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Abstract

The impact of large-scale pre-trained language001
models on Question Answering in recent times002
is undeniably positive. Few prior works have003
attempted however to provide detailed insight004
into how such models learn from QA dataset005
component parts. For example, what specific006
kinds of examples are most important for mod-007
els to learn from? In this paper, we examine008
two English QA datasets, namely SQuAD1.1009
and NewsQA, and report findings on the inter-010
nal characteristics of these widely employed011
extractive QA datasets. Experiment results re-012
veal: (i) Models learn relatively independently013
of examples from outside a given question type014
(the performance on each question type mainly015
comes from that data belonging to that same016
question type); (ii) Increased difficulty in the017
training data results in better performance; (iii)018
Learning from QA data approximates to the019
process of learning question-answer matches.020

1 Introduction021

Large-scale pre-trained language models have022

come to dominate Natural Language Process re-023

search and achieve superior performance on a024

wide range of tasks, notably surpassing human025

performance with respect to several English Ques-026

tion Answering datasets (Devlin et al., 2019;027

Yang et al., 2019) such as SQuAD1.1 (Ra-028

jpurkar et al., 2016), SQuAD2.0 with unanswer-029

able questions (Rajpurkar et al., 2018), as well as030

NewsQA (Trischler et al., 2017). Despite this suc-031

cess, as well as the large volume of research con-032

ducted on sophisticated QA systems (Zhang et al.,033

2020), less emphasis has been placed on effects034

of data used for fine-tuning and testing. A better035

understanding of the data has the potential to im-036

prove the generalizability of models (Rogers, 2021;037

Gardner et al., 2021), as well as providing helpful038

information for constructing datasets (Bender and039

Friedman, 2018; Geva et al., 2019).040

Amongst NLP tasks, QA is of high interest likely 041

due to the direct connection of QA to human com- 042

prehension. For example, several studies of QA 043

systems and data have been carried out (Chen et al., 044

2016; Kaushik and Lipton, 2018), including Weis- 045

senborn et al. (2017), who reveal that employment 046

of heuristic question type features results in compet- 047

itive performance compared to sophisticated neural 048

QA models; Jia and Liang (2017) explore the ef- 049

fect of adversarial examples on the performance of 050

QA systems; Lewis et al. (2021) examine the train- 051

test data overlap in Open Domain QA and show 052

that QA models tend to perform much worse on 053

examples in test data that have no overlap with the 054

examples in training data. Furthermore, Liu et al. 055

(2021) investigate challenging questions for QA 056

model generalization, while Al-Negheimish et al. 057

(2021) question the numerical reasoning ability of 058

current QA systems by perturbing QA examples. 059

In this paper, we build on these earlier studies by 060

conducting experiments with two English extrac- 061

tive QA datasets and QA systems and report three 062

important findings: (i) models learn relatively inde- 063

pendent of examples in other question types (the 064

performance on each question type mainly comes 065

from the data of that same question type); (ii) in- 066

creased difficulty in training data improves model 067

performance models; (iii) learning from QA data 068

is analogous to learning question-answer matches. 069

2 Extractive QA Data Deep Dive 070

We employ QA datasets SQuAD1.1 (Rajpurkar 071

et al., 2016) and NewsQA (Trischler et al., 2017). 072

For SQuAD1.1 we use the official data released 073

by Rajpurkar et al. (2016)1 and for NewsQA we 074

use the data from MRQA (Fisch et al., 2019)2, 075

and for question classification, data from Li and 076

Roth (2002)3, with BERT-base-uncased model 077

1https://rajpurkar.github.io/SQuAD-explorer/
2https://github.com/mrqa/MRQA-Shared-Task-2019
3https://cogcomp.seas.upenn.edu/Data/QA/QC/
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LOC ENTY HUM NUM DESC

SQuAD1.1 Train set 11.4 27.6 20.7 24.5 15.5
Dev set 10.5 27.6 21.0 23.0 17.4

NewsQA Train set 11.4 16.9 30.0 18.8 22.6
Dev set 12.3 16.9 32.2 17.8 20.5

Table 1: The percentage of question types in the
SQuAD1.1 and NewsQA train and dev sets.

