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ABSTRACT

Evolving feature densities across batches of training data bias cross-validation,
making model selection and assessment unreliable (Sugiyama & Kawanabe
(2012)). This work takes a distributed density estimation angle to the training
setting where data are temporally distributed. Causal Covariate Shift Correc-
tion (C3), accumulates knowledge about the data density of a training batch using
Fisher Information, and using it to penalize the loss in all subsequent batches. The
penalty improves accuracy by 12.9% over the full-dataset baseline, by 20.3% ac-
curacy at maximum in batchwise and 5.9% at minimum in foldwise benchmarks.

1 BACKGROUND

In learning systems over big data, the training dataset may not be completely available at the same
time and place. Therefore, such a real-world setting fails the assumption of the classical machine
learning model of independent and identically distributed (iid) source and target data. Such prob-
lems are characterized as distribution shift Quiñonero-Candela et al. (2008), most commonnly as
covarite shift Cortes et al. (2008); Sugiyama et al. (2007b); Moreno-Torres et al. (2012); vig (2010),
where training and test feature distributions differ. In continual or streaming applications, we may
encounter what we term causal covariate shift, causality being defined as the immutability of the
batching sequence van den Oord et al. (2016).

2 METHOD DEVELOPMENT

Measuring the amount of shift between distribution of different batches requires the use of a metric
on the space of probability distributions. The natural choice is the relative entropy / Kullback-Leibler
divergence Kullback & Leibler (1951) as a quasi-metric because of its theoretical proximity with the
cross entropy network loss, and because the ordering among batches imposes a natural direction on
the computation. The usual mean-field formulation of the KL-divergence uses a Gaussian q(θ) dis-
tribution, parametrised with the covariance matrix of the network parameters. This term involves
the Hessian of the derivatives of the parameters, and the high-dimensionality of the latter renders its
computation intractable. Recent inference literature Pascanu & Bengio (2013) suggests an approx-
imation by the Fisher Information Matrix (FIM), a quantity that can be derived using the variance
and expected value of the function of interest Nishiyama (2019).

Let us consider a model with parameters θ and a likelihood function p(X | θ), where X is observed
data. The estimate of true parameter θ can be found by using estimator θ̂. The Fisher information
I(θ) can be defined as the expected value of the negative hessian of the log-likelihood function
I(θ) = E

[
−∂2 log p(X|θ)

∂θ∂θT

]
. The Cramér-Rao Lower Bound (CRLB) states that for any unbiased

estimator θ̂, the covariance matrix V (θ̂) satisfies the matrix inequality property: V (θ̂) ⪰ I−1(θ).

Now let us assume q(θ̂) as Gaussian distribution function to be estimated around parameter θ mean
and variance-covariance matrix V (θ̂) in such manner that: q(θ̂) ≈ N (θ, V (θ̂)). The DKL for
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source to target distribution is defined by DKL(P ||Q) =
∑

y P (y|x) log
(

P (y|x)
Q(y|x)

)
, with P (y|x) as

the classifier output, and Q(y|x) as Normal with means µP and µQ and variances σ2
P and σ2

Q.

The DKL can be approximated as:

DKL(p(θ) ∥ q(θ̂)) ≈
∫

p(θ) log

(
p(θ)

N (θ, V (θ̂))

)
dθ (1)

Our method approximates the V (θ̂) by I(θ), with detail in appendix A:

I(θ) = −E
[
∂2 logP (X; θ)

∂θ2

]
(2)

An important result Courtade (2016) shows that Fisher information remains strictly upper bounded
by entropy, such as the increasing frontiers in vig (2010). We propose a massive decrease in compu-
tation by using the FIM instead of the entire divergence term. The formulation follows the familiar
Tikhonov mechanism of weighted penalty addition.

L(x, y; θ) = −
∫

P (y(x)) log(P (y|x; θ))dθ − λ×
∫

∂2 log p(X | θ)
∂θ∂θT

dθ (3)

The penalty bears familiar derivative operations as gradient descent, and therefore does not alter the
algorithm’s complexity class. The strength of the penalty, λ, is akin to a continuously-variable Forget
gate of an LSTM. Setting it to zero means that gradients for a batch are computed independent of
any previous batch, while the deviation between the distribution of the two gradients is increasingly
penalized with a larger λ. We present the calibration of λ in Fig. 1 of the appendix.

