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ABSTRACT

The potential of the vision modality for enhancing graph structural awareness has
long been overlooked in the mainstream graph neural network (GNN) community.
In this paper, we propose a simple yet effective framework called Graph Vision
Networks (GVN), which first incorporates vision awareness into Message Passing
Neural Network (MPNN) and achieves effective performance for link prediction,
highlighting this unexplored but promising direction. Specifically, GVNs transform
graph structures into images and extract Visual Structural Features (VSFs) from
those images, where VSFs are considered a novel type of structural feature. Similar
to previous structural features, VSFs also mitigate the limitations of traditional
MPNNs in expressive power and substructure awareness. Additionally, unlike
most previous heuristic-based structural features (e.g., common-neighbor-based
and path-based ones), which typically depend on fixed structural priors, VSFs are
adaptive and capable of capturing varying structural insights to better suit different
scenarios. Extensive experiments across seven commonly used benchmark datasets
demonstrate that GVNs and their variants can significantly enhance MPNNs in link
prediction tasks. Additionally, the straightforward design of the framework makes
it highly compatible with current methods, providing additional performance gains
to achieve new state-of-the-art performance.

1 INTRODUCTION

Link prediction is a fundamental task in graph machine learning, and has been widely used across
various application domains. Examples include recommendation systems (He et al., 2020), drug
interaction prediction (Yamanishi et al., 2008), and knowledge-based reasoning (Bordes et al., 2013).
A class of powerful link predictors are the Graph Neural Networks (GNNs), which produce node
representations and then aggregate them to link representations for the prediction of link existence.

While GNNs are very popular, they suffer from limited expressive power. In particular, they produce
the same representations for links involving isomorphic nodes1 (Morris et al., 2019; Xu et al., 2018),
and ignores the pairwise structural relations between the two nodes in the target link (Zhang et al.,
2021; Chamberlain et al., 2022; Wang et al., 2024). Second, the structure awareness ability of
MPNNs is coarse-grained. It can be proved that MPNNs are incapable of counting local structural
patterns such as triangles (Chen et al., 2020). Empirically, as will be demonstrated in our experiments,
MPNNs cannot estimate link prediction heuristics such as Common Neighbor Counts (CN) (Barabási
& Albert, 1999), Resource Allocation (RA) (Zhou et al., 2009), and Adamic Adar (AA) (Adamic &
Adar, 2003).

To address the aforementioned issues, a number of strategies have been proposed to improve MPNNs
for link prediction. One direct approach involves assigning labels or random node features to all
nodes, thereby enabling MPNNs to generate distinct node representations for isomorphic nodes and
facilitating the differentiation of links involving such nodes. However, this comes at the cost of
inductive ability and training convergence (Abboud et al., 2020; Sato et al., 2021; Zhang et al., 2021).
A more effective approach involves designing and computing heuristic structural features (HSFs),
also known as labeling tricks, that are derived from the local graph structure. These HSFs supplement
MPNNs with more detailed and sophisticated structure characteristics, therefore enhancing expressive
power and structural awareness. This approach has shown remarkable success on link prediction. For
instance, SEAL (Li et al., 2020) utilizes the shortest path distance (SPD) between the nodes (target

1An example is shown in Appendix A.
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nodes) in the target link as HSFs. ID-GNN (You et al., 2021) assigns “identity” colors to target nodes
as HSFs. More recently, models such as Neo-GNN (Yun et al., 2021), BUDDY (Chamberlain et al.,
2022), and NCNC (Wang et al., 2024) leverage different types of one-hop and multi-hop common
neighbor information to construct common-neighbor-based HSFs, leading to state-of-the-art (SOTA)
link prediction performance.

Despite the outstanding performance, each HSF is derived from a pre-defined structural prior, thus
encapsulating structural information from only one predefined perspective. However, real-world
situations are complex and variable, and may demand structural insights from diverse perspectives.
For instance, while SEAL and NBFNet (using path-based HSFs) have superior link prediction
performance on the planetoid dataset (Yang et al., 2016), they perform even worse than the simple
Graph Convolutional Network (GCN) on the ogbl-ddi dataset (Hu et al., 2020), which contains dense
graphs and most node pairs are reachable in two hops, making path-based HSFs not sufficiently
informative. Consequently, due to the fixed structural insights of HSFs, users are often required to
try repeatedly to find the best-suited HSF. Hence, there is a growing demand for methods capable of
generating adjustable and adaptive structural features tailored to different application scenarios.
Ideally, this approach should be compatible with existing methods that use fixed HSFs, and provide
performance enhancements for scenarios with already-identified heuristic preference.

To achieve this, we propose the Graph Vision Network (GVN), which innovatively utilizes the visual
modality to extract dynamic and learnable structural features (called Visual Structural Features,
or VSFs) from the visual representations of graphs, thereby enhancing the expressive power and
structural awareness of MPNNs. Specifically, GVN first visualizes local graph structures as visual
graph images. A learnable vision encoder is then employed to dynamically extract VSFs from these
images. Subsequently, the VSFs are integrated into MPNNs through a learnable attention-based
fusion module, which adaptively enhances link prediction for different scenarios. The proposed
GVN framework includes two variants: GVN-Link and GVN-Node, where the latter is particularly
designed for large graphs. Due to the simple but effective design, both variants are compatible
with existing HSF-based methods. We demonstrate that VSF, as a novel type of structural feature,
possesses flexible and comprehensive structural awareness. The extensive experiment results on
seven common datasets including challenging large-scale graphs demonstrate both GVN-Link and
GVN-Node can significantly enhance traditional MPNN in link prediction (28.20% and 36.15%
respectively). Besides, when incorporated into existing methods, both GVN-Link and GVN-Node
achieve new state-of-the-art (SOTA) performance.

In summary, the contributions of this paper are three-fold.
• We are the first practice to integrate the vision modality into MPNNs for link prediction by

proposing a novel structural feature: visual structural features (VSFs), highlighting a promising
direction to combine vision awareness into GNNs.

• By incorporating adaptive VSFs to MPNNs, we propose the GVN framework, which has a simple
but effective design and is able to be compatible with existing methods.

• Extensive experiments demonstrate that GVNs significantly enhance MPNNs in link prediction
and can achieve SOTA performance by further improving existing methods with vision awareness.

