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Abstract

Large language models (LLMs) show excellent
performance in difficult tasks, but they often re-
quire massive memories and computational re-
sources. How to reduce the parameter scale of
LLMs has become research hotspots. In this study,
we get an important observation that the multi-
head self-attention (MHA) sub-layer of Trans-
former exhibits noticeable low-rank structure,
while the feed-forward network (FFN) sub-layer
does not. With this regard, we design a novel
structured compression method LoRAP, which or-
ganically combines Low-Rank matrix approxima-
tion And structured Pruning. For the MHA sub-
layer, we proposal an input activation weighted
singular value decomposition method and allo-
cate different parameter amounts for each weight
matrix based on the differences in low-rank prop-
erties of matrices. For the FEN sub-layer, we pro-
pose a gradient-free structured channel pruning
method and save the least important 1% of param-
eters which actually play a vital role in model per-
formance. Extensive evaluations on zero-shot per-
plexity and zero-shot task classification indicate
that our proposal is superior to previous structured
compression rivals under multiple compression
ratios. Our code will be released soon.

1. Introduction

Large language models (LLMs) (Zeng et al., 2022; Tou-
vron et al., 2023a; Chiang et al., 2023) have revolutionized
the field of natural language processing (NLP), exhibiting
significant advancements in language understanding and
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generation (Brown et al., 2020). As the size increases,
LLMs can handle more complex tasks and even display
emergent abilities (Wei et al., 2022). However, the large
size of these models poses challenges in deployment and in-
ference, which require massive memory and computational
resources. For instance, the largest LLaMA (Touvron et al.,
2023a) consists of 70 billion parameters and ChatGPT is
even larger at the scale of 175 billion parameters.

There have been plentiful techniques to compress the
transformer-based models, including pruning (Han et al.,
2015; Xia et al., 2022; Kurtic et al., 2022), low-rank ap-
proximation (Noach & Goldberg, 2020; Hua et al., 2022),
quantization (Frantar et al., 2023; Yao et al., 2022; Dettmers
et al., 2023), and knowledge distillation (Saha et al., 2023;
Wang et al., 2023). The traditional compression methods
usually require fine-tuning the compressed model on con-
crete tasks to recovery the specific capability of the model.
Nevertheless, the compression for LLMs primarily concen-
trates on reducing the model size while retaining the general
capability (Ma et al., 2023). Therefore, rudely applying
previous transformer-based compression methods without
specialized consideration might compromise their capacities
for generic tasks (Kojima et al., 2022). More recently, by
virtue of the advantage of directly reducing the parameter
scale, low-rank approximation and pruning have attracted
much attention in the area of large model compression.

Low-rank approximation reduces the parameter size via de-
composing the original weight matrix into two smaller ma-
trices. In (Noach & Goldberg, 2020), the authors perform
Singular Value Decomposition (SVD) on BERT and uti-
lize knowledge distillation to recovery model performance.
DRONE (Chen et al., 2021) approximates input activations
through SVD in specific tasks. FWSVD (Hsu et al., 2022)
evaluates the importance of weights with the Fisher informa-
tion and conducts SVD on the weighted matrix. AFM (Yu &
Wu, 2023) decomposes the weight matrix based on the low-
rank property of the output activations. LORD (Kaushal
et al., 2023) compresses a 16B code model with AFM and
then restores its performance by LoRA fine-tuning. Very
recently, several efforts attempt to incorporate low-rank
approximation with other compression techniques. LoftQ
(Li et al., 2023a) utilizes a quantized matrix and two low-
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rank matrices to approximate the original high-precision
weight matrix. In (Li et al., 2023b), the weight matrix is
approximated by the sum of a low-rank matrix and a sparse
matrix. LPAF (Ren & Zhu, 2023) performs SVD on the
pruned model obtained through movement pruning. Despite
the brilliant achievements, the present works typically com-
press each module of Transformer layer in the same manner,
while ignoring a fundamental problem, that is, whether the
modules in transformer have the same property. This bene-
ficial exploration is expected to provide important guidance
for the improvement of compression methods.

Pruning aims to remove unimportant parts of the weights,
which can be categorized into unstructured pruning and
structured pruning. Unstructured pruning entails the re-
moval of less important individual weights based on their
importance scores. The representative unstructured pruning
methods for LLMs include SparseGPT (Frantar & Alistarh,
2023), Wanda (Sun et al., 2023), GBLM-pruner (Das et al.,
2023). Although unstructured pruning yields favorable per-
formance, the acceleration in inference is only achievable
on specific hardware due to the irregular sparsity, which
makes it difficult to migrate across different platforms and
environments. In contrast, structured pruning eliminates
the weights according to a certain structure or pattern, such
as channel, attention head or layer. This enables it to re-
duce storage memory and accelerate inference on common
hardware. The existing structured pruning research usually
estimates the importance score based on the gradient. For
example, LLM-Pruner (Ma et al., 2023) adopts the Tay-
lor expansion of loss function to measure the importance.
LoRAPrune (Zhang et al., 2023) approximates its weight
gradients with LoRA (Hu et al., 2022) weights during the
LoRA fine-tuning process. LoRAShear (Chen et al., 2023)
establishes dependency graph for grouping weights and
then adopts progressive pruning strategy on LoRA adaptors.
These gradient-based methods require either substantial stor-
age and computation resources or intricate pruning steps.
In the structured pruning, how to achieve gradient-free and
meaningful importance estimation for weights becomes a
valuable but less studied issue.

Contributions. Our contributions are as follows:

* We analyze the distribution of important weights in
different Transformer sub-layers of the LLaMA model
and observe that, the multi-head self-attention (MHA)
sub-layer exhibits a more pronounced low-rank prop-
erty than feed-forward network (FFN) sub-layer. This
inspires us to combine Low-Rank matrix approxima-
tion And structure Pruning (LoRAP), with each com-
pressing the MHA and FFN sub-layers separately.

e For the MHA sub-layer, we propose an Activation
Weighted SVD (AWSVD) method, which evaluates
the weight importance in terms of the /5 norm of the

corresponding input activations. Besides, we find that
the weight matrices in MHA sub-layer have varying
low-rank degrees. Thus, we propose to allocate more
parameters to weight matrices with poorer low-rank

property.

* For the FFN sub-layer, we devise a gradient-free struc-
tured pruning method, which removes the associated
channels according to the group importance. During
the channel pruning process, we discover that the least
important parameters (approximately 1%) surprisingly
play a crucial role in the model’s performance. There-
fore, we suggest to retain these parameters under a
fixed parameter budget.

* We evaluate the performance of the compressed model
through zero-shot perplexity on WikiText2 and PTB
datasets, as well as zero-shot task classification on 7
common-sense reasoning datasets. At multiple com-
pression ratios, our method outperforms existing struc-
tured pruning and low-rank approximation methods.

2. Background

We briefly review the transformer architecture, the impor-
tance scores of weights, structured pruning and low-rank
approximation.

