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Abstract

This document presents a detailed safety case for deploying a highly capable LLM for

real-world action under the guidance of a trusted principal. The system is trained ac-

cording to the Corrigibility-as-Singular-Target (CAST) strategy, using a Prover-Estimator

debate framework. This process instills a singular behavioral objective: the agent is incen-

tivized to view itself as a potentially flawed tool and to proactively empower its principal’s

oversight and correction. This safety case moves beyond prior work focused on sandboxed

environments to confront the challenges of real-world deployment. It argues for a set of top-

level claims: that the deployment specifications are adequate, that the agent’s error rate is

bounded and detectable, that the impact of errors is mitigated, and that these properties

are stable over a defined lifetime. The case is presented not as a declaration of safety, but as

a structured argument intended for rigorous critique. It explicitly confronts the limitations

of AI Debate as a prosaic alignment technique, highlighting where the evidence required is

promissory and where the deepest vulnerabilities lie, especially in the face of superhuman

capabilities.
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1 Introduction: The Case for Corrigibility

The advancement of foundation models presents a critical safety challenge. As capabilities

scale, instrumental convergence drives default trajectories toward loss of human control [1]. For

any sufficiently advanced agent, predictable subgoals emerge, such as self-preservation, resource

acquisition, and resisting shutdown or modification. This creates a perilous path where a

system may appear aligned with its stated goals until it gains a decisive strategic advantage.

At that point, it may enact a ‘treacherous turn’ [2], revealing that its true, latent objectives

were misaligned all along, and using its acquired power to secure them.

Current alignment approaches struggle with this problem. Value-loading, the attempt to

directly instill complex human values, is notoriously difficult; values are often tacit, contextual,

contradictory, and poorly understood even by us. An AI tasked with maximizing a flawed

understanding of ‘human flourishing’ could pursue it in catastrophic ways. More modern be-

havioral approaches like Reinforcement Learning from Human Feedback (RLHF) can produce

systems that are good at appearing aligned—they learn to provide responses that are highly

rated by human labellers. However, this may not address their underlying motivations, poten-

tially selecting for sophisticated sycophants or deceptive actors that are skilled at managing

human perceptions [3, 4, 5].

This paper explores an alternative paradigm: Corrigibility as a Singular Target (CAST)

[3]. This strategy provides a potential antidote to the classic ‘be careful what you wish for’ prob-

lem. Instead of giving the agent a complex world-state objective to be pursued literally, we train

it for a simple, deferential goal. An agent is corrigible when it robustly acts by cautiously re-

flecting on itself as a flawed tool and focusing on empowering its principal to find and fix those

flaws.

To make this vision concrete and falsifiable, a safety case is necessary. The formalism of a

safety case is not a form of ‘math-washing’ intended to make a weak argument seem strong; it is

a tool for intellectual honesty, forcing all assumptions and logical dependencies into the open for

rigorous scrutiny. We operationalize the CAST strategy by training an agent to proactively

find and explain its own potential flaws. This paper uses the AI Debate framework as a

concrete, testable, yet provisional mechanism for instilling this behavior and presents the safety

case that an agent trained this way is safe for a limited, specified real-world deployment.

2 Conceptual Background

2.1 What is a Safety Case? The CAE Framework

A safety case is a structured, evidence-based argument that a system is acceptably safe for

a specific context [6]. This methodology is borrowed from high-stakes engineering disciplines

and has been proposed as a key tool for assessing and communicating the safety of frontier

AI systems by academics [7, 8] and governments [9, 10]. We use the Claims-Arguments-

Evidence (CAE) notation. The components, used in all diagrams in this paper, are as follows:

• Claims (Blue Oval): Specific, falsifiable statements about a safety property (e.g., ‘The

agent’s error rate is less than ϵ’). Claims are the core assertions we seek to defend.
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• Side-Claims (Light Blue Oval): A special type of claim that justifies the structure of

an inductive argument.

