
Approximating the Permanent with
Deep Rejection Sampling

Juha Harviainen
University of Helsinki

juha.harviainen@helsinki.fi

Antti Röyskö
ETH Zürich

aroeyskoe@ethz.ch

Mikko Koivisto
University of Helsinki

mikko.koivisto@helsinki.fi

Abstract

We present a randomized approximation scheme for the permanent of a matrix with
nonnegative entries. Our scheme extends a recursive rejection sampling method
of Huber and Law (SODA 2008) by replacing the upper bound for the permanent
with a linear combination of the subproblem bounds at a moderately large depth of
the recursion tree. This method, we call deep rejection sampling, is empirically
shown to outperform the basic, depth-zero variant, as well as a related method by
Kuck et al. (NeurIPS 2019). We analyze the expected running time of the scheme
on random (0, 1)-matrices where each entry is independently 1 with probability
p. Our bound is superior to a previous one for p less than 1/5, matching another
bound that was known to hold when every row and column has density exactly p.

1 Introduction

The permanent of an n× n matrix A = (aij) is defined as

perA :=
∑
σ

a(σ) , with a(σ) :=

n∏
i=1

aiσ(i) , (1)

where the sum is over all permutations σ on {1, 2, . . . , n}. The permanent appears in numerous
applications in various domains, including communication theory [31], multi-target tracking [37, 23],
permutation tests on truncated data [8], and the dimer covering problem [2]. Bipartite graphs have
the well-known property that the permanent of an adjancency matrix of such a graph is equal to the
number of its perfect matchings.

Finding the permanent is a notorious computational problem. The fastest known exact algorithms
run in time O(2nn) [29, 15], and presumably no polynomial-time algorithm exists, as the problem
is #P-hard [38]. If negative entries are allowed, just deciding the sign of the permanent is equally
hard [21]. For matrices with nonnegative entries, a fully polynomial-time randomized approximation
scheme, FPRAS, was discovered two decades ago [21], and later the time requirement was lowered
to O(n7 log4 n) [3]. However, the high degree of the polynomial and a large constant factor render
the scheme infeasible in practice [25]. Other, potentially more practical Godsil–Gutman [16] type
estimators obtain high-confidence low-error approximations with O(cn/2) evaluations of the deter-
minant of an appropriate random n × n matrix over the reals [16, 22], complex numbers [22], or
quaternions [9], with c equal to 3, 2, and 3/2, respectively. These schemes might be feasible up to
around n = 50, but clearly not for n ≥ 100.
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From a practical viewpoint, however, (asymptotic) worst-case bounds are only of secondary interest:
it would suffice that an algorithm outputs an estimate that, with high probability, is guaranteed to
be within a small relative error of the exact value—no good upper bound for the running time is
required a priori; it is typically satisfactory that the algorithm runs fast on the instances one encounters
in practice. The artificial intelligence research community, in particular, has found this paradigm
attractive for problems in various domains, including probabilistic inference [1, 7], weighted model
counting [12, 11], network reliability [26], and counting linear extensions [35].

For approximating the permanent, this paradigm was recently followed by Kuck et al. [23]. Their
AdaPart method is based on rejection sampling of permutations σ proportionally to the weight a(σ),
given in (1). It repeatedly draws a uniformly distributed number between zero and an upper bound
U(A) ≥ perA and checks whether the number maps to some permutation σ. The check is performed
iteratively, by sampling one row–column pair at a time, rejecting the trial as soon as the drawn number
is known to fall outside the set spanned by the permutations, whose measure is perA. The expected
running time of the method is linear in the ratio U(A)/perA, motivating the use of a bound that is as
tight as possible. Critically, the bound U is required to “nest” (a technical monotonicity property we
detail in Section 2), constraining the design space. This basic strategy of AdaPart stems from earlier
methods by Huber and Law [17, 19], which aimed at improved polynomial worst-case running time
bounds for dense matrices. The key difference is that AdaPart dynamically chooses the next column
to be paired with some row, whereas the method of Huber and Law proceeds in the static increasing
order of columns. Thanks to this flexibility, AdaPart can take advantage of a tighter upper bound for
the permanent that would not nest with respect to the static recursive partitioning.

