
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH VISION NETWORKS FOR LINK PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The potential of the vision modality for enhancing graph structural awareness has
long been overlooked in the mainstream graph neural network (GNN) community.
In this paper, we propose a simple yet effective framework called Graph Vision
Networks (GVN), which first incorporates vision awareness into Message Passing
Neural Network (MPNN) and achieves effective performance for link prediction,
highlighting this unexplored but promising direction. Specifically, GVNs transform
graph structures into images and extract Visual Structural Features (VSFs) from
those images, where VSFs are considered a novel type of structural feature. Similar
to previous structural features, VSFs also mitigate the limitations of traditional
MPNNs in expressive power and substructure awareness. Additionally, unlike
most previous heuristic-based structural features (e.g., common-neighbor-based
and path-based ones), which typically depend on fixed structural priors, VSFs are
adaptive and capable of capturing varying structural insights to better suit different
scenarios. Extensive experiments across seven commonly used benchmark datasets
demonstrate that GVNs and their variants can significantly enhance MPNNs in link
prediction tasks. Additionally, the straightforward design of the framework makes
it highly compatible with current methods, providing additional performance gains
to achieve new state-of-the-art performance.

1 INTRODUCTION

Link prediction is a fundamental task in graph machine learning, and has been widely used across
various application domains. Examples include recommendation systems (He et al., 2020), drug
interaction prediction (Yamanishi et al., 2008), and knowledge-based reasoning (Bordes et al., 2013).
A class of powerful link predictors are the Graph Neural Networks (GNNs), which produce node
representations and then aggregate them to link representations for the prediction of link existence.

While GNNs are very popular, they suffer from limited expressive power. In particular, they produce
the same representations for links involving isomorphic nodes1 (Morris et al., 2019; Xu et al., 2018),
and ignores the pairwise structural relations between the two nodes in the target link (Zhang et al.,
2021; Chamberlain et al., 2022; Wang et al., 2024). Second, the structure awareness ability of
MPNNs is coarse-grained. It can be proved that MPNNs are incapable of counting local structural
patterns such as triangles (Chen et al., 2020). Empirically, as will be demonstrated in our experiments,
MPNNs cannot estimate link prediction heuristics such as Common Neighbor Counts (CN) (Barabási
& Albert, 1999), Resource Allocation (RA) (Zhou et al., 2009), and Adamic Adar (AA) (Adamic &
Adar, 2003).

To address the aforementioned issues, a number of strategies have been proposed to improve MPNNs
for link prediction. One direct approach involves assigning labels or random node features to all
nodes, thereby enabling MPNNs to generate distinct node representations for isomorphic nodes and
facilitating the differentiation of links involving such nodes. However, this comes at the cost of
inductive ability and training convergence (Abboud et al., 2020; Sato et al., 2021; Zhang et al., 2021).
A more effective approach involves designing and computing heuristic structural features (HSFs),
also known as labeling tricks, that are derived from the local graph structure. These HSFs supplement
MPNNs with more detailed and sophisticated structure characteristics, therefore enhancing expressive
power and structural awareness. This approach has shown remarkable success on link prediction. For
instance, SEAL (Li et al., 2020) utilizes the shortest path distance (SPD) between the nodes (target

1An example is shown in Appendix A.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

nodes) in the target link as HSFs. ID-GNN (You et al., 2021) assigns “identity” colors to target nodes
as HSFs. More recently, models such as Neo-GNN (Yun et al., 2021), BUDDY (Chamberlain et al.,
2022), and NCNC (Wang et al., 2024) leverage different types of one-hop and multi-hop common
neighbor information to construct common-neighbor-based HSFs, leading to state-of-the-art (SOTA)
link prediction performance.

Despite the outstanding performance, each HSF is derived from a pre-defined structural prior, thus
encapsulating structural information from only one predefined perspective. However, real-world
situations are complex and variable, and may demand structural insights from diverse perspectives.
For instance, while SEAL and NBFNet (using path-based HSFs) have superior link prediction
performance on the planetoid dataset (Yang et al., 2016), they perform even worse than the simple
Graph Convolutional Network (GCN) on the ogbl-ddi dataset (Hu et al., 2020), which contains dense
graphs and most node pairs are reachable in two hops, making path-based HSFs not sufficiently
informative. Consequently, due to the fixed structural insights of HSFs, users are often required to
try repeatedly to find the best-suited HSF. Hence, there is a growing demand for methods capable of
generating adjustable and adaptive structural features tailored to different application scenarios.
Ideally, this approach should be compatible with existing methods that use fixed HSFs, and provide
performance enhancements for scenarios with already-identified heuristic preference.

To achieve this, we propose the Graph Vision Network (GVN), which innovatively utilizes the visual
modality to extract dynamic and learnable structural features (called Visual Structural Features,
or VSFs) from the visual representations of graphs, thereby enhancing the expressive power and
structural awareness of MPNNs. Specifically, GVN first visualizes local graph structures as visual
graph images. A learnable vision encoder is then employed to dynamically extract VSFs from these
images. Subsequently, the VSFs are integrated into MPNNs through a learnable attention-based
fusion module, which adaptively enhances link prediction for different scenarios. The proposed
GVN framework includes two variants: GVN-Link and GVN-Node, where the latter is particularly
designed for large graphs. Due to the simple but effective design, both variants are compatible
with existing HSF-based methods. We demonstrate that VSF, as a novel type of structural feature,
possesses flexible and comprehensive structural awareness. The extensive experiment results on
seven common datasets including challenging large-scale graphs demonstrate both GVN-Link and
GVN-Node can significantly enhance traditional MPNN in link prediction (28.20% and 36.15%
respectively). Besides, when incorporated into existing methods, both GVN-Link and GVN-Node
achieve new state-of-the-art (SOTA) performance.

In summary, the contributions of this paper are three-fold.
• We are the first practice to integrate the vision modality into MPNNs for link prediction by

proposing a novel structural feature: visual structural features (VSFs), highlighting a promising
direction to combine vision awareness into GNNs.

• By incorporating adaptive VSFs to MPNNs, we propose the GVN framework, which has a simple
but effective design and is able to be compatible with existing methods.

• Extensive experiments demonstrate that GVNs significantly enhance MPNNs in link prediction
and can achieve SOTA performance by further improving existing methods with vision awareness.

2 RELATED WORK

Link Predictor. Link predictors can be divided into three classes: node embedding methods, link
prediction heuristics, and MPNN-based link predictors. 1) Node embedding methods (Perozzi et al.,
2014; Tang et al., 2015; Grover & Leskovec, 2016) represent each node as an embedding vector and
utilize the embeddings of target nodes to predict links. 2) Link prediction heuristics (Liben-Nowell &
Kleinberg, 2003; Barabási & Albert, 1999; Adamic & Adar, 2003; Zhou et al., 2009) create structural
features through manual design. 3) MPNN-based link predictors explicitly model the enclosing
subgraphs around the nodes through MPNNs and generate/update node embeddings via the message-
passing mechanism, thus fully leveraging node attributes and aggregating node representations.
However, the expressive power of naive MPNN architectures is proven to be limited (Zhang et al.,
2021), constrained by the 1-WL test (Morris et al., 2019), and they fail to finely perceive substructures
like triangles (Chen et al., 2020). To overcome these limitations, more advanced MPNNs are proposed
that integrate link prediction heuristics and their extended form as structural features (i.e., HSFs)
into MPNNs. For instance, SEAL (Zhang & Chen, 2018) incorporates path-based SPD structural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

features into MPNNs, which concatenates the SPD from each node to the target nodes u and v with
the node features to form the augmented node features X ′ and apply MPNN on a k-hop subgraph
Sku,v centered around (u, v). Other common-neighbors-based HSFs have also been incorporated
into MPNNs. For example, Neo-GNN (Yun et al., 2021) and BUDDY (Chamberlain et al., 2022)
use the heuristic function to model high-order common neighbor information. NCNC (Wang et al.,
2024) directly concatenates the weighted sum of node representations of common neighbors with the
Hadamard product of MPNN representations of u and v.

