95.4)

Pixel-level
(AUROC, PRO)

Skin ISIC 1 (89.0, 78.1) (89.0, 75.8) (88.9, 76.3)

Colon

CVC-ColonDB 1 (89.4, 82.0) (89.5, 82.0) (89.5, 82.2)
CVC-ClinicDB 1 (93.4, 83.1) (93.4, 83.3) (93.3, 84.0)

Kvasir 1 (94.2, 65.7) (94.2, 65.6) (94.3, 65.9)
Endo 1 (95.0, 88.8) (95.0, 88.8) (95.1, 89.2)

Thyroid TN3K 1 (80.3, 52.4) (80.1, 51.7) (80.5, 52.7)
Mean (90.2, 75.0) (90.2, 76.2) (90.3, 75.1)

Glocal contrastive learning In this study, we evaluated the impact of the hyperparameter lambda
on the trade-off between global and local performance in ZSAD. We observed that increasing the
emphasis on global information, such as through higher global loss penalties or additional networks
designed to enhance global features, often resulted in decreased local performance. This finding
underscores the importance of balancing global and local representations in ZSAD.

Table 8: Lambda ablation

Lambda Industrial domain Medical domain
Pixel-level Image-level Pixel-level Image-level

0.0 (95.3, 84.0) (86.2, 88.5) (90.2, 74.4) (89.8, 91.1)
0.001 (95.3, 83.8) (86.2, 88.6) (90.3, 74.5) (93.9, 94.6)
0.01 (95.3, 83.6) (86.5, 88.9) (90.2, 74.4) (95.2, 95.6)
0.1 (95.3, 83.3) (86.8, 89.0) (90.2, 74.6) (93.6, 90.6)
1 (95.3, 83.3) (86.7, 89.3) (90.3, 74.8) (94.8, 95.4)

To address this, we propose glocal contrastive
learning, which aims to integrate global and
local information in a complementary manner.
Notably, the mere design of separate global and
local prompts led to performance that surpassed
SOTA methods, and the complementary learn-
ing framework further enhanced the generaliza-
tion ability of ZSAD. While, as discussed in
Appendix A, pixel-level performance occasion-
ally showed better results in specific industrial contexts, the glocal framework consistently demon-
strated robust and balanced anomaly detection across various domains. The ablation study on the
hyperparameter lambda is presented in Table 6, providing further insights into its effect on model
performance.

Positioin of anomaly prompt We conducted experiments to examine the performance change
based on the position of the abnormal learnable token. Tables 7 and 8 demonstrate that positioning
the learnable token at the front, e.g., [N ][A][object] or [A][N ][object], leads to improved per-
formance. This is because a token placed at the beginning of a sentence often sets the context and
introduces the topic, thereby making it more influential for the model. Therefore, optimizing the
position of tokens is important for model performance.

D VISUALIZATION

Global and local prompt visualization To illustrate the distinction between global and local
prompts, we visualized their embeddings within the latent space for the class in the VisA dataset, as
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Figure 6: Visualization of global and local prompt for candles class within the VisA dataset.

Figure 7: Visualization of global and local prompt for cashew class within the VisA dataset.

shown in Fig. 6 to 8. In these figures, E1 to E15 represent the prompts at each epoch, reflecting the
progression of learning within the latent space.

Similarity score between textual and visual embeddings. We visualized the similarity scores
between the textual prompts and visual embeddings across different datasets. By comparing these
similarity scores, we can observe how effectively the prompts align with visual features and identify
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Figure 8: Visualization of global and local prompt for chewinggum class within the VisA dataset.

patterns that differentiate normal and anomalous samples. The visualization provides insights into
the degree of alignment between textual and visual representations, offering a deeper understanding
performance of the model in associating text-based descriptions with visual content. Specifically,
Fig. 6 shows the results for the MVTec AD dataset, Fig. 7 shows the results for the VisA dataset,
and Fig. 8 shows the results for medical domain datasets.

