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Abstract

We introduce a novel method for low-rank personalization of a generic model for
head avatar generation. Prior work proposes generic models that achieve high-
quality face animation by leveraging large-scale datasets of multiple identities.
However, such generic models usually fail to synthesize unique identity-specific
details, since they learn a general domain prior. To adapt to specific subjects, we
find that it is still challenging to capture high-frequency facial details via popular
solutions like low-rank adaptation (LoRA). This motivates us to propose a specific
architecture, a Register Module, that enhances the performance of LoRA, while
requiring only a small number of parameters to adapt to an unseen identity. Our
module is applied to intermediate features of a pre-trained model, storing and
re-purposing information in a learnable 3D feature space. To demonstrate the
efficacy of our personalization method, we collect a dataset of talking videos of in-
dividuals with distinctive facial details, such as wrinkles and tattoos. Our approach
faithfully captures unseen faces, outperforming existing methods quantitatively
and qualitatively. Project page: https://starc52.github.io/publications/LoRAvatar/.

1 Introduction

Synthesizing photo-realistic human faces has long been a challenge for both computer vision and
graphics. It has broad applications from AR/VR, virtual communication, and video games, to the
movie industry and healthcare. Earlier approaches rely on 3D morphable models (3DMMs) (Garrido
et al., 2015, 2014; Thies et al., 2016), while subsequent methods turn to generative adversarial
networks (GANs) (Kim et al., 2018; Pumarola et al., 2020; Prajwal et al., 2020; Vougioukas et al.,
2020). More recent works learn 3D neural representations of the human face, which rely on neural
radiance fields (NeRFs) (Pumarola et al., 2021; Park et al., 2021a; Gafni et al., 2020; Park et al.,
2021b) or 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023; Cho et al., 2024; Qian et al., 2024;
Xu et al., 2024c). While these approaches lead to high-quality results, they usually require identity-
specific training and are not able to generalize. Only a few recent methods propose generic models,
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e.g., GAGAvatar (Chu and Harada, 2024), which preserve the high-quality rendering of 3DGS, while
trained on a large-scale dataset of multiple identities, enabling generalization to unseen human faces.

However, such generic models usually fail to produce key identity-specific facial details, since
they learn a general domain prior. To produce distinctive details, prior work proposes adapting a
pre-trained model to a specific identity, e.g. through fine-tuning or meta-learning (Nitzan et al., 2022;
Zhang et al., 2023a; Saunders and Namboodiri, 2024). Low-rank adaptation (LoRA) (Hu et al., 2022)
has been first proposed for large language models (LLMs). It injects trainable rank decomposition
matrices into each layer of a pre-trained model, leading to a significant decrease of the learnable
parameters and on-par performance compared to fine-tuning the entire model.

In this work, we address the problem of adaptation, also called personalization, to a specific identity,
which is not seen in the initial training of a generic model for head avatar generation. Due to its
efficiency and popularity in other fields, we start with LoRA, by learning low-rank decomposition
matrices for specific layers. We notice that LoRA is not sufficient to synthesize high-frequency facial
characteristics (see Figure 1). Inspired by Darcet et al. (2023) that learn additional tokens (registers)
in order to store global information for a transformer network, we propose a specific module that
extends the idea of registers to 3D registers for human faces. To the best of our knowledge, we believe
that this is the first method to extend registers to 3D representations.

More specifically, we design a Register Module that learns a 3D feature space that stores and
repurposes information for a human face during training. Similar to registers in ViT (Darcet et al.,
2023) that store global information of an image, our Register Module stores the distinctive details of
an identity, given different views. We apply our Register Module to intermediate features that are
extracted from a pre-trained DINOv2 model (Oquab et al., 2023). While our proposed module can
be applied to any network that uses DINOv2 features, we focus our study on GAGAvatar (Chu and
Harada, 2024) as our generic pre-trained model since it is a highly competitive method trained on a
large-scale dataset (VFHQ Xie et al. (2022)) and achieves state-of-the-art results in the general avatar
domain. To evaluate the efficacy of our low-rank personalization, we collect a dataset of talking
videos of individuals with rare high-frequency facial details, such as wrinkles and tattoos, that are not
included in existing datasets. Our method outperforms state-of-the-art approaches, like meta-learning
and vanilla LoRA, both quantitatively and qualitatively, while it only requires a small number of
parameters to adapt.

In brief, our main contributions are as follows:

• We propose a novel method for low-rank personalization of a generic model for head avatar
generation, that captures identity-specific facial details.

• We design a Register Module that stores and repurposes information for an identity in a
learnable 3D feature space, extending the idea of registers for ViTs to 3D human faces.

• We collect a dataset, namely RareFace-50, of talking videos of individuals with distinctive
facial characteristics, e.g. wrinkles and tattoos, that are challenging to synthesize with
generic models, and thus demonstrating the need for our method.

2 Related Work

Human Portrait Synthesis. Earlier approaches for video synthesis of human faces are based on
3DMMs (Garrido et al., 2015, 2014; Thies et al., 2016). A 3DMM (Blanz and Vetter, 1999) is a
parametric model that represents a face as a linear combination of the principal axes of shape, texture,
and expression, learned by principal component analysis (PCA). Subsequent works propose GAN-
based networks for video synthesis (Kim et al., 2018; Siarohin et al., 2019; Pumarola et al., 2020;
Roich et al., 2023; Tancik et al., 2021; Buehler et al., 2024) and audio-driven talking faces (Prajwal
et al., 2020; Zhou et al., 2021; Vougioukas et al., 2020; Xu et al., 2024a). GANs are usually trained
on large datasets of 2D videos of multiple identities, but they cannot model the 3D face geometry.
More recent works learn 3D neural representations of the human face, which rely on neural radiance
fields (NeRFs) (Mildenhall et al., 2020) or 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023).
Diffusion models have also become popular but they only produce 2D videos (Xu et al., 2024b) or
are identity-specific (Kirschstein et al., 2024a). In this paper, we explore personalization to capture
identity-specific facial details by adapting a generic avatar model.
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Figure 1: Our method personalizes and adapts a generic head avatar model using LoRA, while
preserving high-frequency identity-specific facial details using our Register Module and retaining the
original inference speed. Note that the small image in the bottom-right corner is the driving image.