2.1. Transformer Model

Models based on the transformer architecture usually consist
of several consecutive layers, with each layer comprising a
multi-head self-attention (MHA) sub-layer and a fully con-
nected feed-forward network (FFN) sub-layer. We use the
LLaMA model as an example to introduce the transformer.
Given the input activation X € RZ*4 obtained by the layer
normalization, where L and d are sequence and feature di-
mensions respectively, the forward computation for MHA
is as follows:

head; = Softmax(XW,, (XWy, )T /1/dp)XW,,
MHA(X) = Concat(head, ..., head,)W,,

where W,,, Wy, W, € R?4n are query, key, and value
matrices in i-th head, W, € R%*? denotes an output pro-
jection matrix. h and dj, represent the number of heads and
the dimension of each head in multi-head attention, respec-
tively. In general, we have d = dj, x h. The output of the
MHA sub-layer serves as the input of the FFEN sub-layer.
FFN sub-layer comprises three linear transformations and
an activation, the forward computation is as follows:

FFN(X) = (XWup © U(Xwgate))wdoum7

where W, Wgqe € RX4m W g0 € RIm ¥4 and o (-)
is Silu activation function. And ©® represent the Hadamard
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product. In the subsequent context, without loss of gener-
ality, we define all the matrix multiplication as y = Wx,
where W € RdeutXdin denote the weight matrix in the
model.

2.2. Importance Score of Weights

It is observed that in LLMs with model size of 6B or more,
a distinct subset of activations exhibit significantly larger
magnitudes compared to the remaining activations. These
specific activations are critical to the performance of the
model and are denoted as outlier activations (Dettmers et al.,
2022). The magnitude of the activation value can reflect the
importance score of the weights. Wanda (Sun et al., 2023) is
the first method to estimate the importance score of weights
by activations in pruning. Specifically, they calculate the
product of the weight magnitude and the corresponding
input activation’s ¢ norm as the importance score. The
calculation formulation is as follows:

I(Wiz) = [Wis| - 1X]l2, 1)

where I(W;;) is the importance score function of weight
Wij, | - | is the absolute value operator, W;; represents the
ij-th entry of W. X; € RV*L denotes the j-th feature ag-
gregated across [V input samples. It’s worth noting that the
calculation is gradient-free, thereby mitigating the demand
for memory and computational resources.

2.3. Structured Pruning

The structured pruning targets different pruning granulari-
ties, including layer pruning, attention head pruning, and
channel pruning. Previous pruning methods (Sanh et al.,
2020; Yang et al., 2022) estimate importance scores based
on gradients, which needs massive computational resources
and makes them challenging to be applied to LLMs. The
importance scores in Eq. (1) is gradient-free, which avoids
the calculation and storage of gradients. However, it is an
importance score at the level of individual weights, which
cannot be directly applied to structured pruning. LoSparse
(Li et al., 2023b) introduces neuron importance scores into
structured pruning. The importance score function ®(W, .)
of the i-th output neuron is calculated as follows:

din
1

O(W,.) = aZI(W,U). )

Jj=1

Note that beyond Eq.(2) that adopts the arithmetic mean as
the score function, various other formulations can also be
employed, such as /5 norm, £, norm.

2.4. Low-Rank Approximation of Matrix

Low-rank approximation substitutes the original weight ma-
trix W with two lower-rank matrices L € R%u*" and

L ——
Embedding

Figure 1. The compression of the transformer layer. For the FFN
sub-layer, we prune the neurons in the intermediate layer. For the
MHA sub-layer, we employ weighted SVD to obtain two low-rank
matrices as an approximation to the original matrix.

Re R"%4in  Given the input x, the output y is
y = Wx ~ LRx. 3)

SVD is the most commonly used matrix factorization
method, which offers the best r-rank approximation of
the matrix. The initial matrix W € Rut*din is decom-
posed into SVD(W) = UXV, where U € RdoutXdout and
V € Réin*din gre orthogonal matrix, and ¥ € Rdout Xdin
is a matrix with only non-zero values on the diagonal. By
retaining the largest r singular values, we can decompose
‘W into two low-rank matrices L and R as follows:

W ~ (U,%,)V, = LR. 4)

3. The Proposed Method

We propose a novel method for compressing LLMs. Specif-
ically, we compress the different sub-layers in model with
low-rank approximation and structured pruning separately.
The method is illustrated in Fig. 1.

3.1. Weight Distribution in MHA and FFN Sub-Layers

As we know, unstructured pruning has poor generality but
strong performance, whereas structured pruning has strong
generality but typically slightly worse performance. In this
study, we aim to design a structured compression method
that could achieve promising performance closer to unstruc-
tured pruning, meanwhile ensure its generalization on com-
mon devices. The retained weights obtained from unstruc-
tured pruning represent the crucial weights that impact the
performance of model. Analyzing the structural patterns
therein can better guide structured compression.

After global-wise unstructured pruning with Wanda under
50% sparsity, the four projection weight matrices of the
first MHA sub-layer are visualized in Fig. 2. We observe
an interesting phenomenon, that is, the distribution of re-
tained weights is more concentrated in some certain rows or
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(a) Wq

(©) Wy

Figure 2. Visualization of the W4, W, W,,, and W, matrices
in the first MHA sub-layer at 50% sparsity. In W,, Wy, W,
matrices, each dp, rows forms one attention head, with a total of h
attention heads. And in W, matrix, each attention head consists
of dj, columns. The black areas in the figure represent the pruned
weights, while the white areas indicate the retained weights.

Table 1. The ratio of singular values when 80% energy is retained.

Method W, Wi W, W, Wyate Wup Waswn

Original ~ 16.60 1536 4390 45.53 53.42 54.49 63.72
AWSVD 586 515 4219 2952 52.12 53.52 59.72

columns (some rows or columns appearing nearly all-white
in the Fig.2), which indicate that there is noticeable low-rank
structure pattern. We further present the visualization of the
FEN sub-layer in Figure 3. Intuitively, the weight distribu-
tion of FFN is different from MHA. More strictly speaking,
FFN exhibits less low-rank characteristic. To quantitatively
analyze the low-rank property, we perform SVD on the
weight matrices of MHA and FFN sub-layers. The first row
in Table 1 shows the needed percentage of the number of
singular values when 80% energy is retained. The results
demonstrate that compared to FFN sub-layer, the weight
matrices in MHA sub-layer exhibit a more pronounced low-
rank structure. This suggests that low-rank approximation is
more suitable to the MHA sub-layer and the FFN sub-layer
deserves other compression strategies such as pruning to
leverage the advantage of its smaller minimal dependency
group . Based on this insight, in this paper, we propose a
weighted low-rank approximation method to compress the
MHA sub-layer and adopt the structured channel pruning
to compress the FFN sub-layer. In the following, we will
elaborate our proposal.

Figure 3. The three images on the left are visualization of the
Waown, Wgate, and Wy, matrices (From left to right). The
three images on the right are areas of size 800 x 420.

