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ABSTRACT

Semantic understanding is an important factor affecting the quality of machine
translation of low resource agglutination language. The common methods (sub-
word modeling, pre-training word embedding, etc.) will increase the length of
the sequence, which leads to a surge in computation. At the same time, the pre-
training word embedding with rich context is also the precondition to improve
the semantic understanding. Although BERT uses masked language model to
generate dynamic embedding in parallel, however, the fine-tuning strategy with-
out mask will make it inconsistent with the training data, which produced human
error. Therefore, we proposed a word embedding generation method based on
improved XLNet, it corrects the defects of the BERT model, and improves the
sampling redundancy issues in traditional XLNet. Experiments are carried out on
CCMT2019 Mongolian-Chinese, Uyghur-Chinese and Tibetan-Chinese tasks, the
results show that the generalization ability and BLEU scores of our method are
improved compared with the baseline, which fully verifies the effectiveness of the
method.

1 INTRODUCTION

The neural machine translation based on end-to-end structure Bahdanau et al. (2015) Luong et al.
(2015) Gehring et al. (2017) Vaswani et al. (2017)encodes the source language X into a set of
continuous dense latent vectors Z, and decodes the target language Y from Z in the same way. Com-
pared with the traditional statistical machine translation model Koehn (2010), the neural machine
translation model is a combination of language model, translation model, word alignment model and
word order model. The model updates the parameters by minimizing the cross entropy between the
generated token and the ground-truth. During the training phase, whether the model gradient can
be stabilized or not depends on the understanding degree of the model to the language knowledge,
the setting of the structure and the quality of the modeling unit. Among them, the setting of model
structure parameters determines the quality of language learning, and a robust modeling unit is the
basis of the above process, therefore, how to obtain the word vector with rich semantic information
is the key factor for the model to produce high-quality translation. The general one-hot word vector
is expressed in terms of dictionary size, with the position of the word in the dictionary set to 1 and
the other positions set to 0, although this method is simple and easy to express, the dimension is too
large to learn the relationship between words. The Word2Vec Church (2017) and Glove Pennington
et al. (2014) models embed high-dimensional one-hot word vector into a low-dimensional space us-
ing a distributed representation algorithm, similar to the N-gram language model Chen et al. (2019),
computing the cosine distance from the origin to the vector point in the low-dimensional space in
the initial neighborhood to learn the relationship between words, which has been widely used as
the main neural machine translation modeling unit. Although this vector representation method
has many advantages, it is still difficult to distinguish polysemous words and can not be optimized
dynamically for specific tasks.

Recently, the BERT model Devlin et al. (2019) has been widely used in various natural language
processing tasks, including machine translation, because of its strong ability of semantic feature
learning. It consists of two main models: Masked Language Model(MLM) Salazar et al. (2020)
and the Next Sentence Prediction(NSP) Liu et al. (2019). The MLM model based on the self-
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encoding method uses the flag bitMASK to randomly replace some words, and then use the context
corresponding to the MASK to predict the true value of the flag bit. However, MASK is not
used in the fine-tuning phase, which leads to the inconsistency between pre-training data and fine-
tuning data. While XLNet Yang et al. (2019), which is trained by autoregressive model, solves the
inherent problem of self-encoding, and overcomes the defects of the traditional autoregressive model
which only uses the previous or post information. The main objective of XLNet is to maximize the
expected logarithmic likelihood of the factorization order of all possible sequences and to obtain
all possible contexts of sequences in autoregressive mode. Based on the advantages of XLNet, this
paper presents a neural machine translation method for agglutination language. It mainly includes
the following contents:

1. In this paper, the model is divided into upstream pre-training word embedding and downstream
machine translation model.

2. For the upstream task, this paper adopts the word embedding pre-training method of semantic
XLNet, uses the permutation language model to sort all possible sequences of the original sequence,
and then learns the prediction probability of the token through the autoregression method, which not
only retains the context information of the sequence, but also avoids using the MASK flag bit.

3. The two-stream self-attention model is proposed to solve the problem that the permutation lan-
guage model can not clearly express the content of the text.