Animatable 3D Head Avatars. NeRFs have been first proposed for novel-view synthesis of
static scenes (Mildenhall et al., 2020). They have been extended to dynamic scenes and human
faces (Pumarola et al., 2021; Park et al., 2021a; Gafni et al., 2020; Park et al., 2021b; Chakkera
et al., 2024). They usually represent a human face by sampling 3D points in a canonical space,
which can be conditioned on 3DMM expression parameters to enable animation. Although they
produce high-quality reconstructions, they require expensive identity-specific training. Subsequent
works (Zielonka et al., 2023; Duan et al., 2023) propose techniques to reduce the training and
inference time. 3DGS (Kerbl et al., 2023) became very popular as it achieves real-time rendering
with high visual quality, by representing complex scenes with 3D Gaussians. It has recently been
applied for dynamic human avatars (Cho et al., 2024; Qian et al., 2024; Xu et al., 2024c; Dhamo
et al., 2024; Wang et al., 2025). However, most approaches learn identity-specific models. Very few
recent works propose generic models (Chu and Harada, 2024; Chu et al., 2024; Kirschstein et al.,
2024b), which preserve the high-quality rendering of 3DGS, while trained on a large-scale dataset of
multiple identities, enabling generalization to unseen human faces. However, generic models learn
a general domain prior and usually fail to produce unique identity-specific facial details, such as
wrinkles or tattoos, as studied in this paper.

Personalization. Numerous works have proposed ways to adapt pre-trained models to various
downstream tasks (Houlsby et al., 2019; Zhang et al., 2023b). Parameter-efficient fine-tuning (PEFT)
techniques are proposed to fine-tune large models efficiently. LoRA (Hu et al., 2022) adds low-rank
matrices into each layer of a pre-trained model, leading to a significant decrease of the learnable
parameters and on-par performance compared to fine-tuning the entire model. In the context of face
animation, fine-tuning part of the model has been utilized (Chatziagapi et al., 2024; Li et al., 2025),
as well as meta-learning. For instance, MetaPortrait (Zhang et al., 2023a) adopts a meta-learning
approach to allow adaptation during inference, while Gao et al. (2020) uses meta-learning to adapt a
NeRF to a single image of an unseen subject. Moreover, MyStyle (Nitzan et al., 2022) personalizes
a pre-trained StyleGAN by fine-tuning regions of its latent space, using a set of images from an
individual. Similarly, One2Avatar (Yu et al., 2024) adapts a generic NeRF to one or a few images
of a person. TalkLoRA (Saunders and Namboodiri, 2024) applies LoRA for the task of 3D mesh
animation, while My3DGen (Qi et al., 2025) adapts LoRA to the convolutional layers of StyleGAN2
in an EG3D-based network (Chan et al., 2022). Due to its popularity and efficiency, we study LoRA
for our generic model for head avatar animation. However, we find that LoRA is not sufficient to
capture high-frequency facial details of a new identity. Thus, we propose to improve personalization
by learning an additional register module, inspired by register tokens in ViTs.

Additional Tokens in Neural Networks. Memory augmentation in neural networks goes back to
long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997) that store information
through gates. Memory networks (Weston et al., 2014; Sukhbaatar et al., 2015) have access to
external long-term memory. More recently, transformers have emerged as a powerful representation
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Figure 2: Illustration of our Register Module in a generic avatar animation model. During adaptation,
we pass the source image’s DINOv2 features fsrc

dense and driving image’s 3DMM parameters to our
module. Our module teaches the model to attend to specific regions in the dense DINOv2 features,
thus providing better learning signals for LoRA to capture identity-specific details. Note that the
Register Module is not needed during inference but serves as the register during LoRA training.

for various deep learning tasks, where the core element is self-attention (Vaswani et al., 2017). For
language modeling, many works extend the input sequence of transformers with special tokens. Such
additional tokens provide the network with new information, e.g. [SEP] in BERT (Devlin et al.,
2019), or gather information for later downstream tasks, e.g. [CLS] tokens (Dosovitskiy et al., 2021),
or [MASK] for generative modeling (Bao et al., 2021). Unlike these works, Darcet et al. (2023)
present additional tokens as registers for storing and repurposing global information. Inspired by this,
we extend registers to a 3D feature space for human faces. We learn a Register Module that stores
information about distinctive high-frequency details of a human face.

3 Proposed Method

Figure 2 illustrates an overview of our proposed framework that adapts a general avatar model to
a particular identity. Inspired by Parameter-Efficient Fine-Tuning (PEFT), specifically LoRA (Hu
et al., 2022), we utilize LoRA to adapt the weights of a generalized avatar model to a particular
identity. Through experiments, initially we find that adapting with LoRA does not sufficiently
improve personalization (see Figure 1). Motivated by Darcet et al. (2023) that introduce registers in
ViTs to store and repurpose global information, we propose a Register Module to store information
about identity-specific details. Our Register Module essentially teaches the model to attend to specific
regions in the dense DINOv2 features during adaptation. Importantly, it is only used during adaptation
and is deactivated at inference time. With its guidance, the model learns to leverage DINOv2 features
more effectively, enabling high-quality personalized head avatar generation with real-time speed from
a single source image at inference.

Our proposed pipeline for personalizing a generic avatar animation model consists of two main
components:

(1) We add LoRA weights to specific pre-trained layers of a generic avatar animation model (see
Sec. 3.1), to keep the adaptation parameters efficient and to avoid catastrophic forgetting (see Sec. 3.2).

(2) We design a Register Module that learns a 3D feature space, facilitating the attention to specific
regions of DINOv2 features, while adapting to a face from multiple views (see Sec. 3.3).

We first describe a generic avatar animation model in Sec. 3.1. Next, we describe the process of
adding LoRA weights to pre-trained layers in Sec. 3.2. Finally, we describe the architecture of our
Register Module in Sec. 3.3.

3.1 Preliminaries: Generic Avatar Generation

An avatar generation model consists of two branches: (a) reconstruction branch, and (b) expression
branch. The reconstruction branch generates an animatable head avatar from the source image. The
expression branch extracts the expressions and pose from the driving image which is used to animate
the generated head avatar. These branches are merged and the output is rendered using a neural
renderer. This process learns a model for generalized head avatar reconstruction (see Figure 2).
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Figure 3: Illustration of our Register Module. We propose a Register Module that learns features
in the 3D space. We rig embeddings to verrtices on a 3DMM mesh and use camera pose poseD to
project visible vertices and their embeddings onto a camera plane. Next, we interpolate features in
the face mask region, fill in the background feature. Finally, we add these features to source image’s
DINOv2 features fsrc

dense to improve learning signals for LoRA.

In particular, we use GAGAvatar (Chu and Harada, 2024) as our generic model trained on a large-scale
dataset using the general DINOv2 features in its reconstruction branch, which is suitable to serve as
our foundation model for fast adaptation. While DINOv2 features are robust for generic tasks, they
may contain irrelevant information for avatar generation. Thus, adapting the layers of the generic
avatar model to focus on relevant information within the DINOv2 feature space is necessary. We
propose our Register Module for this purpose in the following sections.