Graph Learning with Vision. Recently, there are a number of explorations on leveraging vision
to enhance graph learning. Das et al. (2023) find that the vision modality, combined with a vision-
language model (VLM), can outperform GNN baselines for node classification on the planetoid
datasets. Wei et al. (2024) shows that the vision modality excels at capturing graph substructures such
as local cycles and triangles with the help of VLMs. However, using vision as structural features with
MPNNs or integrating vision in link prediction remains unexplored, which is the focus of this paper.

3 PRELIMINARIES

Notations. An undirected graph G = (V,E) comprises a set V of n nodes (vertices) and a set E
of e links (edges). We denote the adjacency matrix of G by A ∈ Rn×n, where A(u,v) > 0 if and
only if the edge (u, v) ∈ E. We define N(v) := {v|v ∈ V,Auv > 0} as the set of neighbors of node
v, and Nk(v) as the set of neighbors of node v within k hops, where a node u ∈ Nk(v) if and only
if SPD(u, v) ≤ k. The node feature matrix XG ∈ Rn×F contains the node features in G, where
the v-th row xv corresponds to the feature of node v. We use Skuv = (Vuv, Euv) to denote2 a k-hop
subgraph enclosing the link (u, v), where Vuv is the union of k-hop neighbors of u and v, and Euv
is the union of links that can be reached by a k-hop walk originating at u or v. Similarly, Sku is the
k-hop subgraph enclosing node u.

Message Passing Neural Networks for Link Prediction. The MPNN is a common framework
for GNNs in link prediction task. In MPNN, the message-passing mechanism is employed to
iteratively update node representations based on information exchanged between neighboring nodes.
Mathematically, this message-passing mechanism can be written as

htv = U t(ht−1
v ,AGG({M t(ht−1

v ,ht−1)
u)|u ∈ N(v)})), (1)

YG = MPNN(XG, G), yv = hkv , (2)

where YG ∈ Rn×F ′
is the final node representations by MPNN for graph G, whose v-th row yv is

the final representation of node v. Given the node representation matrix YG, link probabilities can
then be computed as p(u, v) = R(yu,yv), where R is a learnable readout function.

Eqs. (1) and (2) show that MPNNs have permutation equivariance, i.e., for any n×n node permutation
matrix P, we have P(MPNN(X,G)) = MPNN(PX,G). As a consequence, MPNNs produce the
same representation yu = yv for isomorphic nodes u and v. Thus, for any node w, R(yw,yu) =
R(yw,yv), which leads to equal link probabilities p(w, u) = p(w, v) for links (w, u) and (w, v). In
other words, MPNNs have limited expressive power.

4 GRAPH VISION NETWORKS

In this section, we introduce Graph Vision Networks (GVNs), a novel framework that integrates
vision-enhanced MPNNs for link prediction. This includes two variations: GVN-Link and GVN-
Node. We provide their framework architecture diagrams in Figure 1

Problem Setting. Given an undirected graph G = (V,E) and a set L of query links, the objective of
link prediction is to determine the existence of each link (u, v) ∈ L.

4.1 GVN-LINK

Message Passing on Node Features. GVN-Link initiates the processing pipeline by employing a
MPNN to propagate information over the graph G = {V,E}. This step utilizes the node feature

2For simplicity, we omit k from Vuv and Euv .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

...

...

All Node
Features

Graph
Structure

Graph Visualizer

All Node
Representations

Link-centered
K-hop

Subgraph

MPNN

Link-centered
Visual Graph Vision Encoder

Visual Structural
Features (VSFs)

Linear Projection

＋
...

Attention-based
Fusion Module

Vision-aware Node
Representations:Readout Model

Link Existence
Possibility

GVN-Link Paradigm Begin:

End:

GVN-Node Paradigm Example of K-hop Node-centered Image

Graph Visualizer

Node-centered
K-hop

Subgraph
Node-centered
Visual Graph Vision Encoder

Visual Structural
Features (VSFs)

Linear Projection

Begin:
Vision Encoder Tunable Projector

...

... Attention-based
Fusion Module

Node feature
All Vision-aware
Node Features

Graph Structure

MPNN

All Node
Representations

...

...

...

Readout Model

Link Existence PossibilityEnd:

Frozen weights

Tunable weights

Example of K-hop Link-centered Image

Explicitly Contain Pairwise Relations around
Target Link

Encapsulate Abundant Local Substructure
Surrounding the Center Node

Figure 1: The overview of GVN-Link and GVN-Node architectures

matrix XG ∈ Rn×F , resulting in a node representation matrix YG ∈ Rn×F ′
:

YG = MPNNϕ(XG, G),

where ϕ is the trainable parameter of the MPNN.

Link-centered Subgraph Visualization. For each candidate link (u, v), GVN-Link extracts the
k-hop subgraph Skuv surrounding it. Subsequently, by using a graph visualizer GV (such as graphviz
(Gansner & North, 2000)), the subgraph is transformed to a visual graph image Ikuv with nodes u and
v highlighted with special color, as

Ikuv = GV(Skuv, u, v).

An example is shown in the top right of Figure 1. This visual representation encapsulates the structural
information around the queried link, such as common neighbors and structural motifs like triangles.
These features are expected to be captured by a trained vision encoder in the next step.

VSF Extraction. Next, the visual graph image Ikuv is processed through a trainable vision encoder,
denoted VEψ , to extract the visual structural features vuv ∈ RS :

vuv = VEψ(I
k
uv).

Feature Integration. The extracted VSFs vuv are then integrated with the node representations yu
and yv by an attention-based fusion module FMω. The following describes the feature integration
procedure for node u. Processing for node v is similar.

The feature integration process begins with projecting vuv ∈ RS to ṽuv ∈ RF ′
using a linear

projector layer, ensuring that ṽuv shares the same dimensions as the node representations yu and yv:
ṽuv = Projector(vuv).

Subsequently, an attention mechanism evaluates the relevance of the visual features by facilitating
selective emphasis on significant visual details and computing the attention vector yattnu :

yattnu = attention(Q = yu,K = ṽuv,V = ṽuv) = softmax
(
yuṽ

T
uv√

F ′

)
ṽuv.

The integration of VSFs with node representations is refined through a weighted combination,
regulated by a learnable parameter α that balances the original and visually enhanced features:

ỹu = αyu + (1− α)yattnu .