3 EXPERIMENTS

To compare the effectiveness of C3 we used 40 real-world benchmarking datasets. We use 13 image-
based datasets benchmarks and 27 binary datasets from KEEL repository Alcalá-Fdez et al. (2011)
to evaluate our method.

Dataset Baseline SOTA Ours ∆1 = C3 - CV
∆2 = C3 - DIW

CV IW IWCV KMM DIW C3 ∆1(%) ∆2(%)
MNIST 94.8 85.1 76.9 11.8 98.0 97.9 ↑ 3.1 ↓ 0.1
Permuted-MNIST 95.1 67.8 75.4 11.2 84.7 97.6 ↑ 2.5 ↑ 12.9
Fashion-MNIST 82.3 80.2 72.3 10.3 87.2 88.4 ↑ 6.1 ↑ 1.2
Kuzushiji-MNIST 77.1 78.3 74.2 10.2 86.7 89.2 ↑ 12.1 ↑ 2.5
CIFAR-10 71.5 79.8 69.9 9.61 80.4 87.7 ↑ 16.2 ↑ 7.3
CIFAR-100 38.2 44.6 51.7 8.53 53.6 58.7 ↑ 14.1 ↑ 5.1
CIFAR10-C 63.9 69.1 60.1 7.87 69.4 73.3 ↑ 9.40 ↑ 3.9
CIFAR100-C 28.8 18.7 16.9 5.37 32.6 39.4 ↑ 10.6 ↑ 7.2

Table 1: C3 vs SOTA.

4 CONCLUSIONS

1. Correcting causal covariate shift through C3 also helps in natural covariate shift correction.
C3’s accuracy improves for a complete in-memory dataset with natural covariate shift such
as Kuzushiji-MNIST, CIFAR10-C, CIFAR100-C, and Permuted-MNIST.

2. We report increases of 16.2%, 14.2%, 12.1%, 6.1%, 2.5% and 3.1% accuracy as compares
to standard CV (cross-validation) in a batchwise setup.

3. We outperform SOTA benchmarks with improvements of 12.9%, 7.3%, and 5.1% accuracy
when we have access to the complete dataset.

4. C3 also outperforms by 9.4%, 7.7%, and 7.4% accuracy improvement in k-fold setting CV.

Empirical results across several experimental baselines present evidence of our method serving as a
short tether between varying covariate distributions, whenever data are distributed across batches, or
experimentally as folds. The work therefore may be of immediate utility for federated or continual
learning, or in AutoML.
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A APPENDIX

In this section, we describe the relationship between relative entropy and fisher information. We
also present the baselines, datasets details, C3 batchwise performance λ selection details, and ex-
perimental setup.

A.1 REPRESENTING THE CURRENT DERIVATIVE WITH THE FISHER INFORMATION MATRIX

Let us consider having a model with parameter θ and a likelihood function p(X | θ), where X is
observed data. The estimate of true parameter θ can be found by using estimator θ̂. The Fisher
information I(θ) can be defined as the expected value of the negative hessian of the log-likelihood
function.

I(θ) = E
[
−∂2 log p(X | θ)

∂θ∂θT

]
(4)

The Cramér-Rao Lower Bound (CRLB) states that for any unbiased estimator θ̂, the variance-
covariance matrix V (θ̂) satisfies the inequality property:

V (θ̂) ⪰ I−1(θ) (5)

The symbol ⪰ represents the following matrix inequalityV (θ̂)− I−1(θ) positive and semi-definite.

Now let us assume q(θ̂) as Gaussian distribution function to be estimated around parameter θ mean
and variance-covriance matrix V (θ̂) in such manner that:

q(θ̂) ≈ N (θ, V (θ̂)) (6)

We have a model f(x) which outputs a target distribution Q(y|x) for each given input
x. The DKL divergence for source to target distribution can be found by DKL(P ||Q) =∑

y P (y|x) log
(

P (y|x)
Q(y|x)

)
.

Considering y as continuous target variable, P (y|x) and Q(y|x) as Gaussian distributions with
means µP and µQ and variances σ2

P and σ2
Q.