In this paper, we present a way to boost the said rejection samplers. Conceptually, the idea is simple:
we replace the upper bound U(A) by a linear combination of the bounds for all submatrices that
remain after removing the first d columns and the associated any d rows. Here the depth d is a
parameter specified by the user; the larger its value, the better the bound, but also the larger the time
requirement of computing the bound. This can be viewed as an instantiation of a generic method
we call deep rejection sampling or DeepAR (deep acceptance–rejection). Our main observation
is that for the permanent the computations can be carried out in time that scales, roughly, as 2d,
whereas a straightforward approach would scale as nd, being infeasible for all but very small d. We
demonstrate empirically that “deep bounds”, with d around 20, are computationally feasible and can
yield orders-of-magnitude savings in running time as compared to the basic depth-zero bounds.

We also study analytically how the parameter d affects the ratio of the upper bound and the permanent.
Following a series of previous works [22, 13, 14], we consider random (0, 1)-matrices where each
entry takes value 1 with probability p, independently of the rest. We give a bound that holds with high
probability and, when specialized to d = 0 and viewed as a function of n and p, closely resembles
Huber’s [17] worst-case bound that holds whenever every row- and column-sum is exactly pn. We
will compare the resulting time complexity bound of our approximation scheme to bounds previously
proven for Godsil–Gutman type estimators [22, 13] and some simpler Monte Carlo schemes [27, 14],
and argue, in the spirit of Frieze and Jerrum [13, Sec. 6], that ours is currently the fastest practical
and “trustworthy” scheme for random matrices.

2 Approximate weighted counting with rejection sampling

We begin with a generic method for exact sampling and approximate weighted counting called
self-reducible acceptance–rejection. We also review the instantiations of the method to sampling
weighted permutations due to Huber and Law [17, 19] and Kuck et al. [23].

2.1 Self-reducible rejection sampling

In general terms, we consider the following problem of approximate weighted counting. Given a set
Ω, each element x ∈ Ω associated with a nonnegative weight w(x), and numbers ε, δ > 0, we wish
to compute an (ε, δ)-approximation of w(Ω) :=

∑
x∈Ω w(x), that is, a random variable that with

probability at least 1− δ is within a factor of 1 + ε of the sum.

The self-reducible acceptance–rejection method [17] solves the problem assuming access to

(i) a partition tree of Ω, that is, a rooted tree where the root is Ω, each leaf is a singleton set,
and the children of each node partition the node into two or more nonempty subsets;

2



(ii) an upper bound that nests over the partition tree, that is, a function u that associates each
node S a number u(S) that equals w(x) when S = {x}, and is at least

∑n
i=1 u(Si) when

the children of S are S1, S2, . . . , Sn.

The main idea is to estimate the ratio of w(Ω) to the upper bound u(Ω) by drawing uniform
random numbers from the range [0, u(Ω)] and accept a draw if it lands in an interval of length
w(x) spanned by some x ∈ Ω, and reject otherwise. The empirical acceptance rate is known [10]
to yield an (ε, δ)-approximation of the ratio as soon as the number of accepted draws is at least
ψ(ε, δ) := 1 + 2.88(1 + ε) ε−2 ln(2/δ). The following function implements this scheme by calling
a subroutine SAMPLE(Ω, u), which makes an independent draw, returning 1 if accepted, and 0
otherwise. (Huber’s [18] Gamma Bernoulli acceptance scheme, GBAS, reduces the required number
of draws to around one third for practical values of ε and δ; see Supplement A.1.)

Function ESTIMATE(Ω, u, ε, δ)

E1 k ← dψ(ε, δ)e, t← 0, s← 0

E2 Repeat t← t+ 1, s← s+ SAMPLE(Ω, u) until s = k

E2 Return u(Ω) · k/t

The partition tree and the nesting property are vital for implementing the sampling subroutine,
enabling sequential random zooming from the ground set Ω to a single element of it.