from Huggingface (Wolf et al., 2019)4 for both078

question classification and QA.079

2.1 How QA models learn from different080

question types081

QA data commonly contains a range of question082

types, including when, what and so on. This divi-083

sion of questions into types raises the question of084

to what degree do QA systems learn from their own085

question type as opposed to other question types.086

For example, in the case of numerical questions087

(how many ...?), how often, if ever, do questions088

of another type, such as location questions (where089

...?) assist models in answering questions of this090

distinct type? Answering this question will help by091

allowing better control over the proportion of each092

question type employed to train QA models and im-093

prove the diversity of questions when constructing094

QA datasets.095

We subsequently categorize questions into differ-096

ent classes and examine how the system learns from097

questions in each category. To categorise questions,098

we adopt question classification data (Li and Roth,099

2002) to train a question classifier that categorizes100

questions into the following five classes: HUM,101

LOC, ENTY, DESC, NUM (Zhang and Lee, 2003),5102

and partition the QA training data into five classes103

before training five separate QA models for increas-104

ing data sizes from 500 to 8000, one for each ques-105

tion type. The dev data is also split into five classes106

and each QA model is applied to each subset.107

Question type proportions for SQuAD1.1 and108

NewsQA are shown in Table 1, with a high propor-109

tion of ENTY and NUM questions in SQuAD1.1,110

while NewsQA has more HUM and DESC ques-111

tions. A visualisation of the resulting F-1 scores112

of each of the five QA systems is shown in Fig-113

ure 1, for both SQuAD1.1 and NewsQA for in-114

creasing amounts of training data, revealing that a115

QA system learns to answer a certain type of ques-116

tion mainly from the examples of the same ques-117

4https://huggingface.co/bert-base-uncased
5Definitions and examples provided in Appendix A.1

Figure 1: Visualization of F-1 learning curves for
five QA systems trained on five question types
(HUM,LOC,ENTY,DESC,NUM), tested on the dev
sets for each question type and the original dev set.
SQuAD1.1 (top) and NewsQA (bottom)

tion type - this is particularly true for HUM and 118

NUM questions in SQuAD1.1 and HUM, LOC and 119

NUM questions in NewsQA. Taking NUM ques- 120

tions as an example, rightmost plots in Figure 1 121

show that performance on distinct question types 122

only results in a minor improvement compared to 123

performance improvements on that question type 124

(NUM).In other words, the QA system gets most of 125

the knowledge it needs to answer NUM questions 126

from the NUM training examples and a similar pat- 127

tern is also present for other question types. 128

2.2 How a QA model learns from difficult and 129

easy examples? 130

A further important aspect of QA data is the de- 131

gree of the lexical overlap between the context and 132

question in each QA example and its effects on QA 133

system performance. We subsequently examine the 134

effect of context in QA learning by restricting the 135

context from which models learn. 136

Context-question overlap We define the QA ex- 137

amples with high context-question lexical overlap 138

as easy examples, as increased context-question 139

lexical overlap provides stronger clues from which 140

a QA system can find the answer. The QA ex- 141

amples with low context-question lexical overlap 142

are difficult examples. Inspired by Hong et al. 143

(2020), we measure lexical overlap using BLEU 144
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Figure 2: Visualization of F-1 score change over dif-
ferent lexical overlap levels and overall dev set with
increased data size on Less Overlap and More Overlap
SQuAD1.1 (top) and NewsQA (bottom)

scores which are calculated by BLEU-3 score using145

NLTK (Bird, 2006; Bird et al., 2009) 6. Next, we146

divide all QA examples according to their BLEU147

score and train a QA model on difficult and easy148

examples separately.149

The results on SQuAD1.1 and NewsQA are150

shown in Figure 2. With the same amount of151

data, the QA system trained on QA examples with152

less context-question overlap (difficult questions)153

across the board yields improved performance com-154

pared to the QA system trained on (easy) QA ex-155

amples with more context-question overlap.156

Single Sentence Context We additionally mod-157

ify the context of QA examples to single-sentence158

context which means only keeping the sentence in159

the original context that contained the answer.The160

single-sentence context examples are considered161

easy examples since shorter context makes it easier162

to locate the correct answer whereas the original163

context examples are considered difficult examples.164

Results in Table 2 show that the performance on165

single-sentence test data is consistently better than166

the performance on the original test data.167

2.3 Question-answer match168

In order to investigate the degree to which models169

learn by memorizing question-answer matches we170

6https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Dev-original Dev-single-sent

SQuAD1.1 Train-original 80.61/88.25 81.75/89.50
Train-single-sent 75.61/83.64 81.49/89.34

NewsQA Train-original 49.55/64.53 60.51/79.18
Train-single-sent 36.39/50.00 62.73/80.85

Table 2: Evaluation results (EM/F-1) of single-
sentence context and original context QA examples on
SQuAD1.1 and NewsQA.