Anomaly localization map for different datasets. We provide visualizations of the anomaly
score maps for various datasets to illustrate how anomalies are detected and localized. These score
maps highlight regions of the input images that exhibit abnormal features, as determined by the
model. By examining the distribution and intensity of the anomaly scores, we can gain a clearer
understanding of how the model identifies and differentiates anomalies from normal patterns across
diverse datasets. This visualization serves to showcase the effectiveness of the model in detecting
anomalies within different contexts and domains. Specifically, Figs. 9 to 20 show results for var-
ious categories in the MVTec AD dataset, including hazelnut, capsule, carpet, pill, screw, leather,
wood, metal nut, grid, zipper, and tile. Figs. 21 to 23 present results for metal plate, tubes, and
white bracket from the MPDD dataset. Fig. 24 shows the anomaly localization for blotchy in the
DTD-synthetic dataset. Figs. 25 to 29 display results for cashew, candle, pipe fryum, chewing gum,
and capsules in the VisA dataset. Figs. 30 and 31 illustrate skin anomalies in ISIC and thyroid
anomalies in TN3K, respectively. Fig. 32 presents colon anomalies in CVC-ColonDB, and finally,
Fig. 33 visualizes brain anomalies in BrainMRI.

E FINE-GRAINED ZSAD RESULTS

In this section, we present the fine-grained data subset-level ZSAD performance in details.
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Table 11: Fine-grained comparison experiment of anomaly localization performance (AUROC)
across data classes in MVTec AD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Carpet 23.3 90.9 37.4 98.9 96.9 99
Bottle 23.7 85.7 33.9 90.2 91.0 90.8

Hazelnut 44.4 95.7 57.3 97.3 97.7 97.4
Leather 6.6 95.5 41.1 98.7 99.4 98.8
Cable 48.1 61.3 59.2 79.1 74.7 79.6

Capsule 58.7 87.0 51.9 95.9 94.3 95.9
Grid 11.0 79.4 26.6 97.3 94.3 97.3
Pill 60.3 72.7 49.8 91.2 88.0 92.5

Transistor 40.6 83.7 46.9 70.5 60.0 72.7
Metal nut 33.1 49.3 48.8 75.4 70.9 71.9

Screw 65.5 91.1 36.5 97.4 97.8 97.8
Toothbrush 54.7 86.2 62.3 91.2 97.5 92.0

Zipper 40.2 91.7 17.8 90.6 95.3 92.5
Tile 41.5 79.1 44.5 94.8 88.5 95.6

Wood 21.8 85.1 52 96.5 94.3 96.8
Mean 38.2 82.3 44.4 91.0 89.4 91.4

Table 12: Fine-grained comparison experiment of anomaly localization performance (PRO) across
data classes in MVTec AD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Carpet 8.8 66.3 10.6 90.5 52.4 93.4
bottle 2.6 69.9 4.4 81.5 39.0 81.7

hazelnut 15.3 81.3 22.4 93.6 48.9 94.5
leather 0.6 86.0 8.7 92.6 74.73 95.4
cable 11.0 39.4 14.8 64.6 45.6 64.0

capsule 12.2 63.8 16.8 88.4 18.0 87.8
grid 1.3 49.3 9.5 75.2 2.9 78.2
pill 7.9 66.9 11.5 90.0 33.6 90.3

transistor 3.0 45.5 9.5 57.7 20.2 60.3
metal nut 3.8 39.7 5.5 71.8 42.3 70.3

screw 24.0 70.2 6.1 87.9 56.0 90.3
toothbrush 10.1 67.9 18.1 88.7 60.5 89.1

zipper 16.2 72.0 1.1 65.3 50.8 71.8
tile 12.3 54.5 9.5 87.8 10.4 84.9

wood 3.4 56.3 17.9 92.2 11.5 89.6
Mean 8.8 61.9 11.1 81.9 37.8 82.8

Table 13: Fine-grained comparison experiment of anomaly detection performance (AUROC) across
data classes in MVTec AD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Carpet 87.5 99.3 99.4 100 100 100
Bottle 97.9 98.6 93.3 88.7 96.8 89.4