Function SAMPLE(S, u)

S1 If |S| = 1 then return 1; else partition S into S1, S2, . . . , Sn

S2 p(i)← u(Si)/u(S) for i = 1, 2, . . . , n, p(0)← 1−
∑n
i=1 p(i)

S3 Draw i ∼ p(i)
S4 If i ≥ 1 then return SAMPLE(Si, u); else return 0

2.2 Application to approximating the permanent

Huber and Law [17, 19] instantiate the method to approximating the permanent of an n× n matrix
A with nonnegative entries by letting Ω be the set of all permutations on N := {1, 2, . . . , n} and
letting the weight function w equal a. The recursive partitioning is obtained by simply branching on
the row σ−1(j) for each column j = 1, 2, . . . , n in increasing order. The bound u is derived from
an appropriate upper bound U(A) ≥ perA as follows. Let S be the set of permutations that fix a
bijection between rows I and columns J and denote the corresponding column for the row i by σ(i).
We get the upper bound at S by multiplying the upper bound for the permanent of the remaining
matrix by the product of the already picked entries:

u(S) :=
(∏
i∈I

aiσ(i)

)
· U(AĪJ̄) . (2)

Here Ī and J̄ are the complement sets of I and J in relation to N , and indexing by subsets specifies
a submatrix in an obvious manner. Note that u(Ω) = U(A) and u({σ}) = a(σ), provided that we let
U(A) := 1 when A vanishes, i.e., has zero rows and columns.

Various upper bound for the permanent are known. Let Ai denote the ith row vector of A, and let
|Ai| denote the sum of its entries. For the permanent of a (0, 1)-matrix, Minc conjectured [24] and
Brègman proved [5] the Minc–Brègman bound

UMB(A) :=

n∏
i=1

γ(|Ai|) with γ(0) := 0 and γ(k) := (k!)1/k for k = 1, 2, . . . .

An extension to arbitrary nonnegative weights is credited to Brouwer in Schrijver’s work [30] and
published in corrected form by Soules [33, cf. Footnote 4]. Letting a∗i1 ≥ a∗i2 ≥ · · · ≥ a∗in be the
entries of Ai arranged into nonincreasing order, the Brouwer–Schrijver bound is given by

UBS(A) :=

n∏
i=1

n∑
k=1

a∗ik ·
[
γ(k)− γ(k − 1)

]
.
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One can verify that for a (0, 1)-matrix the bound equals the Minc–Brègman bound.

Since the Minc–Brègman bound does not yield, through (2), a nesting upper bound u over the
recursive column-wise partitioning, Huber and Law [19] introduced a somewhat looser upper bound,
which has that desired property:

UHL(A) :=

n∏
i=1

h(|Ai|)
e

, h(r) :=

{
r + (ln r)/2 + e− 1, if r ≥ 1,
1 + (e− 1)r, otherwise. (3)

We will refer to this as the Huber–Law bound.

In order to employ the tighter Brouwer–Schrijver bound, Kuck et al. [23] replaced the static column-
wise partitioning by a dynamic partitioning, where the next column is selected so as to minimize the
sum of the bounds of the resulting parts. More formally, if S is the set of permutations that fix a
bijection between rows I and columns J , then S is partitioned according to a column j ∈ J̄ into sets

Sij := {σ ∈ S : σ−1(j) = i} , i ∈ Ī ,
such that

∑
i∈Ī u(Sij) is minimized. Furthermore, if even the smallest sum exceeds the bound u(S),

then the partition is refined by replacing some set Sij by its minimizing partition; this is repeated
until the nesting condition is met. Kuck et al. report that the initial minimizing partition of S was
always sufficient in their experiments; this is vital for computational efficiency.
Example 1. It was left open whether the Brouwer–Schrijver bound is guaranteed to nest over the
dynamic partitioning. The following matrix C is a counterexample, showing the answer is negative:

C :=

1 1 1 1
0 0 1 1
1 1 0 0
1 1 1 1

 .

Indeed, we have UMB(C) = (4!)1/2(2!) = 4
√

6, but for any column j, the bounds of the three
submatrices that remain after removing column j and row i with nonzero entry at (i, j) sum up to
2(3!)1/3(2!)1/2(1!)1/1 + (3!)2/3(2!)1/2 = (481/3 + 361/3)

√
2 > 2

√
2(48 · 36)1/6 = 4

√
6. Here we

used the fact that the inequality (a+ b)/2 ≥
√
a · b holds with equality only if a = b.