2 RELATED WORK

Link Predictor. Link predictors can be divided into three classes: node embedding methods, link
prediction heuristics, and MPNN-based link predictors. 1) Node embedding methods (Perozzi et al.,
2014; Tang et al., 2015; Grover & Leskovec, 2016) represent each node as an embedding vector and
utilize the embeddings of target nodes to predict links. 2) Link prediction heuristics (Liben-Nowell &
Kleinberg, 2003; Barabási & Albert, 1999; Adamic & Adar, 2003; Zhou et al., 2009) create structural
features through manual design. 3) MPNN-based link predictors explicitly model the enclosing
subgraphs around the nodes through MPNNs and generate/update node embeddings via the message-
passing mechanism, thus fully leveraging node attributes and aggregating node representations.
However, the expressive power of naive MPNN architectures is proven to be limited (Zhang et al.,
2021), constrained by the 1-WL test (Morris et al., 2019), and they fail to finely perceive substructures
like triangles (Chen et al., 2020). To overcome these limitations, more advanced MPNNs are proposed
that integrate link prediction heuristics and their extended form as structural features (i.e., HSFs)
into MPNNs. For instance, SEAL (Zhang & Chen, 2018) incorporates path-based SPD structural
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features into MPNNs, which concatenates the SPD from each node to the target nodes u and v with
the node features to form the augmented node features X ′ and apply MPNN on a k-hop subgraph
Sku,v centered around (u, v). Other common-neighbors-based HSFs have also been incorporated
into MPNNs. For example, Neo-GNN (Yun et al., 2021) and BUDDY (Chamberlain et al., 2022)
use the heuristic function to model high-order common neighbor information. NCNC (Wang et al.,
2024) directly concatenates the weighted sum of node representations of common neighbors with the
Hadamard product of MPNN representations of u and v.

Graph Learning with Vision. Recently, there are a number of explorations on leveraging vision
to enhance graph learning. Das et al. (2023) find that the vision modality, combined with a vision-
language model (VLM), can outperform GNN baselines for node classification on the planetoid
datasets. Wei et al. (2024) shows that the vision modality excels at capturing graph substructures such
as local cycles and triangles with the help of VLMs. However, using vision as structural features with
MPNNs or integrating vision in link prediction remains unexplored, which is the focus of this paper.

3 PRELIMINARIES

Notations. An undirected graph G = (V,E) comprises a set V of n nodes (vertices) and a set E
of e links (edges). We denote the adjacency matrix of G by A ∈ Rn×n, where A(u,v) > 0 if and
only if the edge (u, v) ∈ E. We define N(v) := {v|v ∈ V,Auv > 0} as the set of neighbors of node
v, and Nk(v) as the set of neighbors of node v within k hops, where a node u ∈ Nk(v) if and only
if SPD(u, v) ≤ k. The node feature matrix XG ∈ Rn×F contains the node features in G, where
the v-th row xv corresponds to the feature of node v. We use Skuv = (Vuv, Euv) to denote2 a k-hop
subgraph enclosing the link (u, v), where Vuv is the union of k-hop neighbors of u and v, and Euv
is the union of links that can be reached by a k-hop walk originating at u or v. Similarly, Sku is the
k-hop subgraph enclosing node u.

Message Passing Neural Networks for Link Prediction. The MPNN is a common framework
for GNNs in link prediction task. In MPNN, the message-passing mechanism is employed to
iteratively update node representations based on information exchanged between neighboring nodes.
Mathematically, this message-passing mechanism can be written as

htv = U t(ht−1
v ,AGG({M t(ht−1

v ,ht−1)
u )|u ∈ N(v)})), (1)

YG = MPNN(XG, G), yv = hkv , (2)

where YG ∈ Rn×F ′
is the final node representations by MPNN for graph G, whose v-th row yv is

the final representation of node v. Given the node representation matrix YG, link probabilities can
then be computed as p(u, v) = R(yu,yv), where R is a learnable readout function.

Eqs. (1) and (2) show that MPNNs have permutation equivariance, i.e., for any n×n node permutation
matrix P, we have P(MPNN(X,G)) = MPNN(PX,G). As a consequence, MPNNs produce the
same representation yu = yv for isomorphic nodes u and v. Thus, for any node w, R(yw,yu) =
R(yw,yv), which leads to equal link probabilities p(w, u) = p(w, v) for links (w, u) and (w, v). In
other words, MPNNs have limited expressive power.

4 GRAPH VISION NETWORKS

In this section, we introduce Graph Vision Networks (GVNs), a novel framework that integrates
vision-enhanced MPNNs for link prediction. This includes two variations: GVN-Link and GVN-
Node. We provide their framework architecture diagrams in Figure 1

Problem Setting. Given an undirected graph G = (V,E) and a set L of query links, the objective of
link prediction is to determine the existence of each link (u, v) ∈ L.

4.1 GVN-LINK

Message Passing on Node Features. GVN-Link initiates the processing pipeline by employing a
MPNN to propagate information over the graph G = {V,E}. This step utilizes the node feature

2For simplicity, we omit k from Vuv and Euv .
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Figure 1: The overview of GVN-Link and GVN-Node architectures

matrix XG ∈ Rn×F , resulting in a node representation matrix YG ∈ Rn×F ′
:

YG = MPNNϕ(XG, G),

where ϕ is the trainable parameter of the MPNN.

Link-centered Subgraph Visualization. For each candidate link (u, v), GVN-Link extracts the
k-hop subgraph Skuv surrounding it. Subsequently, by using a graph visualizer GV (such as graphviz
(Gansner & North, 2000)), the subgraph is transformed to a visual graph image Ikuv with nodes u and
v highlighted with special color, as

Ikuv = GV(Skuv, u, v).

An example is shown in the top right of Figure 1. This visual representation encapsulates the structural
information around the queried link, such as common neighbors and structural motifs like triangles.
These features are expected to be captured by a trained vision encoder in the next step.

VSF Extraction. Next, the visual graph image Ikuv is processed through a trainable vision encoder,
denoted VEψ , to extract the visual structural features vuv ∈ RS :

vuv = VEψ(I
k
uv).

Feature Integration. The extracted VSFs vuv are then integrated with the node representations yu
and yv by an attention-based fusion module FMω. The following describes the feature integration
procedure for node u. Processing for node v is similar.

The feature integration process begins with projecting vuv ∈ RS to ṽuv ∈ RF ′
using a linear

projector layer, ensuring that ṽuv shares the same dimensions as the node representations yu and yv:
ṽuv = Projector(vuv).

Subsequently, an attention mechanism evaluates the relevance of the visual features by facilitating
selective emphasis on significant visual details and computing the attention vector yattnu :

yattnu = attention(Q = yu,K = ṽuv,V = ṽuv) = softmax
(
yuṽ

T
uv√

F ′

)
ṽuv.

The integration of VSFs with node representations is refined through a weighted combination,
regulated by a learnable parameter α that balances the original and visually enhanced features:

ỹu = αyu + (1− α)yattnu .

The feature integration procedure for node u can be summarized as ỹu = FMω(yu,vuv), where the
trainable parameters ω in the fusion module FM include the parameters of the linear projector layer
and attention layer, as well as the scaling parameter α.