Hazelnut 70.5 92.3 66.8 97.9 95.5 97.4
Leather 99.4 100 97.3 99.8 99.9 99.8
Cable 72.7 85.0 66.1 69.3 73.8 70.1

Capsule 75.9 68.7 75.5 87.8 86.2 89.4
Grid 95.6 99.2 97.9 97.8 99.2 97.8
Pill 64.0 81.5 76.5 81.3 88.2 80.5

Transistor 68.5 89.1 62.7 92.9 81.8 92.9
Metal nut 78.2 96.2 65.9 92.5 80.5 89.3

Screw 84.2 71.7 88.5 84.4 80.1 86.2
Toothbrush 78.3 85.3 73.3 85 91.9 86.4

Zipper 80.9 91.2 78.5 97.6 95.8 98.3
Tile 96.2 99.9 95.6 100 99.9 100

Wood 99.0 97.6 95.1 97.1 98.3 97.4
Mean 83.3 90.4 82.1 91.5 91.2 91.7
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Table 14: Fine-grained comparison experiment of anomaly detection performance (AP) across data
classes in MVTec AD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Carpet 96.4 99.8 99.8 100 100 100
Bottle 99.5 99.5 98.1 96.8 99.0 97

Hazelnut 84.7 96.0 82.2 99.0 97.3 98.7
Leather 99.8 100 99.1 99.9 100 99.9
Cable 83.9 89.8 77.8 80.6 84.3 81.3

Capsule 93.9 90.5 94.3 97.4 97.0 97.8
Grid 98.5 99.7 99.2 99.4 99.7 99.3
Pill 91.3 96.4 94.6 95.3 97.4 94.9

Transistor 66.1 84.9 63.2 90.9 82.9 90.8
Metal nut 93.7 99.1 91.1 98.1 95.43 97.4

Screw 93.9 87.7 95.9 94.2 90.7 94.9
Toothbrush 90.9 94.5 84.6 93.4 97.1 94.5

Zipper 94.6 97.5 94.0 99.3 98.9 99.5
Tile 98.6 100 98.5 100 99.9 100

Wood 99.7 99.3 98.5 99.2 99.5 99.3
Mean 92.4 95.6 91.4 96.2 95.9 96.4

Table 15: Fine-grained comparison experiment of anomaly localization performance (AUROC)
across data classes in VisA.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Candle 5.8 87.0 9.5 98.7 98.8 98.7

Capsules 33.7 79.9 26.5 95.0 98.3 95.6
Cashew 68.6 84.7 63.9 92.9 94.9 93.8

Chewinggum 8.8 95.4 17.5 99.1 99.6 99.2
Fryum 59.8 87.7 62.5 94 93.4 95.2

Macaroni1 49.5 50.5 29.5 98.2 99.0 98.6
Macaroni2 56.7 45.1 46.8 97.3 98.1 97.6

Pcb1 57.7 38.7 39.1 93.7 92.15 95.9
Pcb2 59.5 58.7 42.3 92.3 90.4 93.3
Pcb3 61.8 75.9 63.8 88.1 88.9 88.4
Pcb4 35.8 91.4 55.9 95.9 95.3 96.2

Pipe fryum 76.7 83.7 48.2 98.3 97.3 98.8
Mean 47.9 73.2 42.1 95.3 95.5 95.9

Table 16: Fine-grained comparison experiment of anomaly localization performance (PRO) across
data classes in VisA.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Candle 0.4 77.6 2.2 96.1 72.7 95.5