Overall

SQuAD1.1

Original 66.97/80.96
Shuffle words 59.17/77.47
Random tokens 55.99/61.40
Remove inner words 67.61/77.78

NewsQA

Original 49.22/64.53
Shuffle words 36.25/54.71
Random tokens 31.72/35.91
Remove inner words 40.29/48.20

Table 3: Evaluation results (EM/F-1) on dev sets of
SQuAD1.1 and NewsQA with corrupted answers7

carry out an experiment in which we corrupt the 171

semantics of answer text. We propose three simple 172

strategies to perturb/corrupt answers in training QA 173

examples: (i) shuffle answer words; (ii) introduce 174

random tokens, i.e. randomly generate meaningless 175

tokens to replace the original answers; (iii) remove 176

sentence internal words, i.e. remove all the words 177

in answers except the initial and final token. 178

Generally speaking, an ideal QA system could 179

be expected to be able to find the correct answers 180

using clues from the context rather than answers 181

alone. Corrupting answers in test QA examples 182

therefore allows us to examine the degree to which 183

the QA system is able to draw from the context (in 184

other words, make use of clues from the context). 185

Such corrupted QA examples are answerable for 186

humans, for example below: 187

Context: Super Bowl 50 was an American foot- 188

ball game to determine the champion of the Na- 189

tional Football League (NFL) for the 2015 season. 190

The American Football Conference (AFC) cham- 191

pion jysbdefziqvzbi defeated the National Football 192

Conference (NFC) champion Carolina Panthers 193

24–10 to earn their third Super Bowl title. 194

Question: Which NFL team won Super Bowl 195

50? 196

Original answer: Denver Broncos 197

Corrupted/correct answer: jysbdefziqvzbi 198

Humans can easily find the correct answer - jysb- 199

defziqvzbi even if is a meaningless word. We aim to 200

examine whether a QA system is capable of finding 201
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Figure 3: t-SNE visualization of randomly sampled Answer, Question and Context wordpiece representations from
18 checkpoints in training process starting from checkpoint-0 (the vanilla BERT) to checkpoint-17 (the BERT
finetuned on SQuAD1.1), where Answer is in blue, Question is in red, Context is in green.

such corrupted correct answers.202

The average results of three runs on SQuAD1.1203

and NewsQA are shown in Table 3. We find that204

corrupting the semantic information of answer text205

(especially random tokens) results in a substantial206

performance drop (~25% drop for SQuAD1.1 and207

~50% drop for NewsQA) – the margin is larger for208

NewsQA (~30 F-1 score drop). Moreover, to fur-209

ther gain insight into the representations learned by210

the QA system, we randomly sampled 500 context-211

question-answer Wordpiece (Wu et al., 2016) rep-212

resentations from 18 checkpoints of BERT model213

during the fine-tuning process on SQuAD1.1 8 and214

use t-SNE (van der Maaten and Hinton, 2008) to215

visualize them – see Figure 3. The visualization216

clearly shows the learning process of the QA sys-217

tem: (i) the representations of questions (red) are218

differentiated from the representations of context219

(green) and answers (blue), and this is probably the220

result of the different segment vector added to ques-221

tion and context (answer is in context); (ii) as the222

fine-tuning process continues, the representations223

of context and answer are gradually separated.224

3 Discussion and Conclusion225

We presented a series of experiments investigating226

the internal characteristics of two popular extrac-227

tive QA datasets: SQuAD1.1 and NewsQA. The228

8checkpoints of 0, 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 2000, 3000, 4000, 5000, 6000, 7000 step during
the training process and the finetuned model