3.2 LoRA for Fast Adaptation

To adapt to a particular identity, inspired by the literature in NLP, we use LoRA (Hu et al., 2022)
for adaptation in a parameter-efficient manner. For a pre-trained weight matrix W ∈ Rm×n, LoRA
models the adapted weights Wadapt by representing it as an addition of the pretrained weights W
and an offset matrix ∆W , the latter of which is low-rank decomposable.

Wadapt = W +∆W = W +BA, (1)

where B ∈ Rm×r and A ∈ Rr×n and r ≪ min(m,n). During adaptation, only parameters in A and
B receive gradients. During inference, we merge the offset matrix ∆W with the pre-trained weight
matrix, using equation 1. Thus, there is no change in inference time. For our purpose, we add LoRA
weights A and B to each parameter matrix in a pre-trained avatar model, except the DINOv2 model.
In our implementation, for all experiments except ablations described in the supplementary material,
we use the same rank r = 32 for all comparisons.

3.3 Register Module

Figure 3 illustrates the design of our Register Module. We hypothesize that, in addition to adding
LoRA weights, we need a mechanism for better extraction of fine details of an identity, such as
tattoos, wrinkles, muscular idiosyncrasies, and other personal features of an identity. To this end, we
introduce a Register Module to improve the focus on identity-specific details.

Feature Learning Procedure. Specifically, we propose to highlight detailed information in DINOv2
local features of the source image with the output of the Register Module. Let M = (V,E, F ) be a
3DMM mesh (Li et al., 2017), where V is the set of vertices, n(V ) is the number of vertices, E is the
set of edges and F is the set of facets. In our Register Module, we rig embeddings e ∈ Rn(V )×D,
where D is the dimension of the embeddings, to vertices v ∈ V of mesh M . Given a driving image
camera pose and position poseD, we compute the set of visible vertices U ⊂ V of the mesh M from

U = visible(M,poseD) . (2)

Next, we project these points U to a feature space in the camera plane S = {(i, j) ∈ Z2|1 ≤ i ≤
H, 1 ≤ j ≤ W} and their corresponding embeddings to a dense feature fS ∈ RH×W×D, where
H,W are the parameters of the image size, using a Perspective Projection:

US = perspective_project(U, poseD,K(S)) , (3)
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where K(S) is the intrinsic camera matrix for a camera with S as the camera plane. The projected
points are rounded off to the nearest integer. At points in the feature plane where a visible vertex
v ∈ U is projected to, we assign the corresponding point’s embedding from e. Hence the operation
becomes:

fS [u
i
S ] := e[ui] for ui ∈ U and ui

S is the projection of ui . (4)

Given the set of points Us on the camera plane, we compute an alpha shape (Edelsbrunner et al., 1983)
to find the simple contour polygon PUS

of the vertex projections. Let interior(P ) represent all
the points inside a simple polygon P . For each point p ∈ interior(PUS

) and p /∈ US , we compute
k nearest points in US , and do inverse distance weighted interpolation for point p. Mathematically,
interpolated feature ep for point p ∈ interior(PUS

) and p /∈ US is defined as

fS [p] := ep =

∑k
i=1

1
di
evi∑k

i=1
1
di

, (5)

where {vi : i ∈ {1, ..., k}, vi ∈ US} ⊂ US is the set of k nearest projected vertices and di =
||p − vi||2. For points p ∈ S and p /∈ interior(PUS

), we assign an feature eb. This results in a
dense constructed feature fS ∈ RH×W×D from assigned features at each point in S. We further
process these features using a CNN-based encoder Eproc−1.

fproc−1 = Eproc−1(fS) , (6)

where fproc−1 ∈ RH×W×Dout .

We add these features to the source image’s dense DINOv2 features fsrc
dense ∈ RH×W×Dout in order

to exploit identity-specific information in fsrc
dense and process the result with another CNN-based

encoder Eproc−2. Mathematically, the output of our Register Module freg is
freg = Eproc−2(f

src
dense + fproc−1) . (7)

In our implementation, we use H = W = 296 and Dout = 256 as in Chu and Harada (2024). We
set k = 11 and D = 512 for all our comparisons.

Objective Functions. In order to make sure that the Register Module learns meaningful features,
we constrain the training with two losses. First, we use the MSE loss between the driving image’s
DINOv2 features (fdri

dense) and output of the Register Module freg .

Lfeat = ||fdri
dense − freg||22 . (8)

Next, to ensure that the features learned in the Register Module are not similar to each other, we
regularize the embeddings e. This is enforced by

Lreg =
pcos(e)

n(V )(n(V )− 1)
, (9)

where pcos(X) =
∑

i

∑
j

Xi·Xj

||Xi||||Xj || − n(V ) is the sum of the non-diagonal elements of a self-
pairwise cosine distance. We use a weighted combination of Lfeat and Lreg with weights λfeat

and λreg. Together, they form Lregister = λfeatLfeat + λregLreg. In our implementation, we set
λreg = 20 and λfeat = 2.

Avatar Adaptation and Generation. To adapt to a particular identity, we pick the first frame of
a video as the source image and select a random frame as the driving image. Next, we predict the
Register Module’s output freg from the source image’s DINOv2 features fsrc

dense and driving image’s
3DMM parameters. Next, we pass the driving image’s 3DMM parameters to the expression branch
and freg to the reconstruction branch. The outputs of the corresponding branches are merged to
produce a coarse image. A neural renderer then produces the fine image.

During inference, we skip the Register Module and directly pass the source image’s DINOv2 features
fsrc
dense to the reconstruction branch, while the rest of the process is the same as the training stage.