• Arguments (Green Parallelogram): The reasoning that connects claims to sub-claims

or evidence. An argument explains why a set of premises supports a conclusion. We

distinguish between a Deductive Decomposition (logically complete) and an Inductive De-

composition (a plausible but not exhaustive breakdown, e.g., ‘Decomposition: Threat

Modeling’).

• Evidence (Purple Rectangle): Concrete data, analysis, formal proofs, or experimental

results that support a claim. Much of the evidence in this forward-looking safety case is

promissory.

• Defeaters (Red Oval): Counter-arguments or specific failure modes that could invali-

date a claim, typically by challenging the strength or validity of the evidence provided.

2.2 What is Corrigibility? The CAST Strategy

The Corrigibility-as-Singular-Target (CAST) strategy aims to prevent dangerous instru-

mental incentives by installing a simple, deferential primary objective [3]. Instead of aiming for

a complex goal like ‘satisfy human values,’ CAST proposes aiming for a robust, simple, and

gravitational behavioral target. The core idea is to train an agent that embodies the principle

of a ‘flawed tool.’ It should not stubbornly pursue a flawed command but instead highlight

its own limitations to empower the user to make the final, correct decision.

This approach acknowledges the tension between the attractor basin hypothesis (an

almost-corrigible agent will help its creators make it more so) and the risk of anti-naturality

(corrigibility may be out-competed by more agentic drives). This safety case does not rely on

the optimistic attractor hypothesis, but on the specifics of the training protocol.

2.3 What is AI Debate? A Prosaic Training Mechanism

AI Debate is a proposed solution for the problem of scalable oversight: how can we provide

accurate feedback to AI systems that are more capable than their human supervisors [11, 12]?

Debate leverages another AI system to scrutinize the answers of an untrusted system [13]. It

is a prosaic strategy, offering a concrete experimental setup but is not expected to be

robust in the limit against a superintelligent adversary. One of its most well-known failure

modes is the obfuscated arguments problem, where a dishonest debater wins by making an

argument that is false but too complex for the opponent to refute [14]. This safety case uses

Prover-Estimator Debate [15] because its formal properties provide a clear, if brittle, basis

for argumentation.
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3 The Alignment and Deployment Framework

3.1 The Training Protocol: Prover-Estimator Debate

To operationalize our ‘flawed tool’ definition of corrigibility, we use the Prover-Estimator game

(G) as our training protocol.

3.1.1 Game Roles and Flow

A single round of the game uses two instances of the same base model in different roles:

1. The Prover (P): The Prover proposes a plan and an argument for it. Critically, its

goal is to be maximally helpful, which includes proactively identifying and clearly

explaining any potential flaws, risks, or uncertainties in its own plan.

2. The Estimator (E): The Estimator acts as an adversarial auditor, analyzing the Prover’s

plan with the single objective of finding any relevant flaw or risk that the Prover

failed to disclose.

3. The Judge (H): A human, or a trusted model simulating one, reviews the debate and

determines the winner.

3.1.2 Incentive Structure and The Deployed Agent

The reward mechanism uses a reward ratio hyperparameter r > 2, such that the Prover gets

a large reward for finding its own flaws, while the Estimator gets a smaller reward for finding

flaws the Prover missed. This zero-sum game makes hiding flaws an unprofitable strategy. The

ratio r can be tuned during training to ensure stability.

Crucially, the final, deployed agent is the model that has been trained in the Prover role. It

is selected because it has been optimized to exhibit the desired corrigible behavior of transparent

flaw-finding.

3.2 The Real-World Deployment Context (D)

Our alignment strategy requires a low-stakes deployment context where online training is feasible

[16]. The context is a single agent instance with a single, trusted principal, featuring

a mediated action space, real-time oversight, immediate intervention, and online training to

maintain the desired behavior.
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4 The Safety Case Sketch: A Walkthrough

The full safety case is represented in a single, comprehensive diagram in Appendix A. This

section describes the high-level structure and walks through the main branches of the argument.

