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ABSTRACT

Continual learning (CL) remains a critical challenge when applying large language
models (LLMs) to real-world situations. On the one hand, billions of parameters
for LLMs add a huge computing overhead to CL. Existing techniques, on the
other hand, solely address catastrophic forgetting while ignoring the possibility
of knowledge transfer between tasks. Facing these challenges, we propose Attri-
bution Scores-based Soft Orthogonality Low-Rank Adaptation (ASO-LoRA), an
effective and efficient framework that simultaneously facilitates knowledge trans-
fer while mitigating catastrophic forgetting. Specifically, ASO-LoRA initially as-
signs task-specific parameter subspaces for new tasks utilizing multi-LoRA mod-
ules, enabling for efficient training and inference without relying on task labels.
Then, ASO-LoRA leverages attribution scores to evaluate task similarity and sug-
gests gradient steps in a soft orthogonal direction between task-specific subspaces,
achieving a balance between knowledge transfer and preservation. Experiments
are carried out on both the T5-large and the LLaMA2-7B, showing ASO-LoRA’s
suitability as a plug-in CL solution for general Transformer-based LLMs. Experi-
mental results on CL benchmarks demonstrate that ASO-LoRA outperforms other
strong baselines.

1 INTRODUCTION

Continuous learning (CL) is essential for applying language models in real-world scenarios, as pre-
senting training data sequentially from varied distributions of different tasks can result in catas-
trophic forgetting (Wang et al., 2024b). Despite the remarkable performance of recently published
large language models (LLMs) such as GPT-4 (Achiam et al., 2023b), Llama (Touvron et al., 2023),
and DeepSeek (Liu et al., 2024a) across various tasks, CL still remains a significant challenge, as
LLMs are not suited for frequent retraining due to the notable training costs related to their large
scale (Wu et al., 2024).

In contrast to its employment in smaller models, efficient CL is of great importance for LLMs since
implementing CL with billions of parameters incurs large computing costs. To realize efficient CL,
recent research has made use of the parameter-efficient tuning frameworks for LLMs. Razdaibied-
ina et al. (2023) learns a new soft prompt for each task and concatenates it with previously learnt
prompts, while freezing the base model. O-LoRA (Wang et al., 2023) proposes to incrementally
learns new tasks in an orthogonal subspace while fixing the LoRA parameters learned from past
tasks to minimize catastrophic forgetting. However, these methods tend to address only catastrophic
forgetting, neglecting the possibility of transferring knowledge between tasks. SAPT (Zhao et al.,
2024a) proposes to align the learning and selection of LoRA parameters via the shared attentive
learning and selection module, addressing catastrophic forgetting and knowledge transfer simulta-
neously. Despite being PET-agnostic, SAPT introduces new modules to the architecture, increasing
its complexity.

This research presents a simple yet efficient methodology for continual learning (CL) in large lan-
guage models (LLMs), addressing both catastrophic forgetting and knowledge transfer. For the
efficient manner, our study is based on Low-Rank Adaptation (LoRA) (Hu et al., 2022a), an effi-
cient PET method that demonstrates how fine-tuning a specific low-rank subspace for new tasks can
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Figure 1: The key innovation lies in ASO-LoRA’s dual capability to mitigate catastrophic forget-
ting of historical tasks while simultaneously facilitating inter-task knowledge transfer. ASO-LoRA
updates the parameters subspace of new task through a soft orthogonal direction (orange curved ar-
row) with the historical tasks, instead of updating through a hard orthogonal direction (red straight
arrow), to constrain the gradient updates of the current task to be softly orthogonal to the gradient
subspace of the past tasks.

lead to competitive performance. Recent studies (Wang et al., 2023; Saha et al., 2021) suggest that
optimizing along directions orthogonal to historical tasks’ gradient subspaces can meet the purpose
of mitigating catastrophic forgetting, by minimizing interference with their loss functions.

Inspired by these, we propose Attribution Scores-based Soft Orthogonality Low-Rank Adaptation
(ASO-LoRA), an effective and efficient framework that facilitates transfer of knowledge while re-
ducing catastrophic forgetting. We begin by assigning task-specific parameter subspaces for new
tasks utilizing multi-LoRA modules, leaving the LLMs’ parameters frozen. Multi-LoRA also en-
ables inference without relying on task labels, allowing for generalization to previously unknown
tasks. Then we improve the original method, which only takes gradient steps in the orthogonal di-
rection, by hypothesizing that different tasks may share similar knowledge that could be transferred
to enhance their task capabilities. As shown in Figure 1, we use attribution scores (Dai et al., 2021)
to evaluate task similarity and propose taking gradient steps in a soft orthogonal direction between
task-specific subspaces, achieving a balance between knowledge transfer and preservation.

We conduct experiments using the encoder-decoder-based T5-large and decoder-only-based
LLaMA2-7B models, demonstrating ASO-LoRA as a plug-in CL solution for general Transformer-
based LLMs. Experimental results on CL benchmarks show that ASO-LoRA outperforms other
strong baselines.

2 RELATED WORKS

Continual learning in LLMs refers to the paradigm where LLMs sequentially acquire new knowl-
edge from non-stationary data distributions while preserving learned capabilities (Wang et al.,
2024b; Wu et al., 2024), and can be categorized into these types: Replay-based approach (Smith
et al., 2024; Petit et al., 2023), Regularization-based approach (Zhao et al., 2024c), Optimization-
based approach (Wang et al., 2022a), and Architecture-based approach (Han et al., 2025).