4 Experiments

4.1 Dataset Collection

We propose a new dataset, namely RareFace-50. Prior work uses datasets with a large number of
identities, e.g. VFHQ (Xie et al., 2022). However, these datasets mostly include videos of celebrities
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Figure 4: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
visualize 1) source image’s DINOv2 feature fsrc

dense, 2) fproc−1, output from Eproc−1, and 3) freg,
output of the Register Module. We compute the 2nd channel-wise PCA component and standardize
the values. We observe that the Register Module improves the learning signals by highlighting face
regions and dampening the background regions.

and well-known faces from television. Thus, they might lack in diversity in terms of age and high-
frequency facial details, such as wrinkles or unique tattoos (see Figure 4). These underrepresented
human faces are difficult to faithfully generate by generic networks, such as GAGAvatar (Chu and
Harada, 2024). Identifying this issue in existing datasets, we collect a video dataset of 50 identities
with unique facial details from YouTube. The dataset is collected from high-resolution close-up
videos shot in 1080p, 2K and 4K formats. We detect faces, crop and resize face images to 512× 512
resolution. The average duration of the videos in this dataset is around 15 seconds, with 2 videos per
identity, resulting in the total number of videos in the dataset equal to 100. We intend to publish the
dataset for research purposes. In addition to RareFace-50, we use VFHQ test set and HDTF dataset
to evaluate our method. HDTF (Zhang et al., 2021) consists of 362 videos each cropped and resized
to 512x512 resolution. VFHQ Test consists of 50 high quality videos from 50 different identities
cropped and resized to 512× 512 resolution. Each video is around 4 to 10 seconds in diverse poses
and settings.

We pre-process input videos using the tracking pipeline from Chu and Harada (2024). This step
provides background-matted input frames, along with its tracked 3DMM parameters (these include
view pose, eye pose, jaw pose, FLAME shape and expression parameters). We also pre-compute
visible vertices of the 3DMM mesh fitted on a particular frame. After this, we also compute the
alpha-shape polygon for the projection of the visible vertices and the set of points that lie within this
polygon given the scale of the projection screen size. See more details in the supplementary material.

4.2 Learned Features

In Figure 4, we visualize the learned features of our Register Module. Specifically, we visualize
features 1) fproc−1 from Eproc−1, and 2) freg from Eproc−2. We compute the 2nd channel-wise
PCA component of DINOv2 features, and standardize and visualize using colormap between the
range [−3σ, 3σ] for DINOv2 features and [−σ, σ] for fproc−1 and freg. Since the DINOv2 model
is trained in a self-supervised manner to make features of different augmented views of an input
image to be similar on a diverse dataset, we observe features predicted by DINOv2 to have features
irrelevant to the task at hand, i.e., representing human faces. Moreover, the addition of the features
from fproc−1 changes the characteristics of the added DINOv2 features (see the comparison of fsrc

dense
and freg in Figure 4), changing the distribution in irrelevant regions of the DINOv2 features. In
the supplementary material, we show additional visualization results, other PCA components, and
an analysis on the norms of DINOv2 and Register Module features indicating that they improve
meaningfully.
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Figure 5: Ablation results on the VFHQ Test dataset. We observe that our method performs better in
preserving fine-details such as wrinkles and blemishes.

Table 1: Ablation study on our proposed Register Module on VFHQ Test dataset. In (a), we present
the results with vanilla LoRA adaptation. In (b), we add noise to DINOv2 features during LoRA
adaptation. In (c), we add learnable embeddings to DINOv2 features during LoRA adaptation. In
(d), replace learnable embeddings e rigged to vertices of the mesh with gaussian noise vectors. Best
results are highlighted in bold.

Method LPIPS↓ ACD↓
(a) LoRA 0.2666 0.3687
(b) LoRA + Gaussian Noise 0.2699 0.3795
(c) LoRA + Learnable Embeddings 0.2622 0.3604
(d) LoRA + Gaussian Noise Vertex Embeddings 0.2493 0.3623
Ours (LoRA + Register Module) 0.2470 0.3559

4.3 Ablation Study

We conduct an ablation study on our Register Module comparing our method with variants. This
study shows the contribution of our proposed 3D feature space, which extends the idea of registers
to 3D human faces. Specifically, in variant (b) LoRA + Gaussian Noise, we sample gaussian noise
G = (Gh,w,d) ∈ RH×W×Dout , Zh,w,d

iid∼ N (0, 1) and add this noise G to the features fsrc
dense

during the LoRA adaptation stage. In variant (c) LoRA + Learnable Embeddings, we add a learnable
embedding dictionary elearn ∈ RH×W×Dout to fsrc

dense and make it trainable during LoRA adaptation.
In variant (d) LoRA + Gaussian Noise Vertex Embeddings, we replace the learnable embeddings e
rigged to the vertices of the mesh with Gaussian noise in our Register Module. In all variants, we
directly use fsrc

dense during inference.

Figure 5 shows visual results from these variants. Adding Gaussian Noise causes washed out colors
and overly smoothed details. Adding Learnable Embeddings improves the preservation of details and
colors slightly. This variant would be the immediate extension of registers from Darcet et al. (2023)
to our case. However, we notice that our proposed Register Module best preserves high-frequency
details, such as roughness of the face and fine wrinkles, by learning an appropriate 3D feature space
for human faces. Table 1 shows the corresponding quantitative results, demonstrating the efficacy
of our module in enhancing identity-specific details. We see that our method has better perceptual
similarity to the input image and better preserves identity. We encourage the readers to watch our
supplementary video for additional results demonstrating the efficacy of our Register Module.

4.4 Evaluation

Qualitative Evaluation. Figure 6 shows our qualitative results. Notice how our method faithfully
reconstructs fine details and identity-specific features well as compared to other methods. GAGAvatar
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Figure 6: Personalized head avatar generation on VFHQ Test (row 1, 2, and 3) and RareFace-50
(rows 4 and 5). We compare state-of-the-art methods for adaptation (LoRA (Hu et al., 2022) and
Meta-Learning (Zhang et al., 2023a)). We observe that our method preserves fine details for identity-
specific features and produces higher quality results as compared to other methods.

Table 2: Quantitative comparisons of our approach with the baseline and other state-of-the-art
adaptation methods. Results are highlighted as follows: Best and Second Best .

HDTF VFHQ Test RareFace-50

Method LPIPS↓ ACD↓ LPIPS↓ ACD↓ LPIPS↓ ACD↓

GAGAvatar (Chu and Harada, 2024) 0.1747 0.3441 0.2540 0.3631 0.2953 0.4046
LoRA (Hu et al., 2022) 0.1770 0.3553 0.2666 0.3687 0.2855 0.3872
MetaPortrait (Zhang et al., 2023a) 0.1901 0.3559 0.2650 0.4131 0.2901 0.4504
Ours 0.1618 0.3156 0.2470 0.3559 0.2744 0.3792

frequently produces washed out colors (in rows 4 and 5) and muted details (rows 1, 2, and 3). While
LoRA performs better than GAGAvatar, it still misses fine wrinkles and veins (rows 1, 2, and 3),
contrast in tattoos and skin (rows 4 and 5), and bumpy skin (row 3). Meta Learning on LoRA
weights produces artifacts on face (row 3) and in eyes (rows 1, 2, and 5), produces wrong expression
as compared to the driving image (all rows), misses tattoos on skin (row 4), and generates wrong
colored lips. In general, our method learns to preserve high-frequency details in the source identity
and produce higher quality results while using the same number of parameters as other methods.
Baselines. We compare our method to a baseline as the generic avatar generation model (Chu and
Harada, 2024) and the state-of-the-art approaches, namely LoRA (Saunders and Namboodiri, 2024)
and MetaPortrait (Zhang et al., 2023a) for adaptation in the cross-reconstruction setting. We use the
same rank r = 32 for all our comparisons. Note that we implement the meta-learning algorithm from
MetaPortrait (Zhang et al., 2023a) on LoRA weights for fair comparisons.
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Table 3: Additional comparisons with DoRA. In (a) and (b), we present results on LoRA and LoRA +
Register Module (Ours) respectively. In (c) and (d), we present results on DoRA (Liu et al. (2024))
and our Register Module with DoRA.