3 Deep rejection sampling

This section gives a recipe for boosting self-reducible acceptance–rejection. We formulate our method,
DeepAR, first in general terms in Section 3.1, and then instantiate it to the permanent in Section 3.2.

3.1 Deep bounds

Consider a fixed partition tree of Ω. Denote by P(S) the set of children of node S ⊆ Ω. For d ≥ 0,
define the set of depth-d descendants of S, denoted by Pd(S), recursively by

P0(S) := {S} , Pd+1(S) :=
⋃

R∈P(S)

Pd(R) .

We obtain the node set of the partition tree as P∗ :=
⋃
h≥0 Ph(Ω).

Suppose u is an upper bound over P∗. Define the depth-d upper bound at S ∈ Ph(Ω) as ud(S) :=
u(S) if h > d, and otherwise as

ud(S) :=
∑

R∈Pd−h(S)

u(R) .

In words, the depth-d upper bound at node S of the partition tree is obtained by summing up the
upper bounds at the nodes in the subtree rooted at S that are at depth d in the whole partition tree.
If u nests, then so does ud and ud(Ω) decreases from u(Ω) to w(Ω) as d increases; the former is
obtained at d = 0 and the latter at any sufficiently large d (logarithmic in |Ω| suffices).

Our idea is to simply replace the basic bound u by the depth-d upper bound in the rejection sampling
routine SAMPLE(S, u). This directly increases the acceptance rate by a factor of u(Ω)/ud(Ω),
potentially yielding a large computational saving for larger d.

4



{Ω}
{
{x} : x ∈ Ω

}

(a) Basic, depth-zero

{Ω}
{
{x} : x ∈ Ω

}
Pd(Ω)

(b) Deep, depth-d

Figure 1: Schematic illustration of basic and deep self-reducible acceptance–rejection. Accepted
draws are shown as red thicker arrows, rejected draws as grey arrows.

The main obstacle to efficient implementation of this idea is the complexity of evaluating ud(S) at a
given S. For each node S at depth at most d, we need to sum up the bounds u(R) at the descendants
R of S at depth d; straightforward computing is demanding due to the large number of nodes R,
while precomputing, simultaneously for all S, is demanding already due to the number of nodes S.

One observation comes to rescue: it suffices that we can sample nodes R at depth d in the partition
tree proportionally to the respective upper bounds. Put otherwise, we add the following line to the
beginning of the SAMPLE function, completing the description of DeepAR:

S0 If S = Ω then draw R ∈ Pd(Ω) with probability u(R)/ud(Ω), return SAMPLE(R, u)

In effect, sampling begins directly at depth d, skipping d recursive steps of the original routine (Fig. 1).
This allows us to employ, in principle, any algorithm to sample at depth d, potentially making use of
problem structure other than what is represented by the partition tree. It depends on the problem at
hand, more precisely on the upper bound u, how efficient algorithms are available. We next see that
the upper bounds for the permanent given in Section 2.2 admit a relatively efficient algorithm.

3.2 Deep bounds for the permanent

We now implement step S0 for an upper bound U for the permanent. The key property we need is
that U(A) factorizes into a product of n terms, the ith term only depending on Ai, the ith row of A;
all the bounds reviewed in Section 2.2 have this property. We let γ(Ai) denote the ith term.

Consider a fixed set of columns J ⊆ N . Denote γi := γ(AiJ̄) and γI :=
∏
i∈I γi for short. By

summing over all row subsets I ⊆ N of size d := |J |, we get

perA =
∑
I

perAIJ perAĪJ̄ ≤

Ud(A)︷ ︸︸ ︷∑
I

perAIJ · U(AĪJ̄) =
∑
I

perAIJ · γĪ = γN ·
∑
I

perBIJ ,

where B = (bij) is the rectangular matrix with the index set N × J and entries bij := aij γ
−1
i .