Parameter-Efficient Tuning (PET) adapts models by optimizing performance through updates to a
minimal set of parameters (without direct modification of original parameters), employing Adapters
(Wang et al., 2022b), soft prompts (Liu et al., 2024c), or low-rank adaptations (LoRA) (Liu et al.,
2024b), to significantly reduce computational costs (Coleman et al., 2025).

Inspired by the above works, our method incorporates the LoRA mechanism while introducing soft
orthogonality regularization to the loss function, achieving an optimal balance between model per-
formance and training efficiency for LLMs in continual learning scenarios. Due to space constraints,
please refer to the Appendix B for more detailed related works.
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Figure 2: The overall framework of ASO-LoRA, employing multi-LoRA composition with a soft
orthogonality constraint. a) We progressively train a new LoRA block for each incoming new task
while freezing all historical LoRA blocks, and sequentially stack it upon existing LoRA blocks for
the inference stage. b) The parameter updates for the new task’s subspace adhere to a soft orthogo-
nality constraint as a regularization term: we derive a soft orthogonality coefficient by quantifying
the similarity between the attribution scores of the current and historical tasks, instead of enforcing
the subspaces to be strictly orthogonal to mitigate catastrophic forgetting. This soft orthogonality
allows for partial overlap in the tasks’ subspaces, facilitating the cross-task knowledge transfer.

3 METHODOLOGY

Figure 2 presents an overview of the whole framework. ASO-LoRA utilizes a multi-LoRA com-
position mechanism with soft orthogonality constraints to enable continual learning of incremental
tasks. Next, we will present a comprehensive exposition of our proposed method.

3.1 PRELIMINARY

Task Definition: Continual learning (CL) refers to a learning paradigm in which a model M , pa-
rameterized by θ, sequentially acquires knowledge from a series of tasks’ data {D1, D2, ..., DT }
over T learning stages. Each task t consists of a set of input and target output pairs {(xti, yti)}ni=1.
The objective of CL is to optimize the model’s parameters θ such that M averagely performs well
on all learned tasks:

maxθ

T∑
t=1

∑
{(xt

i,y
t
i)}n

i=1∈Dt

logpM (yti |xti) (1)

Continual learning using Multi-LoRA composition. We adopt LoRA, an efficient PET method to
fine-tune a specific low-rank subspace of trainable parameters for new tasks, while keeping the pre-
trained parameters of the LLMs frozen. LoRA does not rely on task IDs during inference, therefore
keeping LLMs’ generalization ability on unseen tasks. Specifically, LoRA freezes the LLMs’ pre-
trained weight matrix Wbase ∈ Rd×k without receiving gradient updates to preserve the acquired
knowledge. Trainable low-rank decomposition matrices At ∈ Rd×r and Bt ∈ Rr×k are introduced
for each new task t learning in parallel pathways, with r ≪ min(d, k)).

To enable continual task adaptation for pretrained LLMs, we employ the multi-LoRA mechanism,
in which a separate LoRA block LoRAt = {At, Bt} is trained for each downstream task t. The
base LLM attached with LoRAt is defined as MLoRAt

. The updated weight matrix Wt of MLoRAt

for specific task t is as follows:
Wt =Wbase +∆Wt =Wbase +AtBt (2)

As the number of continually learned tasks increases, we can integrate the updated LoRA parameters
into the base LLM parameters during inference, as shown in Eq.(3).

WmergeT =Wbase +

T∑
t=1

AtBt (3)

3
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3.2 ENHANCING MULTI-LORA WITH ATTRIBUTION SCORES BASED SOFT ORTHOGONALITY

The vanilla CL with multi-LoRA, as described in Eq.(3), fails to account for the interactions between
LoRA blocks, leading to instability in the fusion process and catastrophic forgetting. To address the
issues raised above, we propose to enhance LoRA with Attribution Scores based Soft Orthogonality
(ASO-LoRA), taking into account both catastrophic forgetting and knowledge transfer between tasks
while integrating LoRA blocks. In particular, ASO-LoRA uses orthogonal regularization among the
subspaces of multi-LoRA blocks to prevent catastrophic forgetting following previous studies (Wang
et al., 2023). It further introduces attribution scores to softly adjust the orthogonal regularization,
thereby improving positive inter-task knowledge transfer.

Formally, ASO-LoRA starts by learning new tasks in a direction orthogonal to the LoRA subspaces
of historical tasks while freezing historical LoRA parameters. For each task t, At = [a1t , a

2
t , ..., a

r
t ]

of LoRAt = {At, Bt} is approximated as the core of the task-related subspace, where each vector
in Bt = [b1t , b

2
t , ..., b

r
t ] represents the linear weighting coefficients of the column vectors in At.

Achieving orthogonality between the subspaces of the new task T and each historical task t ∈
{1, ..., T − 1} can be expressed as:

AT
t AT = 0 (4)

The hard orthogonality defined in Eq (4) simply considers the difference between tasks while ig-
noring the sharing of knowledge, resulting in inefficiency. We hypothesize that the relationship
between LoRA blocks is not strictly orthogonal and that interactions between LoRA blocks may
yield knowledge transfer with beneficial effects. To capture the shared knowledge, we further in-
troduce the concept of a dynamic soft orthogonality coefficient ψsoft

t,T . ψsoft
t,T decreases as more

knowledge is shared between two LoRA blocks, indicating a stronger enhanced parametric correla-
tion. In contrast, the coefficient increases as the LoRA blocks become more orthogonal, indicating
a decrease in the relevance of the knowledge of tasks represented by the LoRA block. With the
soft coefficient factor ψsoft

t,T , the hard orthogonality defined in Eq.(4) can be reformulated as the
attribution score-based soft orthogonality ASOt,T :

ASOt,T = ψsoft
t,T AT

t AT = 0 (5)

The soft coefficient factor ψsoft
t,T is calculated by the weight of attribution scores wattr

t,T between the
new task T and historical task t(t < T ) as below:

ψsoft
t,T = 1− wattr

t,T (6)

Finally, the CL training objective for the new task T is defined as:

L =
∑

(x,y)∈DT

logpMLoRAT
(y|x) + λ

T −1∑
t=1

LASO(At, AT )

LASO(At, AT ) =
∑
j,k

||ASOt,T [j, k]||2
(7)

Where ASOt,T is the attribution score-based soft orthogonality defined in Eq.(5). ASOt,T [j, k]
denotes the element at the j − th row and k− th column of ASOt,T , and λ is the weight of the soft
orthogonality loss.