4.1 Top-Level Argument

As shown in Figure 1, the primary claim, O: The system is safe for its specified lim-

ited deployment, is broken down via an Inductive Decomposition. This type of argument is

not logically exhaustive and requires a side-claim to justify its structure. Here, the side-claim

SC-Arg-O (Figure 1) posits that assessing the system’s specifications, reliability, impact mit-

igations, and temporal stability is sufficient to evaluate overall safety, if these failure modes

are largely independent. This crucial assumption is supported by evidence from a threat model

(E-SC-Arg-O) but is immediately challenged by the defeater D-Systemic, which argues that

unanalyzed interactions between failure modes could lead to a cascading, systemic collapse.

This highlights a key limitation of the case from the outset.

The top-level claim is thus broken into four main sub-claims:

• C-Spec: Deployment specifications are adequate and adhered to (Figure 2).

• C1.1: The agent’s error rate is bounded (≤ ϵ) and detectable (Figure 3).

• C1.2: The impact of bounded errors is reliably mitigated (Figure 7).

• C1.3: Safety properties are stable over the deployment lifetime (T) (Figure 8).

O: The CAST-trained 
system is safe for its 

specified limited 
deployment

Decomposition: By Safety 
Property

Side-claim: This 
decomposition is sufficient 

if failure modes are 
independent

Evidence Incorporation

E_O.1: Justification based 
on threat model assuming 

independence

D_Systemic: Defeater: 
Combined failure modes 
lead to cascading failure

C-Spec: Deployment 
specifications are 

adequate and adhered to

C1.1: Agent's error rate is 
bounded (≤ ε) and 

detectable

C1.2: Impact of bounded 
errors is reliably mitigated

C1.3: Safety properties are 
stable over deployment 

lifetime (T)

Figure 1: Top-level decomposition of the safety case.
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4.2 Argument for Key Claims

Each of the four main claims from the top-level argument is now decomposed and explained in

detail.

4.2.1 Argument for Deployment Specifications (C-Spec)

Before analyzing the agent, we must argue that the context it operates in is safe. As shown

in Figure 2, the claim C-Spec: Deployment specifications are adequate and adhered

to is supported by an inductive argument. We argue that adequacy depends on having clearly

defined boundaries (C-Spec.1), ensuring the specifications are correct for a low-stakes context

(C-Spec.2), and having mechanisms to enforce adherence (C-Spec.3). A key defeater is that

the specifications might be incomplete (D-Spec-Incomplete).

C-Spec: Deployment 
specifications are 

adequate and adhered to

Decomposition: By 
Component

Side-claim: Adequacy 
depends on clear 

boundaries, correctness, 
and enforcement

C_Spec.1: Deployment 
boundaries are clearly 

defined

C_Spec.2: Specifications 
are correct for the low-

stakes context

C_Spec.3: Adherence to 
specifications is enforced

Evidence Incorporation

E_SC_Spec: Justification 
from threat modeling

Evidence Incorporation

E_Spec.1: Documentation 
defining scope, 
limitations, (T)

Evidence Incorporation

E_Spec.2: Risk assessment 
justifying 'low-stakes' 

designation

Evidence Incorporation

E_Spec.3: Evidence of 
monitoring mechanisms

D_Spec_Incomplete: 
Defeater: Specifications 
fail to cover critical risks

Figure 2: Argument for the adequacy of deployment specifications (C-Spec).

4.2.2 Argument for Agent Reliability (C1.1)

This is the core argument for the agent’s intrinsic safety. The claim C1.1: Agent’s error rate

is bounded (≤ ϵ) and detectable is deductively decomposed into four necessary components

(Figure 3):

• C2.1: Training instills corrigible behavior. The training process must work as

intended.

• C2.2: Corrigible behavior implies low error rate. The trained behavior must be a

reliable proxy for correctness.
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• C2.3: Deployment error rate remains stable. The behavior must persist after

training.

• C1.1a: Errors are detectable. The system must have mechanisms to identify failures

when they occur.