Link Probabilities Read-out. The read-out model Rθ, which integrates the enhanced node represen-
tations ỹu and ỹv , computes the probability of the existence of a link (u, v):

p(u,v) = Rθ(ỹu, ỹv).

4
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4.2 GVN-NODE

Node-centered Subgraph Visualization. Contrary to GVN-Link, GVN-Node employs the graph
visualizer GV to visualize the node-centered k-hop subgraph Skv for each node v. An example is
shown in the bottom right of Figure 1.

Ikv = GV(Skv , v).

Partially-trained VSF Extraction. For each node v, the visual image of its node-centered subgraph
is subsequently converted into the node-based VSF vv ∈ RS by the vision encoder, which reflects the
local structural features surrounding the node. In GVN-Node, a “partial training strategy” is employed
for VSF extraction, which aims to save computational cost while keeping the VSFs adaptive. To be
specific, we make the parameters of the vision encoder fixed, but add a trainable linear projector
appended to the vision encoder to make the VSFs still trainable. As a result, we can store the
intermediate VE(Ikv ) as a vector database, to save the time of frequently loading and processing the
images by VE per epoch.

vv = Projectorψ(V E(Ikv )).

Feature Integration. For each node v, the node-based VSF vv is then integrated into its original
node feature xv through the same attention-based fusion module FMω used in GVN-Link. The
integration updates xv ∈ RF to a vision-aware node feature x̃v ∈ RF :

x̃v = FMω(xv,vv) = αxv + (1− α)xattnv , ṽv = Projector(vv),

where

xattnv = attention(Q = xv,K = ṽv,V = ṽv) = softmax
(
xvṽ

T
v√
F

)
ṽv.

Message Passing on Vision-aware Node Features. Subsequently, the MPNN is used to perform
message passing on graph G with these vision-aware node features and output the final node repre-
sentations, where X̃G is the matrix form of vision-aware node features for all nodes:

ỸG = MPNNϕ(X̃G, G).

Link Probabilities Read-out. Finally, the learnable read-out model Rθ predict the link existence
probability with the vision-aware node representations ỹu and ỹv:

p(u,v) = Rθ(ỹu, ỹv).

4.3 TIME COMPLEXITY ANALYSIS

Let n be the number of nodes, d be the maximum node degree, F be the node feature dimension, F ′

be the dimension of node representation produced by MPNN, and l be the number of target links.
The time complexity of GVN-Link is determined by the following components: 1) Complexity of
the base model, which includes the MPNN and its associated read-out function. For example, the
complexity of GCN is O(ndF + nF 2) + O(lF 2). For the NCNC model (Wang et al., 2024) that
incorporates common-neighbor HSFs, the complexity is O(ndF + nF 2) +O(ld2F + ldF 2). We
denote this part by O(Base). 2) Complexity of generating visual images for the target links is O(l).
3) Complexity of extracting visual structural features with Vision Encoder is O(l). 4) Complexity of
linear projection which converts the S dimensional VSFs vuv to the F dimensional ṽuv is O(lSF ) 4)
Complexity of the attention mechanism is O(lF 2). Therefore, the total time complexity of GVN-Link
is O(Base) +O(l) +O(lSF ) +O(lF 2) = O(Base) +O(lSF + lF 2).

For GVN-Node, the difference lies in its use of node-centered subgraph VSFs. Therefore, the
complexity of generating visual images for all nodes is O(n), the complexity of the VSF projection
becomes O(nSF ′), the complexity of the attention mechanism becomes O(nF ′2), and the other
parts remain the same with GVN-Link. As a result, the total time complexity of GVN-Node is
O(Base) +O(n) +O(nSF ′) +O(nF ′2) = O(Base) +O(nSF ′ + nF ′2).

5
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4.4 COMPARISON BETWEEN GVN-LINK AND GVN-NODE

GVN-Link and GVN-Node have their own advantages and disadvantages. First, in most graphs,
the number of links l is significantly larger than the number of nodes n (with l having an upper
bound of n2). Consequently, GVN-Node demonstrates a higher computational efficiency compared
to GVN-Link, making it more suitable for large and dense graphs, where GVN-Link can become
computationally intensive. Second, the VSFs in GVN-Link include the visual perception of the target
link’s neighborhood structure. These VSFs explicitly reveal the pairwise relationship between the two
nodes in the target link, which is advantageous for link prediction. Third, the VSFs in GVN-Node
encompass the visual perception of all nodes’ neighborhoods and participate in message passing.
This allows the VSFs in GVN-Node to capture more structural details and integrate them more
deeply into the link prediction process. In contrast, GVN-Link only provides visual perception of the
substructures surrounding the two nodes in the target link.

It is worth noting that although the VSFs in GVN-Node do not explicitly model pairwise relationships,
the base model can still learn these relationships from the neighborhood connections between nodes,
such as through similar substructures, as a compensation. Furthermore, employing an MPNN method
with pairwise HSFs, such as NCNC, as the base model can effectively address this limitation.

5 EXPERIMENTS

In this section, we conduct a series of comprehensive and engaging experiments to demonstrate the
effectiveness of the proposed GVN and VSFs.

5.1 EVALUATION ON REAL-WORLD DATASETS

In this section, we comprehensively evaluate both GVN-Link and GVN-Node with different base
MPNN models on seven widely-used datasets, comparing them with a representative set of baselines.

Datasets. We conduct experiments on widely used Planetoid citation networks: Cora (McCallum
et al., 2000), Citeseer (Sen et al., 2008), and Pubmed (Namata et al., 2012), and the OGB link
prediction datasets (Hu et al., 2020): ogbl-collab, ogbl-ppa, ogbl-citation2 and ogbl-ddi. Statistics of
those datasets are shown in Appendix B.

Baselines. Baseline methods used include three popular link prediction heuristics: Common Neighbor
counts (CN) (Barabási & Albert, 1999), Adamic-Adar (AA) (Adamic & Adar, 2003), and Resource
Allocation (RA) (Zhou et al., 2009); two popular GNNs: GraphSAGE (Hamilton et al., 2017) and
Graph Convolutional Network (GCN) (Kipf & Welling, 2016); HSF-enhanced GNNs: SEAL (Zhang
& Chen, 2018) and NBFNet (Zhu et al., 2021) (which are MPNNs with path-based HSFs), Neo-GNN
(Yun et al., 2021), BUDDY (Chamberlain et al., 2022), and NCNC (Wang et al., 2024) (which are
enhanced by common-neighbor-based HSFs).