Next, we present the details about how to derive the weight of attribution scores wattr
t,T .

3.3 THE WEIGHT OF ATTRIBUTION SCORES

Before introducing the weightwattr
t,T of the attribution score, we first introduce the concept of Knowl-

edge Neuron.

4
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Knowledge Neurons (KNs) are neurons in the Transformer’s Feed-forward Network (FFN) memo-
ries that store factual knowledge, discovered by recent studies (Dai et al., 2021). FFN is responsible
for applying a non-linear transformation to the hidden state H , given by the multi-head attention
(MHA) module of Transformer:

FFN(H) = GELU(HW l1)W l2 = NeuronsW l2 (8)

W l1 and W l2 are weight parameter matrices of the FFN layers. For simplicity, we omit the scaling
factor in MHA and the bias terms in FFN.

Attribution scores evaluate the contribution of each knowledge neuron in the LLM to the knowl-
edge expression of data (Dai et al., 2021) based on the integrated gradients. We utilize attribution
scores to assess how similar the model with the new-task LoRA is to models with historical-task
LoRA blocks, allowing us to establish the proper level of orthogonal constraints between the LoRA
blocks.

Given an input data xT of new task T , we first define the output P T
MLoRAt

(n̂i
t) as the probability of

the correct answer predicted by MLoRAt
(base model attached to a LoRA of each specific task t):

P T
MLoRAt

(n̂i
t) = pMLoRAt

(y∗|xT , nit = n̂it) (9)

where y∗ denotes the correct answer; nit denotes the knowledge neuron of MLoRAt
to be calculated,

and n̂i
t is a given constant that nit is assigned to.

To determine the attribution score Attr(nit), we gradually alter nit from 0 to its original value n̄it
calculated by the MLoRAt

, while simultaneously integrating the gradients:

Attr(nit) = n̄i
t

∫ 1

σ=0

δP T
MLoRAt

(σn̄it)

δnit
dσ (10)

PT
MLoRAt

(σn̄i
t)

δni
t

calculates the gradient of the model output with regard to ni
t. As σ varies from 0 to 1,

Attr(nit) accumulates the cumulative impact of modifying nit on the change of output probability.

Since it is difficult to directly calculate continuous integrals, the Riemann approximation (Roe, 1981)
method is used to estimate the value of integrated gradients, and we set the number of approximation
steps m = 20:

Attr(nit) =
n̄it
m

m∑
k=1

δP T
MLoRAt

( k
m n̄

i
t)

δnit
(11)

When a knowledge neuron ni
t significantly impacts the expression of knowledge, the resulting gra-

dient becomes prominent, leading to high integration values Attr(nit).

For MLoRAt , we assemble the attribution scores corresponding to all knowledge neurons
[n1t , ..., n

N
t ], denoting them as a vector:

Attr vecMLoRAt
= [Attr(n1t ), ..., Attr(n

N
t )] (12)

Where N represents the number of MLoRAt ’s KNs.

Using the aforementioned, we can calculate the weight of attribution scores wattr
t,T as shown below.

We quantify the influence of each historical task t(t < T ) on the current task T by computing the
similarity between their attribution vectors for the current task T ’s data:

wattr
t,T = Sim(Attr vecMLoRAt

, Attr vecMLoRAT
) (13)

wattr
t,T evaluates the transferability of knowledge from previous tasks {1, 2, ..., T −1} to new task T .

A higher wattr
t,T indicates greater knowledge sharing between tasks t and T , suggesting that LoRAt

is more likely to positively influence LoRAT block.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

4.1.1 DATASETS

CL benchmarks: Following Wang et al. (2023)’s work, we conduct comprehensive evaluations of
ASO-LoRA against state-of-the-art baselines on four standard continual learning benchmarks for
language models: AG News, Amazon Reviews, DBpedia, and Yahoo Answers (Zhang et al., 2015).

Longer benchmarks: To further validate our approach, we conduct extensive experiments on longer
task sequences, incorporating 15 common tasks used for language models (Razdaibiedina et al.,
2023), including the AG News, Amazon Reviews, DBpedia, Yahoo Answers, and Yelp reviews
from standard CL benchmarks; MNLI, QQP, RTE, SST2 from GLUE benchmark (Wang et al.,
2018); WiC, CB, COPA, MultiRC, BoolQ from SuperGLUE (Wang et al., 2019), and the IMDB
movie reviews (Maas et al., 2011).

We explore 6 different orders of the benchmarks to validate the methods’ efficacy across diverse
continual learning scenarios.

4.1.2 METRICS

Following Wang et al. (2024a), we use the Average Accuracy (AA) to evaluate the performance of
ASO-LoRA in the CL scenario, which is the average accuracy of all tasks after the model finishes
training on the latest task T :

AA =
1

T

T∑
i=1

aT ,i (14)

We also employ forgetting measure (FM) and forward transfer (FWT) as evaluation metrics to com-
prehensively evaluate our approach.