Method LPIPS↓ ACD↓
(a) LoRA 0.2666 0.3687
(b) LoRA + Register Module 0.2470 0.3559
(c) DoRA 0.2685 0.3853
(d) DoRA + Register Module 0.2668 0.3702

Evaluation Metrics. To measure visual quality, we select challenging patches with high-frequency
details from predicted frames and compare them against source image patches using Learned Per-
ceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) in the cross-reconstruction setting.
Furthermore, we estimate the identity preservation using the Average Content Distance (ACD) metric
(Vougioukas et al. (2019)), by calculating the cosine distance between ArcFace (Deng et al., 2019)
face recognition embeddings of synthesized and source images. Essentially, the idea is that the
smaller the distance between those embeddings, the closer are the synthesized images to the input
source images in terms of identity.

Quantitative Evaluation. Table 2 shows our quantitative results. Our method significantly out-
performs the state-of-the-art in low-rank adaptation (LoRA and Meta Learning on LoRA) in terms
of visual quality (LPIPS) and identity preservation (ACD). We encourage the readers to watch our
supplementary video for additional results demonstrating the efficacy of our Register Module.

4.5 Generalizability

We test the generalizability of our proposed Register Module on other LoRA-like PEFT methods
such as DoRA (Liu et al. (2024)) in Table 3. Unlike LoRA, DoRA decomposes the adapted weights
Wadapt into direction and magnitude components. Its equivalent of Eq. (1) is

Wadapt = m
W +BA

||W +BA||c
, (10)

where || · ||c is the vector-wise norm of the matrix, along each column W ∈ Rm×n is the pretrained
weight matrix, m ∈ R1×n is a learnable direction vector initialized as ||W ||c, and B ∈ Rm×r and
A ∈ Rr×n are the learnable low-rank matrices with r ≪ min(m,n).

We find that, while (c) DoRA performs worse than (a) LoRA in preservation of high-frequency infor-
mation and identity, introducing our register module during adaptation (d) improves its performance.
This shows that our Register Module is compatible with various LoRA-like methods.

5 Conclusion

In conclusion, we introduce a novel method for personalized head avatar generation. State-of-
the-art approaches for adaptation such as vanilla LoRA and meta-learning fail to preserve high-
frequency details and identity-specific features. We propose a novel Register Module that enhances
the performance of LoRA, by teaching the layers to attend to specific regions in the intermediate
features of a pre-trained model. To demonstrate the effectiveness of our method, we collect a dataset
of talking individuals with distinctive facial features, such as wrinkles and tattoos. Our method
outperforms existing methods qualitatively and quantitatively, faithfully capturing unseen identities.

Limitations and Future Work. Although our Register Module successfully captures distinctive
facial details, it might produce suboptimal results for extreme side or back views that are rarely or
not at all seen in a video. In the future, we plan to extend our work to faithfully animate avatars from
such rare views of individuals.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We conduct sufficient experiments and provide sufficient results (See Sec. 4
and suppl. material) to justify the claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention the limitations of our work in Sec. 5 and suppl. material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe in detail our method in Sec. 3 and include all equations and
implementation details. We add more implementation details in suppl. material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

17



• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release the data and code to the public upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: We provide details in Sec. 4 for all experiments. Additional details are added
to the suppl. materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars because it would be too computationally expensive.
We use fixed random seeds in all experiments to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these details along with additional resource details in the suppl. ma-
terial.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader societal impacts of our work in suppl. material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss our data collection and usage in the suppl. material.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets are properly credited and cited in Sec. 4 and suppl. material. Licenses
are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We will release our model and data upon acceptance with appropriate licence.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper does not involve any crowdsourcing or involve research with human
subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or involve research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is organized as follows:

1. Additional Ablation Study in Sec. A

2. Implementation Details in Sec. B

3. Dataset Collection Details in Sec. C

4. Additional Results in Sec. D

5. User Study Details in Sec. E

6. Discussion: Broader Impact, Limitations, and Ethical Considerations in Sec. F

We strongly encourage the readers to watch our supplementary video.

A Additional Ablation Study

Table 4: Ablation study on losses to adapt with our method. In (a), we remove Lfeat during adaptation.
In (b), we remove Lreg during adaptation.

Method LPIPS↓ ACD↓
(a) Ours w/o Lfeat 0.2574 0.3604
(b) Ours w/o Lreg 0.2508 0.3574
Ours 0.2470 0.3559

Table 5: Ablation study on the effect of λreg, the weight of Lreg to adapt with our method on the
VFHQTest dataset.

λreg LPIPS↓ ACD↓
1 0.2520 0.3616
8 0.2502 0.3606
16 0.2485 0.3594
20 0.2470 0.3559
32 0.2500 0.3663

Table 6: Ablation study on length of videos to adapt the head avatar. We set the adaptation video
length to 4, 2, and 1 seconds.

Method LPIPS↓ ACD↓
(a) Ours w/ 4 sec 0.2471 0.3639
(b) Ours w/ 2 sec 0.2471 0.3656
(c) Ours w/ 1 sec 0.2477 0.3687

We conduct additional ablation studies on our proposed method. Specifically, we ablate the various
losses we propose. In Table 4(a), we remove the loss Lfeat to supervise the output of our register
module during adaptation, and in (b) we remove Lreg to make the learned embeddings in our Register
Module different from each other. We see that removal of these losses causes a drop in performance
as compared to when both losses are present. We also ablate on the hyperparameter λreg , the weight
of Lreg , in Table 5. We find that λreg = 20 gives the best results. Further, we ablate on the length of
the videos used to adapt our head avatars in Table 6. We see that reducing the length of the adaptation
video causes a drop in the performance of the method. Note that we trim the original videos to the
first 4, 2, and 1 second for these experiments.