3.2. Weighted Low-Rank Approximation for MHA

It is observed that model with weighted SVD can achieve
better performance than the original SVD (Hsu et al., 2022).
We draw inspiration from Wanda to estimate the importance
scores of weights with the activation values and propose
a Activation Weighted SVD (AWSVD) method. For each
individual weight W;;, we estimate its importance score
based on the ¢5 norm of the corresponding input activations
(see Eq. (1)). We use

Xy, = (IXall2, [ Xzll2, - - [1Xas,

|2) o)

to represent the vector of importance scores, where || X |2
is the importance score of the j-th column of weight matrix
W. ;. The weighted reconstruction error is as follows:

min (WZ] -

LR (LR)i5)*[1 X2, ()

.3

Where L and R are obtained by matrix decomposition. In
formulation (6), since each column in the matrix W has
equal importance score, with this characteristic, we can
directly obtain its closed-form solution. We define the im-
portance scores as the diagonal matrix D = diag(xg;,,, ).
The problem of Eq. (6) can be rewritten as:

min [WD — LRD|,. @)

Performing standard SVD on the weighted matrix WD
yields the result: SVD(WD) = UXV. Therefore, the
solution of Eq. (7)is L = UX,R = VD', To com-
press the weighted matrix, we retain the first » compo-
nents of the matrices L and R. In the end, we obtain
L, =U,3, R, = V.D!. At the second row in Table
1, we show the percentage of the number of singular val-
ues obtained by our AWSVD when 80% energy is retained.
We observe that the weighted matrix exhibits a stronger
low-rank property when compared with the original matrix,
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Figure 4. Different proportions are reserved for different weight
matrices in MHA sub-layer. The parameters are increased by 0.5
each time from left to right. The perplexity (PPL) of the obtained
model on Wikitext2 (left) and PTB (right) is present.

which implies that weighted SVD may achieve better perfor-
mance when retaining the same number of singular values.
Besides, compared to FFN, the improvement of low rank
property after weighted in MHA are more significant. This
further confirms that the low-rank approximation is more
suitable for MHA sub-layer.

Parameter Allocation. In Table 1, we discover that the
low-rank characteristic varies across different weight ma-
trices in MHA sub-layer. We further explore the impact
of compressing these matrices on the final model perfor-
mance. We separately compress the W,, Wy, W,,, and
‘W, matrices in MHA sub-layer at different ratios and eval-
uate the perplexity on Wikitext2 and PTB datasets. The
results are illustrated in Fig. 4. We observe that under the
same compression ratio, the model performance is better
when compressing W, and W, matrices. This suggests
that the distribution of knowledge in W, and Wy, is more
concentrated, thus requiring fewer parameters for preserva-
tion. This is consistent with the stronger low-rank property
of W, and W, presented in Table 1. In contrast, the knowl-
edge distribution in W,, and W, matrices is more uniform,
necessitating more parameters for storage. Therefore, to
achieve better performance within a limited parameter bud-
get, more parameters should be allocated to W,, and W,,. In
the experiments, we chose to allocate 75% of the parameters
to W, and W, matrices, while allocating the remaining
25% to W4 and W, matrices.

3.3. Gradient-Free Channel Pruning for FFN

Both Table 1 and Fig. 3 indicate that the weights in FFN
are not suitable for low-rank approximation. Therefore, we
opt to compress the FFN sub-layer with channel pruning.
We estimate the importance score 1 (WW;;) of weight IV;; by
Eq.(1). Then, inspired by LoSparse (Li et al., 2023b), we
use the 5 norm of the importance score of the weights W .
in the channel as the importance score of the ¢-th channel.
The formulation is as follows:

(W) = [[I(Winr), I(Wiza), -, I(Wia,,)

l2.  (8)

Algorithm 1 LoRAP
Input: The i-th layer M; of model; input activation

i, € RVXLXd: reqained ratio p,.
for al W € M, do

Compute the x4,, with input activation by Eq. (5);
end for
for al W € MMH4A do

Compute the retained rank r of W;

Compute the L and R by Eq. (7);

Replace W by L. R.,;
end for
for all W € MIFN do

Compute the importance score I(W;;) by Eq. (1);

Compute the importance score of channel by Eq. (8);
end for
Compute the importance score of group by Eq. (10);
Prune (1 — p,-) * 100% weights by Eq. (11);
Compute input activation of next layer Xfil =X
Output: The compressed layer /\/l;; input activation of
the (i + 1)-th layer X,

Following (Ma et al., 2023), we consider the dependencies
between neurons during the pruning process. For example,
as shown in Fig. 1, when pruning the i-th input channel of
the down matrix W g,.,,,, the corresponding output channels
in the gate matrix Wy, and up matrix W,,;, should be
pruned accordingly. Therefore, the interconnected channels
are regarded as a group WJ" 7" je.,

group __ up gate down
W = {Wl 7Wi71 , W3 . ©)]

And the pruning is performed at the group level. We accu-
mulate the channel importance to estimate the group impor-
tance as follows:

CE™ = B(WP) + (W) + B(W™). (10)

Retaining Least Important Weights. Previous studies
commonly prune the least important parts. However, we
observe that the least important 1% of parameters play a
vital role in model performance. This phenomenon could
be explained by Junk DNA Hypothesis (Yin et al., 2023),
that is, certain less important weights actually encode cru-
cial knowledge necessary for more difficult downstream
tasks, and pruning these weights might severely destroy
the model’s performance. Therefore, while ensuring the
pruning ratio remains unchanged, we retained the least im-
portant 1% portion of weights. The method for pruning is
as follows:

WU i C97 intop (p, * 100-1)%,
WP if GO inmin 1%

0, otherwise.

group __
A\ =

(1D
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Where p, represents the retained ratio. Finally, we summa-
rize our algorithm in Algorithm 1.

3.4. Knowledge Recovery by LoRA

In order to recovery the performance of the compressed
model with limited data and computation, we adopt LoORA
to fine-tune the compressed model. We denote the pruned

weight matrix in FFN as W € Rdout %din and the weight
matrix W,,, in MHA is decomposed into L and R. The
update of weight matrix is denoted as AW = AB. The
forward computation can now be expressed as:

fumpa(x) =Wy, + AW)x = (LR + A,,B,,,)x (13)

During the training process, only training A and B can
greatly reduces the computational workload and data re-
quirements. After training, A and B can be directly merged
with the compressed weight.

4. Experiments
4.1. Experimental Settings

Benchmark LLMs. To validate the effectiveness and gen-
eralization of our approach, we conducted experiments on
LLaMA-1 (Touvron et al., 2023a) , LLaMA-2 (Touvron
et al., 2023b) and Vicuna (Chiang et al., 2023) models. We
conducted experiments on models with size 7B and 13B.
This allows us to evaluate the effectiveness of our method
across different model scales. In the main paper, we present
the experimental results of LLaMA-1. More experimental
results and analysis about LLaMA-2 and Vicuna models are
present in Appendix B.

Calibration Data and Evaluation. For a more intuitive
comparison with previous methods, we use the same calibra-
tion dataset and evaluation dataset as LLM-pruner (Ma et al.,
2023). The calibration data is sampled from the BookCor-
pus (Zhu et al., 2015). We perform the zero-shot perplexity
(PPL) evaluation on the WikiText2 (Merity et al., 2016) and
PTB datasets (Marcus, 1993), which can roughly reflect the
language capabilities of the model. To assess the zero-shot
performance of the model in the task-agnostic setting, we
follow LLaMA to perform zero-shot task classification on
seven common sense reasoning datasets, including BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2020),
ARC-easy(Clark et al., 2018b), ARC-challenge (Clark et al.,
2018a), and OpenbookQA (Mihaylov et al., 2018).

Implementation Details. During the model compression
process, we randomly extract 128 samples from Bookcor-
pus as calibration data, and each sample is consisted of 128
tokens. During the knowledge recovery phase, we employ

LoRA fine-tuning for two epochs on the cleaned Alpaca
dataset (Taori et al., 2023), which comprises approximately
50k samples. These experiments were conducted rigor-
ously on A40 GPU (48G). After compression, we tested
the compressed model on data segments containing 128
tokens in Wikitext2 and PTB and performed zero-shot clas-
sification tasks on commonsense reasoning datasets with
Im-evaluation-harness (Sutawika et al., 2023).