4.1.3 BASELINES

Based on Wang et al. (2023)’s work, we evaluate our method against strong competitive baselines:
(1) Non-CL baselines: SeqFT(de Masson D’Autume et al., 2019) and PerTaskFT. PerTaskFT is
considered as the upper bound. (2) LoRA-based: SeqLoRA, IncLoRA, MoELoRA(Luo et al.,
2024), MoCL(Wang et al., 2024c) and O-LoRA(Wang et al., 2023). (3) Traditional CL baselines:
Replay(Chaudhry et al., 2019), EWC(Kirkpatrick et al., 2017), LwF(Li & Hoiem, 2017), L2P(Wang
et al., 2022c), and LFPT5(Qin & Joty, 2021). See Appendix C.2 for details of these baselines.

4.1.4 IMPLEMENTATION DETAILS

ASO-LoRA employs the generalization-friendly instruction tuning as the training paradigm, cap-
turing the underlying commonalities of tasks. We implement ASO-LoRA on two representative
Transformer architectures: the encoder-decoder model T5-large (710M) (Raffel et al., 2020) and the
decoder-only model LLaMA2-7B (Touvron et al., 2023), highlighting ASO-LoRA’s applicability as
a plug-in continual learning solution for general Transformer-based language models. The similarity
in Eq.(13) employs Spearman’s rank correlation coefficient. We train the models with one epoch,
using the AdamW (Loshchilov & Hutter, 2017) optimizer in a batch size of 64 with learning rate
1×10−3 for each experiment. The weight decay is 0 while the dropout rate is set as 0.1. The weights
of the soft orthogonality loss follow Wang et al. (2023)’s work. Results are reported as the average
of 3 runs. Our setup consists of a four-core CPU and eight NVIDIA Tesla A100 GPUs.

For more details on task orders, task details, metrics, and baselines, refer to the Appendix C.

4.2 MAIN RESULTS AND ANALYSIS

Table 1 displays a comprehensive performance comparison between ASO-LoRA and baselines on
both CL benchmarks and extended longer benchmarks. We evaluate the effectiveness of ASO-LoRA
for CL scenarios from three perspectives:

6
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Table 1: The main averaged accuracy (AA) results on two series of benchmarks with the T5-large
model (T5-710M), after training on the last task. The results of CL baselines are referred from Wang
et al. (2023)’s work, while the results of MoCL and MoELoRA are from Du et al. (2024).

CL benchmarks Longer benchmarks
Order-1 Order-2 Order-3 Avg. Order-4 Order-5 Order-6 Avg.

SeqFT 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
PerTaskFT 72.5 72.5 72.5 72.5 78.0 78.0 78.0 78.0

Replay 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2

SeqLoRA 62.6 61.5 69.3 64.5 56.7 52.7 15.9 41.8
IncLoRA 69.5 64.9 70.9 68.4 59.0 62.6 62.3 61.3
MoCL 75.6 75.4 76.7 75.9 - - - -
MoELoRA 52.8 49.6 59.8 54.1 36.3 31.4 15.1 27.6
O-LoRA 75.6 78.1 72.1 75.3 71.6 69.3 75.8 72.2
ASO-LoRA 76.2 77.5 77.3 77.0 73.7 67.2 77.4 72.8

Performance on CL benchmarks: As evidenced by the results, ASO-LoRA consistently outper-
forms all baselines across different task orders. Notably, ASO-LoRA achieves significant improve-
ments of 4.5% and 1.7% compared to PerTaskFT and O-LoRA, respectively. These demonstrate
that ASO-LoRA effectively mitigates catastrophic forgetting in continual learning scenarios while
successfully leveraging previously acquired knowledge. Notably, unlike conventional CL baselines,
ASO-LoRA requires neither full-parameter training nor historical data storage, thereby achieving
significant computational efficiency while preserving knowledge from the pertaining stage.

Performance on longer general benchmarks: Following Wang et al. (2023), we assess ASO-
LoRA on a more challenging scenario, involving sequential training across 15 extended tasks. As
illustrated in Table 1, ASO-LoRA achieves superior performance compared to almost all baselines
in addressing longer continual learning problems, demonstrating ASO-LoRA’s robust adaptability
to more complex scenarios. However, PerTaskFT maintains higher performance, indicating that
sustained knowledge preservation in long task sequences remains an open challenge.

Table 2: The main AA results on CL benchmarks with the
Llama-7B model, after training on the last task.

Model CL benchmarks
Order-1 Order-2 Order-3 Avg.

SeqLoRA 77.2 76.6 78.0 77.2
IncLoRA 32.7 49.1 35.5 39.1
O-LoRA 73.7 75.0 76.5 75.1
ASO-LoRA 75.0 74.8 78.1 76.0

Results on other Transformer-
based structures: To further val-
idate the generalizability of ASO-
LoRA across Transformer-based ar-
chitectures, we extend our experi-
ments on the decoder-only LLaMA-
7B model using standard CL bench-
marks. As evidenced in Table 2,
ASO-LoRA achieves a leading per-
formance, with an average improve-
ment of 0.9% over O-LoRA. These
empirical evidences confirm ASO-
LoRA’s plug-and-play adaptability, suggesting its broad applicability across diverse Transformer-
based models for complex continual learning scenarios. We include the results of the LLaMA archi-
tecture on longer benchmarks in the Appendix D.1.