Configurations of Proposed Methods. We study four configurations of the proposed GVN-Link
(denoted by GVN-L) and GVN-Node (denoted by GVN-N): GVN-LGCN , GVN-LNCNC , GVN-
NGCN , and GVN-NNCNC , where the subscript denotes the base model (i.e., GCN or NCNC). Note
that the proposed methods can be easily applied to other MPNN models. Graphviz (Gansner & North,
2000) (with details in Appendix C) is used as the graph visualizer. We use a pretrained ResNet50 (He
et al., 2016) as the vision encoder and extract visual features from its last convolutional layer.

Performance Evaluation. The use of evaluation metrics follows (Chamberlain et al., 2022; Wang
et al., 2024). Specifically, for the Planetoid datasets, we use the hit-ratio at 100 (HR@100), while for
the OGB datasets, we use the metrics in their official documents 3 , i.e., hit-ratio at 50 (HR@50) for
ogbl-collab, HR@100 for ogbl-ppa, Mean Reciprocal Rank (MRR) for ogbl-citation2 and hit-ratio
at 20 (HR@20) for ogbl-ddi. 4. All results are averaged over 10 trials with different random seeds.
Experiments are conducted on an NVIDIA A100 80G GPU. More details on the experimental setup
are in Appendix E.

3https://ogb.stanford.edu/docs/leader_linkprop/
4Evaluations on other metrics are included in Appendix D
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Table 1: Link prediction performance (average score ± standard deviation). “-” indicates that the
training time is > 24 hour/epoch (for GVN-L) or out of memory (for NBFnet). The best performance
is shown in bold, and the second-best is underlined.

Cora Citeseer Pubmed Collab PPA Citation2 DDI
(HR@100) (HR@100) (HR@100) (HR@50) (HR@100) (MRR) (HR@20)

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00

AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 32.45±0.00 51.89±0.00 18.61±0.00

RA 41.07±0.48 33.56±0.17 27.03±0.35 64.00±0.00 49.33±0.00 51.98±0.00 27.60±0.00

SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 16.55±2.40 82.60±0.36 53.90±4.74

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 18.67±1.32 84.74±0.21 37.07±5.07

GVN-LGCN 81.13±0.86 83.93±0.97 73.17±1.02 - - - -
GVN-NGCN 80.01±1.55 82.85±1.90 71.94±1.37 62.14±1.37 32.15±1.58 86.10±0.13 60.21±6.67

Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19 57.52±0.37 49.13±0.60 87.26±0.84 63.57±3.52

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 48.80±3.16 87.67±0.32 30.56±3.86

NBFnet 71.65±2.27 74.07±1.75 58.73±1.99 - - - 4.00±0.58

BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 49.85±0.20 87.56±0.11 78.51±1.36

NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67

GVN-LNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
GVN-NNCNC 91.47±0.36 94.44±0.53 84.02±0.55 68.14±0.75 63.45±0.66 90.72±0.24 87.31±3.04

Implementation Details. The adjustable key hyperparameters include the vision-aware hop count k
ranging from 1 to 3, the hidden dimension ranging from 512 to 2048, the number of MPNN layers
and readout predictor layers varying from 1 to 3, the separate two learning rates for learning trainable
VSFs and adaptive fusion model among 0.0000001, 0.00001, 0.001, 0.01 and the weight decay from
0 to 0.0001. The hyperparameters with the best validation accuracy are selected. For the model
parameters, we utilize the Adam optimizer (Kingma, 2014) to optimize them. All results of our
models are derived from runs using 10 different random seeds.

Results. Table 1 compares the performance of the proposed methods with the various baselines.
As can be seen, integration of VSF through either GVN-Link or GVN-Node consistently enhances
link prediction performance across both base models. In particular, with GCN as the base model,
GVN-LGCN and GVN-NGCN boost the performance dramatically relative to the GCN baseline
(with an average improvement of 28.20% for GVN-LGCN on the Planetoid datasets, and 36.15%
for GVN-NGCN on all seven benchmarks). This remarkable enhancement underscores the value of
VSFs as dynamic structural features that significantly boost the capabilities of MPNNs. On the other
hand, when NCNC is used as the base model, GVN-LNCNC and GVN-NNCNC achieve new SOTA
performance, illustrating that VSFs can provide additional enhancements that are compatible with
existing SOTA methods.

With GCN as the base model, GVN-Link outperforms GVN-Node. This is mainly because the
link-centered VSFs in GVN-Link are more adept at elucidating the pairwise structural relationships
surrounding these links compared to the node-centered VSFs in GVN-Node. Conversely, with NCNC
as the base model, GVN-Node outperforms GVN-Link. This is because NCNC’s HSFs compensate
for the lack of explicit pairwise information in node-centered VSFs, allowing GVN-Node to utilize
its refined structural perception capabilities effectively. GVN-Node’s VSFs focus on node-level
structural details and are iteratively refined through message passing, resulting in a more detailed
understanding of the local structures compared to the link-centered VSFs in GVN-Link. As a result,
GVN-NNCNC outperforms GVN-LNCNC .

In terms of applicability, GVN-Link is best suited for smaller graphs (such as Cora, CiteSeer, and
PubMed) due to its expensive runtime (exceeding 24 hours per epoch on the larger graphs). Conversely,
GVN-Node demonstrates better scalability and broader applicability, showing effectiveness even on
large-scale graph datasets.

5.2 DELVE INTO THE REASON WHY INCORPORATING VISION HELPS LINK PREDICTION

We delve into the reasons how vision helps MPNN-based link prediction from two aspects:

Vision alleviates two limitations of MPNNs in link prediction. 1) Distinguish Links with Iso-
morphic Nodes. As highlighted in Section 1, MPNNs exhibit limited expressive power due to their
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inability to differentiate links with isomorphic nodes (see the illustration in Appendix A), thus
producing the same link prediction p(u, v) for these links that have distinct enclosing subgraphs.
To illustrate the improvement of GVNs over MPNNs in this regard, we compute the proportion of
links that produce the same prediction (i.e., p(u, v)) with at least one other link by GVN-LGCN ,
GVN-NGCN , and GCN during link prediction on the non-attributed5 Cora dataset. We expect to
find whether there are cases where links with distinct enclosing subgraphs are treated the same by
GCN but corrected by VSFs in GVN. Empirically, 6.79% links in GCN share identical predictions
with the other links. In contrast, the ratio is only 0.88% (0.94%) for GVN-LGCN (respectively, for
GVN-NGCN ). Therefore, the gap between the ratios demonstrates that GVNs make the links with
distinct enclosing subgraphs distinguishable by incorporating VSFs.

2) Capture the substructures. Besides, MPNNs are proven to have only coarse-grained structural
awareness on substructures like triangles. To evaluate whether GVNs achieve progress in this aspect,
we extract 3200 triangles from the Cora dataset and then randomly sample another 3200 non-triangle
triplets as negative samples. Each model is then tasked with distinguishing triangles from the negative
samples. Empirically, GVN-LGCN achieves an accuracy of 91.88%, and GVN-NGCN achieves
an accuracy of 88.91%, while GCN attains only 63.25%. This underscores the more fine-grained
structural perception of GVN models compared to traditional MPNNs.