The feature integration procedure for node u can be summarized as ỹu = FMω(yu,vuv), where the
trainable parameters ω in the fusion module FM include the parameters of the linear projector layer
and attention layer, as well as the scaling parameter α.

Link Probabilities Read-out. The read-out model Rθ, which integrates the enhanced node represen-
tations ỹu and ỹv , computes the probability of the existence of a link (u, v):

p(u,v) = Rθ(ỹu, ỹv).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 GVN-NODE

Node-centered Subgraph Visualization. Contrary to GVN-Link, GVN-Node employs the graph
visualizer GV to visualize the node-centered k-hop subgraph Skv for each node v. An example is
shown in the bottom right of Figure 1.

Ikv = GV(Skv , v).

Partially-trained VSF Extraction. For each node v, the visual image of its node-centered subgraph
is subsequently converted into the node-based VSF vv ∈ RS by the vision encoder, which reflects the
local structural features surrounding the node. In GVN-Node, a “partial training strategy” is employed
for VSF extraction, which aims to save computational cost while keeping the VSFs adaptive. To be
specific, we make the parameters of the vision encoder fixed, but add a trainable linear projector
appended to the vision encoder to make the VSFs still trainable. As a result, we can store the
intermediate VE(Ikv) as a vector database, to save the time of frequently loading and processing the
images by VE per epoch.

vv = Projectorψ(V E(Ikv)).

Feature Integration. For each node v, the node-based VSF vv is then integrated into its original
node feature xv through the same attention-based fusion module FMω used in GVN-Link. The
integration updates xv ∈ RF to a vision-aware node feature x̃v ∈ RF :

x̃v = FMω(xv,vv) = αxv + (1− α)xattnv , ṽv = Projector(vv),

where

xattnv = attention(Q = xv,K = ṽv,V = ṽv) = softmax
(
xvṽ

T
v√
F

)
ṽv.

Message Passing on Vision-aware Node Features. Subsequently, the MPNN is used to perform
message passing on graph G with these vision-aware node features and output the final node repre-
sentations, where X̃G is the matrix form of vision-aware node features for all nodes:

ỸG = MPNNϕ(X̃G, G).

Link Probabilities Read-out. Finally, the learnable read-out model Rθ predict the link existence
probability with the vision-aware node representations ỹu and ỹv:

p(u,v) = Rθ(ỹu, ỹv).

4.3 TIME COMPLEXITY ANALYSIS

Let n be the number of nodes, d be the maximum node degree, F be the node feature dimension, F ′

be the dimension of node representation produced by MPNN, and l be the number of target links.
The time complexity of GVN-Link is determined by the following components: 1) Complexity of
the base model, which includes the MPNN and its associated read-out function. For example, the
complexity of GCN is O(ndF + nF 2) + O(lF 2). For the NCNC model (Wang et al., 2024) that
incorporates common-neighbor HSFs, the complexity is O(ndF + nF 2) +O(ld2F + ldF 2). We
denote this part by O(Base). 2) Complexity of generating visual images for the target links is O(l).
3) Complexity of extracting visual structural features with Vision Encoder is O(l). 4) Complexity of
linear projection which converts the S dimensional VSFs vuv to the F dimensional ṽuv is O(lSF) 4)
Complexity of the attention mechanism is O(lF 2). Therefore, the total time complexity of GVN-Link
is O(Base) +O(l) +O(lSF) +O(lF 2) = O(Base) +O(lSF + lF 2).

For GVN-Node, the difference lies in its use of node-centered subgraph VSFs. Therefore, the
complexity of generating visual images for all nodes is O(n), the complexity of the VSF projection
becomes O(nSF ′), the complexity of the attention mechanism becomes O(nF ′2), and the other
parts remain the same with GVN-Link. As a result, the total time complexity of GVN-Node is
O(Base) +O(n) +O(nSF ′) +O(nF ′2) = O(Base) +O(nSF ′ + nF ′2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.4 COMPARISON BETWEEN GVN-LINK AND GVN-NODE

GVN-Link and GVN-Node have their own advantages and disadvantages. First, in most graphs,
the number of links l is significantly larger than the number of nodes n (with l having an upper
bound of n2). Consequently, GVN-Node demonstrates a higher computational efficiency compared
to GVN-Link, making it more suitable for large and dense graphs, where GVN-Link can become
computationally intensive. Second, the VSFs in GVN-Link include the visual perception of the target
link’s neighborhood structure. These VSFs explicitly reveal the pairwise relationship between the two
nodes in the target link, which is advantageous for link prediction. Third, the VSFs in GVN-Node
encompass the visual perception of all nodes’ neighborhoods and participate in message passing.
This allows the VSFs in GVN-Node to capture more structural details and integrate them more
deeply into the link prediction process. In contrast, GVN-Link only provides visual perception of the
substructures surrounding the two nodes in the target link.

It is worth noting that although the VSFs in GVN-Node do not explicitly model pairwise relationships,
the base model can still learn these relationships from the neighborhood connections between nodes,
such as through similar substructures, as a compensation. Furthermore, employing an MPNN method
with pairwise HSFs, such as NCNC, as the base model can effectively address this limitation.

5 EXPERIMENTS

In this section, we conduct a series of comprehensive and engaging experiments to demonstrate the
effectiveness of the proposed GVN and VSFs.

5.1 EVALUATION ON REAL-WORLD DATASETS

In this section, we comprehensively evaluate both GVN-Link and GVN-Node with different base
MPNN models on seven widely-used datasets, comparing them with a representative set of baselines.

Datasets. We conduct experiments on widely used Planetoid citation networks: Cora (McCallum
et al., 2000), Citeseer (Sen et al., 2008), and Pubmed (Namata et al., 2012), and the OGB link
prediction datasets (Hu et al., 2020): ogbl-collab, ogbl-ppa, ogbl-citation2 and ogbl-ddi. Statistics of
those datasets are shown in Appendix B.

Baselines. Baseline methods used include three popular link prediction heuristics: Common Neighbor
counts (CN) (Barabási & Albert, 1999), Adamic-Adar (AA) (Adamic & Adar, 2003), and Resource
Allocation (RA) (Zhou et al., 2009); two popular GNNs: GraphSAGE (Hamilton et al., 2017) and
Graph Convolutional Network (GCN) (Kipf & Welling, 2016); HSF-enhanced GNNs: SEAL (Zhang
& Chen, 2018) and NBFNet (Zhu et al., 2021) (which are MPNNs with path-based HSFs), Neo-GNN
(Yun et al., 2021), BUDDY (Chamberlain et al., 2022), and NCNC (Wang et al., 2024) (which are
enhanced by common-neighbor-based HSFs).

Configurations of Proposed Methods. We study four configurations of the proposed GVN-Link
(denoted by GVN-L) and GVN-Node (denoted by GVN-N): GVN-LGCN , GVN-LNCNC , GVN-
NGCN , and GVN-NNCNC , where the subscript denotes the base model (i.e., GCN or NCNC). Note
that the proposed methods can be easily applied to other MPNN models. Graphviz (Gansner & North,
2000) (with details in Appendix C) is used as the graph visualizer. We use a pretrained ResNet50 (He
et al., 2016) as the vision encoder and extract visual features from its last convolutional layer.