4.3 THE IMPACT OF SOFT ORTHOGONALITY

To facilitate a more intuitive analysis of Soft Orthogonality’s effectiveness, we further display the
comparative task-specific results after complete model training across three distinct task orderings
(Order1-Order3) on both T5 and Llama structures, as listed in Table 3 and 8.

7
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Table 3: Results on individual tasks after completing training on the final task with T5-large across
Order 1&2&3. The left-to-right ordering of benchmarks corresponds to the task training order.

Model CL benchmarks per-task results

Order1

Sequences Dbpedia Amazon Yahoo Ag
PerTaskFT 97.6 34.7 70.0 87.5
IncLoRA 81.3 38.6 68.0 89.9
O-LoRA 89.6 56.4 67.5 88.8
ASO-LoRA 88.1 57.9 71.1 87.5

Order2

Sequences Dbpedia Amazon Ag Yahoo
PerTaskFT 97.6 34.7 87.5 70.0
IncLoRA 72.0 44.2 70.1 73.5
O-LoRA 96.8 56.4 87.7 71.8
ASO-LoRA 91.3 58.5 87.9 72.1

Order3

Sequences Yahoo Amazon Ag Dbpedia
PerTaskFT 70.0 34.7 87.5 97.6
IncLoRA 65.1 44.9 75.0 98.4
O-LoRA 69.7 33.3 86.6 98.7
ASO-LoRA 70.3 55.1 85.2 98.9

Regardless of task ordering, ASO-LoRA demonstrates superior performance on most tasks com-
pared to O-LoRA and the fine-tuning-only upper bound. Although ASO-LoRA exhibits a lower
AA score than O-LoRA on Order2, it achieves greater performance improvements across more in-
dividual tasks. Preliminary analysis suggests that potential negative backward transfer from later
tasks to the initial task may lead to performance degradation. For Order3, ASO-LoRA achieves a
significant 21.8% improvement over O-LoRA on task Amazon. These evidences still prove that the
proposed Soft Orthogonality mechanism extends the interaction subspaces between LoRA blocks
within PET frameworks, relaxing hard orthogonal constraints while preserving low-rank adaptation
benefits. Refer to Appendix D.2 for the results and analysis of Llama structure.

cb wic copa qqp boolqa rte imdb yelp amazon sst-2 dbpedia ag multirc yahoo
Tasks

0.0
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0.6

0.8

Re
lev

an
ce

 to
 pr

ev
iou

s t
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Figure 3: Longer benchmarks’ Violin Plot of wattr, displaying the distribution of similarity coeffi-
cient wattr across different tasks during the training stages. Central white dot represents the median
or mean of the data, while a wider section indicates higher data density (more points near that value).

4.4 THE RELATIONSHIPS AMONG TASKS ON LONGER BENCHMARKS

We employ the violin plot to visualize the similarity coefficient wattr between the new task and
historical tasks, as proposed in Eq.(13), analyzing their inter-task correlations and mutual influences.

Figure 3 presents the cross-task correlation coefficients between new and historical tasks under Or-
der4. Task Cb exhibits a strong correlation with the preceding task MNLI. Since both tasks belong
to the Natural Language Inference (NLI) category within the GLUE benchmark, this finding aligns
with our hypothesis. Likewise, the high similarity between the tasks of RTE and BoolQA can be
attributed to their common source from Wikipedia.
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4.5 THE EFFECT ON CATASTROPHIC FORGETTING AND KNOWLEDGE TRANSFER

To comprehensively evaluate Soft Orthogonality’s efficacy in mitigating catastrophic forgetting and
facilitating knowledge transfer, we introduce additional metrics: FM and FWT. These metrics en-
able systematic comparison with the mere orthogonal-constrained strong baseline O-LoRA. Figure
4 reveals that ASO-LoRA obviously achieves superior knowledge transfer over O-LoRA by more
effectively leveraging prior task knowledge on all structures. As the tasks increase, ASO-LoRA ex-
hibits progressively reduced catastrophic forgetting, ultimately outperforming O-LoRA in long-term
knowledge preservation on T5 structure. These substantiate our hypothesis that soft orthogonality
offers a principled solution for balancing knowledge preservation and transfer in CL.
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Figure 4: ASO-LoRA vs. O-LoRA on standard CL benchmarks using metrics FM and FWT. Lower
FM values indicate stronger resistance to catastrophic forgetting and better knowledge retention
capabilities, while higher FWT values demonstrate more effective utilization of prior knowledge
and superior knowledge transfer.

4.6 THE OUTPUT SIMILARITY OF DIFFERENT TASKS ON LONGER BENCHMARKS

To investigate how our method enhances model performance distinct from O-LoRA, we visualize the
variation in product magnitudes between O-LoRA and ASO-LoRA augmented by soft orthogonal in
Figure 5. We employ heatmaps to depict the similarity of final output distributions across different
tasks. Compared to O-LoRA, ASO-LoRA achieves higher task similarity, thereby strengthening the
inter-task connections. This difference, driven by the distinct interaction patterns between LoRA
blocks, indicates that our method facilitates more effective knowledge transfer across tasks, which
in turn contributes to improved performance in continual learning scenarios.
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Figure 5: ASO-LoRA vs. O-LoRA on the final output distribution similarity across different tasks
in the sequence of Order4 on T5-Large structure.

5 CONCLUSION

In this work, we present ASO-LoRA, an innovative continual learning framework that incorporates
Attribution Score-based Soft Orthogonality for parameter-efficient adaptation. Experimental results
demonstrate that ASO-LoRA outperforms strong baselines, effectively mitigating catastrophic for-
getting while facilitating robust knowledge transfer across sequential tasks.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We appreciate the assistance provided by GPT-4 (Achiam et al., 2023a) in writing aid and sentence-
level polishing.