VSFs encapsulate diverse structural information and can be tailored to specific scenarios.

Figure 2: Heuristic Reproduction Ratio (%) Using
VSFs in GVN-Link and GVN-Node Before and
After Finetuning on Cora for Link Prediction.

Unlike traditional heuristic structural features
(HSFs) that depend on a single structural prior
like common-neighbors (e.g., CN, RA, AA)
or path information between target nodes (e.g.,
SPD), VSFs offer a rich array of structural in-
sights from multiple perspectives, as illustrated
in Figure 2. The adaptability of VSFs allows
them to shift focus based on varying scenarios.
To validate this adaptability, we explore whether
VSFs can be fine-tuned to better suit the current
scenario. Specifically, for each link (u, v), we
extract link-centered VSFs vuv in GVN-Link
(GVN-LGCN ) and node-centered VSFs vu and
vv in GVN-Node (GVN-NGCN ), both before and after fine-tuning on the Cora dataset. We then
evaluate the extent to which these VSFs can replicate link prediction heuristics such as CN, RA, AA,
and SPD.

For GVN-LGCN , we employ a trainable 3-layer MLP predictor that uses link-centered VSFs as input
to predict heuristics. Successful replication of a heuristic suv , i.e., MLP(vuv) = suv , indicates that
the relevant heuristic information is embedded within the link-centered VSFs vuv. In the case of
GVN-NGCN , an additional GCN is used for message passing through node-centered VSFs before
applying the MLP predictor, i.e., MLP(GCN(vu),GCN(vv)) = suv, since node-centered VSFs
participate in message passing within GVN-NGCN .

Figure 2 displays the proportions of heuristics that VSFs can reproduce before and after fine-tuning
on the Cora link prediction scenario. The results reveal how the type of information contained in
VSFs evolves through fine-tuning. Post fine-tuning, VSFs in both GVN-LGCN and GVN-NGCN

demonstrate an improved ability to capture common-neighbor-based heuristics (CN, RA, and AA),
while their capacity to replicate the path-based heuristic SPD decreases. This suggests that the
VSFs learned from the Cora scenario prioritize common neighbor information over shortest path
information.

This trend aligns with existing observations (Zhang & Chen, 2018; Yun et al., 2021; Chamberlain
et al., 2022; Wang et al., 2024) that common-neighbor-based methods (such as BUDDY and NCNC)
often outperform SPD-based methods like SEAL for link prediction on the Cora dataset. These
findings suggest that GVN can dynamically adjust the information in their VSFs to provide more
relevant insights tailored to the specific scenario.

5Here we delete node attributes to make models only focus on the graph structures because here we only care
about their expressive power on structure.
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5.3 SCALABILITY

Figure 3 compares the time and GPU memory for inferring one batch of samples from Cora (the
preprocessing time for each method is also taken into account).

Among the baselines and proposed methods, GVN-Link (GVN-LGCN and GVN-LNCNC ) is the most
time-consuming, followed by SEAL and NBFnet. These three methods also require considerably more
memory than the others. This elevated resource consumption is due to the need for pre-processing and
computation for each link, and the storage of intermediate variables with respect to links. Additionally,
GVN-Link requires graph visualization, which introduces extra pre-processing time. Therefore,
similar to SEAL and NBFnet, GVN-Link is not well-suited for large-scale graph computations.

Figure 3: Inference time and memory on Cora.

In contrast, although GVN-Node also requires
graph visualization, it is a node-based method
which involves fewer computations than link-
based methods and allows reuse across different
links in the entire dataset. In Figure 3, we in-
clude the amortized time for graph visualization
in the time cost computation of GVN-Node. As
a result, GVN-Node (GVN-NGCN and GVN-
NNCNC) still exhibits computational overhead
similar to their base models (GCN and NCNC).
Therefore, by leveraging the lightweight base
models GCN and NCNC, GVN-Node maintains efficiency and is suitable for large-scale graphs.

5.4 ABLATION AND SENSITIVITY ANALYSIS

Table 2: Performance comparison on the number of vision-aware hops k (HR@100).

Cora Citeseer
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

GVN-LNCNC 89.76±0.78 90.70±0.56 89.68±0.97 92.51±0.86 94.12±0.58 92.33±0.91

GVN-NNCNC 90.87±0.47 91.47±0.36 90.21±0.58 93.29±0.59 94.44±0.53 92.62±0.67

Table 3: HR@100 on different vision encoder fine-tuning strategies.
Cora Citeseer

w/o partial full w/o partial full

GVN-LNCNC 89.57±0.62 90.52±0.65 90.70±0.56 91.55±0.79 93.75±0.75 94.12±0.58

GVN-NNCNC 89.66±0.54 91.47±0.36 91.53±0.55 92.72±0.48 94.44±0.53 94.52±0.67

Table 4: HR@100 performance with different fusion strategies.
Cora Citeseer

attention concat MoE attention concat MoE

GVN-LNCNC 90.70±0.56 85.65±6.25 89.99±1.64 94.12±0.58 86.33±4.18 93.93±1.04

GVN-NNCNC 91.47±0.36 76.58±7.79 90.66±1.56 94.44±0.53 88.25±5.54 93.88±1.21

Sensitivity Analysis of Vision-Aware Hop Count k. Prior research suggests that up to 3 hops
usually capture valuable information (Zeng et al., 2021) for MPNNs, where hops are akin to the
numbers of graph convolutional layers. However, in our proposed GVNs, the hop of the link-centered
or node-centered subgraph, i.e., the hop count that VSFs can be aware of in the vision modality, is
decoupled from the MPNN layer counts. Therefore, it is necessary to re-explore how the number of
hops that VSFs can be aware of in the vision modality (vision-aware hop count k) influences link
prediction performance. Table 2 shows the effects of vision-aware hop count k on GVN-LNCNC
and GVN-NNCNC on Cora and Citeseer. Results indicate peak performance for both at k = 2,
suggesting that a hop count of 2 suffices for VSFs, which aligns with findings for MPNNs.