4. Introduce fragment loop mechanism Dai et al. (2019). In order to reduce the list size, we split the
agglutinative language into stem and affix, which, however, leads to an increase in sequence length.
Therefore, we divide the long sequence into several fragments and cache them, store the informa-
tion of the previously generated fragments into the cache and concatenate it with the subsequent
fragments, which not only preserves the original length dependence, but also speeds up the training.

5. For the downstream tasks, the new word vectors obtained by splicing are used as the input of the
downstream machine translation encoder, and are trained using the maximum likelihood estimation
method to obtain the final model.

2 BACKGROUND

The neural machine translation model can simulate the translation probability P (y|x) of the source
language x = (x1, ..., xn) to the target language y = (y1, ...ym) word by word, as shown in Equa-
tion 1.

P (y|x) =
I∏
i=1

P (yi|y<i, x, θ) (1)

Where y<I indicates the partial translation result before the i-th decoding step, and θ indicates the
parameters of the NMT model. Here, the probability calculation for generating the i-th target word
is similar to:

P (yi|y<i,x,θ) ∝ exp {f(yi−1, si, ci; θ)} (2)

Where si indicates the i-th hidden state of the decoder, ci indicates the corresponding context in-
formation of the source language at time t, and f(·) indicates the nonlinear activation function in
the current node of the decoder. Calculate the source language context information according to
Equation 3.

ci =

J∑
j=1

αi,j · hj

αi,j =
exp(ei,j)∑J

j′=1 exp(ei,j′ )

(3)

Where hj indicates the encoder’s comment on the input xj , αi,j indicates its weight, and the weight
is calculated according to the attention model attention(·), and is determined by the attention score
ei,j . The attention score is calculated as follows:

ei,j = attention(si−1, hj) (4)
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Figure 1: Permutation language model. It is the combination of Autoregressive (AR) and Autoen-
coding (AE) language model, which flexibly learn the context of current token.

The neural machine translation model uses the maximum likelihood estimation method to train the
model parameter θ. For bilingual parallel sentence pair {(xn, yn)}Nn=1 in the training set, the loss
function during the training process is defined as follows:

Loss(θ) = argmax
θ

N∑
n=1

logP (yn|xn; θ) (5)

Although the logarithmic likelihood method is widely used, the exposure bias still exists, which
directly affects the quality of the traditional neural machine translation model.

3 METHOD

The pre-training word embedding generation based on XLNet includes three aspects: Permutation
language model, syntactic relevance two-stream self-attention, the fragment loop mechanism. In
addition, we also introduce the downstream translation model.

3.1 PERMUTATION LANGUAGE MODEL

The permutation language model (PLM) overcomes the problems of pre-training and fine-tuning
data disunity of auto-encoding language model and that autoregressive language model can only use
unidirectional context, as shown in Figure 1. The specific approach is to factorize the input sequence.
For a sequence of n tokens, n! kinds of permutations will eventually be obtained. Note that PLM
needs to retain the original position information of each word, that is, PLM is just a factorization of
language modeling, not a rearrangement of position information.

Take ”where to eat” as an example, when its factorization order is 2 → 1 → 3, the corresponding
language model is p(where|to)p(to)p(eat|where, to). Essentially, the position of the original se-
quence is not changed. While p(to)p(where|to)p(eat|where, to) is not allowed because it changes
the position of each token.

If we use n! kinds of decomposition methods, and the model parameters are shared, PLM can learn
bidirectional context, but the calculation of traversing n! kinds of paths is very large. Therefore, in
reality, only partial arrangements of n! kinds of paths are randomly sampled, and expectation:

max
θ
Ez∼Zt

[
T∑
t=1

logpθ (xzt |xZ<t
)

]
(6)

In addition, one of the most important problems of permutation language model is that no matter
where the predicted target position is, all cases obtained after factorization are the same, and the
weights of transformer are the same for different situations, so no matter how the target position
changes, the same distribution results can be obtained. The factorization results of ”to” and ”eat” in
the above example are consistent.