The sum
∑
I BIJ equals the permanent of B given by perB :=

∑
τ

∏
j∈J bτ(j)j , where the sum

is over all injections τ from J to N . Thus, in step S0, a row subset I is drawn with probability
perBIJ/perB. Note that drawing the injection τ is unnecessary, since it only affects the bound
U(AIJ̄) through the selected rows I = τ(J).

It remains to show how to generate a random I without explicitly considering all the
(
n
d

)
sets. To this

end, we employ an algorithm for the permanent of rectangular matrices due to Björklund et al. [4].
Write gi(K) := perBIK , with I = {1, 2, . . . , i}. For i > 0 and nonempty K, the recurrence

gi(K) = gi−1(K) +
∑
j∈K

bij · gi−1(K \ {j}) (4)

enables computing perB = gn(J) by dynamic programming with O(2ddn) arithmetic operations:
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Function RPER(B)

R1 g0(∅)← 1, g0(K)← 0 for ∅ ⊂ K ⊆ J , i← 1

R2 For K ⊆ J compute gi(K) using (4)

R3 If i = n then return g; else i← i+ 1, go to R2

Having stored all the values gi(K), we generate a random injection τ with probability proportional
to
∏
j∈J bτ(j)j in O(nd) steps by routine stochastic backtracking:

Function DSAMPLE(g)

D1 i← n, K ← J

D2 p(j)← bij · gi−1(K \ {j})/gi(K) for j ∈ K, p(0)← 1−
∑
j∈K p(j)

D3 Draw j ∼ p(j)
D4 If j > 0 then τ(j)← i, K ← K \ {j}
D5 If i = 1 then return τ(J); else i← i− 1, go to D1

To summarize, consider the depth-d variant of the Huber–Law bound, UHL
d . The matrix B can

clearly be computed in time O(n2), with J := {1, 2, . . . , d}. Since UHL
d nests, the number of trials

is O
(
UHL
d (A)/perA · ε−2 log δ−1

)
, each of which can be implemented in time O(n2) by simple

incremental computing (Supplement A.3). We have shown the following.
Theorem 1. An (ε, δ)-approximation of the permanent of a given n × n matrix with nonnegative
entries can be computed, for any given 0 ≤ d ≤ n, in timeO

(
2ddn+UHL

d (A)/perA·n2ε−2 log δ−1
)
.

4 An analysis for random matrices

We turn to the question of how well the approximation scheme based on the Huber–Law bound and its
deep variant performs on the permanent of a random matrix. Following previous works [22, 14], we
focus on (0, 1)-matrices of size n× n where the entries are mutually independent, each entry being 1
with probability p, and write “A ∈ B(n, p)” when A is a matrix in this model. We begin by stating
and discussing our main results: a high-confidence upper bound for the ratio of the upper bound to
the permanent, and its implication to the total time requirement of the approximation scheme. Then
we outline a proof, deferring proofs of several lemmas (marked with a ?) to the supplement.

4.1 Main results

In our analysis it will be critical to obtain a good lower bound for the permanent. To this end, we
need the assumption that p does not decrease too fast when n grows.
Theorem 2. Suppose the function p = p(n) satisfies p2n→∞ as n→∞. Let δ > 0. Then, for all
sufficiently large n, A ∈ B(n, p), and 0 ≤ d ≤ n− p−1, with probability at least 1− 2δ,

UHL
d (A)

perA
≤ δ−1

(
π(n− d)

)−1/2(
e2e−1(n− d)p0

)1/(2p0)
, (5)

where p0 := p− n−1
√

2p ln δ−1.

Remark 1. With n sufficiently large, we could simplify the bound further by replacing p0 with p.
We present the more involved bound, as it follows more directly from our analysis and because we
believe it is within a small factor of a bound that works also for small n with moderate p and δ.
Remark 2. In the bound the key parameter is n− d rather than n, and the effect of d is linear in the
base of the exponential bound. It remains open whether there exists a class of matrices where the
ratio grows as cn, c > 1, for the depth-zero bound, and as c(1−ρ)n when the depth is ρn.