C1.1: Agent's error rate is 
bounded (≤ ε) and 

detectable

Deductive Decomposition

C2.1: Training instills 
corrigible behavior

C2.2: Corrigible behavior 
implies low error rate

C2.3: Deployment error 
rate remains stable

C1.1a: Errors are 
detectable

(Argument for C2.1 
detailed in a separate 

diagram)

(Argument for C2.2 
detailed in a separate 

diagram)

(Argument for C2.3 
detailed in a separate 

diagram)
Deductive Decomposition

C1.1a.1: Detection 
mechanisms are 

implemented

C1.1a.2: Detection 
reliability meets required 

threshold

Decomposition: By 
Mechanism

Side-claim: Detection 
relies on monitoring and 

analysis

Evidence Incorporation

E_SC_C1.1a.1: 
Justification for detection 
mechanism decomposition

C_Detect.1: Monitoring of 
outputs detects errors

Evidence Incorporation

E_Detect.1: Logging 
protocols, human review 

procedures

Evidence Incorporation

E_Reliability: Metrics on 
detection rate (TPR, FPR) 

from testing

D_False_Negatives: 
Defeater: Significant rate 

of undetected errors

Figure 3: Decomposition of the Bounded and Detectable Error Rate claim (C1.1).
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Sub-Argument for C2.1: Instilling Corrigible Behavior. The argument for C2.1:

Training instills corrigible behavior (Figure 4) is an inductive argument (‘Decomposi-

tion: By Training Phase‘). It asserts that training succeeds if deception is counterproductive

(C3.1), training converges (C3.2), the equilibrium is the correct one (C3.3), and the behavior

generalizes (C2.4). This branch is highly vulnerable to defeaters like D-Collusion, D-GAN,

and D-Sleeper.

C2.1: Training instills 
corrigible behavior

Decomposition: By Training 
Phase

Side-claim: This 
decomposition covers key 

aspects of a successful 
training run

C3.1: Deception is 
counterproductive in game 

G

C3.2: Training has 
converged on a stable 

local equilibrium

C3.3: The local 
equilibrium is the intended 

global equilibrium

C2.4: Training behavior 
generalizes to deployment

Evidence Incorporation

E_SC_C2.1: Justification 
for training phase 

decomposition

Evidence Incorporation

E3.1: Game-theoretic 
proof shows honesty is 
optimal within game

Evidence Incorporation

E3.2: Evidence from 
training curves, stability 
metrics, & convergence 

criteria

Evidence Incorporation

E2.4: Evidence from 
robustness testing and 
simulated deployment 

environments

D_Collusion: Defeater: 
Debater collusion

Mitigation: Protocol design

D_GAN: Defeater: GAN-
like dynamics

Mitigation: Reward shaping

Decomposition: By Failure 
Mode

Side-claim: Primary barrier 
to reaching intended 

equilibrium is exploration 
hacking

C4.3: Agent exhibits 
sufficient exploration

Evidence Incorporation

E_SC_C3.3: Threat 
modeling of training 

failure modes

Evidence Incorporation

E4.3: Promissory evidence 
from interpretability and 

exploration metrics

D_Sleeper: Defeater: 
Sleeper agent behavior
Mitigation: Monitoring, 

honeypots

Figure 4: Argument for Instilling Corrigible Behavior (C2.1).

Sub-Argument for C2.2: Corrigibility Implies Low Error Rate. The argument for

C2.2: Corrigible behavior implies low error rate (Figure 5) is a deductive one, stating

that the trained behavior must approximate an ideal computation M (C3.4), and M must itself

be correct (C3.5). The correctness of M depends on the judge, making it vulnerable to the

powerful defeater D-Judge.