For completeness, we also tried the case when our Register Module is used during inference; however
it harms the output quality - we see an increase in the ACD metric by around 5%.
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B Implementation Details

B.1 Addition of LoRA to layers

We use minLoRA (Chang and Kelly) library to add LoRA (Hu et al., 2022) parameters to all
layers of a pretrained pytorch model. During training LoRA is instantialized as separate parameters
B ∈ Rm×r, A ∈ Rr×n and r ≪ min(m,n) from the pretrained parameters Wpre ∈ Rm×n of the
module, so that these parameters can be trained. During inference the LoRA parameters are merged
with the pretrained parameters and assigned as the new pretrained parameters according to:

Wadapt := Wpre +∆W = Wpre +BA. (11)

This ensures that the LoRA layers add no overhead to the pipeline during the inference. Given a
pretrained GAGAvatar model, we add LoRA weights to all layers except in the DINOv2 feature
extractor.

B.2 Dataset Preprocessing

Given the expression code, shape code, and camera pose predicted during 3DMM fitting, we predict
a 3DMM mesh. We compute visible vertices of 3DMM mesh from the computed camera pose of a
particular frame using trimesh’s RayMeshIntersector implementation. Specifically, we cast rays from
the camera origin to each point in the mesh and compute whether any line intersects the mesh (if an
intersection exists, the point is not visible). Given these visible points in 3D space, we find a screen
space camera projection on a screen of the same size as DINOv2 feature space (H = W = 296)
using Perspective Projection. Then we find an alpha-shape of these projected points with α = 0.065.
Next, we compute all the points in the alpha-shape polygon using a parallelized point-in-polygon test.
For all points in the polygon that are not projected points, we also compute the k nearest projected
points and distances from those projected points, where k = 11.

B.3 Register Module Details

The embeddings rigged to vertices on the 3DMM mesh (Li et al., 2017) are modeled in a 3D space in
our register module, However, these points are projected onto a 2D space using a camera projection
following which, we interpolate the features using a weighted sum of the k nearest neighbors to fill
up the face region in densely constructed feature fS . Using the entire set of the vertices would cause
all points to be projected onto the densely constructed feature fS , thus impacting the interpolation
process (projection of points from the back of the head might be in the k nearest neighbors of a
point p ∈ interior(PUS

)). Thus, we only project visible points from any given view in our register
module.

We model Eproc−1 as a convolutional module, with 4 convolutional layers of channel sizes
[512, 512, 256, 256] and kernel sizes set to 3 for each layer. Eproc−2 is also a convolutional module
with 4 layers of channel sizes set to 256. The first 3 layers have a kernel size of 3, while the last layer
has a kernel size of 1.

B.4 Training Details

B.4.1 Our Method

We initialize embeddings e using Xavier Normal initialization (Glorot and Bengio, 2010). We adapt
head avatars with our method for a total of 1000 iterations. The batch size is set to 2. We use
Adam (Kingma and Ba, 2017) optimizer with learning rate set to 1e− 4 for the LoRA layers whereas
the learning rate is set to 1e− 3 for parameters in the Register Module. We use a linear learning rate
scheduler with a start factor of 1.0 and an end factor of 0.1 at the 1000th iteration. Along with our
proposed losses, we also keep the losses proposed by GAGAvatar (Chu and Harada (2024)), namely,
RGB losses between predicted image and driving image, a perceptual loss between the predicted
images and driver image, and Llifting , loss between predicted points from reconstruction branch and
vertices of the 3DMM mesh fitted on the driving image. Our adaptation takes ≈ 35 minutes on an
RTX A5000 GPU, consuming ≈ 23GB of VRAM. During inference, we load and merge the LoRA
weights into their corresponding layer parameters. Thus, there is no overhead during inference, i.e., it
consumes the same amount of resources as GAGAvatar during inference.
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B.4.2 Baselines and Ablations

For all comparisons with the vanilla LoRA, we use the same hyperparameters as our method. That is,
we adapt with vanilla LoRA for a total of 1000 iterations, set the batch size to 2, use Adam optimizer
with learning rate set to 1e− 4 for the LoRA layers, and use a linear learning rate scheduler with a
start factor of 1.0 and an end factor of 0.1 at the 1000th iteration. This adaptation takes ≈ 25 minutes
on an RTX A5000 GPU, consuming ≈ 14.9GB of VRAM.

Following MetaPortrait (Zhang et al., 2023a), we implement Reptile (Nichol and Schulman (2018)),
a MAML based strategy for meta-learning in our low-rank adaptation task. We perform pre-training
on our RareFace-50 dataset. Following the formulation of MetaPortrait, we formulate the task of
adapting to a particular identity as an inner loop task. Thus, we adapt to a randomly sampled identity
at each outer step. For all comparisons with Meta-Learning on LoRA, we set rank r = 32, the inner
loop learning rate to 2e− 4, and the outer update step size to 2e− 5. The number of inner loop steps
are set to 120, and number of elements in batch in inner loop is set to 4. We set the number of outer
iterations to 4800. Given resource constraints, we implement a single GPU version of Reptile (Nichol
and Schulman, 2018), thus taking 12 days to complete the pretraining task on a Quadro RTX 8000
GPU, consuming ≈ 45GB of VRAM. After the pre-training task, we adapt the model on an identity
for 120 steps with the same learning rate as the inner loop, which takes ≈ 4 minutes on an RTX
A5000 GPU consuming ≈ 14.9GB of VRAM. We then use these adapted weights for inference by
merging these LoRA weights to the corresponding layers.

For all experiments with learnable parameters elearn as a replacement to our Register Module, we set
the learning rate for elearn parameters to be 1e− 3.

B.5 Metrics

We compute the visual quality metrics namely, LPIPS (Zhang et al. (2018)), on specific challenging
crops with high frequency details from predicted frames and compare them against source image
patches. The identity preservation metric (ACD) is measured using ArcFace (Deng et al. (2019)), a
ResNet50-based network trained on WebFace (Zhu et al. (2021)). Specifically, we used “buffalo_l”
model from the insightface repository (Guo et al.).