Baselines. We compare our proposal with the following
well-performing structured compression methods:

e LLM-pruner (Ma et al., 2023) is the first structured
pruning method applied to LLMs. Weights are orga-
nized into groups based on the dependency structure
and then a portion of the groups with the lowest impor-
tance is pruned in one-shot.

* LoRAPrune (Zhang et al., 2023) uses the weights of
LoRA to estimate the gradients of the model weights,
which reduces both memory requirements and gradient
computation. During the pruning process, the model
weights are alternately updated and pruned until the
model is pruned to the specified size.

* LoRAShear (Chen et al., 2023) discovers minimally
removal structures based on the dependency graphs
and analyzes the knowledge distribution in layers. The
weights are then progressively pruned based on LoRA
Half-Space Projected Gradient (LHSPG).

4.2. Main Results

Zero-Shot Performance. We compare our method with
the baseline methods at different compression ratios. The
experimental results are shown in Table 2. At different com-
pression ratios, the perplexity of the compressed model on
both WikiText2 and PTB datasets, is improved considerably,
especially in settings that are not fine-tuned. At 50% com-
pression ratio without fine-tuning, we achieve perplexity of
56.96 and 87.71, respectively. At a compression ratio of
20% , our method achieves an average accuracy of 60.53%
on common sense reasoning datasets without fine-tuning,
outperforming all previous structured pruning methods, and
even comparable to the fine-tuned results of these methods.
After fine-tuning, the performance was further improved,
reaching the accuracy of 61.71%, which is more than 1.0%
higher than baseline methods. At the 50% compression ratio,
our method outperformed baselines by 5% in accuracy with-
out fine-tuning, by approximately 2% after fine-tuning. This
demonstrates that across various compression ratios, our
method consistently exhibits excellent performance. Table 3
presents the performance of the compressed 13B model. We
observe that our method outperforms the baseline methods
significantly. Furthermore, the higher the compression ratio,
the more evident the advantages of our method.
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Table 2. Zero-shot performance on LLaMA-7B models. At the same compression ratio, ‘bold’ represents the best performance.

Compression Ratio Method \ WikiText2]  PTBJ \ BoolQT PIQAT HellaSwag? WinoGrandeT ARC-eT ARC-ct OBQAT  Averagef

Ratio=0% LLaMA-7B - - 76.5 79.8 76.1 70.1 72.8 47.6 572 68.59

=7 LLaMA-7B* 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

LLM-pruner 19.09 3421 57.06 75.68 66.80 59.83 60.94 36.52 40.00 56.69

Ratio=20% LoRAPrune 20.67 34.12 57.98 75.11 65.81 59.90 62.14 34.59 39.98 56.50
w/o tune LoRAShear - - - - - - - - - -

LoRAP 15.69 25.86 71.93 76.44 69.98 65.90 60.56 38.48 40.40 60.53

LLM-pruner 17.58 30.11 64.62 77.20 68.80 63.14 64.31 36.77 39.80 59.23

Ratio=20% LoRAPrune 16.80 28.75 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.05

w/ tune LoRAShear - - 70.17 76.89 68.69 65.83 64.11 38.77 39.97 60.63

LoRAP 16.35 27.06 72.94 76.93 70.90 65.75 64.31 39.93 41.20 61.71

LLM-pruner 112.44 255.38 52.32 59.63 35.64 53.20 33.50 27.22 33.40 42.13

Ratio=50% LoRAPrune 121.96 260.14 51.78 56.90 36.76 53.80 33.82 26.93 33.10 41.87
w/o tune LoRAShear - - - - - - - - - -

LoRAP 56.96 87.71 57.80 63.82 46.96 57.30 40.36 27.73 36.80 47.25

LLM-pruner 38.12 66.35 60.28 69.31 47.06 53.43 45.96 29.18 35.60 48.69

Ratio=50% LoRAPrune 30.12 50.30 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71

w/ tune LoRAShear - - 62.12 71.80 48.01 56.29 47.68 32.26 34.61 50.39

LoRAP 30.90 48.84 63.00 69.64 54.42 58.41 51.94 32.00 35.80 52.17

* represents the evaluation version in LLM-Pruner (Ma et al., 2023). The average is calculated across seven common-sense reasoning datasets.

Table 3. Zero-shot performance on LLaMA-13B models. At the same compression ratio, ‘bold’ represents the best performance.

Compression Ratio Method \ WikiText2| PTBJ \ BoolQT PIQAT HellaSwag? WinoGrandeT ARC-ef ARC-ct OBQAT  Averagef
Ratio=0% LLaMA-13B* \ 11.58 20.24 \ 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97
Ratio=20% LLM-pruner 16.01 29.28 67.68 77.15 73.41 65.11 68.35 38.40 42.40 61.79
w/o tune LoRAP 13.48 23.57 73.94 77.31 74.93 69.69 70.79 40.44 41.40 64.07
Ratio=20% LLM-pruner 15.18 28.08 70.31 7791 75.16 67.88 71.09 4241 43.40 64.02

w/ tune LoRAP 13.58 24.07 73.39 78.73 75.54 69.30 70.62 43.00 42.40 64.71
Ratio=50% LLM-pruner 70.38 179.72 61.83 67.08 45.49 52.09 38.93 30.03 33.00 46.92
w/o tune LoRAP 34.11 67.38 65.81 70.46 57.80 59.04 51.22 30.88 34.40 52.80
Ratio=50% LLM-pruner 29.51 54.49 62.17 72.85 57.30 56.99 56.86 32.00 38.40 53.80
w/ tune LoRAP 22.66 38.89 72.29 74.10 63.29 62.83 60.82 35.24 38.80 58.20

* represents the evaluation version in LLM-Pruner (Ma et al., 2023). The average is calculated across seven common-sense reasoning datasets.

Table 4. The parameters, MACs, and inference latency of the base-
line and the compressed models.

Compression Ratio Method Params MACs Latency

Ratio=0% Baseline 6.74B 42398 G 65.79s
Ratio=50% LLM-Pruner  3.37B  206.59 G  43.55s (-33.80%)
= LoRAP 337B  208.40G  45.23s (-31.25%)

Statistics of the Compressed Model. Both structured prun-
ing and low rank approximation can reduce computational
complexity and parameter count, directly. We use MACs
to measure the computational complexity of the model. In-
ference latency was tested in inference mode on WikiText2
dataset with sentences composed of 64 tokens. To eliminate
the influence of hardware, we compared our LoORAP with
LLM-Pruner (Ma et al., 2023) on the same GPU device A40.
The results are presented in Table 4. At the compression ra-
tio of 50%, the two methods yield compressed models with
similar parameters amount. LLM-Pruner shows notable re-
duction in computational complexity and 33.8% inference
acceleration. LORAP achieve similarly reduction in compu-
tational complexity and 31.25% inference acceleration.

4.3. Ablation Study

Retention of the Least Important Weights. In order to
investigate the impact of retaining the weights with mini-
mum importance in the pruning of the FFN sub-layer, we
conducted related ablation experiments. We regard the non-
retention compression as the baseline and retain different
proportions of the weights with minimum importance at
20% and 50% compression ratios. The experimental results
are presented in Table 5. The result shows that the adoption
of retention will bring noticeable performance improvement,
with a more pronounced effect at high compression ratio.
At a compression ratio of 50%, the compressed model with
retention achieves a reduction of approximately 15% in per-
plexity on Wikitext2 and PTB, along with a 1% increase
in average accuracy on the seven reasoning datasets. At a
compression ratio of 20%, there is also a slight improvement
in the performance of the compressed model. Furthermore,
it is worth noting that only the lowest important 1% of the
parameters effectively improve the model performance, and
retaining a higher percentage of parameters does not result
in further significant improvement.



LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression for Large Language Models

Table 5. The results of retaining different proportions of the least
importance weights in the FFN sub-layer.

Compression Ratio ~ Retained Ratio \ WikiText2|  PTBJ]  Average?
0% 16.91 27.96 60.02
Ratio=20% 1% 15.69 25.86 60.53
2% 15.61 25.80 60.23
0% 67.53 102.93 46.19
Ratio=50% 1% 56.96 87.71 47.25
2% 57.88 86.44 46.78

Table 6. Different parameter allocation in the MHA sub-layer.

Compression Ratio Ratio ‘ WikiText2] PTB| Average?
1:1 88.81 127.66 40.70
1:2 60.39 92.17 45.32
Ratio=50% 1:2.5 56.69 87.08 45.30
1:3 56.38 87.37 47.25
1:35 55.43 87.55 46.84

Table 7. The results of three different aggregation strategies for
channel importance score.

Compression Ratio Norm ‘ WikiText2] PTBJ Average?
01 15.80 26.04 60.94
Ratio=20% Lo 15.69 25.86 60.53
loo 15.68 26.08 59.89
01 58.58 92.29 45.42
Ratio=50% 12 56.96 87.71 47.25
loo 7191 103.06 44.09

Parameter Allocation in MHA Sub-Layer. Table 1 and
Fig. 4 demonstrate that different weight matrices in the
MHA sub-layer exhibit varying degrees of low rank proper-
ties. Given the parameter budget constraint, it is reasonable
to allocate more parameters to W,, and W, matrices since
both of them possess poorer low-rank properties. The W,
and W, matrices are treated as a group, while the W, and
‘W, matrices are regarded as another group. The param-
eter counts between two groups differ, but the parameter
counts of the two weight matrices within each group are the
same. To investigate the impact of parameter allocation, we
adjusted the parameter ratio between two groups, without
altering the pruning of the FFN sub-layer. The results of
the different parameter allocations are presented in Table
6, where ratio denotes the parameter ratio of (W, + Wy)
: (W, + W,). It can be seen that with the same number
of parameters, the performance of the compressed model is
remarkably improved after adopting the parameter alloca-
tion in MHA sub-layer. Moreover, the parameter ratio of
1:3 achieves superior overall performance. Therefore, we
choose the parameter ratio of 1:3 for regular experiments.
Under low compression ratios, if the allocated parameter
quantity exceeds the original weight amount, we preserve
the original matrix directly and distribute the surplus budget
to other weight matrices.

Aggregation Strategies for Channel Importance Score.
Through the input activations, we estimate the impor-

Table 8. Comparison of different structured compression methods
in FFN and MHA sub-layers. * denotes adopting the same param-
eter allocation scheme as our AWSVD.

Sub-layer Compression Ratio Method \ WikiText2|  PTB|
SVD 14554.00  19269.28
. AFM 126.13 274.53
FEN Ratio=50% LoSparse 84.15 159.31
Our AWSVD 225.08 319.40
Our Channel Prune 32.64 61.51
AFM 33.90 83.84
AFM* 25.09 58.80
. SVD 345.16 778.82
MHA Ratio=50% SVD* 7654 19632
LoSparse 88.69 149.28
Head Prune 458.93 414.61
Our AWSVD 19.49 29.66
tance score of weight I(W;;) by Eq. (1). However,

during the pruning process, we rely on channel impor-
tance ®(W, .). Therefore, we need to choose a suitable
aggregation strategy based on the importance score of
weights to estimate the channel importance. There are typ-
ically three aggregation strategies: (1) ¢; norm aggrega-
tion: ®(W;.) = Zf" I(W;;); (2) €2 norm aggregation:

O(W;.) = (Z?i" I(W;)%)Y/2; (3) £+, norm aggregation:

)

(W, .) = Max(I(W;,.)). The results of three aggrega-
tion strategies are shown in Table 7. At the compression
ratio of 20%, the three methods obtain comparable perfor-
mance. But at the compression ratio of 50%, ¢ norm ex-
hibits clearly superior performance. Therefore, we adopt the

£5 norm for channel importance score in the experiments.

Comparison of Structured Compression Methods. In
this part, we further compare our proposal with other low-
rank approximation and pruning methods. Atomic Feature
Mimicking (AFM) (Yu & Wu, 2023) was successfully used
in LORD (Kaushal et al., 2023) to compress a 16B code
model and SVD can be used for LLMs without relying on
data. Structured pruning in MHA is usually attention head
pruning (Ma et al., 2023; Zhang et al., 2023). LoSparse
(Li et al., 2023b) approximates a weight matrix by the sum
of a low-rank matrix and a sparse matrix. Without fur-
ther retraining, we compare our method with them in two
sub-layers respecively. In the MHA sub-layer, for a fair
comparison, we used the same parameter allocation scheme
as our AWSVD for AFM and SVD. The results are shown
in Table 8. It can be observed that in the FFN sublayer,
channel pruning surpasses all low-rank approximation meth-
ods by a large margin. However, in the MHA sub-layer,
the attention head pruning is generally worse than low-rank
approximation. Besides, we discover that the proposed pa-
rameter allocation scheme not only works for our AWSVD
but also improves the performance of AFM and SVD, which
confirms its excellent generalization. Lastly, our AWSVD
method is obviously superior to AFM and SVD, validating
the effectiveness of input activation weighted mechanism.
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4.4. Analysis

In Section 3.1, we have discovered the differences of low
rank properties between sub-layers. To better and more
clearly understand this phenomenon, we further analyze the
reasons. In MHA sub-layer, we consider the reasons why
the weighted matrix in the MHA sub-layer exhibits strong
low-rank property are the differences in weight distribution
of attention head and the importance estimation method
based on input activations. The multi-head attention mecha-
nism leads to independence among different attention heads.
This independence results in significant differences in the
weight distributions across different rows. Consequently,
different rows exhibit varying magnitudes, contributing to
the low-rank property. The method of importance estima-
tion based on input activations assigns higher importance
scores to columns that correspond to larger input activation
values, leading to discrepancies in the importance of differ-
ent columns. This is also why the weighted matrix exhibits
stronger low-rank properties. The FFN sub-layer adopts
fully-connected structure, where each neuron is connected
to all neurons in the previous layer, resulting in an extremely
dense weight matrix. This tight fully-connected structure
leads to a relatively uniform distribution of weights, making
it difficult for them to be concentrated in just a few rows or
columns. This weight distribution characteristic reduces the
low-rank property of the entire weight matrix.