Fine-tuning Strategies for Vision Encoder. Table 3 compares different fine-tuning strategies for the
vision encoder: “w/o" uses the pretrained encoder directly, “partial" fine-tunes only a linear projector,
and “full" fine-tunes all the encoder parameters. The results illustrate that not fine-tuning (“w/o")
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Table 5: HR@100 performance with different vision encoders.
Cora Citeseer

ResNet50 VGG ViT ResNet50 VGG ViT

GVN-LNCNC 90.70±0.56 89.99±1.61 90.69±0.44 94.12±0.58 93.93±1.35 94.29±1.07

GVN-NNCNC 91.47±0.36 89.92±1.01 91.24±0.66 94.44±0.53 93.96±0.85 94.52±0.97

Table 6: HR@100 performance with different node labeling schemes.
Cora Citeseer

No-label Re-label Unique No-label Re-label Unique

GVN-LNCNC 90.70±0.56 89.86±0.44 89.67±0.62 94.12±0.58 94.01±0.43 94.08±0.99

GVN-NNCNC 91.47±0.36 89.73±0.24 89.75±0.83 94.44±0.53 93.85±0.65 94.02±0.91

leads to performance drops for GVN-LNCNC and GVN-NNCNC , highlighting VSF learnability’s
significance. Besides, fully fine-tuning achieves the best overall performance.

However, for GVN-NNCNC , fully fine-tuning is not always practical. That is because fully fine-tuning
requires storing all the images in memory, which can cause out-of-memory issues with larger graphs.
For instance, full fine-tuning of GVN-Node on ogbl-citation2 requires an additional 410.47GB for
storing all images. An alternative approach to achieve full fine-tuning on these larger datasets is to
dynamically load images into memory in batches, but this increases the time to over 24 hours per
epoch for the OGB datasets. To balance efficiency and performance, given that partial fine-tuning for
GVN-Node can achieve nearly the same effectiveness as full fine-tuning but is much more efficient in
terms of both time and memory, we advocate for partial fine-tuning with GVN-Node.

Effect of Fusion Strategies. In this experiment, we study the effectiveness of different fusion
strategies, including (i) attention, (ii) concatenation, and (iii) Mixture of Experts (MoE) (Jacobs et al.,
1991). Implementation details are in Appendix F.1. Table 4 shows the HR@100 performance of
GVN-LNCNC and GVN-NNCNC with these three different fusion strategies on Cora and Citeseer.
Concatenation shows much inferior performance and higher standard deviation than attention. This
could be attributed to the trivial handling of the unaligned embeddings of VSFs and graph features.
Similarly, MoE is also worse than attention, indicating that jointly managing VSFs and node features
using attention is more effective than treating them as separate experts.

Effect of Vision Encoders. In this experiment, we study the robustness of the proposed methods
with the choice of vision encoder. Three popular encoders are used: (i) ResNet50 (as used in previous
experiments), (ii) VGG16 (Simonyan & Zisserman, 2014), and (iii) ViT (Dosovitskiy et al., 2021).
Table 5 shows the HR@100 performance of GVN-LNCNC and GVN-NNCNC with these three vision
encoders on Cora and Citeseer. As can be seen, the choice of vision encoder may slightly affect
the performance, but does not influence the effectiveness of VSFs and GVN with all of them still
outperforming baselines.

Node Labels in Graph Visualization. In this experiment, we study different ways to label the nodes
in the image: (i) “No-label", which shows the nodes without any labels; (ii) “Re-label", which maps
all the nodes in the current subgraph to new labels starting from zero; (iii) “Unique", which labels
the nodes with unique global indices. Example images for these visualization schemes are shown in
Appendix F.2. Table 6 shows the HR@100 performance of GVN-LNCNC and GVN-NNCNC with
these different labeling schemes on Cora and Citeseer. As can be seen, “no-label" performs best,
indicating that purely using the structural information is preferred.

6 CONCLUSION

We propose the Graph Vision Networks (GVN) framework, which innovatively incorporates vision
features as a new type of structural feature, termed visual structural features (VSFs), to enhance
MPNNs in link prediction tasks. Unlike previous methods that rely on fixed heuristic structural
priors, VSFs are adaptively extracted and fused to suit the current scenario and are also compatible
with existing methodologies. Experimental results demonstrate that VSFs are both informative and
adaptive, leading to significant performance improvements beyond base models. Building on the
previous SOTA model NCNC, both GVN-Link and GVN-Node achieve SOTA performance. In our
future work, we are interested in extending GVN to other graph tasks.
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A AN EXAMPLE ILLUSTRATING MPNN’S LIMITED EXPRESSIVE POWER

Figure 4: Example graph with
isomorphic nodes.

In Figure 4, nodes v2 and v3 are isomorphic because of their sym-
metric positions in the graph, and they have the same h-hop neigh-
borhoods for any h. Hence, without node features, permutation-
equivariant MPNNs produce the same node representations for v2
and v3 (i.e., yv2 = yv3). As a result, when predicting distinct links
(v1, v2) and (v1, v3), the input fed into the Readout function are ex-
actly the same (i.e., (yv1 ,yv2) = (yv1 ,yv3)). Therefore, the same
predictions are produced for the two links.

However, the two links can have distinct pairwise structural relations w.r.t. the target node (v1 in this
case). For example, v3 is closer to v1 than v2. This difference in structural relations is overlooked
by an MPNN but can be effectively captured by the SPD structural feature (SPD(v1, v2) = 5,
SPD(v1, v3) = 2). Similarly, common-neighbor-based heuristics such as CN, RA and AA can also
help the MPNN to distinguish the two links (v1, v2) and (v1, v3), as v1 and v2 share no common
neighbor while v1 and v3 have one.

Therefore, structural features can enhance the expressive power of MPNN in link prediction, by
providing extra structural information which are ignored by MPNNs.

B DATASET STATISTICS

The statistics of the datasets are shown in Table 7.

Table 7: Statistics of dataset.
Cora Citeseer Pubmed Collab PPA DDI Citation2

#Nodes 2,708 3,327 18,717 235,868 576,289 4,267 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 30,326,273 1,334,889 30,561,187
data set splits random random random fixed fixed fixed fixed
average degree 3.9 2.74 4.5 5.45 52.62 312.84 10.44

C GRAPH VISUALIZER

Graphviz (Gansner & North, 2000) is a powerful tool used for creating visual representations of
abstract graphs and networks. It allows for the customization of the styles of nodes, edges, and
various layouts (with different configurations of predefined layout computation algorithms, called
layout engines) to tailor the visualization to specific requirements.

In our implementation, the graph visualization processes for both GVN-Link and GVN-Node are
developed using Graphviz. Besides the typical workflow of using Graphviz to generate graph images
(refer to the official documentation at https://graphviz.org/documentation/), there
are several key configurations in our implementations to prevent their variability from affecting
performance robustness:

• Layout: For all experiments, we adopt the fixed layout engine “sfdp". This fixed setting
makes the results more reproducible and reduces the gap between the training and testing
sets. However, we leave a usable interface for specifying other layout engines if needed.

• Node: For all experiments, we use a fixed rectangular (box) style for nodes, leaving them
empty except for the two nodes in the target link, which are filled with a brown color.