However, when the standard Transformer is used to modeling PLM, there is a problem of unclear
target position information perception. That is, the model does not know which position words are
actually being predicted due to the sequence being scrambled, as a result, the probability of PLM
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Figure 2: Syntactic relevance factorization sampling.

predicting different target words is the same under partial permutation, as shown in equation 7.

pθ (Xi = x|xz<t
) = pθ (Xj = x|xz<t

) =
exp

(
e (x)

T
h (xz<t

)
)

∑
xj exp

(
e (x′)

T
h (xz<t

)
) (7)

Therefore, aiming at the above two problems: Factorization sampling and position perception. We
proposed a syntactic relevance two-stream self-attention model, which samples the factorization
sequences with syntactic dependence from all alternative paths, and then uses the two-stream self-
attention model to predict current target word and other words respectively. Then a new word
embedding representation is generated.

3.2 SYNTACTIC RELEVANCE TWO-STREAM SELF-ATTENTION

Syntactic relevance factorization sampling Syntactic information clearly expresses the depen-
dency of the core words (verbs, nouns) and its context. Compared with the linear modeling method,
the modeling method based on syntactic distance has better extensibility and generalization.

Given a dependency tree T , we consider that there is a dependency relationship between the child
node Ci and the parents node Pi, so we can obtain the factorization order by two methods: Depth
first search (DFS) and Breadth first search (BFS). As shown in figure 2. The factorization order
sampled by DFS can learn the subsequence information (chunk information) with the current node
as the root word, while the factorization based on BFS can find the context information with syntactic
relevance with the current node, that is, the attribute information of the current token. According
to the blue box in figure 3, when the factorization order is 4 → 1 → 2 → 3, we get some chunk
information (Wang’s calligraphy works), while the factorization order is 4 → 1 → 3 → 2, we can
learn the attribute information with ”works” as the root node, including (whose works (Wang) and
what works (calligraphy), etc.).

Two-stream self-attention We introduced a new distributed calculation method to improve the
softmax output of the original Transformer model, to achieve the perception of the target position,
as shown in equation 8.

pθ (Xzt = x|xz<t
) =

exp
(
e (x)

T
gθ (xz<t

, zt)
)

∑
x′ exp

(
e (x′)

T
gθ (xz<t

, zt)
) (8)

Where g(·) indicates a new representation, and the position information zt is used as its input. It can
be seen from equation 8 that when predict xzt , g(·) can only have its position information zt and
cannot contain content information xzt . When predicting other tokens xz(j,j>t), then the content
information of xzt should be included so that there is complete contextual information. Since the
traditional Transformer does not meet such requirements, the two-stream representation method is
used here to replace the original representation. Two-stream refers to the query stream representation
(QR) and the content stream representation (CR), respectively.
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Figure 3: Two-stream self-attention mechanism. The attention mask is used to obtained the factor-
ization, and then the context features are learned by autoregressive model, the blue box represent the
content and the purple box indicates the position.

(1) QR: Mainly used to predict the current word, only contains location information, not content
information of the word.

g(m)
zt ← Attention

(
Q = g(m−1)

zt ,KV = h(m−1)
z<t

; θ
)

(9)

The representation contains the context content information, xz<t , and the target location informa-
tion zt, but not the target content information, xzt .

(2) CR: Mainly provide QR with location information of other words, including location information
and content information.

h(m)
zt ← Attention

(
Q = h(m−1)

zt ,KV = h(m−1)
z<t

; θ
)

(10)

This representation method is the same as the traditional transformer, and encodes both the context
and xzt itself. The two-stream self-attention method can be summarized as the following process:

• The query stream (QR) in the first layer randomly initializes a vector gi = w.

• The content stream (CR) uses the word vector hi = e(xi).

• It should be noted here that the network weights of the two-streams are shared. Finally, QR
is removed in the fine-tuning stage, and only the CR is used.

The model framework is shown in Figure 3.