5. Conclusion

Different from the existing works that compress the Trans-
former modules of LLMs with the same way, this work
proposes a mixed structured compression model named
LoRAP, which employs low-rank approximation and struc-
tured pruning separately for different sub-layers of Trans-
former. LORAP draws inspiration from our observation that
the MHA sub-layer presents noticeable low-rank pattern,
while the FFN sub-layer does not. For the MHA sub-layer,
a weighted low-rank approximation method is proposed,
which adopts input activation as the weighted matrix and
allocates the parameters according to the low-rank degrees.
For the FFN sub-layer, a gradient-free structured pruning
method is devised. The results indicate that under multiple
compression ratios, LORAP is superior to previous struc-
tured compression methods with or without fine-tuning.
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A. Ablation Studies

A.1. Impact of Calibration Data

We explore the influence of both the length and the quantity of calibration data on model compression. To meet the length
requirements for sampling, we sampled the calibration data from the C4 dataset. Under the configuration where the sample
length is fixed at 128 tokens, we gradually increase the sample quantity from 4 to 2048. Similarly, maintaining the sample
quantity of 128, we progressively increase the sample length from 16 to 2048 tokens. The results are shown in the figure
5. The results indicate that with the increase in the quantity of calibration data, the perplexity of the model decreases on
both datasets. This suggests that augmenting the quantity of calibration data can effectively enhance the performance of
the compressed model. However, with the increase in sample length, the perplexity of the model decreases initially and
then increases on both datasets. The above analysis indicate that increasing the quantity of calibration data and selecting an
appropriate length can effectively improve the performance of the compressed model.
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Figure 5. As the quantity and length of calibration data increases, the evaluation results of the compressed model on WikiText2 and PTB.

A.2. Sensitivity to Random Seeds

In this part, we investigate the sensitivity of our algorithm to randomness. We conducted 10 runs with different random seeds
at compression ratios of 20% and 50%, obtaining the results on WikiText2 of 15.734 £ 0.073 (mean/standard deviation) and

49.116 + 0.947, respectively. These findings indicate a strong robustness of the proposed method to variations in random
seeds.

B. Additional Models

We compress the 7B, 13B, and 30B LLaMA models under six different compression ratios, and the evaluation of the
compressed model on WikiText2 and PTB datasets are illustrated in Fig. 6. It can be observed that, at the same compression

ratio, larger models preserve performance more comprehensively. This indicates that larger models contain more redundant
parameters and possess a larger compression space.
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Figure 6. The performance of the compressed model with more compression ratios and model sizes
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Table 9. The performance of the compressed Vicuna-7B models.

Method Pruning Ratio \ WikiText2] PTB{ \ BoolQT  PIQAT  HellaSwag?  WinoGrandef  ARC-eT  ARC-ct OBQAfT  Average?
Base* Ratio=0% ‘ 16.24 60.78 ‘ 75.69 77.09 71.04 67.88 68.98 39.93 42.40 63.29
Ratio=10% 17.86 65.62 78.04 76.61 70.12 66.14 67.21 38.40 41.40 62.56
Ratio=20% 20.07 71.75 76.42 76.38 68.31 64.96 65.82 37.29 38.60 61.11
w/o tune Ratio=30% 24.94 88.58 72.75 74.86 65.60 63.77 62.12 34.98 39.00 59.01
Ratio=40% 42.60 148.49 66.27 68.82 56.75 58.48 50.88 31.83 36.60 52.80
Ratio=50% 84.17 272.01 63.88 63.66 46.59 56.35 39.81 27.82 35.20 47.62
Ratio=10% 15.87 58.04 77.65 77.53 70.46 67.25 71.38 40.02 41.40 63.67
Ratio=20% 17.33 62.18 75.81 76.77 68.39 65.04 70.08 39.33 39.20 62.09
witune Ratio=30% 19.63 70.70 7391 75.84 65.45 63.77 66.96 35.84 39.00 60.11
Ratio=40% 24.53 86.97 70.95 73.01 60.03 62.19 59.01 33.96 38.20 56.76
Ratio=50% 30.68 104.49 68.65 69.86 54.63 56.84 54.59 31.14 38.40 53.44

Table 10. The performance of the compressed Vicuna-13B models.

Method Pruning Ratio ‘ WikiText2] PTBJ ‘ BoolQT  PIQAT  HellaSwag?T  WinoGrandef  ARC-et  ARC-c OBQAT  Average?l
Base* Ratio=0% |  13.51 5643 | 7651 78.73 74.63 69.06 72.35 44.80 41.00 65.30
Ratio=10% 15.14 60.41 77.28 78.19 73.99 68.59 71.63 43.17 41.40 64.89
Ratio=20% 17.08 66.52 80.58 77.91 73.80 68.59 71.84 42.92 40.60 65.18
w/o tune Ratio=30% 20.46 78.23 79.79 77.09 72.27 66.46 69.74 42.75 40.00 64.01
Ratio=40% 26.92 108.53 75.23 72.96 66.54 61.56 63.89 39.16 39.60 59.85
Ratio=50% 42.50 182.75 71.90 69.91 57.92 61.64 51.77 32.85 37.60 54.80
Ratio=10% 12.98 57.62 80.73 79.16 74.24 69.77 73.83 44.54 41.20 66.21
Ratio=20% 14.06 61.28 80.12 78.51 72.79 66.06 73.19 43.17 40.60 64.92
witune Ratio=30% 15.88 67.28 79.45 77.09 71.07 65.90 70.58 40.87 40.80 63.68
Ratio=40% 19.14 80.81 75.29 75.73 67.69 62.19 67.17 40.44 39.40 61.13
Ratio=50% 23.35 94.99 73.43 73.34 62.39 61.01 63.89 36.77 37.60 58.35

Table 11. The performance of the compressed LLaMA2-7B models.

Method Pruning Ratio \ WikiText2] PTBJ \ BoolQT  PIQAT  HellaSwag?  WinoGrandef  ARC-ef  ARC-ct  OBQAT  Averagef
Base* Ratio=0% ‘ 12.19 48.35 ‘ 71.04 78.40 72.96 67.17 69.32 40.53 40.80 62.89
Ratio=10% 13.23 51.23 72.20 77.86 71.67 66.54 66.17 39.59 39.80 61.98
Ratio=20% 15.02 58.44 69.24 76.39 69.15 65.11 61.99 35.58 38.60 59.44
w/o tune Ratio=30% 18.58 73.08 65.93 74.70 64.76 62.90 54.00 32.76 35.80 55.84
Ratio=40% 30.94 133.39 62.11 67.52 55.98 58.72 47.35 30.97 36.00 51.24
Ratio=50% 60.89 282.22 61.86 62.23 43.98 55.41 38.51 27.65 33.00 46.09
Ratio=10% 13.23 52.87 75.20 78.89 72.76 67.80 68.52 40.53 40.60 63.47
Ratio=20% 14.67 57.52 70.89 78.13 69.93 65.67 65.99 38.48 39.60 61.24
w/tune Ratio=30% 16.84 66.24 69.60 76.71 66.75 62.98 60.61 35.49 37.80 58.56
Ratio=40% 21.46 82.51 67.22 73.83 61.57 61.01 56.78 3233 37.20 55.71
Ratio=50% 26.26 101.22 63.27 70.78 55.14 57.85 52.15 30.97 36.00 52.31

Table 12. The performance of the compressed LLaMA2-13B models.