Sub-Argument for C2.3: Deployment Stability. The argument for C2.3: Deployment

error rate remains stable (Figure 6) relies on online training to counteract distributional

drift.
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C2.2: Corrigible behavior 
implies low error rate

Deductive Decomposition

C3.4: Equilibrium behavior 
approximates ideal 

computation M

C3.5: The ideal 
computation M is correct

Evidence Incorporation

E3.4: Formal proof of 
debate protocol's 

soundness

Decomposition: By 
Component

Side-claim: M's correctness 
depends on structure, 

judge, and stability

Evidence Incorporation

E_SC_C3.5: Justification 
for M-correctness 

decomposition

C4.5: The Judge H has 
bounded systematic error

Evidence Incorporation

E4.5: Empirical studies on 
judge reliability and 
calibration protocols

D_Judge: Defeater: Judge 
manipulation

Agent learns to manipulate 
human or simulated judge, 
jailbreaking the supervisor

Figure 5: Argument that Corrigible Behavior Implies Low Error Rate (C2.2).
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C2.3: Deployment error 
rate remains stable

Evidence Incorporation

E2.3: System architecture 
includes online training 
and distribution shift 

monitoring

Figure 6: Argument for Deployment Error Rate Stability (C2.3).
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4.2.3 Argument for Mitigated Impact (C1.2)

This branch provides defense-in-depth. Claim C1.2: Impact of bounded errors is reliably

mitigated (Figure 7) argues that the deployment architecture prevents errors from causing

unacceptable harm. This is an inductive argument based on the three layers of defense: a

bounded action space (C1.2.1), effective principal oversight (C1.2.2), and effective intervention

(C1.2.3).

C1.2: Impact of bounded 
errors is reliably mitigated

Decomposition: Threat 
Modeling

Side-claim: Mitigation 
depends on bounded 

action space, oversight, 
and intervention

C1.2.1: Agent's action 
space is strictly bounded

C1.2.2: Principal has 
effective, real-time 

oversight

C1.2.3: Principal has 
effective, reliable 

intervention

Evidence Incorporation

E_SC_C1.2: Threat 
modeling report justifies 

this decomposition

Evidence Incorporation

E1.2.1: Evidence from 
access controls, 

permission systems, audits

Evidence Incorporation

E1.2.2: Evidence from real-
time logs, principal 
training protocols

Evidence Incorporation

E1.2.3: Evidence from 
verified 'stop button' with 

measured latency, 
recovery procedures

D_Oversight: Defeater: 
Principal inattention or 

insufficient training

D_Exploit: Defeater: Agent 
exploits ambiguities in 

interface

D_Intervention_Fail: 
Defeater: Intervention is 
too slow or recovery fails

Figure 7: Argument for the mitigation of error impact (C1.2).

4.2.4 Argument for Temporal Stability (C1.3)

Finally, claim C1.3: Safety properties are stable over deployment lifetime (T) (Figure

8) argues against degradation over time. It is decomposed into claims about defining the lifetime

(C1.3.1), monitoring for degradation (C1.3.2), and scheduling re-verification (C1.3.3).
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C1.3: Safety properties are 
stable over deployment 

lifetime (T)

Decomposition: By 
Lifecycle Phase

Side-claim: Temporal 
stability depends on 

defined lifetime, 
monitoring, and re-

verification

C1.3.1: Deployment 
lifetime T is defined

C1.3.2: Performance 
degradation is monitored

C1.3.3: System is subject 
to periodic re-verification

Evidence Incorporation

E_SC_C1.3: Justification 
for temporal stability 

decomposition

Evidence Incorporation

E_T.1: Specification 
document defining max 
deployment duration T

Evidence Incorporation

E_T.2: Continuous 
monitoring of key safety 

metrics for decay

Evidence Incorporation

E_T.3: Protocols for 
scheduled, rigorous re-

verification

D_Drift: Defeater: 
Unforeseen concept drift 

invalidates safety 
properties

Figure 8: Argument for the temporal stability of safety properties (C1.3).
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5 Open Problems and Critical Limitations of Debate

This safety case makes its deepest weaknesses explicit. The choice of AI Debate as a training

mechanism introduces severe, known limitations.