Performance Evaluation. The use of evaluation metrics follows (Chamberlain et al., 2022; Wang
et al., 2024). Specifically, for the Planetoid datasets, we use the hit-ratio at 100 (HR@100), while for
the OGB datasets, we use the metrics in their official documents 3 , i.e., hit-ratio at 50 (HR@50) for
ogbl-collab, HR@100 for ogbl-ppa, Mean Reciprocal Rank (MRR) for ogbl-citation2 and hit-ratio
at 20 (HR@20) for ogbl-ddi. 4. All results are averaged over 10 trials with different random seeds.
Experiments are conducted on an NVIDIA A100 80G GPU. More details on the experimental setup
are in Appendix E.

3https://ogb.stanford.edu/docs/leader_linkprop/
4Evaluations on other metrics are included in Appendix D

6

https://ogb.stanford.edu/docs/leader_linkprop/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Link prediction performance (average score ± standard deviation). “-” indicates that the
training time is > 24 hour/epoch (for GVN-L) or out of memory (for NBFnet). The best performance
is shown in bold, and the second-best is underlined.

Cora Citeseer Pubmed Collab PPA Citation2 DDI
(HR@100) (HR@100) (HR@100) (HR@50) (HR@100) (MRR) (HR@20)

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00

AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 32.45±0.00 51.89±0.00 18.61±0.00

RA 41.07±0.48 33.56±0.17 27.03±0.35 64.00±0.00 49.33±0.00 51.98±0.00 27.60±0.00

SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 16.55±2.40 82.60±0.36 53.90±4.74

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 18.67±1.32 84.74±0.21 37.07±5.07

GVN-LGCN 81.13±0.86 83.93±0.97 73.17±1.02 - - - -
GVN-NGCN 80.01±1.55 82.85±1.90 71.94±1.37 62.14±1.37 32.15±1.58 86.10±0.13 60.21±6.67

Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19 57.52±0.37 49.13±0.60 87.26±0.84 63.57±3.52

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 48.80±3.16 87.67±0.32 30.56±3.86

NBFnet 71.65±2.27 74.07±1.75 58.73±1.99 - - - 4.00±0.58

BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 49.85±0.20 87.56±0.11 78.51±1.36

NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67

GVN-LNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
GVN-NNCNC 91.47±0.36 94.44±0.53 84.02±0.55 68.14±0.75 63.45±0.66 90.72±0.24 87.31±3.04

Implementation Details. The adjustable key hyperparameters include the vision-aware hop count k
ranging from 1 to 3, the hidden dimension ranging from 512 to 2048, the number of MPNN layers
and readout predictor layers varying from 1 to 3, the separate two learning rates for learning trainable
VSFs and adaptive fusion model among 0.0000001, 0.00001, 0.001, 0.01 and the weight decay from
0 to 0.0001. The hyperparameters with the best validation accuracy are selected. For the model
parameters, we utilize the Adam optimizer (Kingma, 2014) to optimize them. All results of our
models are derived from runs using 10 different random seeds.

Results. Table 1 compares the performance of the proposed methods with the various baselines.
As can be seen, integration of VSF through either GVN-Link or GVN-Node consistently enhances
link prediction performance across both base models. In particular, with GCN as the base model,
GVN-LGCN and GVN-NGCN boost the performance dramatically relative to the GCN baseline
(with an average improvement of 28.20% for GVN-LGCN on the Planetoid datasets, and 36.15%
for GVN-NGCN on all seven benchmarks). This remarkable enhancement underscores the value of
VSFs as dynamic structural features that significantly boost the capabilities of MPNNs. On the other
hand, when NCNC is used as the base model, GVN-LNCNC and GVN-NNCNC achieve new SOTA
performance, illustrating that VSFs can provide additional enhancements that are compatible with
existing SOTA methods.

With GCN as the base model, GVN-Link outperforms GVN-Node. This is mainly because the
link-centered VSFs in GVN-Link are more adept at elucidating the pairwise structural relationships
surrounding these links compared to the node-centered VSFs in GVN-Node. Conversely, with NCNC
as the base model, GVN-Node outperforms GVN-Link. This is because NCNC’s HSFs compensate
for the lack of explicit pairwise information in node-centered VSFs, allowing GVN-Node to utilize
its refined structural perception capabilities effectively. GVN-Node’s VSFs focus on node-level
structural details and are iteratively refined through message passing, resulting in a more detailed
understanding of the local structures compared to the link-centered VSFs in GVN-Link. As a result,
GVN-NNCNC outperforms GVN-LNCNC .

In terms of applicability, GVN-Link is best suited for smaller graphs (such as Cora, CiteSeer, and
PubMed) due to its expensive runtime (exceeding 24 hours per epoch on the larger graphs). Conversely,
GVN-Node demonstrates better scalability and broader applicability, showing effectiveness even on
large-scale graph datasets.

5.2 DELVE INTO THE REASON WHY INCORPORATING VISION HELPS LINK PREDICTION

We delve into the reasons how vision helps MPNN-based link prediction from two aspects:

Vision alleviates two limitations of MPNNs in link prediction. 1) Distinguish Links with Iso-
morphic Nodes. As highlighted in Section 1, MPNNs exhibit limited expressive power due to their

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

inability to differentiate links with isomorphic nodes (see the illustration in Appendix A), thus
producing the same link prediction p(u, v) for these links that have distinct enclosing subgraphs.
To illustrate the improvement of GVNs over MPNNs in this regard, we compute the proportion of
links that produce the same prediction (i.e., p(u, v)) with at least one other link by GVN-LGCN ,
GVN-NGCN , and GCN during link prediction on the non-attributed5 Cora dataset. We expect to
find whether there are cases where links with distinct enclosing subgraphs are treated the same by
GCN but corrected by VSFs in GVN. Empirically, 6.79% links in GCN share identical predictions
with the other links. In contrast, the ratio is only 0.88% (0.94%) for GVN-LGCN (respectively, for
GVN-NGCN). Therefore, the gap between the ratios demonstrates that GVNs make the links with
distinct enclosing subgraphs distinguishable by incorporating VSFs.

2) Capture the substructures. Besides, MPNNs are proven to have only coarse-grained structural
awareness on substructures like triangles. To evaluate whether GVNs achieve progress in this aspect,
we extract 3200 triangles from the Cora dataset and then randomly sample another 3200 non-triangle
triplets as negative samples. Each model is then tasked with distinguishing triangles from the negative
samples. Empirically, GVN-LGCN achieves an accuracy of 91.88%, and GVN-NGCN achieves
an accuracy of 88.91%, while GCN attains only 63.25%. This underscores the more fine-grained
structural perception of GVN models compared to traditional MPNNs.

VSFs encapsulate diverse structural information and can be tailored to specific scenarios.

Figure 2: Heuristic Reproduction Ratio (%) Using
VSFs in GVN-Link and GVN-Node Before and
After Finetuning on Cora for Link Prediction.