Method Pruning Ratio ‘ WikiText2] PTBJ ‘ BoolQT  PIQAT  HellaSwag?  WinoGrandeT  ARC-et ARC-ct  OBQAT  Averaget
Base* Ratio=0% ‘ 10.98 54.42 ‘ 69.02 78.72 76.59 69.53 73.27 44.20 42.00 64.76
Ratio=10% 12.13 57.02 73.49 79.05 75.94 69.22 73.23 43.60 42.40 65.28
Ratio=20% 13.33 62.64 74.62 78.78 74.72 67.56 71.55 42.15 42.20 64.51
w/o tune Ratio=30% 16.11 77.39 74.46 77.04 72.09 65.27 67.30 39.76 40.80 62.39
Ratio=40% 21.19 115.39 65.87 72.80 65.48 63.77 58.08 35.24 39.40 57.23
Ratio=50% 34.43 204.51 66.57 68.61 54.62 59.83 47.85 29.95 35.20 51.80
Ratio=10% 11.94 57.64 76.70 79.92 76.61 69.22 75.21 44.37 42.80 66.40
Ratio=20% 12.98 62.30 77.25 79.16 75.31 67.48 73.95 43.94 41.80 65.56
Jtun Ratio=30% 14.95 71.45 76.88 77.69 73.87 66.22 71.63 41.55 41.80 64.23
Wwitane Ratio=40% 17.66 87.42 | 7226 7579 69.21 64.40 65.28 39.68 40.80 61.06
Ratio=50% 22.05 104.23 69.88 74.16 63.68 61.09 61.11 36.60 39.00 57.93
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Furthermore, we compress the Vicuna-7B, Vicuna-13B, LLaMA2-7B, LLaMA2-13B, models under five different compres-
sion ratios. Moreover, the same knowledge recovery method as described in the main paper was employed to restore the
performance of the compressed models. The evaluation results are presented in Table 9, Table 10, Table 11, Table 12. The
results indicate that our method performs well under different compression ratios and across various models.

At a fixed compression ratio, larger models exhibit less performance degradation after compression. Under low and high
compression ratios, the performance of the compressed model exhibits markedly different characteristics. We first analyzed
the performance of the model under low compression ratios. Under the compression ratio of 10%, the compressed model
even exhibite performance improvement in certain task (e.g. LLaMA-13B on BoolQ, PIQA, OBQA tasks). This suggests
that the appropriate low-ratio compression may improve the model’s performance in certain tasks. Under low compression
ratios, the performance drop of the compressed model can be effectively recovered through fine-tuning. However, under
high compression ratios, significant performance decline is inevitable even after fine-tuning the model. Especially when the
compression ratio reaches 40%, the performance of the compressed model declines faster.

C. Implementation Details

C.1. For Compression

Compression Ratio. During the compression process, we only compress the transformer layers in the model , without
applying any modifications to the embedding layers and the LM head. Therefore, to achieve the specified compression ratio
for the model, we need to apply a higher compression ratio to the transformer layers. The formulation is:

Paramyoiq; X Ratiog

Ratio; =
layers x Paramiqyer
where Paramq,q denotes the total number of parameters in the model and Paramqye, represents the compressible
parameters within one transformer layer. Ratios and Ratio; represent the specified compression ratios for the model
and the actual compression ratio at the layer level, respectively. layers denotes the number of transformer layers in the
model. Taking the LLaMA model used in our experiments as example, we give the relationship between the specified model
compression ratio Ratios and the actual layer compression ratio Ratio, in the table 13.

Table 13. The relationship between Ratios and Ratios across LLaMA models of different sizes.

Ratiog | 0.100 0200 0300 0400 0.500 0.600 0.700  0.800

7B Ratio; 0.104 0208 0312 0416 0520 0.624  0.728  0.832
13B Ratio; 0.103 0205 0.308 0410 0513 0616 0.718  0.821
30B Ratio; 0.101 0203 0304 0405 0.507 0.608 0.709  0.811

Compression Sequence. During the compression process, we independently compress the model layer by layer in sequence.
The input activations are computed during a single forward computation. The output of the compressed layer serves as the
input for the next layer in the model.

Special Case. Due to the parameter allocation method, we tend to allocate more parameters to W,, and W, matrices.
Therefore, at low compression ratios , we may allocate more parameters to W,, and W, matrices than the original weight
matrix. In this case, we choose to directly retain the original weight matrix and allocate the surplus parameters to W,
and W, matrices. For example, at the compression ratio of 20%, the operation performed during MHA compression is to
completely retain the W,, and W, matrices, and substitute the W and W, matrices with low-rank matrices which consist
of 60% of the parameter count.

C.2. For Knowledge Recovery.

We follow the fine-tuning method of LLM-pruner (Ma et al., 2023) in the knowledge recovery phase. The hyperparameters
are summarized in Table 14. We use the hyperparameters in Table 14 to recovery the performance of the compressed model
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Table 14. The hyperparameters employed during the fine-tuning stage.

Optimizer ~ Epochs  Batchsize  Learning rate Val-size  LoRA-r  LoRA-alpha  LoRA-dropout  LoRA-modules

Adam 2 64 le-4 2000 8 16 0.05 All

D. Limitations

During the compression process, we applied the same compression ratio to different transformer layers, which overlook the
differences between layers in the model. When the compression rate is high (exceeding 40%), even after fine-tuning, the
performance of the compressed model still exhibits a substantial decline. Achieving higher compression ratios for LLMs
remains a challenging task. How to effectively restore the performance of the compressed model under limited resources is

also a noteworthy concern.

E. Generations From Compressed Model

Table 15, Table 16, Table17 show generated examples of the models compressed by LoRAP. We present the generation
results of both the compressed model with fine-tuning and without fine-tuning in the same generation settings. We can
see that the compressed model at low compression ratio can generates fluent sentences, but the meaning of the generated
sentences is different from the original model. However at high compression ratio the compressed model may generate

repetitive or even semantically incorrect sentences without fine-tuning.

Table 15. Generated Examples from the Compressed LLaMA-7B.

Model

Generated Sentences

Ratio=0%
wo/ Tune

Al can assist people in writing 100,000-word novels in just a few hours. Al is also being used to create art. In 2017, Google’s DeepDream
Al was used to create a series of paintings that were eerily similar to the work of Dutch artist M.C. Escher. In 2018, an Al program created a
painting that sold for $432,500 at Christie’s auction house in New York City. The painting was created by an Al program called GAN, which
stands for Generative Adversarial Networks. GAN is a type of Al that learns to mimic the style of another artist. In this case, the AI learned to
mimic Vincent van Gogh’s style of painting. Al can also be used to create music. Al has been used

Ratio=0%
w/ Tune

Al can assist people in writing 50,000-word research papers in a matter of hours. Al is also being used in the healthcare industry to assist
doctors in diagnosing and treating patients. IBM’s Watson, for example, is being used in hospitals around the world to help doctors make more
accurate diagnoses and prescribe more effective treatments. In the finance industry, Al is being used to analyze large amounts of data and identify
patterns and trends that can help financial institutions make better investment decisions. Al is also being used to automate tasks such as trading
stocks and managing portfolios, freeing up human workers to focus on more complex and strategic tasks. In marketing and advertising, Al is
helping businesses to better understand their customers and to personalize their marketing efforts.