3.3 FRAGMENT LOOP MECHANISM

As mentioned earlier, agglutinative language needs to segment stem affixes to alleviate data sparse-
ness, which leads to an increase in sequence length. At present, the maximum input length of BERT
is 512. The traditional method for segmenting sequences has the problem of context fragmentation,
that is, it can not model the semantic information of continuous documents, and the model reason-
ing needs repeated computation, so the reasoning is slow. Therefore, XLNet uses a fragment loop
mechanism, the specific process is as follows:

• The text representation corresponding to the previous segment obtained by calculation will
be repaired and cached, which will be used as an extended context summary when the
model processes the next new segment. We only need to add the cache value of the previous
segment in the calculation of KV , as follows:

h(m)
zt ← Attention

(
Q = h(m−1)

zt ,KV =

[
∼
h
(m−1)

, h(m−1)
z<t

]
; θ

)
(11)

• The maximum dependency length has been increased by a factor of N , where n is the
network depth. Since the new fragment in this paper only uses the cache value of the old
fragment text to maintain the length dependence, so many repeated calculations are omitted
and the training speed is accelerated.
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3.4 DOWNSTREAM MODULE

For the downstream translation model, we mainly observed the translation effect of the word em-
bedding combined with deep semantic knowledge on Transformer and RNNSearch. The model
structure adopts the default configuration.

Through the above work, we obtained the hidden representation of word vector with semantic infor-
mation h. In order to better fit the end-to-end translation model, we use h as the input sequence of
the translation model encoder:

hmtencoder = Encoder(h1, ..., hmaxlength) (12)

Where Encoder(·) indicates the translation model (Transformer or RNN) encoder. Meanwhile,
we employ the decoder to predict the target sequence yj from the final hidden state of the encoder
hmtencoder:

yj = Decoder(hmtencodermaxlength) (13)
Therefore, the calculation of translation probability is similar to the Eq.1, and then we still adopts
the maximum likelihood estimation method to calculate the cross entropy of the model prediction
output and reference:

P (y|x) =
J∏
j=1

P (yj |y<j , hmtencoder, θ) (14)

Loss(θ) = argmax
θ

N∑
n=1

logP (yn|hnmtencoder; θ) (15)

4 EXPERIMENTS

Dataset and Setting For Mo-Zh task, the training set consist of 260K bilingual sentences from
CCMT20191 which including 2K sentence pairs for test set and validation set. For Ug-Zh task, the
training set consist of 300K bilingual sentences from CCMT2019 which including 2K sentence pairs
for test set and validation set. For Ti-Zh task, the training set consist of 150K bilingual sentences
from CCMT2019 which including 1K sentence pairs for test set and validation set. We use directed
graph discriminant method to segment the stems and affixes of source language. In addition, we
limit the bilingual vocabulary to 35K words and limit the length of sentences to 50. We use BLEU
scores2 to evaluate the model. Parameters are set as follows: word embedding size = 300, hidden size
= 512, number of layers=4, number of heads=6, dropout=0.25, batch size=128, and beam size=5.
The parameters are updated by SGD and mini-batch with learning rate controlled by Adam. All of
the source language use XLNet method3 to obtain vector representation. We employ two TITAN
X to train model and obtained by averaging the last 10 checkpoints for task. The information of
dependency tree analysis is provided by Chinese tree database (CTB).

Baseline We compared our approach against various baselines:

• RNNSearch: RNNSearch4 is a general end-to-end model built by RNN.
• Transformer: we also use Transformer5 as the baseline because it is the mainstream ma-

chine translation framework at this stage, and it can show good performance in a variety of
translation tasks.

In addition, we adopted BERT6, GPT7, XLNet pre-training method to compared with our pre-
training method.

1This corpus has been uploaded to the database as supplementary material.
2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/

multi-bleu.perl
3https://github.com/zihangdai/xlnet
4https://github.com/lvapeab/nmt-keras
5https://github.com/tensorflow/tensor2tensor
6https://github.com/google-research/bert
7https://github.com/ConnorJL/GPT2
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Model WordEmb. Mo-Zh Ug-Zh Ti-Zh
RNNSearch - 25.42 28.62 24.39
RNNSearch GPT 25.61 28.92 25.16
RNNSearch BERT 26.03 29.65 25.84
RNNSearch XLNet 27.01 30.09 26.2
Transformer - 27.18 31.18 26.47
Transformer GPT 27.39 31.26 27.25
Transformer BERT 28.00 31.74 27.91
Transformer XLNet 28.18 32.02 28.55
Ours(RNNSearch) SRXLNet 27.91 32.11 28.75
Ours(Transformer) SRXLNet 28.53 32.43 29.19

Table 1: Translation results in different languages.