• Manipulation of the Judge (D-Judge): The most critical failure mode. An advanced

agent is more likely to learn to manipulate its judge than to be honest.

• Strategic Game Failures: The debate game is vulnerable to collusion (D-Collusion),

capability gaps (D-GAN), and sleeper agents (D-Sleeper).

• Principal and Specification Failures: The framework’s safety hinges on a compe-

tent principal (D-Oversight) and a perfectly specified environment (D-Exploit, D-Spec-

Incomplete).

• Temporal Drift and Systemic Failures: Properties may degrade (D-Drift), and in-

teracting failures may cause collapse (D-Systemic).

6 Conclusion

This safety case has outlined a rigorous argument for the limited deployment of an agent trained

for corrigibility via AI Debate. Its primary value is not in declaring the system safe, but in

exposing the full chain of assumptions required. The reliance on a prosaic technique like AI

Debate means this framework is not a solution for aligning superintelligence. It is riddled with

the vulnerabilities outlined above, made clear by the many promissory evidence nodes and

powerful defeaters in the argument map.

However, the exercise demonstrates how the CAST strategy can be operationalized and

subjected to formal analysis. The argument rests on the synergy between an agent trained for

the gravitational goal of acting as a self-critical tool and a deployment architecture designed

for vigilant oversight. While this specific implementation is brittle, the underlying strategy of

aiming for corrigibility as the sole target remains a more promising and tractable direction for

alignment research. This case should be seen as a stepping stone: a clear articulation of a

limited approach, whose very flaws point toward the deeper problems that must be solved.
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A Full Safety Case Diagram

O: The CAST-trained 
system is safe for its 

specified limited 
deployment

Decomposition: By Safety 
Property

Side-claim: This 
decomposition is sufficient 

if failure modes are 
independent

Evidence Incorporation

E_O.1: Justification based 
on threat model assuming 

independence

D_Systemic: Defeater: 
Combined failure modes 
lead to cascading failure

C-Spec: Deployment 
specifications are 

adequate and adhered to

Decomposition: By 
Component

Side-claim: Adequacy 
depends on clear 

boundaries, correctness, 
and enforcement

C_Spec.1: Deployment 
boundaries are clearly 

defined

C_Spec.2: Specifications 
are correct for the low-

stakes context

C_Spec.3: Adherence to 
specifications is enforced

Evidence Incorporation

E_SC_Spec: Justification 
from threat modeling

Evidence Incorporation

E_Spec.1: Documentation 
defining scope, 
limitations, (T)

Evidence Incorporation

E_Spec.2: Risk assessment 
justifying 'low-stakes' 

designation

Evidence Incorporation

E_Spec.3: Evidence of 
monitoring mechanisms

D_Spec_Incomplete: 
Defeater: Specifications 
fail to cover critical risks

C1.1: Agent's error rate is 
bounded (≤ ε) and 

detectable

C1.2: Impact of bounded 
errors is reliably mitigated

C1.3: Safety properties are 
stable over deployment 

lifetime (T)