Unlike traditional heuristic structural features
(HSFs) that depend on a single structural prior
like common-neighbors (e.g., CN, RA, AA)
or path information between target nodes (e.g.,
SPD), VSFs offer a rich array of structural in-
sights from multiple perspectives, as illustrated
in Figure 2. The adaptability of VSFs allows
them to shift focus based on varying scenarios.
To validate this adaptability, we explore whether
VSFs can be fine-tuned to better suit the current
scenario. Specifically, for each link (u, v), we
extract link-centered VSFs vuv in GVN-Link
(GVN-LGCN) and node-centered VSFs vu and
vv in GVN-Node (GVN-NGCN), both before and after fine-tuning on the Cora dataset. We then
evaluate the extent to which these VSFs can replicate link prediction heuristics such as CN, RA, AA,
and SPD.

For GVN-LGCN , we employ a trainable 3-layer MLP predictor that uses link-centered VSFs as input
to predict heuristics. Successful replication of a heuristic suv , i.e., MLP(vuv) = suv , indicates that
the relevant heuristic information is embedded within the link-centered VSFs vuv. In the case of
GVN-NGCN , an additional GCN is used for message passing through node-centered VSFs before
applying the MLP predictor, i.e., MLP(GCN(vu),GCN(vv)) = suv, since node-centered VSFs
participate in message passing within GVN-NGCN .

Figure 2 displays the proportions of heuristics that VSFs can reproduce before and after fine-tuning
on the Cora link prediction scenario. The results reveal how the type of information contained in
VSFs evolves through fine-tuning. Post fine-tuning, VSFs in both GVN-LGCN and GVN-NGCN

demonstrate an improved ability to capture common-neighbor-based heuristics (CN, RA, and AA),
while their capacity to replicate the path-based heuristic SPD decreases. This suggests that the
VSFs learned from the Cora scenario prioritize common neighbor information over shortest path
information.

This trend aligns with existing observations (Zhang & Chen, 2018; Yun et al., 2021; Chamberlain
et al., 2022; Wang et al., 2024) that common-neighbor-based methods (such as BUDDY and NCNC)
often outperform SPD-based methods like SEAL for link prediction on the Cora dataset. These
findings suggest that GVN can dynamically adjust the information in their VSFs to provide more
relevant insights tailored to the specific scenario.

5Here we delete node attributes to make models only focus on the graph structures because here we only care
about their expressive power on structure.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 SCALABILITY

Figure 3 compares the time and GPU memory for inferring one batch of samples from Cora (the
preprocessing time for each method is also taken into account).

Among the baselines and proposed methods, GVN-Link (GVN-LGCN and GVN-LNCNC) is the most
time-consuming, followed by SEAL and NBFnet. These three methods also require considerably more
memory than the others. This elevated resource consumption is due to the need for pre-processing and
computation for each link, and the storage of intermediate variables with respect to links. Additionally,
GVN-Link requires graph visualization, which introduces extra pre-processing time. Therefore,
similar to SEAL and NBFnet, GVN-Link is not well-suited for large-scale graph computations.

Figure 3: Inference time and memory on Cora.

In contrast, although GVN-Node also requires
graph visualization, it is a node-based method
which involves fewer computations than link-
based methods and allows reuse across different
links in the entire dataset. In Figure 3, we in-
clude the amortized time for graph visualization
in the time cost computation of GVN-Node. As
a result, GVN-Node (GVN-NGCN and GVN-
NNCNC) still exhibits computational overhead
similar to their base models (GCN and NCNC).
Therefore, by leveraging the lightweight base
models GCN and NCNC, GVN-Node maintains efficiency and is suitable for large-scale graphs.

5.4 ABLATION AND SENSITIVITY ANALYSIS

Table 2: Performance comparison on the number of vision-aware hops k (HR@100).

Cora Citeseer
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

GVN-LNCNC 89.76±0.78 90.70±0.56 89.68±0.97 92.51±0.86 94.12±0.58 92.33±0.91

GVN-NNCNC 90.87±0.47 91.47±0.36 90.21±0.58 93.29±0.59 94.44±0.53 92.62±0.67

Table 3: HR@100 on different vision encoder fine-tuning strategies.
Cora Citeseer

w/o partial full w/o partial full

GVN-LNCNC 89.57±0.62 90.52±0.65 90.70±0.56 91.55±0.79 93.75±0.75 94.12±0.58

GVN-NNCNC 89.66±0.54 91.47±0.36 91.53±0.55 92.72±0.48 94.44±0.53 94.52±0.67

Table 4: HR@100 performance with different fusion strategies.
Cora Citeseer

attention concat MoE attention concat MoE

GVN-LNCNC 90.70±0.56 85.65±6.25 89.99±1.64 94.12±0.58 86.33±4.18 93.93±1.04

GVN-NNCNC 91.47±0.36 76.58±7.79 90.66±1.56 94.44±0.53 88.25±5.54 93.88±1.21

Sensitivity Analysis of Vision-Aware Hop Count k. Prior research suggests that up to 3 hops
usually capture valuable information (Zeng et al., 2021) for MPNNs, where hops are akin to the
numbers of graph convolutional layers. However, in our proposed GVNs, the hop of the link-centered
or node-centered subgraph, i.e., the hop count that VSFs can be aware of in the vision modality, is
decoupled from the MPNN layer counts. Therefore, it is necessary to re-explore how the number of
hops that VSFs can be aware of in the vision modality (vision-aware hop count k) influences link
prediction performance. Table 2 shows the effects of vision-aware hop count k on GVN-LNCNC
and GVN-NNCNC on Cora and Citeseer. Results indicate peak performance for both at k = 2,
suggesting that a hop count of 2 suffices for VSFs, which aligns with findings for MPNNs.

Fine-tuning Strategies for Vision Encoder. Table 3 compares different fine-tuning strategies for the
vision encoder: “w/o" uses the pretrained encoder directly, “partial" fine-tunes only a linear projector,
and “full" fine-tunes all the encoder parameters. The results illustrate that not fine-tuning (“w/o")

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: HR@100 performance with different vision encoders.
Cora Citeseer

ResNet50 VGG ViT ResNet50 VGG ViT

GVN-LNCNC 90.70±0.56 89.99±1.61 90.69±0.44 94.12±0.58 93.93±1.35 94.29±1.07

GVN-NNCNC 91.47±0.36 89.92±1.01 91.24±0.66 94.44±0.53 93.96±0.85 94.52±0.97

Table 6: HR@100 performance with different node labeling schemes.
Cora Citeseer

No-label Re-label Unique No-label Re-label Unique

GVN-LNCNC 90.70±0.56 89.86±0.44 89.67±0.62 94.12±0.58 94.01±0.43 94.08±0.99

GVN-NNCNC 91.47±0.36 89.73±0.24 89.75±0.83 94.44±0.53 93.85±0.65 94.02±0.91

leads to performance drops for GVN-LNCNC and GVN-NNCNC , highlighting VSF learnability’s
significance. Besides, fully fine-tuning achieves the best overall performance.