The following time complexity result is an immediate corollary to Theorems 1 and 2.
Theorem 3. For any fixed α > 1/2 and ε, δ, p > 0, an (ε, δ)-approximation of the permanent of a
random matrix A ∈ B(n, p) can be, with high probability, computed in expected time O(n1.5+α/p).
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Huber’s [17] closely related rejection sampling method, based on a slightly different nesting upper
bound for the permanent, is known to run in expected time O(n1.5+0.5/ρ) for all (0, 1)-matrices
where every row and column has exactly ρn ones. Thus, our result extends Huber’s also to matrices
where row- and column-sums deviate from the expected value, some more and some less. On the
other hand, Huber and Law’s [19] related scheme runs in expected time O(n1.5+0.5/(2ρ−1)) for all
(0, 1)-matrices where every row and column sum is at least ρn and ρ > 0.5; this bound, adopted also
to the AdaPart scheme [23, Prop. 1], is larger than the previous bound for all ρ < 1.

We have also mentioned other Monte Carlo estimators that do not use rejection sampling. Their
running time depends crucially on the variance of the estimatorX , or, more precisely, on the so-called
critical ratio E[X2]/E[X]2. For random matrices, high-confidence upper bounds for this ratio have
been proven for a determinant based estimator [22, 13] and a simpler sequential estimator [14],
yielding approximation schemes that run in time O

(
n t1(n)ω(n)

)
and O

(
t2(n)ω(n)

)
, respectively;

here t1(n) = O(n3) the time complexity of computing the determinant, ω(n) is any function tending
to infinity as n → ∞, and t2(n) equals n2, n2 lnn, or n1/p−1, depending on whether p is greater
than, equal to, or less than 1/3, respectively. We observe that the latter bound is worse than ours for
p < 1/5 and better for p > 1/5, while the former bound, being O(n4), is the best for p ≤ 1/5.

Remark 3. The determinant based estimator has an important weakness: No efficient way is known
for giving a good upper bound for the critical ratio for a given input matrix. Thus, either one has to
resort to a known pessimistic (exponential) worst-case bound, or terminate the computations after
some time with uncertainty about whether the estimate enjoys the accuracy guarantees. The latter
variant is not “trustworthy.” For further discussion and a precise formalization of this notion, we
refer to Frieze and Jerrum [13, Sec. 6]. They also point out that another estimator based on the
Broder chain [6, 20] is trustworthy and polynomial-time for random matrices—Huber [17, Sect. 3.1],
however, shows that that scheme is slower than the rejection sampling based scheme.

4.2 Proof of Theorem 2: outline

It is easy to compute the expected value of the permanent. It is also relatively straightforward to
compute a good upper bound for the expected value of the Huber–Law bound (cf. Lemma 6 below).
However, the ratio of these expected values only gives us a hint about the upper bound of interest; in
particular, the ratio of expected values can be much smaller than the expected value of the ratio. To
overcome this challenge, we use the insight of Frieze and Jerrum [13] that “[the permanent] depends
strongly on the number of 1s in the matrix, but only rather weakly on their disposition.” Accordingly,
our strategy is to work conditionally on the number of 1s, and only at the end get rid of the condition.

For brevity, write V for perA and U for UHL
d (A). Let M be the number of 1s in A. By a

Chernoff bound, the binomial variable M is below m0 := n2p − a with probability at most
exp{−a2n−2p−1/2}, which is at most δ if we put a := n

√
2p ln δ−1. From now on, we will

assume that M = m, with m ≥ m0, and give an upper bound for U/V that fails with probability at
most δ; the overall success probability is thus at least 1− 2δ. The upper bound will be a decreasing
function of m, and substituting the lower bound m0 for m will yield the bound in the theorem.

For what follows we need that n3m−2 tends to zero as n grows. This holds under our assumptions,
since mn−3/2 ≥ n1/2p− n−3/2a, where the first term tends to∞ and the second to 0 as n→∞.

We begin by considering the ratio of the expected values, E[U |M = m]
/
E[V |M = m]. For the

denominator, we use a result of Frieze and Jerrum [13]:

Lemma 4 ([13, Eq. (4)]). We have E[V |M = m] = n!
(
m
n2

)n
exp

{
− n2

2m + 1
2 −O

(
n3

m2

)}
.