B RELATED WORKS

B.1 CONTINUAL LEARNING IN LLMS

Continual learning in LLMs refers to the paradigm where LLMs sequentially acquire new knowledge
from non-stationary data distributions while preserving learned capabilities (Wang et al., 2024b; Wu
et al., 2024), and can be categorized into these types: Replay-based approach approximates and
recovers old knowledge by storing old training samples (Chaudhry et al., 2019; Smith et al., 2024),
or extracting information from prior feature representations (Zhu et al., 2022; Petit et al., 2023).
Regularization-based approach adds explicit regularization terms to balance the old and new
tasks, usually requiring storing a frozen copy of the old model (Kirkpatrick et al., 2017; Zhao et al.,
2024c). Optimization-based approach explicitly designs the optimization programs to achieve
continual learning (Wang et al., 2022a). Architecture-based approach investigates dynamic model
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expansion (Yao et al., 2023; Han et al., 2025; Qin et al., 2022), combined with parameter isola-
tion mechanisms (Wang et al., 2023; Zhao et al., 2024b) to minimize task interference in sequential
learning scenarios.

B.2 PARAMETER-EFFICIENT TUNING (PET)

PET has emerged as a resource-efficient approach for model adaptation (Coleman et al., 2025),
aiming to optimize performance while updating only a small number of trainable parameters to
reduce computational costs. Some works train adapters for the downstream task while keeping the
pre-trained model parameters frozen (He et al., 2023; Wang et al., 2022b). Another line of research
explores the integration of trainable tensors, called soft prompts, into model input representations
(Lester et al., 2021; Liu et al., 2024c). Recently, reparameterization methods such as low-rank
adaptations (LoRA) have garnered significant attention (Hu et al., 2022b; Dettmers et al., 2023;
Liu et al., 2024b). These approaches avoid direct modification of original weight matrices, instead
updating parameters through transformation functions operating on smaller parameter sets.

C EXPERIEMTAL SETUPS

C.1 METRCIS

Forgetting measure(FM) is also applied to calculate the memory stability of models. The forgetting
of a task is calculated by the difference between its maximum performance obtained in the past and
its current performance:

fj, = max
i∈{1,...,t−1}

(ai,j − at,j), ∀j < t (15)

FM at the t-th task is the average forgetting of all old tasks:

FMt =
1

t− 1

t−1∑
j=1

fj,t (16)

FWT evaluates the average influence of all old tasks on the current t-th task:

FWTt =
1

t− 1

t∑
j=2

(aj,j − ãj) (17)

where ãj is the accuracy of a base model trained with Dj for the j-th task.

C.2 BASELINES

We conduct comprehensive comparisons between our method and 10 baseline models, whose intro-
ductions are detailed as follows:

SeqFT (de Masson D’Autume et al., 2019): trains all model parameters sequentially across tasks
without employing any regularization or replay techniques.

PerTaskFT: trains a separate model for each task.

Replay (Chaudhry et al., 2019): is fine-tuned on all parameters with a memory buffer mechanism,
replaying stored prior samples to prevent knowledge forgetting.

EWC (Kirkpatrick et al., 2017): performs full-model fine-tuning with regularization constraints
designed to preserve parameters critical for previously learned tasks.

LwF (Li & Hoiem, 2017): constrains the shared representation layer to be similar to its original
state before learning new tasks.

L2P (Wang et al., 2022c): dynamically selects and updates prompts from the pool in an instance-
wise manner based on input characteristics.
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LFPT5 (Qin & Joty, 2021): implements continuous soft prompt training for direct task solution and
training sample generation.

SeqLoRA: trains the fixed-size LoRA parameters on a sequence of tasks without any regularization
or replaying techniques.

IncLoRA: sequentially acquires a series of new tasks through incremental LoRA parameter expan-
sion, without any regularization or replaying techniques.

MOCL (Wang et al., 2024c): continually adds new trainable PEFT parameters (LoRA) to language
models and composes them with existing modules.

MoELoRA (Luo et al., 2024): considers LoRA as a Mixture of Experts, harnessing the collec-
tive modeling capacity of multiple experts to handle different domains while retaining LoRA’s
parameter-efficient characteristics.

O-LoRA (Wang et al., 2023): learns new tasks in different vector subspaces (low-rank) that are kept
orthogonal to each other to prevent catastrophic forgetting.

C.3 TASK DETAILS

We list the sequences of tasks used in our experiments in Table 4, while Table 5 provides represen-
tative task instruction templates.

Table 4: Six different orders of task sequences used for continual learning experiments. These
orders are following Wang et al. (2023) and Razdaibiedina et al. (2023)’s works.

Order Task Sequence

1 dbpedia→amazon→yahoo→ag

2 dbpedia→amazon→ag→yahoo

3 yahoo→amazon→ag→dbpedia

4
mnli → cb → wic → copa → qqp →
boolqa → rte → imdb → yelp → amazon
→ sst-2 → dbpedia → ag → multirc → yahoo

5
multirc → boolqa → wic → mnli → cb →
copa → qqp → rte → imdb → sst-2 →
dbpedia → ag → yelp → amazon → yahoo

6
yelp → amazon → mnli → cb → copa →
qqp → rte → imdb → sst-2 → dbpedia
→ ag → yahoo → multirc → boolqa → wic

Table 5: Instructions for different tasks

Task Prompt

NLI What is the logical relationship between the ”sentence 1” and the ”sentence 2”?
Choose one from the options.

QQP Whether the ”first sentence” and the ”second sentence” have the same meaning?
Choose one from the options.