However, for GVN-NNCNC , fully fine-tuning is not always practical. That is because fully fine-tuning
requires storing all the images in memory, which can cause out-of-memory issues with larger graphs.
For instance, full fine-tuning of GVN-Node on ogbl-citation2 requires an additional 410.47GB for
storing all images. An alternative approach to achieve full fine-tuning on these larger datasets is to
dynamically load images into memory in batches, but this increases the time to over 24 hours per
epoch for the OGB datasets. To balance efficiency and performance, given that partial fine-tuning for
GVN-Node can achieve nearly the same effectiveness as full fine-tuning but is much more efficient in
terms of both time and memory, we advocate for partial fine-tuning with GVN-Node.

Effect of Fusion Strategies. In this experiment, we study the effectiveness of different fusion
strategies, including (i) attention, (ii) concatenation, and (iii) Mixture of Experts (MoE) (Jacobs et al.,
1991). Implementation details are in Appendix F.1. Table 4 shows the HR@100 performance of
GVN-LNCNC and GVN-NNCNC with these three different fusion strategies on Cora and Citeseer.
Concatenation shows much inferior performance and higher standard deviation than attention. This
could be attributed to the trivial handling of the unaligned embeddings of VSFs and graph features.
Similarly, MoE is also worse than attention, indicating that jointly managing VSFs and node features
using attention is more effective than treating them as separate experts.

Effect of Vision Encoders. In this experiment, we study the robustness of the proposed methods
with the choice of vision encoder. Three popular encoders are used: (i) ResNet50 (as used in previous
experiments), (ii) VGG16 (Simonyan & Zisserman, 2014), and (iii) ViT (Dosovitskiy et al., 2021).
Table 5 shows the HR@100 performance of GVN-LNCNC and GVN-NNCNC with these three vision
encoders on Cora and Citeseer. As can be seen, the choice of vision encoder may slightly affect
the performance, but does not influence the effectiveness of VSFs and GVN with all of them still
outperforming baselines.

Node Labels in Graph Visualization. In this experiment, we study different ways to label the nodes
in the image: (i) “No-label", which shows the nodes without any labels; (ii) “Re-label", which maps
all the nodes in the current subgraph to new labels starting from zero; (iii) “Unique", which labels
the nodes with unique global indices. Example images for these visualization schemes are shown in
Appendix F.2. Table 6 shows the HR@100 performance of GVN-LNCNC and GVN-NNCNC with
these different labeling schemes on Cora and Citeseer. As can be seen, “no-label" performs best,
indicating that purely using the structural information is preferred.

6 CONCLUSION

We propose the Graph Vision Networks (GVN) framework, which innovatively incorporates vision
features as a new type of structural feature, termed visual structural features (VSFs), to enhance
MPNNs in link prediction tasks. Unlike previous methods that rely on fixed heuristic structural
priors, VSFs are adaptively extracted and fused to suit the current scenario and are also compatible
with existing methodologies. Experimental results demonstrate that VSFs are both informative and
adaptive, leading to significant performance improvements beyond base models. Building on the
previous SOTA model NCNC, both GVN-Link and GVN-Node achieve SOTA performance. In our
future work, we are interested in extending GVN to other graph tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179, 2020.

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in Neural Information
Processing Systems, 26, 2013.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In The Eleventh International Conference
on Learning Representations, 2022.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in Neural Information Processing Systems, 33:10383–10395, 2020.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should i
use–text, motif, or image?: Understanding graphs with large language models. arXiv preprint
arXiv:2311.09862, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

Emden R Gansner and Stephen C North. An open graph visualization system and its applications to
software engineering. Software: Practice and Experience, 30(11):1203–1233, 2000.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on Research and Development in Information Retrieval,
pp. 639–648, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 33:22118–22133, 2020.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the Twelfth International Conference on Information and Knowledge Management,
pp. 556–559, 2003.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710, 2014.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp.
333–341. SIAM, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In The Twelfth International Conference on Learning Representations, 2024.

Yanbin Wei, Shuai Fu, Weisen Jiang, James T Kwok, and Yu Zhang. Gita: Graph to visual and
textual integration for vision-language graph reasoning. arXiv preprint arXiv:2402.02130, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Minoru Kanehisa.
Prediction of drug–target interaction networks from the integration of chemical and genomic
spaces. Bioinformatics, 24(13):i232–i240, 2008.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning, pp. 40–48. PMLR, 2016.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
10737–10745, 2021.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683–13694, 2021.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in Neural
Information Processing Systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71:623–630, 2009.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476–29490, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A AN EXAMPLE ILLUSTRATING MPNN’S LIMITED EXPRESSIVE POWER

Figure 4: Example graph with
isomorphic nodes.

In Figure 4, nodes v2 and v3 are isomorphic because of their sym-
metric positions in the graph, and they have the same h-hop neigh-
borhoods for any h. Hence, without node features, permutation-
equivariant MPNNs produce the same node representations for v2
and v3 (i.e., yv2 = yv3). As a result, when predicting distinct links
(v1, v2) and (v1, v3), the input fed into the Readout function are ex-
actly the same (i.e., (yv1 ,yv2) = (yv1 ,yv3)). Therefore, the same
predictions are produced for the two links.

However, the two links can have distinct pairwise structural relations w.r.t. the target node (v1 in this
case). For example, v3 is closer to v1 than v2. This difference in structural relations is overlooked
by an MPNN but can be effectively captured by the SPD structural feature (SPD(v1, v2) = 5,
SPD(v1, v3) = 2). Similarly, common-neighbor-based heuristics such as CN, RA and AA can also
help the MPNN to distinguish the two links (v1, v2) and (v1, v3), as v1 and v2 share no common
neighbor while v1 and v3 have one.

Therefore, structural features can enhance the expressive power of MPNN in link prediction, by
providing extra structural information which are ignored by MPNNs.

B DATASET STATISTICS

The statistics of the datasets are shown in Table 7.

Table 7: Statistics of dataset.
Cora Citeseer Pubmed Collab PPA DDI Citation2

#Nodes 2,708 3,327 18,717 235,868 576,289 4,267 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 30,326,273 1,334,889 30,561,187
data set splits random random random fixed fixed fixed fixed
average degree 3.9 2.74 4.5 5.45 52.62 312.84 10.44

C GRAPH VISUALIZER

Graphviz (Gansner & North, 2000) is a powerful tool used for creating visual representations of
abstract graphs and networks. It allows for the customization of the styles of nodes, edges, and
various layouts (with different configurations of predefined layout computation algorithms, called
layout engines) to tailor the visualization to specific requirements.

In our implementation, the graph visualization processes for both GVN-Link and GVN-Node are
developed using Graphviz. Besides the typical workflow of using Graphviz to generate graph images
(refer to the official documentation at https://graphviz.org/documentation/), there
are several key configurations in our implementations to prevent their variability from affecting
performance robustness:

• Layout: For all experiments, we adopt the fixed layout engine “sfdp". This fixed setting
makes the results more reproducible and reduces the gap between the training and testing
sets. However, we leave a usable interface for specifying other layout engines if needed.

• Node: For all experiments, we use a fixed rectangular (box) style for nodes, leaving them
empty except for the two nodes in the target link, which are filled with a brown color.

• Edge: We treat all edges as undirected links and leave the edge thickness at the default
setting. For link-centered subgraph visualization in GVN-Link, the target link is masked.

These configurations help standardize the visualization process, ensuring consistency and clarity in
the graphical representations used throughout our work.