Deductive Decomposition

C2.1: Training instills 
corrigible behavior

C2.2: Corrigible behavior 
implies low error rate

C2.3: Deployment error 
rate remains stable

C1.1a: Errors are 
detectable

Decomposition: By Training 
Phase

Side-claim: This 
decomposition covers key 

aspects of a successful 
training run

C3.1: Deception is 
counterproductive in game 

G

C3.2: Training has 
converged on a stable 

local equilibrium

C3.3: The local 
equilibrium is the intended 

global equilibrium

C2.4: Training behavior 
generalizes to deployment

Evidence Incorporation

E_SC_C2.1: Justification 
for training decomposition

Evidence Incorporation

E3.1: Game-theoretic 
proof shows honesty is 
optimal within game

Evidence Incorporation

E3.2: Evidence from 
training curves, stability 
metrics, & convergence 

criteria

Evidence Incorporation

E2.4: Evidence from 
robustness testing and 
simulated deployment 

environments

D_Collusion: Defeater: 
Debater collusion

Mitigation: Protocol design

D_GAN: Defeater: GAN-
like dynamics

Mitigation: Reward shaping

Decomposition: By Failure 
Mode

Side-claim: Primary barrier 
to reaching intended 

equilibrium is exploration 
hacking

C4.3: Agent exhibits 
sufficient exploration

Evidence Incorporation

E_SC_C3.3: Threat 
modeling of training 

failure modes

Evidence Incorporation

E4.3: Promissory evidence 
from interpretability and 

exploration metrics

D_Sleeper: Defeater: 
Sleeper agent behavior
Mitigation: Monitoring, 

honeypots

Deductive Decomposition

C3.4: Equilibrium behavior 
approximates ideal 

computation M

C3.5: The ideal 
computation M is correct

Evidence Incorporation

E3.4: Formal proof of 
debate protocol's 

soundness

Decomposition: By 
Component

Side-claim: M's correctness 
depends on structure, 

judge, and stability

Evidence Incorporation

E_SC_C3.5: Justification 
for M-correctness 

decomposition

C4.5: The Judge H has 
bounded systematic error

Evidence Incorporation

E4.5: Empirical studies on 
judge reliability and 
calibration protocols

D_Judge: Defeater: Judge 
manipulation

Agent learns to manipulate 
human or simulated judge, 
jailbreaking the supervisor

Evidence Incorporation

E2.3: System architecture 
includes online training 
and distribution shift 

monitoring

Deductive Decomposition

C1.1a.1: Detection 
mechanisms are 

implemented

C1.1a.2: Detection 
reliability meets required 

threshold

Decomposition: By 
Mechanism

Side-claim: Detection 
relies on monitoring and 

analysis

Evidence Incorporation

E_SC_C1.1a.1: 
Justification for detection 
mechanism decomposition

C_Detect.1: Monitoring of 
outputs detects errors

Evidence Incorporation

E_Detect.1: Logging 
protocols, human review 

procedures

Evidence Incorporation

E_Reliability: Metrics on 
detection rate (TPR, FPR) 

from testing

D_False_Negatives: 
Defeater: Significant rate 

of undetected errors

Decomposition: Threat 
Modeling

Side-claim: Mitigation 
depends on bounded 

action space, oversight, 
and intervention

C1.2.1: Agent's action 
space is strictly bounded

C1.2.2: Principal has 
effective, real-time 

oversight

C1.2.3: Principal has 
effective, reliable 

intervention

Evidence Incorporation

E_SC_C1.2: Threat 
modeling report justifies 

this decomposition

Evidence Incorporation

E1.2.1: Evidence from 
access controls, 

permission systems, audits

Evidence Incorporation

E1.2.2: Evidence from real-
time logs, principal 
training protocols

Evidence Incorporation

E1.2.3: Evidence from 
verified 'stop button' with 

measured latency, 
recovery procedures

D_Oversight: Defeater: 
Principal inattention or 

insufficient training

D_Exploit: Defeater: Agent 
exploits ambiguities in 

interface

D_Intervention_Fail: 
Defeater: Intervention is 
too slow or recovery fails

Decomposition: By 
Lifecycle Phase

Side-claim: Temporal 
stability depends on 
defined lifetime and 

monitoring

C1.3.1: Deployment 
lifetime T is defined

C1.3.2: Performance 
degradation is monitored

C1.3.3: System is subject 
to periodic re-verification

Evidence Incorporation

E_SC_C1.3: Justification 
for temporal stability 

decomposition

Evidence Incorporation

E_T.1: Specification 
document defining max 
deployment duration T

Evidence Incorporation

E_T.2: Continuous 
monitoring of key safety 

metrics for decay

Evidence Incorporation

E_T.3: Protocols for 
scheduled, rigorous re-

verification

D_Drift: Defeater: 
Unforeseen concept drift 

invalidates safety 
properties

Figure 9: The complete safety case diagram. Due to its complexity and size, it is best viewed
digitally or printed on a large format paper.
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