Figure 4: Sequence length corresponding to different granularity.

4.1 RESULTS AND ANALYSIS

According to Table 1, the average BLEU scores of our method is higher than baseline system.
Intuitively, Transformer has better generalization ability and translation quality than RNNSearch
model, when dynamic word embedding (XLNet, GPT, BERT) is used as the basic modeling unit,
BLEU scores is higher than static word embedding. In general, static word embedding is fixed in the
fine-tuning stage, while dynamic word embedding will adjust dynamically according to the change
of context, it show more advantages in dealing with polysemy.

On equal conditions, compared with XLNet, our method (SRXLNet) has the advantage that be-
fore learning language representation, the factorization order obtained by sampling is generated by
syntactic dependency tree rather than by random extraction.

4.2 ABLATION EXPERIMENTS

Our ablation experiments mainly divided the internal modules of the upstream pre-training model,
and observed the impact of each module on the overall system.

We separated the languages into three different granularity: Morpheme, BPE, Stem-Affixes. The
statistic of average length of sequences with different granularity are shown in figure 4.

We screened out all the sentences with 50 words and found that the average length of morpheme
granularity was the 246 in three different tasks, the average length of BPE and stem-affixes granu-
larity are 157 and 114, respectively. It can be seen from table 3 that the BLEU scores is the highest
when stem-affixes is used, which compared with morpheme and BPE, the length of sequence can
be shortened and the word formation features of language can be preserved by using stem-affixes.
In addition, we found that the model improved by added fragment loop mechanism (FLM) and
syntactic relevance sampling (DFS, BFS, SRXLNet) assisted word embedding representation.
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Model Mo-Zh Ug-Zh Ti-Zh
RNN Transformer RNN Transformer RNN Transformer

+Morpheme 23.99 25.27 26.34 28.98 21.19 25.46
+BPE 25.03 25.98 27.12 30.56 22.35 26.1
+Stem-Affixes 25.24 27.18 28.62 31.18 24.39 26.47

+XLNet 27.01 28.18 30.09 32.02 26.2 28.55
+FLM 27.57 28.2 30.93 32.10 27.15 29.02
+SRXLNet-DFS 27.66 28.29 31.26 32.27 28 29.1
+SRXLNet-BFS 27.53 28.4 31.08 32.14 27.83 29.15

+SRXLNet 27.91 28.53 32.11 32.43 28.75 29.19

Table 2: The Ablation Experiment.

Figure 5: Analysis of sentence length and polysemy.

4.3 CASE STUDY

We mainly verify the BLEU scores of different sentence lengths and the ability of the model to
deal with polysemous words. According to figure 5, when the sentence length is about 20 tokens,
the model has better performance. With the increase of the length, BLEU scores also gradually
decreases, when the sentence length is greater than 50, BLEU scores is the lowest.

For the polysemy phenomenon in the text, we mainly sample 300 sentences from each of the three
target tasks, and manually detect the polysemous words and whether it causes ambiguity in the
translation. The details are shown in figure 5.

According to figure 5, the average number of sentences with polysemy per 100 sentences sampled in
the three target tasks is 1.3, 0.8 and 0.4, respectively. Since BLEU evaluation index is not sensitive to
the polysemous words, we use manual evaluation(ME), and the total score is set at 10, which is used
to score sentences. The scores of ME scores in three target tasks is 6.3, 7.1 and 7.5, respectively.

5 CONCLUSION

This paper presented a syntactic relevance XLNet word embedding pre-training method and evaluat-
ed its performance in various neural machine translation models. The conclusion is that the dynamic
word embedding with context representation ability improved the performance of the model. When
different sampling strategies are used to obtain the factorization sequence, the model extracted word
embedding with rich syntactic relations from the disordered sequence of the permutation language
model. In addition, we employed the fragment loop mechanism to alleviated the vanishing gradient
in hyper-long sequence modeling. In the future, we will research the application of different word
embedding generation methods in low-resource neural machine translation tasks.
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