We compute the image metrics between source image and predicted image on challenging high-
frequency feature crops, that include unique facial details of individuals and are the focus of our
research. Since there might be a slight misalignment between the generated and ground truth head
poses (because of the generation), we find that pixel-based (PSNR) or locality-based (SSIM) metrics
to be unreliable. Specifically, PSNR captures blur, but doesn’t capture high-frequency details (which
is our main goal), as it still operates on a pixel-by-pixel basis, as in,

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(x[i, j]− y[i, j])2, PSNR = 10log10
2552

MSE
,

where x and y are input images. Moreover, as indicated in the illustration below, and Figure
2 of Understanding SSIM (Nilsson and Akenine-Möller (2020)), we see that while perceptually
indistinguishable on high-resolution screens, SSIM fails to recognize the perceptual similarity
between the images. Note that below, we illustrate a 128x128 image using a 4x4 grid. However, the
actual SSIM computation was done using the entire 128x128 images (this is only to illustrate the
weaknesses of SSIM for perceptually similar images, using a toy example).

SSIM



128 128 128 128 · · ·
128 128 128 128 · · ·
128 128 128 128 · · ·
128 128 128 128 · · ·

...
...

...
...

. . .

 ,


0 255 0 255 · · ·

255 0 255 0 · · ·
0 255 0 255 · · ·

255 0 255 0 · · ·
...

...
...

...
. . .


 = L · C · S = 0.0036

where L = 1, C = 0.0036, S = 1
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SSIM




0 255 0 255 · · ·
255 0 255 0 · · ·
0 255 0 255 · · ·
255 0 255 0 · · ·

...
...

...
...

. . .

 ,


255 0 255 0 · · ·
0 255 0 255 · · ·
255 0 255 0 · · ·
0 255 0 255 · · ·
...

...
...

...
. . .


 = L · C · S = −0.9964

where L = 1, C = 1, S = −0.9964

Therefore, we rely on LPIPS, as it focuses on perceptual differences between images; the primary
task of our research.

C Data Collection

We collect data from Youtube of people knowingly appearing in interviews in public broadcasts with
distinctive facial details, such as wrinkles or tattoos. These characteristics are under-represented in
existing datasets. We will present the dataset as a set of links, along with trim times and crop position
coordinates. Additionally, this dataset will be maintained using an automatic script that checks and
removes links from the list that no longer exist in YouTube.

D Additional Results

D.1 Additional Comparisons

In this section, we present results on an additional baseline. Specifically, we compare our method
with single-identity models, specifically SplattingAvatar (Shao et al. (2024)).

Table 7: Additional comparisons with Single Identity models (e.g. SplattingAvatar (Shao et al.
(2024))) on VFHQTest. In (a) and (b) we present results on LoRA and LoRA + Register Module
(Ours) respectively. In (c) we present the results for SplattingAvatar (Shao et al. (2024)).

Method LPIPS↓ ACD↓
(a) LoRA 0.2666 0.3687
(b) LoRA + Register Module (Ours) 0.2470 0.3559
(c) SplattingAvatar (Shao et al. (2024)) 0.4573 0.5238

We also present results for a suggested method (SplattingAvatar (Shao et al. (2024))) on VFHQ Test
Set in Table 7. SplattingAvatar (Shao et al. (2024)) produces very poor performance quantitatively.
We see a similar trend in our qualitative observations. In general, the head avatars produced by
head reconstruction methods (such as SplattingAvatar (Shao et al. (2024)), FlashAvatar (Xiang et al.
(2024)), or MonoGaussianAvatar (Chen et al. (2024)), etc.) overfit to the training set (identity and
expressions). Inferring them using different expressions as input (not seen during training) leads to
poor performance.

Here, we also create a distinction between single-identity head avatar models (such as SplattingAvatar
(Shao et al. (2024)), FlashAvatar (Xiang et al. (2024)), or MonoGaussianAvatar (Chen et al. (2024)),
etc.), generic head avatar models (such as GAGAvatar (Chu and Harada (2024)), GPAvatar (Chu et al.
(2024)), Portrait4D (Deng et al. (2024a,b)), etc.), and generic-personalized models (our task in this
paper): 1) Single-identity head avatar models require from-scratch training for each identity. Since
they are limited to data from a single identity, they are unable to learn a generalizable representation
and often fail in out-of-training-distribution cases. Further, limiting to a single identity also limits
the ability to scale up the dataset size. 2) Generic head avatar models, on the other hand, are
trained on large multi-identity diverse datasets. Thus, they can usually generalize to novel inputs
(new identity and unseen expressions). These methods often trade-off generalizability with identity
specificity, and might create "average" features when faced with out-of-distribution samples. 3) Thus,
personalization of generic head avatar models is necessary to capture identity-specific details. Our
method personalizes a generic head avatar model to produce distinctive, high-frequency features that
generic head avatar models "average" out.
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Further, we would like to distinguish our method from LAM (He et al. (2025)) is a one-shot head
avatar model that produces an animatable Gaussian head avatar from a single image. Our goal in
this paper is to personalize a generalized head-avatar model to a particular identity, such that high-
frequency details are preserved. LAM focuses on animating a single image, while we personalize a
single image animation model using a short clip. Moreover, our method is different from LAM’s,
which rigs embeddings to the vertices of a 3DMM’s mesh with cross-attention layers to learn from
DINOv2 features. In contrast, our Register Module operates in a learnable 3D feature space and
projects back to the 2D space for facilitating LoRA adaptation, and is only used during training.

D.2 Details of Adaptation

Adaptation Duration. In this section, we discuss the adaptation durations of our baselines and our
method. Vanilla LoRA and our method take ≈ 25 minutes and ≈ 35 minutes to adapt respectively on
an RTX A5000 GPU. Whereas, meta-learning on LoRA requires a much longer 12 day period on
an RTX Quadro 8000 GPU for the pretraining objective, after which it requires ≈ 4 minutes on a
RTX A5000 GPU. However, during inference, all of these methods have the same inference times as
GAGAvatar (Chu and Harada (2024)).

Adaptation Parameters. In this section, we discuss the number of parameters during adaptation
and inference of our baselines and our method. During adaptation, we introduce 4.7M parameters as
LoRA weights to the pretrained layers in all baselines. Our Register Module adds another 18.5M
parameters. Thus, our method has 23.2M parameters during adaptation, which is ≈ 11% of the total
number of parameters (199M parameters) in GAGAvatar. During adaptation, we discard the trained
Register Module, which lends to the same efficiency as GAGAvatar and other baselines.

D.3 User Study

Figure 7: User Study. Preference (%) in terms of identity preservation, and visual quality, comparing
LoRA (Hu et al., 2022), and our method.

We conduct a user study to qualitatively and subjectively compare our method against LoRA (see
Sec. E for details). The results of our user study are shown in Fig. 7. We find that 78.2% of the users
prefer our method as compared to LoRA in terms of identity preservation. Furthermore, we find that
89.9% of the users prefer our results as compared to LoRA in terms of visual quality.