Capsules 13.1 39.4 3.5 79.4 90.7 82.1
Cashew 24.8 78.9 7.4 83.2 77.5 92.0

Chewinggum 8.2 68.7 6.4 90.2 60.2 89.5
Fryum 19.0 74.7 12.5 81.8 61.6 83.8

Macaroni1 10.3 24.6 11.2 88.1 84.9 91.1
Macaroni2 33.1 8.2 25.9 82.2 83.4 84.4

Pcb1 17.5 21.0 3.1 82.0 73.0 88.0
Pcb2 21.6 20.4 9.8 77.2 79.0 81.6
Pcb3 20.0 44.3 27.1 76.4 76.2 75.3
Pcb4 10.9 74.4 30.5 89.7 84.6 90.9

Pipe fryum 14.7 80.4 6.5 95 89.7 96.3
Mean 16.1 51.1 12.2 85.1 77.8 87.5

Table 17: Fine-grained comparison experiment of anomaly detection performance (AUROC) across
data classes in VisA.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Candle 92.9 95.0 91.0 78.4 92.4 72.6

Capsules 59.0 79.5 58.8 85.5 90.9 91.4
Cashew 69.0 91.2 90.4 71.2 82.5 88.7

Chewinggum 93.5 95.4 97.1 97.3 97.1 97.2
Fryum 77.9 73.9 86.4 89.0 91.7 91.9

Macaroni1 68.0 79.3 72.9 88.2 72.6 86.1
Macaroni2 66.7 67.0 69.5 74.4 50.6 78.9

Pcb1 59.8 72.3 72.9 83.3 91.7 83.4
Pcb2 48.6 46.9 65.3 61.5 65.8 62.8
Pcb3 65.1 63.9 60.9 61.0 66.7 65.1
Pcb4 74.1 74.2 74.0 94.0 87.1 94.5

Pipe fryum 85.8 67.8 92.1 92.9 91.1 91.5
Mean 71.7 75.6 77.7 81.4 81.7 83.7
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Table 18: Fine-grained comparison experiment of anomaly detection performance (AP) across data
classes in VisA.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Candle 94.0 95.5 92.4 79.8 93.4 73.0

Capsules 73.3 87.9 69.8 90.9 93.7 94.6
Cashew 84.3 96.2 96.4 87.2 92.4 95.1

Chewinggum 97.1 98.1 98.7 98.9 98.8 98.8
Fryum 89.2 87.2 93.4 94.9 96.1 96.1

Macaroni1 69.9 80.2 77.6 87.9 72.5 86.3
Macaroni2 66.2 65.0 72.2 71.7 54.5 78.5

Pcb1 57.4 73.4 76.2 83.3 90.1 83.4
Pcb2 52.5 46.1 65.3 64.9 62.6 65.3
Pcb3 66.4 63.3 62.5 68.6 70.3 72.0
Pcb4 76.4 70.0 77.3 94.4 88.9 94.9

Pipe fryum 92.9 82.1 96.6 96.5 95.1 95.8
Mean 76.6 78.8 81.5 84.9 84.0 86.2

Table 19: Fine-grained comparison experiment of anomaly localization performance (AUROC)
across data classes in MPDD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Bracket black 42.8 46.4 21.8 95.6 95.2 95.9
Bracket brown 51.0 56.2 43.6 94.4 93.9 95
Bracket white 16.0 72.2 16.7 99.7 98.2 99.7

Connector 81.9 79.0 70.4 96.9 96.9 97.5
Metal plate 28.3 95.7 25.7 92.8 95.0 93

Tubes 35.0 77.6 24.1 98.0 99.1 98.3
Mean 42.5 71.2 33.7 96.2 96.4 96.6

Table 20: Fine-grained comparison experiment of anomaly localization performance (PRO) across
data classes in MPDD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Bracket black 12.9 13.6 1.3 83.9 51.3 87.4
Bracket brown 32.5 12.4 29.8 77.5 48.6 78.4
Bracket white 11.6 43.9 2.0 98.3 47.8 98.6