Ratio=20%
wo/ Tune

Al can assist people in writing 100,000 words in an hour. Al can also be used to improve the quality of products and services. For example, AT
can be used to detect defects in manufacturing processes. Al can also be used in customer service. For example, if a customer calls a company’s
customer service line, Al can analyze the customer’s voice to determine the customer’s mood. If the customer is in a bad mood, Al can route the
customer’s call to a customer service representative who is trained to handle customers in a good mood. Al is also being used to develop new
products. For example, companies are using Al to develop new products faster. For example, a company can use Al to develop a new product
faster by using Al to design the product’s shape, size, and color. A company can also use Al to design a new

Ratio=20%
w/ Tune

Al can assist people in writing, editing, and proofreading their own work. Amazon’s Kindle Direct Publishing (KDP) is a self-publishing
platform that allows authors to publish and sell their books directly to readers around the world. KDP provides free tools and services to
help authors self-publish and earn royalties on their eBooks and print books sold through Amazon.com and Amazon.co.uk. Authors can also
use KDP to create and publish customized versions of their books for specific audiences, such as students, employees, or members of a club
or organization. For more information, visit www.kdp.amazon.com. The National Association of College and University Business Officers
(NACUB) is a national advocacy and professional development organization representing more than 1,500 colleges and universities.

Ratio=50%
wo/ Tune

Al can assist people in writing 100,000 articles a year. “We’ve been working on it for a couple of years, and now we’re getting closer and
closer to making it a reality,” he said.

Ratio=50%
w/ Tune

Al can assist people in writing 50,000 words per hour, which is about 10 times faster than a human writing at their best. This means that in 24
hours, a human would have written 5000 words, whereas an Al could have written the same amount of text in just 1.5 hours. This is an incredible
time-saving advantage for those who need to get things done quickly and accurately. You are here: Home About Us Our People Our people are
the heart and soul of our business. They are our family, our friends, our colleagues, and our clients. We take great pride in them, and they take
great pride in us. Our goal is to provide the highest level of service to our clients, and we strive to do so every day. We listen to our clients,
understand their needs, and work hard to meet their expectations.
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Table 16. Generated Examples from the Compressed LLaMA2-7B.

Model

Generated Sentences

Ratio=0%
wo/ Tune

People are currently exploring Mars with the Curiosity rover, and NASA is planning to send astronauts to the Red Planet in the 2030s. NASA’s
Mars 2020 rover will search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to
Earth, and pave the way for human exploration of the Red Planet. NASA’s Perseverance rover will land on Mars on Feb. 18, 2021, to search
for signs of ancient microbial life and collect rock and regolith (broken rock and dust) samples for possible return to Earth. The rover will
characterize the planet’s geology and past climate and be the first mission to collect and cache a sample of Mars to be returned to Earth in the
future. Perseverance is part of NASA’s

Ratio=0%
w/ Tune

People are currently exploring Mars with the Curiosity rover, and NASA is planning to send astronauts to the Red Planet in the 2030s. NASA’s
Perseverance rover is currently exploring Jezero Crater on Mars, searching for signs of ancient microbial life and collecting samples of rock and
regolith (broken rock and dust) that could be returned to Earth in the future. NASA’s Mars 2020 Perseverance mission is part of a larger program
that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Challenges still remain, including how to keep
astronauts healthy during long-duration spaceflight and how to keep them safe on the surface of another planet.

Ratio=20%
wo/ Tune

People are currently exploring Mars, the Moon, and other planets in our Solar System. They are also exploring the depths of our own oceans,
and even the depths of their own minds. This is an exciting time to be alive. We are living in an age of discovery and exploration. We are
discovering new worlds, and we are exploring our own minds. We are also living in an age where technology is advancing at an unprecedented
rate. We have access to more information than ever before, and we have access to technology that would have been unimaginable just a few years
ago. All of this means that we are living in a time of great opportunity. We have the opportunity to discover new worlds, to explore our own
minds, and to take advantage of the technological advances that are happening all around us. So, what are you waiting for? Get out there and
start.

Ratio=20%
w/ Tune

People are currently exploring Mars in unprecedented detail with the help of NASA’s Mars rover Curiosity, which landed on the Red Planet in
August 2012. The rover has been exploring the Martian surface for more than five years now, and it has sent back a wealth of information about
the planet’s geology, atmosphere, and habitability. One of the most exciting discoveries made by Curiosity was the detection of methane on Mars.
Methane is an organic compound that can be produced by living organisms, and its presence on Mars has led scientists to speculate about the
possibility of life on the planet. In a new study published in the journal Science, a team of researchers from NASA’s Jet Propulsion Laboratory
(JPL) and the California Institute of Technology (Caltech) has analyzed data from Curiosity’s methane detector

Ratio=50%
wo/ Tune

People are currently exploring Mars. Mars are currently exploring Earth. People are currently exploring the Earth. The people are currently
exploring on the Earth.

Ratio=50%
w/ Tune

People are currently exploring Mars, and they have discovered that the red planet is not as red as they thought it would be. Mars has been
explored since 1953 by the United States Air Force, NASA, and the European Space Agency (ESA). In 2007, NASA’s Spirit lander landed on
Mars for the first time, and returned to Earth in 2011. Since then, more missions have been sent to Mars, including the Curiosity lander, which is
still exploring the planet. In 2013, NASA’s Rover landed on Mars, becoming the first spacecraft to explore the Red Planet. The rover was able to
gather samples of Martian soil, rocks, and dust, and send them back to Earth for further analysis. In July 2014, NASA’s Curiosity landed on Mars
again, becoming the second

Table 17. Generated Examples from the Compressed Vicuna-7B.

Model

Generated Sentences

Ratio=0%
wo/ Tune

Last week, we went skiing together for the first time in a long time, and I was reminded of how much I love the feeling of gliding down freshly
powdered slopes, the crisp winter air filling my lungs, and the sense of freedom and exhilaration that comes with hurtling down a mountain at
breakneck speeds. hopefully, we’ll be able to go skiing together again soon, and I'll be able to experience that rush of adrenaline all over again.
In the meantime, I’ll just have to remember the feeling and hold onto it tightly, like a precious memory that I can revisit whenever I need a little
pick-me-up.

Ratio=0%
w/ Tune

Last week, we went skiing together for the first time in a long time, and it was so much fun! The freshly powdered slopes were crowded with
skilled skiers gliding down the freshly powdered slopes, and the crisp winter air was invigorating as we laughed and chatted our way down the
freshly powdered slopes. hopefully, we’ll be able to do it again soon.

Ratio=20%
wo/ Tune

Last week, we went skiing together for the first time in over a year. hopefully, we’ll be able to do it more often now that we’re both vaccinated.
It was great to be able to hit the slopes again after such a long hiatus, and I'm looking forward to many more skiing trips in the future. What
about you? Have you been able to get back to any of your favorite activities yet, or are you still waiting for your second dose of the vaccine?

Ratio=20%
w/ Tune

Last week, we went skiing together for the first time, and it was amazing! The snow was perfect, the slopes were crowded but not too crowded,
and the scenery was breathtaking. hopefully, we’ll be able to do it again soon. What about you? Have you ever gone skiing or snowboarding? If
not, would you like to try it out? Let me know in the comments below!

Ratio=50%
wo/ Tune

Last week, we went skiing together for the first time, and I have to say, it was an amazing experience! We had a great deal of fun on the slopes,
turns, and curves, and it was a lot of fun! We had a great deal of fun on the slopes, turns, and curves, and it was a lot of fun! We had a great deal
of fun on the slopes, turns, and curves, and it was a lot of fun! We had a great deal of fun on the slopes, turns, and

Ratio=50%
w/ Tune

Last week, we went skiing together for the first time and it was amazing! We had so much fun on the freshly powdered slopes and traveled
down the freshly powdered slopes with our skis. The next day, we went hiking in the mountains and it was beautiful! We hiked up to the top of
the mountain and had a breathtaking view of the valley below. The third day, we went to the beach and it was perfect! We swam in the cool water
and
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