D.4 Additional Qualitative Results

In Fig. 8, we show that, compared to LoRA, our method effectively captures high-frequency details
like wrinkles. We show additional results of our method against the baselines on VFHQ Test in Fig. 9
and on RareFace-50 in Fig. 10. Fig 11 and 12 show visualizations of feature norms along the channel
dimensions for two identities from RareFaces-50. The values are visualized using colormaps between
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Figure 8: We show facial details that are well captured by our method with Register Module, such
as wrinkles and skin folds are realistic and have higher quality than vanilla LoRA. Please note the
enlarged insets of specific details.

[−3σ, 3σ] for fsrc
dense, and freg and [−σ, σ] for fproc−1. We visualize the first four channel-wise PCA

components in Fig. 13 to 18. We observe that the Register Module improves the learning signals by
highlighting face regions and dampening the background regions.

E User Study Details

As mentioned in Sec. D.3, we qualitatively compare our method with vanilla LoRA as an adaptation
method with a user study. We describe the details of the user study here. Fig. 19 shows the interface
that we use for this user study. A total of 18 users responded to our user study. We generate head
avatars given source videos from VFHQ Test and RareFace-50 using our method and LoRA. The
outputs are placed side by side and the left-right orders are assigned randomly to make sure that
the users are unaware of which method is ours. Each generated video is ≈ 5 to 10 seconds long,
concantenated with the source identity image and the driving video. Users are asked two questions:
“Which method’s avatar best looks like the source image identity?” and “Which method avatar has
better visual quality?” The users can choose as answer “Method A” or “Method B” or both. Label
“Method A” is placed to the left of label “Method B” and the generated videos are randomly placed in
terms of a left-right order. The answers are collected through a google form. The videos are attached
to the google form using a link to google drive, and the users are encouraged to download the videos
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Figure 9: Additional results of personalized head avatar generation on VFHQ Test. Please zoom in
for better details.

to view them on their system. This is done to make sure that differences in high resolution are evident
to the users.

F Discussion

F.1 Limitations

Our work is in line with lighting-agnostic methods that do not explicitly model lighting (e.g.,
GAGAvatar (Chu and Harada (2024)), GPAvatar (Chu et al. (2024)), Portrait4D (Deng et al. (2024a,b)),
etc.) to model avatars. Therefore, lighting effects from the source image, such as highlights
and shadows, are prone to being "baked" into the model’s texture map or implicit appearance
representation. While modeling light for avatar relighting is interesting, it is a separate line of work
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Figure 10: Additional results of personalized head avatar generation on our RareFace-50 dataset.
Please zoom in for better details.

(e.g., Portrait Video Relighting (Rao et al. (2024)), Holo-Relighting (Mei et al. (2024))). We leave
the task of incorporating lighting effects for the future.

Our approach does not explicitly address cloth modeling. Hence, it may not preserve clothing details.
While modeling cloth characteristics and dynamics is interesting, it is a separate line of work (e.g.
Guo et al. (2025)). We leave the integration of cloth modeling techniques into our approach as an
interesting direction for future research.

An important factor of our method is the 3DMM fitting that is used to extract the head pose, camera
parameters, and 3DMM mesh parameters (see Sec. 3.3 of the main paper). This fitting can be noisy
and the error can be propagated to the final generated videos. Improving the face tracking further
would be an interesting future work. Further, 3DMM fitting does not model asymmetric/extreme
expressions (such as winking) and the movement of the tongue, which is another interesting line of
work to pursue.
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Figure 11: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
visualize the 1) source image’s DINOv2 feature fsrc

dense, 2) fproc−1, output from Eproc−1, and 3) freg ,
output of the Register Module. We compute norms of the features along the embedding dimensions
and standardize values.
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Figure 12: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
visualize the 1) source image’s DINOv2 feature fsrc

dense, 2) fproc−1, output from Eproc−1, and 3) freg ,
output of the Register Module. We compute norms of the features along the embedding dimensions
and standardize values.
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Figure 13: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 1st channel-wise PCA component and standardize the values.

Figure 14: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 2nd channel-wise PCA component and standardize the values.

Our current implementation projects visible vertices and performs interpolation rather than using a
rasterization-based approach. As this pipeline is not employed during inference, it does not impact
the speed or scalability of the method. While we do not expect this design choice to have a significant
effect on our results, incorporating a rasterization-based implementation could offer an alternative
formulation, which we plan to explore in future work.

In this work, our goal is to personalize a pre-trained generic model, GAGAvatar, thus inheriting
architectural choices from the original model. As these models produce videos in a frame-by-frame
manner, they apply an exponential moving average (EMA) filter on expression and pose along the
time axis in order to reduce temporal inconsistencies. Using their exponential smoothing, we did
not observe any noticeable temporal inconsistencies in our outputs. However, temporal consistency
is crucial in real-world settings and can be further explored as a future work, developing more
fundamental solutions. Since 3D head avatar generation methods produce videos in a frame-by-frame
manner, using tracked 3DMM parameters, there are two broad directions that can be pursued to
make sure temporal consistency is fundamentally “baked-in”: (a) make 3DMM parameter tracking
temporally consistent (e.g., predict 3DMM parameters for a window of frames instead of one-by-one
[1], etc.) and train and infer the head avatar generation model on these tracked parameters, or (b)
make 3D head avatar generation temporally consistent (e.g., predict a window of future frames given

33



Figure 15: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 3rd channel-wise PCA component and standardize the values.

Figure 16: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 1st channel-wise PCA component and standardize the values.

a history of frames in a sliding window fashion [2], and/or enable temporal consistency losses using
landmark tracking [3], or include other transformer-based modules etc.).

F.2 Ethical Considerations and Broader Impacts

While our method has significant promise across diverse applications, it also carries the risk of
abuse — for example, in creating “deep fakes”. These can be used by users with malicious intent
to spread misinformation. To prevent this, it is imperative to develop forensic tools to detect fake
videos Cai et al. (2023); Reiss et al. (2023). We intend to share our code, dataset and models to
improve this research, in which we will release them with strict licenses that only allow usage for
academic research. When used ethically and responsibly, our method can offer profound benefits
across industries — from video conferencing to the entertainment sector. In addition, we have also
put appropriate procedures (see Sec. C) to ensure fair and safe use of videos from the dataset we
collect.
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Figure 17: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 2nd channel-wise PCA component and standardize the values.

Figure 18: Visualization of learned features by the Register Module on our RareFace-50 dataset. We
compute the 3rd channel-wise PCA component and standardize the values.
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Figure 19: User Study Interface. We ask each user to watch 8 videos and answer which method
preserves the source image identity and which method has the best visual quality.
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