question type experiments show that models learn 229

relatively independent of examples in other ques- 230

tion types, especially for QA examples in HUM, 231

LOC, ENTY, NUM - and the effect is more ex- 232

treme for NewsQA. Furthermore, we found that 233

the models trained on difficult QA examples (low 234

context-question lexical overlap and longer con- 235

text) yield better performance compared to those 236

trained on easy QA examples. These two findings 237

reveal how models learn from QA examples of 238

different question types as well as different diffi- 239

culty levels, providing useful information on how 240

to promote question diversity and reduce context- 241

question overlap when constructing QA datasets. 242

Finally, the results of the question-answer match 243

experiments show that answer perturbation causes 244

substantial performance drop, demonstrating that 245

models heavily rely on the clues from answer text 246

rather than the clues from context. This suggests 247

the need to build QA models with more comprehen- 248

sion rather than simply memorizes question-answer 249

matches. In future work, we aim to apply our anal- 250

ysis to multilingual data to explore how QA models 251

behave across different languages and we plan to 252

investigate more diverse QA data beyond extractive 253

QA data. 254
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A Appendix404

A.1 Experimental Setup405

A.1.1 Hyperparameters406

We used DistributedDataParallel in407

torch.nn.parallel to run all the training408

scripts for question classification and QA.409

Question classification model training We use410

bert-based-uncased as our question classi-411

fier, the learning rate is set to 2e-5, the maximum412

sequence length is set to 128, we run the training413

script for 3 epochs, the training was conducted on414

2 GeForce GTX 1080Ti GPUs, the training batch415

size is 32 for each GPU.416

QA model training We use417

bert-based-uncased as our QA model,418

the learning rate is set to 3e-5, the maximum419

sequence length is set to 384, the doc stride length420

is set to 128, we run the training script for 2 epochs 421

for training each QA system in experiments, the 422

training was conducted on 2 GeForce GTX 1080Ti 423

GPUs, the training batch size is 12 for each GPU. 424

A.2 Question type definition and examples 425

We show the definitions of question type HUM, 426

LOC, ENTY, DESC, NUM and some examples from 427

the question classification data (Li and Roth, 2002) 428

and predictions of SQuAD1.1 and NewsQA in Ta- 429

ble 4. 430

A.3 QA examples with corrupted answers 431

We give some QA examples with corrupted an- 432

swers and corresponding predicted answers in Ta- 433

ble 5. 434
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Question type Definition Examples
HUM people, individual, group,

title
What contemptible scoundrel stole the cork from my
lunch ?
Which professor sent the first wireless message in the
USA ?
Who was sentenced to death in February ?

LOC location, city, country,
mountain, state

Where is the Kalahari desert ?
Where is the theology library at Notre Dame ?
Where was Cretan when he heard screams ?

ENTY animal, body, color,
creation, currency, dis-
ease/medical, event, food,
instrument, language,
plant, product, religion,
sport, symbol, technique,
term, vehicle

What relative of the racoon is sometimes known as
the cat-bear ?
What is the world’s oldest monographic music com-
petition ?
What was the name of the film about Jack Kevorkian
?

DESC definition, description,
manner, reason

What is Eagle ’s syndrome styloid process ?
How did Beyonce describe herself as a feminist ?
What are suspects blamed for ?

NUM code, count, date, distance,
money, order, other, per-
cent, period, speed, tem-
perature, size, weight

How many calories are there in a Big Mac ?
What year did Nintendo announce a new Legend of
Zelda was in the works for Gamecube ?
How many tons of cereal did Kelloggs donate ?

Table 4: Definition of each question type and corresponding examples in SQuAD1.1 and NewsQA.
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Context Question Original An-
swer

Corrupted
Answer

Predicted
Answer

Super Bowl 50 was an American foot-
ball game to determine the champion of
the National Football League (NFL) for
the 2015 season. The American Foot-
ball Conference (AFC) champion jysb-
defziqvzbi defeated the National Foot-
ball Conference (NFC) champion Car-
olina Panthers 24–10 to earn their third
Super Bowl title. The game was played
on February 7, 2016, at Levi’s Stadium
in the San Francisco Bay Area at Santa
Clara, California. As this was the 50th
Super Bowl, the league emphasized the
"golden anniversary" with various gold-
themed initiatives, as well as temporar-
ily suspending the tradition of naming
each Super Bowl game with Roman nu-
merals (under which the game would
have been known as "Super Bowl L"),
so that the logo could prominently fea-
ture the Arabic numerals 50.

Which NFL team won
Super Bowl 50?

Denver Bron-
cos

jysbdefziqvzbi Carolina Pan-
thers

Luther is honoured on hzhttbntedf with
a commemoration in the Lutheran Cal-
endar of Saints and in the Episcopal
(United States) Calendar of Saints. In
the Church of England’s Calendar of
Saints he is commemorated on 31 Octo-
ber.

When is Luther com-
memorated in the
Lutheran Calendar of
Saints ?

18 February hzhttbntedf 31 October

Many famous potters, such as Josiah
Wedgwood, William De Morgan and
Bernard Leach as well as Mintons &
Royal Doulton are represented in the
collection. There is an extensive col-
lection of Delftware produced in both
Britain and Holland, which includes a
circa 1695 flower pyramid over a metre
in height. Bernard Palissy has several
examples of his work in the collection
including dishes, jugs and candlesticks.
The largest objects in the collection are
a series of elaborately ornamented ce-
ramic stoves from the 16th and 17th cen-
turies, made in yizzzqmwoibvwvdnvx-
soalb. There is an unrivalled collection
of Italian maiolica and lustreware from
Spain. The collection of Iznik pottery
from Turkey is the largest in the world.

The largest objects in
the V&A ceramics and
glass collection were
produced in which
countries?

Germany
and Switzer-
land

yizzzqmwoi
bvwvdnvx-
soalb

Britain and
Holland

Table 5: Some QA examples with corrupted answers and corresponding predicted answers
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