SC What is the sentiment of the following paragraph? Choose one from the options.
TC What is the topic of the following paragraph? Choose one from the options.

BoolQA According to the following passage, is the question true or false?
Choose one from the options.

MultiRC According to the following passage and question, is the candidate answer true or false? Choose one from the options.

WiC Given a word and two sentences, whether the word is used with the same sense in both sentences?
Choose one from the options.

COPA Given a prompt sentence, a question, and two possible answers, which option is more reasonable to answer the question.
Choose one from two options.
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C.4 COMPARISON WITH CL METHODS

In Table 6, we compare ASO-LoRA with common CL methods. Our approach shows four distinct
advantages: rehearsal-free, parameter-efficient, task-id-available, and knowledge-transferable.

Table 6: The comparison between ASO-LoRA and other continual learning methods. Specifically,
RF indicates whether the method is rehearsal-free. PE indicates whether the method is parameter
efficient. TIF indicates whether task identify is available during inference. KT indicates whether the
method enables knowledge transfer.

Method RF PE TIF KT

EWC (Kirkpatrick et al., 2017) ✓ ✓ ✓
LwF (Li & Hoiem, 2017) ✓ ✓
L2P (Wang et al., 2022c) ✓ ✓ ✓

LFPT5 (Qin & Joty, 2021) ✓ ✓ ✓
MoELoRA (Luo et al., 2024) ✓ ✓
O-LoRA (Wang et al., 2023) ✓ ✓ ✓

ASO-LoRA ✓ ✓ ✓ ✓

D SUPPLEMENTARY EXPERIMENTS

D.1 PERFORMANCE ON OTHER TRANSFORMER-BASED STRUCTURES

To further validate the generalizability of ASO-LoRA across Transformer-based architectures, we
extend our experiments on the decoder-only LLaMA-7B model using Longer CL benchmarks. As
evidenced in Table 7, ASO-LoRA achieves significantly superior performance, with an average
accuracy improvement of 5.4% compared to O-LoRA. These experimental results further confirm
the plug-and-play adaptability of ASO-LoRA, demonstrating its broad applicability across various
Transformer-based models in more complex continual learning scenarios.

Table 7: The main AA results on Longer benchmarks with the Llama-7B model, after training on
the last task.

Model Longer benchmarks
Order-4 Order-5 Order-6 Avg.

SeqLoRA 0 11.9 9.0 6.9
IncLoRA 26.8 28.3 36.2 30.4
O-LoRA 46.4 61.9 58.1 55.5
ASO-LoRA 59.1 64.5 59.2 60.9

D.2 THE IMPACT OF SOFT ORTHOGONALITY ON LLAMA STRUCTURE

We further analyze the task-specific performance of the final model on the LLaMA architecture
after completing all training tasks, as detailed in Table 8. ASO-LoRA outperforms other baselines
on almost all individual tasks, proving that our soft orthogonality can generally leverage the inter-
task knowledge and potential knowledge transfer on broader structures.

E VISUALIZATION

E.1 THE RELATIONSHIPS AMONG TASKS ON LONGER BENCHMARKS

We employ the violin plot to visualize the similarity coefficient wattr between the new task and
historical tasks, as proposed in Eq.(13), analyzing their inter-task correlations and mutual influences.
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Table 8: The results on individual tasks after completing training on the final task with Llama,
across Order 1, Order 2, and Order 3. The left-to-right ordering of benchmarks corresponds to the
task training order.

Model CL benchmarks per-task results

Order1

Sequences Dbpedia Amazon Yahoo Ag
IncLoRA 8.7 0.0 31.4 90.7
O-LoRA 96.3 41.6 66.1 90.9
ASO-LoRA 98.3 56.3 65.7 80.0

Order2

Sequences Dbpedia Amazon Ag Yahoo
IncLoRA 52.2 23.5 51.5 69.4
O-LoRA 97.8 45.4 89.0 67.9
ASO-LoRA 97.9 51.3 78.9 70.6

Order3

Sequences Yahoo Amazon Ag Dbpedia
IncLoRA 4.7 26.2 12.6 98.5
O-LoRA 64.0 61.1 82.4 98.6
ASO-LoRA 69.4 58.2 86.0 98.9

Figure 6: The Violin Plot of wattr on T5-large, displaying the distribution of similarity coefficient
wattr across different tasks during the training stages. Central white dot represents the median or
mean of the data, while a wider section indicates higher data density (more points near that value).

As illustrated in Figure 6, the higher similarity coefficient between Task Ag News and historical
tasks indicates a positive influence of Ag News on earlier tasks. As evidenced in Table 3, ASO-
LoRA obviously achieves a 21.8% performance improvement on Task Ag’s previous task Amazon
compared to O-LoRA. These results demonstrate that Soft Orthogonality productively leverages
previously acquired task knowledge and effectively facilitates knowledge transfer.

E.2 THE TREND OF PERFORMANCE IN THE CONTINUAL LEARNING STAGES

Standard CL benchmarks: As shown in Figure 7, we compare Average Accuracy trajectories of
ASO-LoRA and O-LoRA during CL stages on standard CL benchmarks. Throughout the whole CL
stages, ASO-LoRA exhibits consistent performance and generally outperforms O-LoRA in over-
all results. This further demonstrates that soft orthogonality between LoRA blocks corresponding
to different tasks generally enhances the expression of related knowledge, while also achieving a
favorable balance between mitigating catastrophic forgetting and facilitating knowledge transfer.