• Edge: We treat all edges as undirected links and leave the edge thickness at the default
setting. For link-centered subgraph visualization in GVN-Link, the target link is masked.

These configurations help standardize the visualization process, ensuring consistency and clarity in
the graphical representations used throughout our work.

14
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D EVALUATION ON OTHER METRICS

We test our model in different metrics. The results are shown in Table 8. In total, GVN-Node
achieves 39 best scores (in bold), GVN-Link achieves 7 best scores, and our strongest baseline
NCNC achieves 3 best scores. Therefore, our GVN-LNCNC and GVN-NNCNC still significantly
outperform baselines in different metrics.

Table 8: Models’ performance with various metrics. NCNC is our strongest baseline.
Cora Citeseer Pubmed Collab PPA Citation2 DDI

hit@1 GVN-LNCNC 11.75±7.72 51.69±7.91 18.66±8.85 - - - -
GVN-NNCNC 8.66±4.39 59.30±5.53 16.88±9.58 11.04±3.01 6.53±1.52 86.62±1.04 0.42±0.08

NCNC 10.90±11.40 32.45±17.01 8.57±6.76 9.82±2.49 7.78±0.36 84.66±1.15 0.16±0.07

hit@3 GVN-LNCNC 26.66±5.96 59.97±6.21 32.23±5.69 - - - -
GVN-NNCNC 27.55±6.37 66.76±4.20 31.21±5.98 26.31±7.74 18.88±1.21 94.29±0.96 2.12±0.33

NCNC 25.04±11.40 50.49±12.01 17.58±6.57 21.07±5.46 16.58±0.60 92.37±0.56 0.59±0.42

hit@10 GVN-LNCNC 58.83±5.29 75.28±3.03 40.34±2.28 - - - -
GVN-NNCNC 55.98±4.14 77.12±2.95 47.90±2.86 43.12±5.77 31.16±1.67 97.07±1.01 50.88±11.35

NCNC 53.78±7.33 69.59±4.48 34.29±4.43 43.22±6.19 26.67±1.51 96.99±0.64 45.64±14.12

hit@20 GVN-LNCNC 70.01±4.44 81.11±1.30 53.33±2.67 - - - -
GVN-NNCNC 69.55±3.46 82.02±1.46 56.92±2.33 56.87±2.97 44.06±2.03 98.17±0.97 87.31±3.04

NCNC 67.10±2.96 79.05±2.68 51.42±3.81 57.83±3.14 35.00±2.22 97.22±0.94 83.92±3.25

hit@50 GVN-LNCNC 82.06±1.94 88.88±0.98 71.66±2.75 - - - -
GVN-NNCNC 82.99±2.95 88.97±0.58 71.55±1.19 68.14±0.75 52.58±0.30 99.09±0.66 95.95±0.75

NCNC 81.36±1.86 88.60±1.51 69.25±2.87 66.88±0.66 48.66±0.18 99.01±0.53 94.85±0.56

hit@100 GVN-LNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
GVN-NNCNC 91.47±0.36 94.44±0.53 84.02±0.55 70.83±2.25 63.45±0.66 99.51±0.39 97.99±0.27

NCNC 89.05±1.24 93.13±1.13 81.18±1.24 71.96±0.14 62.02±0.74 99.37±0.27 97.60±0.22

mrr GVN-LNCNC 24.66±4.51 62.74±6.63 26.32±6.67 - - - -
GVN-NNCNC 23.27±3.39 66.49±3.53 27.11±5.88 18.04±3.01 19.66±0.11 90.72±0.24 13.32±2.75

NCNC 23.55±9.67 45.64±11.78 15.63±4.13 17.68±2.70 14.37±0.06 89.12±0.40 8.61±1.37

E EXPERIMENTAL SETUPS

Link Prediction Setups

In link prediction, links play dual roles: serving as supervision and acting as message-passing
paths. Following the standard practice in link prediction, training links fulfill both supervision labels
and message-passing paths. In terms of supervision, the training, validation, and testing links are
mutually exclusive. For message passing, we follow the common setting where the validation links in
ogbl-collab additionally function as message-passing paths during test time.

For the Planetoid datasets (Cora, Citeseer, and Pubmed), since the official data splits are not available,
we adopt the common random splits of 70%/10%/20% for training/validation/testing. For the OGB
benchmarks ogbl-collab, ogbl-ppa, ogbl-ddi, and ogbl-citation2 (Hu et al., 2020), we utilize the
official fixed splits.

For the baselines, we directly use the results reported in (Wang et al., 2024) since we adopt the same
experimental setup.

F SUPPLEMENTARY DETAILS IN ABLATION STUDY

F.1 IMPLEMENTATIONS OF FUSION STRATEGIES

“concat" and “mixture of experts" in GVN-Link. In GVN-Link, feature integration occurs after
message passing and the different fusion strategies will affect how to integrate vision structural
awareness to the output of MPNNs.

In GVN-Link, the “concat" strategy is achieved by concatenating the link-centered VSF with the
target node features directly, and then use the concatenated features as input to the Readout function.
Thus, for each node pair (u, v) in the target link, their MPNN node representations (yu and yv) are
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updated to ỹu and ỹv as:
ỹu = yu||vuv, ỹv = yv||vuv,

where yuv is the link-centered VSF.

For the Mixture of Experts (MoE) fusion strategy, we use a three-layer multilayer perceptron (MLP)
as vision-based expert for link prediction. This MLP relies solely on the vision modality by only
receiving VSFs as input to output the link prediction probability pvision

(u,v). The MPNN produces another

link prediction probability pgraph
(u,v) based on message passing and node attributes. Finally, the mixture-

predicted link probability p(u,v) is computed as a weighted sum of pvision
(u,v) and pgraph

(u,v), combining the
capabilities of both the vision-based expert and the MPNN expert with a learnable weight balance
parameter δ:

p(u,v) = δ · pvision
(u,v) + (1− δ) · pgraph

(u,v).

“concat" and “mixture of experts" in GVN-Node In GVN-Node, feature integration occurs on
the node feature before MPNN, and different fusion strategies use different approaches to obtain the
vision-aware node feature x̃v .

The “concat" fusion strategy obtains the vision-aware node feature of node v by appending the
node-centered VSF vv after the central node’s features xv .

x̃v = xv||vv.

For “mixture of experts", we use two linear experts to encode the original node feature xv and the
corresponding node-centered VSF vv . Therefore, computation of the vision-aware node feature can
be expressed as:

x̃v = δLinearϕ1
(xv) + (1− δ)Linearϕ2

(vv),

where δ is a learnable parameter to balance the contributions from the two linear experts, Linear1
and Linear2 are linear experts with trainable parameters ϕ1 and ϕ2.