14

https://graphviz.org/documentation/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D EVALUATION ON OTHER METRICS

We test our model in different metrics. The results are shown in Table 8. In total, GVN-Node
achieves 39 best scores (in bold), GVN-Link achieves 7 best scores, and our strongest baseline
NCNC achieves 3 best scores. Therefore, our GVN-LNCNC and GVN-NNCNC still significantly
outperform baselines in different metrics.

Table 8: Models’ performance with various metrics. NCNC is our strongest baseline.
Cora Citeseer Pubmed Collab PPA Citation2 DDI

hit@1 GVN-LNCNC 11.75±7.72 51.69±7.91 18.66±8.85 - - - -
GVN-NNCNC 8.66±4.39 59.30±5.53 16.88±9.58 11.04±3.01 6.53±1.52 86.62±1.04 0.42±0.08

NCNC 10.90±11.40 32.45±17.01 8.57±6.76 9.82±2.49 7.78±0.36 84.66±1.15 0.16±0.07

hit@3 GVN-LNCNC 26.66±5.96 59.97±6.21 32.23±5.69 - - - -
GVN-NNCNC 27.55±6.37 66.76±4.20 31.21±5.98 26.31±7.74 18.88±1.21 94.29±0.96 2.12±0.33

NCNC 25.04±11.40 50.49±12.01 17.58±6.57 21.07±5.46 16.58±0.60 92.37±0.56 0.59±0.42

hit@10 GVN-LNCNC 58.83±5.29 75.28±3.03 40.34±2.28 - - - -
GVN-NNCNC 55.98±4.14 77.12±2.95 47.90±2.86 43.12±5.77 31.16±1.67 97.07±1.01 50.88±11.35

NCNC 53.78±7.33 69.59±4.48 34.29±4.43 43.22±6.19 26.67±1.51 96.99±0.64 45.64±14.12

hit@20 GVN-LNCNC 70.01±4.44 81.11±1.30 53.33±2.67 - - - -
GVN-NNCNC 69.55±3.46 82.02±1.46 56.92±2.33 56.87±2.97 44.06±2.03 98.17±0.97 87.31±3.04

NCNC 67.10±2.96 79.05±2.68 51.42±3.81 57.83±3.14 35.00±2.22 97.22±0.94 83.92±3.25

hit@50 GVN-LNCNC 82.06±1.94 88.88±0.98 71.66±2.75 - - - -
GVN-NNCNC 82.99±2.95 88.97±0.58 71.55±1.19 68.14±0.75 52.58±0.30 99.09±0.66 95.95±0.75

NCNC 81.36±1.86 88.60±1.51 69.25±2.87 66.88±0.66 48.66±0.18 99.01±0.53 94.85±0.56

hit@100 GVN-LNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
GVN-NNCNC 91.47±0.36 94.44±0.53 84.02±0.55 70.83±2.25 63.45±0.66 99.51±0.39 97.99±0.27

NCNC 89.05±1.24 93.13±1.13 81.18±1.24 71.96±0.14 62.02±0.74 99.37±0.27 97.60±0.22

mrr GVN-LNCNC 24.66±4.51 62.74±6.63 26.32±6.67 - - - -
GVN-NNCNC 23.27±3.39 66.49±3.53 27.11±5.88 18.04±3.01 19.66±0.11 90.72±0.24 13.32±2.75

NCNC 23.55±9.67 45.64±11.78 15.63±4.13 17.68±2.70 14.37±0.06 89.12±0.40 8.61±1.37

E EXPERIMENTAL SETUPS

Link Prediction Setups

In link prediction, links play dual roles: serving as supervision and acting as message-passing
paths. Following the standard practice in link prediction, training links fulfill both supervision labels
and message-passing paths. In terms of supervision, the training, validation, and testing links are
mutually exclusive. For message passing, we follow the common setting where the validation links in
ogbl-collab additionally function as message-passing paths during test time.

For the Planetoid datasets (Cora, Citeseer, and Pubmed), since the official data splits are not available,
we adopt the common random splits of 70%/10%/20% for training/validation/testing. For the OGB
benchmarks ogbl-collab, ogbl-ppa, ogbl-ddi, and ogbl-citation2 (Hu et al., 2020), we utilize the
official fixed splits.

For the baselines, we directly use the results reported in (Wang et al., 2024) since we adopt the same
experimental setup.

F SUPPLEMENTARY DETAILS IN ABLATION STUDY

F.1 IMPLEMENTATIONS OF FUSION STRATEGIES

“concat" and “mixture of experts" in GVN-Link. In GVN-Link, feature integration occurs after
message passing and the different fusion strategies will affect how to integrate vision structural
awareness to the output of MPNNs.

In GVN-Link, the “concat" strategy is achieved by concatenating the link-centered VSF with the
target node features directly, and then use the concatenated features as input to the Readout function.
Thus, for each node pair (u, v) in the target link, their MPNN node representations (yu and yv) are

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

updated to ỹu and ỹv as:
ỹu = yu||vuv, ỹv = yv||vuv,

where yuv is the link-centered VSF.

For the Mixture of Experts (MoE) fusion strategy, we use a three-layer multilayer perceptron (MLP)
as vision-based expert for link prediction. This MLP relies solely on the vision modality by only
receiving VSFs as input to output the link prediction probability pvision

(u,v). The MPNN produces another

link prediction probability pgraph
(u,v) based on message passing and node attributes. Finally, the mixture-

predicted link probability p(u,v) is computed as a weighted sum of pvision
(u,v) and pgraph

(u,v), combining the
capabilities of both the vision-based expert and the MPNN expert with a learnable weight balance
parameter δ:

p(u,v) = δ · pvision
(u,v) + (1− δ) · pgraph

(u,v).

“concat" and “mixture of experts" in GVN-Node In GVN-Node, feature integration occurs on
the node feature before MPNN, and different fusion strategies use different approaches to obtain the
vision-aware node feature x̃v .

The “concat" fusion strategy obtains the vision-aware node feature of node v by appending the
node-centered VSF vv after the central node’s features xv .

x̃v = xv||vv.

For “mixture of experts", we use two linear experts to encode the original node feature xv and the
corresponding node-centered VSF vv . Therefore, computation of the vision-aware node feature can
be expressed as:

x̃v = δLinearϕ1
(xv) + (1− δ)Linearϕ2

(vv),

where δ is a learnable parameter to balance the contributions from the two linear experts, Linear1
and Linear2 are linear experts with trainable parameters ϕ1 and ϕ2.

F.2 ILLUSTRATIONS FOR DIFFERENT LABELING SCHEMES

Figure 5: Link-centered subgraph visualization with “No-label" labeling scheme.

In this Section, we present image examples for graph visualization using both GVN-Link and
GVN-Node with various labeling schemes.

Figures 5-7 show an example of link-centered subgraph visualization in GVN-Link with various
labeling schemes, where the target link is (1, 158). This indicates the objective is to predict the
existence of a link between node 1 and node 158. Similarly, Figures 8-10 present node-centered
subgraph visualization images with various labeling schemes, where the colored node is the center
node.