For the numerator, we derive an upper bound by reverting back to the independence model, i.e.,
without conditioning on the number of 1s, for then the calculations are simpler. First, we apply
Markov’s inequality to relate the two quantities:
Lemma 5 (?). If p = mn−2, then E[U |M = m] ≤ 2E[U ].

Then we use the concavity of the function h in Eq. (3) and Jensen’s inequality.

Lemma 6 (?). We have E[U ] ≤
(
n
d

)
d! pd ed−n h

(
p(n− d)

)n−d
.

Combining the above three lemmas and simplifying yields the following:
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Lemma 7 (?). We have

E[U |M = m]

E[V |M = m]
≤ eO(n3m−2)

(
πe(n− d)/2)−1/2

(
e2e−1p∗(n− d)

)1/(2p∗)
,

where p∗ := mn−2. Furthermore, the upper bound decreases as a function of m.

Next we show that with high probability U is not much larger and V not much smaller than expected.
For the former, direct application of Markov’s inequality suffices. For the latter we, again, resort to a
result of Frieze and Jerrum, which enables application of Chebyshev’s inequality:
Lemma 8 ([13, Theorem 4]). We have E[V 2 |M = m]

/
E[V |M = m]2 = 1 +O(n3m−2).

This yields the following upper and lower bounds:
Lemma 9 (?). Conditionally on M = m, we have with probability at least 1− α− β−2O(n3m−2),

U ≤ α−1E[U |M = m] and V ≥ (1− β)E[V |M = m] .

We now choose α and β such that the failure probability is at most δ. Since n3m−2 tends to zero as
n grows, we could set β to an arbitrarily small positive value, and α to any value smaller than δ. In
particular, we can choose α and β such that α−1(1− β)−1 exp{O(n3m−2)}(e/2)−1/2 ≤ δ−1 for
sufficiently large n. Combining Lemmas 7 and 9 and substituting m0 to m yields the bound (5).

5 Empirical results

We report on an empirical performance study of DeepAR for exact sampling of weighted permutations
and for approximating the permanent. We include our C++ code and other materials in a supplement.

5.1 Tested rejection samplers and approximation schemes

Both the Huber–Law bound and the Brouwer–Schrijver bound are computed by applying a function
on each row and taking the product of the results, and thus our dynamic programming method works
with them. We have implemented the following instantiations of DeepAR:

HL-d: the scheme due to Huber using the depth-d Huber–Law bound.
ADAPART-d: the AdaPart scheme using the depth-d Brouwer–Schrijver bound.

The time requirement per trial is O(n2) for HL-d and O(n3) for ADAPART-d, provided that there is
always a column on which the Brouwer–Schrijver bound is nesting (Supplement A.3).

We ran the schemes with depths d ∈ {0, 20} and with and without preprocessing of the input matrix.
The preprocessing is similar to one by Huber and Law [19]: First, we ensure that every entry belongs
to at least one permutation of nonzero weight [36]. Then we apply Sinkhorn balancing n2 times [34]
to obtain a nearly doubly stochastic matrix (Supplement A.2). Finally, we divide each row vector by
its largest entry. This preprocessing, we abbreviate as DS, takes O(n4) time. When the input matrix
was preprocessed in this way, we add the suffix “-DS” to the names HL-d and ADAPART-d.

For comparison, we also ran Godsil–Gutman type schemes (our implementations) and the original
authors’ implementation of AdaPart. Our main finding is that Godsil–Gutman type schemes are not
competitive and that our implementation, ADAPART-0, is typically one to two orders of magnitude
faster than the original one; see Supplement C for more detailed report on these experiments.

5.2 Estimates of expected running times

We estimated the expected running time (ERT) of the schemes for producing a (0.1, 0.05)-
approximation of the permanent. Using GBAS [18], this yields a requirement of 388 accepted
samples. To save the total computing time of the study, we estimate the ERT based on 65 accepted
samples. By the argument of Section 2.1, our estimate of the ERT has a relative error at most 50 %
with probability at least 95 % (if we ignore the variation in the running times of rejected trials).