F.2 ILLUSTRATIONS FOR DIFFERENT LABELING SCHEMES

Figure 5: Link-centered subgraph visualization with “No-label" labeling scheme.

In this Section, we present image examples for graph visualization using both GVN-Link and
GVN-Node with various labeling schemes.

Figures 5-7 show an example of link-centered subgraph visualization in GVN-Link with various
labeling schemes, where the target link is (1, 158). This indicates the objective is to predict the
existence of a link between node 1 and node 158. Similarly, Figures 8-10 present node-centered
subgraph visualization images with various labeling schemes, where the colored node is the center
node.

In Figures 5 and 8, the “No-label" labeling scheme is applied. In this scheme, node labels are omitted,
enabling the model to focus purely on the intrinsic graph topological structural information, which is
beneficial for generalizability across different datasets or settings.

16
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Figure 6: Link-centered subgraph visualization with “Re-label" labeling scheme.

Figure 7: Link-centered subgraph visualization with “Unique" labeling scheme.

Figure 8: Node-centered subgraph visualization with “No-label" labeling scheme.
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Figure 9: Node-centered subgraph visualization with “Re-label" labeling scheme.

Figure 10: Node-centered subgraph visualization with “Unique" labeling scheme.
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Figures 6 and 9 adopt the “Re-label" labeling scheme, where the nodes within the subgraph are
reassigned labels starting from 0. This local relabeling introduces some OCR noise, compelling the
model to be more robust.

Finally, in Figures 7 and 10, which apply the “Unique" labeling scheme, nodes are labeled with their
original IDs from the dataset. This might leverage the OCR capability to match nodes across various
subgraphs due to the unique identifiers, which is beneficial for identifying node correspondences.
However, this method may hamper generalizability and expose the model to the long-tail problem,
where the model’s performance degrades for nodes that appear infrequently in the data.

G THE PRE-TRAINED MODEL WEIGHT WE UTILIZED

Here we list the link to the pre-trained model weight utilized in this paper:

• ResNet50: https://download.pytorch.org/models/resnet50-0676ba61.pth.

• VGG16: https://download.pytorch.org/models/vgg16-397923af.pth.

• ViT: huggingface.co/facebook/deit-base-patch16-224/resolve/main/pytorch_model.bin.

H THE EFFECT OF COLORS IN IMAGE REPRESENTATION

In this section, we explore the effects of different color choices for node representations in graph
images.

We first altered the colors of central nodes while keeping surrounding nodes white and evaluated
performance on the Cora and Citeseer datasets (Hits@100). The results are summarized in Table 9.

Table 9: Performance (Hits@100) with Different Central Node Colors

Center Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Black 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52
Brown 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Dark Blue 90.71±0.48 91.45±0.44 94.09±0.45 94.39±0.47
Red 90.66±0.50 91.40±0.40 94.00±0.50 94.30±0.50
Green 90.60±0.55 91.35±0.45 93.95±0.55 94.25±0.55
Yellow 90.68±0.57 91.42±0.38 94.05±0.57 94.40±0.54
White 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75

From the above results, we have several findings:

Findings 1 Only slight differences in performance when the model could distinguish central nodes
from surrounding nodes. However, the model showed a preference for darker colors.

Findings 2 When central nodes became white (indistinguishable from others), there was a noticeable
performance degradation. This highlights the significance of labeling the identification of center
nodes.

To further illustrate Findings 2, we assigned colors to the nodes surrounding the central nodes. The
results are presented in Table 10.

Table 10: Performance (Hits@100) with Different Surrounding Node Colors

Center Node Surrounding Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Black Black (same color) 89.00±0.60 89.50±0.55 93.00±0.65 93.40±0.60
White White (same color) 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75
Black Brown (near color) 90.20±0.50 90.70±0.45 93.80±0.55 94.10±0.50
Black White (opposite color) 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52
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These results further reflect the preference of the model for more pronounced color differences
between central and surrounding nodes, as indicated in Findings 2. The performance is lower when
colors are the same or similar, and higher when there is a clear distinction.

I THE EFFECT OF NODE SHAPES IN IMAGE REPRESENTATION

In this section, we investigate the impact of different node shapes on model performance. We
experimented with three different shapes: Box, Circle, and Ellipse.

Table 11: Performance (Hits@100) with Different Node Shapes

Center Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Box 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Circle 90.65±0.52 91.40±0.38 94.15±0.43 94.42±0.50
Ellipse 90.72±0.46 91.45±0.44 94.10±0.57 94.46±0.52

According to Table 11, we find there is no obvious preference for a particular node shape, which
finding is aligned with similar observations in GITA (Wei et al., 2024).

J TRAINING VISION ENCODER FOR GRAPH STRUCTURE RECONSTRUCTION

This section explores the potential benefits of training the vision encoder to reconstruct graph
structures. We introduce an additional training phase for the ResNet50 vision encoder, where it learns
to predict the existence of masked edges (i.e., link prediction) in corresponding subgraphs.

Table 12: Performance (Hits@100) with and without Reconstructed Vision Encoder

Model Cora Citeseer
GVN-L 90.70±0.56 94.12±0.58
GVN-L + Reconstructed VE 90.68±0.61 94.19±0.31
GVN-N 91.47±0.36 94.44±0.53
GVN-N + Reconstructed VE 91.50±0.47 94.46±0.54

With Table 12, we find that the performance improvements from this practice are marginal. This
may be because the pre-trained ResNet50 is already robust enough to capture various abstract levels
of textures within the graph and reflect them in its feature dimensions. Moreover, the visualized
subgraphs are structurally clear, without complex backgrounds and distractions, reducing the difficulty
of tasks and making such an extra separate training stage becomes unnecessary. Therefore, considering
the computational overhead and complexity introduced by this additional training stage, we still
recommend using the original version of GVN.

K ABLATION STUDY: MAPPING MATRIX IN CROSS-ATTENTION

Table 13: Performance (Hits@100) with and without Mapping Matrices in Cross-Attention

Model Cora (Hits@100) Citeseer (Hits@100)
GVN-L 90.70±0.56 94.12±0.58
GVN-L + Mapping Matrices 90.81±0.60 94.05±0.62
GVN-N 91.47±0.36 94.44±0.53
GVN-N + Mapping Matrices 91.35±0.40 94.50±0.55
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This section presents an ablation study to evaluate the impact of removing the mapping matrices WQ,
WK , and WV in the cross-attention mechanism, which are typically used to project input features
into query, key, and value spaces.

We conducted experiments on the Cora and Citeseer datasets to assess the performance implications
of excluding these mapping matrices.

The results in Table 13 indicate that removing the mapping matrices WQ, WK , and WV does not
impact the model’s effectiveness. Therefore, we omit them in GVN to make the framework more
concise.
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