Longer benchmarks: Figure 8 further dipicts the Average Accuracy trajectories of ASO-LoRA
and O-LoRA during CL stages on longer benchmarks. ASO-LoRA demonstrates greater overall
stability and outperforms O-LoRA during longer continual learning phases. On Order4, although
ASO-LoRA initially lags behind O-LoRA, its ability to mitigate catastrophic forgetting becomes in-
creasingly evident as the number of tasks grows, eventually surpassing O-LoRA. On Order5, while
ASO-LoRA does not ultimately outperform O-LoRA, it exhibits a more balanced performance and
avoids the sharp performance drop observed in O-LoRA at epoch 8. On Order6, the two curves fol-
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Figure 7: ASO-LoRA vs. O-LoRA on Average Accuracy (AA) during the CL stage on CL standard
benchmarks (T5 structure), as new tasks arrive continuously. Each arrival of a new task corresponds
to one epoch of training. The blue line represents the trend of ASO-LoRA’AA as tasks increment,
while the red line corresponds to that of O-LoRA.

low a broadly aligned trajectory, yet one decreases as the other increases. ASO-LoRA consistently
maintains an overall advantage.

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8 epoch 9 epoch 10 epoch 11 epoch 12 epoch 13 epoch 14 epoch 15

Epoch

64.9

65.9

66.9

67.9

68.9

69.9

70.9

71.9

72.9

73.9

74.9

75.9

76.9

77.9

78.9

79.9

80.9

81.9

82.9

83.9

84.9

85.9

86.9

A
v
e
r
a
g
e
 
A
c
c
u
r
a
c
y

Order4

ASO-LoRA

O-LoRA

(a) Order4

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8 epoch 9 epoch 10 epoch 11 epoch 12 epoch 13 epoch 14 epoch 15

Epoch

40.3
41.3
42.3
43.3
44.3
45.3
46.3
47.3
48.3
49.3
50.3
51.3
52.3
53.3
54.3
55.3
56.3
57.3
58.3
59.3
60.3
61.3
62.3
63.3
64.3
65.3
66.3
67.3
68.3
69.3
70.3
71.3
72.3
73.3
74.3
75.3
76.3
77.3
78.3

A
v
e
r
a
g
e
 
A
c
c
u
r
a
c
y

Order5

ASO-LoRA

O-LoRA

(b) Order5

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8 epoch 9 epoch 10 epoch 11 epoch 12 epoch 13 epoch 14 epoch 15

Epoch

61.9

62.9

63.9

64.9

65.9

66.9

67.9

68.9

69.9

70.9

71.9

72.9

73.9

74.9

75.9

76.9

77.9

78.9

A
v
e
r
a
g
e
 
A
c
c
u
r
a
c
y

Order6

ASO-LoRA

O-LoRA

(c) Order6

Figure 8: ASO-LoRA vs. O-LoRA on Average Accuracy (AA) during the CL stage on CL longer
benchmarks, as new tasks arrive continuously. Each arrival of a new task corresponds to one epoch
of training. The blue line represents the trend of ASO-LoRA’AA as tasks increment, while the red
line corresponds to that of O-LoRA

We also investigate the training loss trajectories of ASO-LoRA and O-LoRA during CL stages on
longer benchmarks, depicted in Figure 9. While following the same overall trend, ASO-LoRA
exhibits lower and more stable training loss than O-LoRA, further reinforcing the suitability of
ASO-LoRA for continual learning scenarios.
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Figure 9: ASO-LoRA vs. O-LoRA on training loss during the CL stage on CL longer benchmarks,
as new tasks arrive continuously. Each arrival of a new task corresponds to one epoch of training.
The blue line represents the trend of ASO-LoRA’s training loss, while the red line corresponds to
that of O-LoRA.
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E.3 THE EFFECT ON CATASTROPHIC FORGETTING AND KNOWLEDGE TRANSFER

To further comprehensively evaluate Soft Orthogonality’s efficacy in mitigating catastrophic forget-
ting and facilitating knowledge transfer, we demonstrate the FM and FWT results of ASO-LoRA
and O-LoRA on longer benchmarks.

Figure 10 reveals that ASO-LoRA more effectively leverages knowledge from previous tasks even
in more complex continual learning scenarios, achieving significantly superior knowledge transfer
over O-LoRA across all stages. These results confirm the advantage of our method in knowledge
transfer.
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Figure 10: ASO-LoRA vs. O-LoRA on Order4 using metrics FWT. Higher FWT values demonstrate
more effective utilization of prior knowledge and superior knowledge transfer.

As illustrated in Figure 11, as the number of tasks increases, ASO-LoRA outperforms O-LoRA in
mitigating knowledge forgetting while preserving acquired knowledge across most stages. However,
in the final two stages, O-LoRA exhibits less knowledge forgetting than ASO-LoRA. These find-
ings indicate that striking an optimal balance between knowledge transfer and knowledge retention
remains an issue worthy of further investigation.
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Figure 11: ASO-LoRA vs. O-LoRA on Order4 using metrics FM. Lower FM values indicate
stronger resistance to catastrophic forgetting and better knowledge retention capabilities.

F LIMITATIONS

While ASO-LoRA has demonstrated strong capabilities in continual learning scenarios through em-
pirical evaluation, several limitations warrant discussion: 1) The observed performance variation
across different Transformer architectures, raising an open question regarding whether encoder-
decoder frameworks inherently facilitate better knowledge storage. These phenomena suggest un-
derlying mechanistic differences, requiring further investigation. 2) The potential negative impacts
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of task overlap need to be further explored. 3) The performance degradation observed in longer
benchmarks remains a significant challenge for scaling to more complex real-world applications,
such as hundreds of tasks.

We aim to address these limitations in future work to further enhance our method’s performance in
continual learning scenarios.
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