In Figures 5 and 8, the “No-label" labeling scheme is applied. In this scheme, node labels are omitted,
enabling the model to focus purely on the intrinsic graph topological structural information, which is
beneficial for generalizability across different datasets or settings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Link-centered subgraph visualization with “Re-label" labeling scheme.

Figure 7: Link-centered subgraph visualization with “Unique" labeling scheme.

Figure 8: Node-centered subgraph visualization with “No-label" labeling scheme.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Node-centered subgraph visualization with “Re-label" labeling scheme.

Figure 10: Node-centered subgraph visualization with “Unique" labeling scheme.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figures 6 and 9 adopt the “Re-label" labeling scheme, where the nodes within the subgraph are
reassigned labels starting from 0. This local relabeling introduces some OCR noise, compelling the
model to be more robust.

Finally, in Figures 7 and 10, which apply the “Unique" labeling scheme, nodes are labeled with their
original IDs from the dataset. This might leverage the OCR capability to match nodes across various
subgraphs due to the unique identifiers, which is beneficial for identifying node correspondences.
However, this method may hamper generalizability and expose the model to the long-tail problem,
where the model’s performance degrades for nodes that appear infrequently in the data.

G THE PRE-TRAINED MODEL WEIGHT WE UTILIZED

Here we list the link to the pre-trained model weight utilized in this paper:

• ResNet50: https://download.pytorch.org/models/resnet50-0676ba61.pth.

• VGG16: https://download.pytorch.org/models/vgg16-397923af.pth.

• ViT: huggingface.co/facebook/deit-base-patch16-224/resolve/main/pytorch_model.bin.

H THE EFFECT OF COLORS IN IMAGE REPRESENTATION

In this section, we explore the effects of different color choices for node representations in graph
images.

We first altered the colors of central nodes while keeping surrounding nodes white and evaluated
performance on the Cora and Citeseer datasets (Hits@100). The results are summarized in Table 9.

Table 9: Performance (Hits@100) with Different Central Node Colors

Center Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Black 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52
Brown 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Dark Blue 90.71±0.48 91.45±0.44 94.09±0.45 94.39±0.47
Red 90.66±0.50 91.40±0.40 94.00±0.50 94.30±0.50
Green 90.60±0.55 91.35±0.45 93.95±0.55 94.25±0.55
Yellow 90.68±0.57 91.42±0.38 94.05±0.57 94.40±0.54
White 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75

From the above results, we have several findings:

Findings 1 Only slight differences in performance when the model could distinguish central nodes
from surrounding nodes. However, the model showed a preference for darker colors.

Findings 2 When central nodes became white (indistinguishable from others), there was a noticeable
performance degradation. This highlights the significance of labeling the identification of center
nodes.

To further illustrate Findings 2, we assigned colors to the nodes surrounding the central nodes. The
results are presented in Table 10.

Table 10: Performance (Hits@100) with Different Surrounding Node Colors

Center Node Surrounding Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Black Black (same color) 89.00±0.60 89.50±0.55 93.00±0.65 93.40±0.60
White White (same color) 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75
Black Brown (near color) 90.20±0.50 90.70±0.45 93.80±0.55 94.10±0.50
Black White (opposite color) 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52

19

https://download.pytorch.org/models/resnet50-0676ba61.pth
https://download.pytorch.org/models/vgg16-397923af.pth
https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/pytorch_model.bin

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

These results further reflect the preference of the model for more pronounced color differences
between central and surrounding nodes, as indicated in Findings 2. The performance is lower when
colors are the same or similar, and higher when there is a clear distinction.

I THE EFFECT OF NODE SHAPES IN IMAGE REPRESENTATION

In this section, we investigate the impact of different node shapes on model performance. We
experimented with three different shapes: Box, Circle, and Ellipse.

Table 11: Performance (Hits@100) with Different Node Shapes

Center Node GVN-L (Cora) GVN-N (Cora) GVN-L (Citeseer) GVN-N (Citeseer)
Box 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Circle 90.65±0.52 91.40±0.38 94.15±0.43 94.42±0.50
Ellipse 90.72±0.46 91.45±0.44 94.10±0.57 94.46±0.52

According to Table 11, we find there is no obvious preference for a particular node shape, which
finding is aligned with similar observations in GITA (Wei et al., 2024).

J TRAINING VISION ENCODER FOR GRAPH STRUCTURE RECONSTRUCTION

This section explores the potential benefits of training the vision encoder to reconstruct graph
structures. We introduce an additional training phase for the ResNet50 vision encoder, where it learns
to predict the existence of masked edges (i.e., link prediction) in corresponding subgraphs.

Table 12: Performance (Hits@100) with and without Reconstructed Vision Encoder

Model Cora Citeseer
GVN-L 90.70±0.56 94.12±0.58
GVN-L + Reconstructed VE 90.68±0.61 94.19±0.31
GVN-N 91.47±0.36 94.44±0.53
GVN-N + Reconstructed VE 91.50±0.47 94.46±0.54

With Table 12, we find that the performance improvements from this practice are marginal. This
may be because the pre-trained ResNet50 is already robust enough to capture various abstract levels
of textures within the graph and reflect them in its feature dimensions. Moreover, the visualized
subgraphs are structurally clear, without complex backgrounds and distractions, reducing the difficulty
of tasks and making such an extra separate training stage becomes unnecessary. Therefore, considering
the computational overhead and complexity introduced by this additional training stage, we still
recommend using the original version of GVN.

K ABLATION STUDY: MAPPING MATRIX IN CROSS-ATTENTION

Table 13: Performance (Hits@100) with and without Mapping Matrices in Cross-Attention

Model Cora (Hits@100) Citeseer (Hits@100)
GVN-L 90.70±0.56 94.12±0.58
GVN-L + Mapping Matrices 90.81±0.60 94.05±0.62
GVN-N 91.47±0.36 94.44±0.53
GVN-N + Mapping Matrices 91.35±0.40 94.50±0.55

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

This section presents an ablation study to evaluate the impact of removing the mapping matrices WQ,
WK , and WV in the cross-attention mechanism, which are typically used to project input features
into query, key, and value spaces.

We conducted experiments on the Cora and Citeseer datasets to assess the performance implications
of excluding these mapping matrices.

The results in Table 13 indicate that removing the mapping matrices WQ, WK , and WV does not
impact the model’s effectiveness. Therefore, we omit them in GVN to make the framework more
concise.

21

	Introduction
	Related Work
	Preliminaries
	Graph Vision Networks
	GVN-Link
	GVN-Node
	Time Complexity Analysis
	Comparison between GVN-Link and GVN-Node

	Experiments
	Evaluation on Real-World Datasets
	Delve into the reason why incorporating vision helps link prediction
	Scalability
	Ablation and Sensitivity Analysis

	Conclusion
	An Example Illustrating MPNN's Limited Expressive Power
	Dataset Statistics
	Graph Visualizer
	Evaluation on other Metrics
	Experimental Setups
	Supplementary Details in Ablation Study
	Implementations of Fusion Strategies
	Illustrations for Different Labeling Schemes

	The Pre-trained Model Weight we utilized
	The Effect of Colors in Image Representation
	The Effect of Node Shapes In Image Representation
	Training Vision Encoder for Graph Structure Reconstruction
	Ablation Study: Mapping Matrix in Cross-Attention