Connector 44.5 44.6 41.8 89.2 78.3 90.1
Metal plate 6.6 83.7 3.2 84.1 52.4 85.6

Tubes 11.0 44.7 6.2 92.3 94.7 93.7
Mean 19.8 40.5 14.1 87.5 62.2 89.0

Table 21: Fine-grained comparison experiment of anomaly detection performance (AUROC) across
data classes in MPDD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Bracket black 61.4 40.8 77.8 66.0 58.9 64.6
Bracket brown 83.3 33.0 56.9 59.2 53.5 59.7
Bracket white 64.9 41.7 68.3 64.6 59.8 68.6

Connector 75.7 79.3 77.9 89.3 73.3 89.3
Metal plate 61.5 95.6 92.1 87.0 88.7 88.6

Tubes 80.7 78.7 83.2 95.4 98.5 94.6
Mean 71.2 61.5 76 76.9 72.1 77.6

Table 22: Fine-grained comparison experiment of anomaly detection performance (AP) across data
classes in MPDD.

Object name CLIP WinCLIP CoOp AnomalyCLIP AdaCLIP GlocalCLIP
Bracket black 68.6 56.5 79.6 71.6 64.7 70.8
Bracket brown 91.4 59.8 72.6 77.9 71.5 78.3
Bracket white 71.9 50.3 66.6 66.1 59.5 70.7

Connector 62.5 61.3 61.0 79.3 64.7 78.7
Metal plate 84.0 98.3 97.0 95.2 96.1 95.7

Tubes 90.8 89.1 92.8 98.0 99.4 97.7
Mean 78.2 69.2 78.3 81.4 76.0 82.0
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Figure 9: Visualization of histograms illustrating cosine similarity measurements for each class
within the MVTec AD dataset.

Figure 10: Visualization of histograms illustrating cosine similarity measurements for each class
within the VisA dataset.
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Figure 11: Visualization of histograms illustrating cosine similarity measurements for each class
within the medical domain datasets.

Figure 12: Anomaly localization maps for the hazelnut class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 13: Anomaly localization maps for the hazelnut class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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Figure 14: Anomaly localization maps for the capsule class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 15: Anomaly localization maps for the carpet class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 16: Anomaly localization maps for the pill class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 17: Anomaly localization maps for the screw class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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Figure 18: Anomaly localization maps for the leather class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 19: Anomaly localization maps for the wood class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 20: Anomaly localization maps for the metal nut class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 21: Anomaly localization maps for the grid class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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Figure 22: Anomaly localization maps for the zipper class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 23: Anomaly localization maps for the tile class in MVTec AD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 24: Anomaly localization maps for the metal plate class in MPDD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 25: Anomaly localization maps for the tubes class in MPDD. The first row represents the
input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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Figure 26: Anomaly localization maps for the white bracket class in MPDD. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 27: Anomaly localization maps for the blotchy class in DTD-Synthetic. The first row repre-
sents the input, the second row shows the ground truth (GT), and the last row illustrates the local-
ization results from GlocalCLIP.

Figure 28: Anomaly localization maps for the cashew class in VisA. The first row represents the
input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 29: Anomaly localization maps for the candle class in VisA. The first row represents the
input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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Figure 30: Anomaly localization maps for the pipe fryum class in VisA. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 31: Anomaly localization maps for the chewinggum class in VisA. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 32: Anomaly localization maps for the capsules fryum class in VisA. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 33: Anomaly localization maps for the skin class in ISIC. The first row represents the input,
the second row shows the ground truth (GT), and the last row illustrates the localization results from
GlocalCLIP.
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Figure 34: Anomaly localization maps for the thyroid class in Tn3K. The first row represents the
input, the second row shows the ground truth (GT), and the last row illustrates the localization results
from GlocalCLIP.

Figure 35: Anomaly localization maps for the colon class in CVC-ColonDB. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.

Figure 36: Anomaly localization maps for the brain class in BrainMRI. The first row represents
the input, the second row shows the ground truth (GT), and the last row illustrates the localization
results from GlocalCLIP.
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