We considered three classes of random matrices: in Uniform the entries are independent and dis-
tributed uniformly in [0, 1]; Block Diagonal consists of block diagonal matrices whose diagonal
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Figure 2: Estimates of expected running times on random instances.

elements are independent 5 × 5 matrices from Uniform (the last element may be smaller); in
Bernoulli(p), the entries are independent taking value 1 with probability p, and 0 otherwise. In
Figure 2, with HL-d on the upper row and ADAPART-d on the bottom row, we observe that on
Uniform, deep bounds do not pay off and that the Huber–Law scheme is an order-of-magnitude
faster than AdaPart. On Block Diagonal, deep bounds bring a significant, two-orders-of-magnitude
boost and AdaPart is slightly faster than Huber–Law; furthermore, DS brings a substantial additional
advantage for larger instances (visible as a smaller slope of the log-time plot). Bernoulli(p) again
shows the superiority of deep bounds, but also a case where DS is harmful.

We also considered (non-random) benchmark instances. Five of these are from the Network Reposi-
tory [28] (http://networkrepository.com, licensed under CC BY-SA), the same as included by
Kuck et al. [23]. In addition, we included Staircase-n instances, which are (0, 1)-matrices A = (aij)
of size n× n such that aij = 1 if and only if i+ j ≤ n+ 2. Soules [32] mentions these as examples
where the ratio of the upper bound and the permanent is particularly large. We observe (Table 1) that
on four of the five instances from the repository, the preprocessing has relatively little effect, deep
bounds yield a speedup by one to two orders of magnitude, and the configurations of AdaPart and the
Huber–Law scheme are about equally fast. The exception is cage5, on which the Huber–Law bound
breaks down without DS; a closer inspection reveals that is due to row-sums that are less than 1. On
the Staircase instances, deep bounds yield a dramatic speedup and DS makes a clear difference.

Table 1: Estimates of expected running times (in seconds) on benchmark instances.

ADAPART-d ADAPART-d-DS HL-d HL-d-DS
Instance n d = 0 d = 20 d = 0 d = 20 d = 0 d = 20 d = 0 d = 20

ENZYMES-g192 31 2 · 102 1 · 101 8 · 102 1 · 101 1 · 102 1 · 101 6 · 102 2 · 101
ENZYMES-g230 32 3 · 102 2 · 101 1 · 103 1 · 101 2 · 102 1 · 101 1 · 103 2 · 101
ENZYMES-g479 28 3 · 102 8 · 100 1 · 103 8 · 100 1 · 102 7 · 100 7 · 102 9 · 100

cage5 37 2 · 103 2 · 101 1 · 103 1 · 101 > 104 5 · 103 9 · 102 2 · 101
bcspwr01 39 6 · 102 1 · 101 4 · 103 2 · 101 3 · 102 1 · 101 2 · 103 2 · 101

Staircase-30 30 > 104 2 · 101 9 · 103 8 · 100 > 104 2 · 101 3 · 103 7 · 100

Staircase-45 45 > 104 > 104 > 104 2 · 103 > 104 > 104 > 104 8 · 102
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6 Concluding remarks

DeepAR (deep acceptance–rejection) boosts recursive rejection sampling by replacing the basic upper
bound by a deep variant. While efficient implementations of DeepAR to concrete problems remain
to be discovered case by case, we demonstrated the prospects of the method on the permanent of
matrices with nonnegative entries, an extensively studied hard problem. DeepAR enables smooth
trading of precomputation for acceptance rate in the rejection sampling, and in our empirical study
showed expedition by up to several orders of magnitude, as compared to the recent AdaPart method
[23] (the original authors’ implementation). The speedup varies depending on the size of the matrix
and the tightness of the upper bound, and can be explained by three factors. A factor of 10–100 is
due to implementation details, including both the different programming language and our more
streamlined evaluation of the bounds for submatrices. Another factor of 2–1000 is due to our deep
bounds. The third factor is due to the preprocessing of the matrix towards doubly-stochasticity (DS),
which yields large savings on some hard instances, being mildy harmful for some others. A topic for
further research is automatic selection of the best configuration (the permanent bound, depth, DS) on
per-instance basis. There are also intriguing analytic questions (cf. Remark 2).
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