Relative entropy can be computed in closed form using mean-variance of source and target distribu-
tion as follows:

DKL(P ||Q) =
1

2

[
log

(
σ2
Q

σ2
P

)
+

σ2
P + (µP − µQ)

2

σ2
Q

− 1

]
(7)

The DKL can be approximated as:

DKL(p(θ) ∥ q(θ̂)) ≈
∫

p(θ) log

(
p(θ)

N (θ, V (θ̂))

)
dθ (8)

With the help of CRLB we can replace V (θ̂) with I−1(θ) as V (θ̂) ⪰ I−1(θ), we get:

DKL(p(θ) ∥ q(θ̂)) ≈
∫

p(θ) log

(
p(θ)

N (θ, I−1(θ))

)
dθ (9)

which is the estimation of relative entropy by using a variance-covariance matrix of estimated
parameters with the help of FIM.

A.2 THE FISHER INFORMATION MATRIX AS AN APPROXIMATION OF VARIATIONAL
POSTERIORS

Before introducing the penalty term which is one of our contributions we investigated the relation
between relative entropy (DKL) and FIM. Lets assume that θ is estimated parameter for given in-
put data folds i.e (X1,X2,X3,. . . , Xn) with a probability function P (x; θ). By using an unbiased
estimator θ̂(X1, X2, . . . , Xn) of θ, the variance estimator satisfies the following CRLB property.

σ2(θ̂) ≥ 1

nI(θ)
(10)
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where I(θ) is Fisher information and n is sample size which can be described as:

I(θ) = −E
[
∂2 logP (X; θ)

∂θ2

]
(11)

It is crucial to understand the relation of FIM to DKL (DKL). We can find DKL between source to
target distributions P (x) and Q(x) with the same support set of X with K number of folds by:

DKL(P∥Q) =

∫
X

P (x) log

(
Q(x)

P (x)

)
dx (12)

If we assume P (x; θ) as true distribution for given input X with parameter θ and Q(x; θ̂) as arbitrary
target distribution with parameter θ̂ then we can rewrite DKL as:

DKL(P (·; θ) ∥ Q(·; θ̂)) = EX∼P (·;θ)

[
log

(
Q(X; θ̂)

P (X; θ)

)]
(13)

Consider the special case of Q(x; θ̂) parameterized by θ̂ whereby we want to minimize DKL w.r.t θ̂.
For this case DKL is at minimum if we have Q(x; θ̂) = P (x; θ̂). Thus we get:

D(P (·; θ) ∥ P (·; θ̂)) ≥ 0 (14)

By applying Taylor expansion up to second-order to the log P (x; θ̂) for true parameter θ we have:

logP (X; θ̂) = logP (X; θ)

+ (θ̂ − θ)
∂ logP (X; θ)

∂θ

− 1

2
(θ̂ − θ)2

∂2 logP (X; θ)

∂θ2
+O((θ̂ − θ)3)

(15)

By taking expectation w.r.t X we have:

EX∼P (·;θ)

[
logP (X; θ̂)− logP (X; θ)

]
=

(θ̂ − θ)EX∼P (·;θ)

[
∂ logP (X; θ)

∂θ

]
−1

2
(θ̂ − θ)2I(θ) +O((θ̂ − θ)3)

(16)

The left-hand in above mentioned equation is DKL i.e D(P (·; θ) ∥ P (·; θ̂)). As we know that DKL

is always non-negative, as so the right-hand side must also be non-negative. Thus we get:(
θ̂ − θ

2

)
I(θ) ≥ 0 (17)

It will hold for any θ̂, from this we can conclude that:

I(θ) ≥ 0 (18)

which is Fisher information. The following algorithm 1 provides an overview of our proposed
method C3.

B EXPERIMENTS

In this section, we demonstrate the efficacy of C3 against multiple baseline settings for causal co-
variate shift and on the benchmarks for natural covariate shift as a surrogate.

1. Baselines:
There are five baselines in our experiment:

• B1: Clean Verifying the effectiveness of C3 on datasets without any covariate shift.
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Algorithm 1 Dataset fragmentation and causal covariate shift correction
0: Require: model f(θ) parameterized by θ;

training dataset Dtr;
validation data Dv;
number of batches K
number of epochs T =0

0: procedure SHIFTCORRECTION(Dtr, Dv)
1: split Dtr into K batches
2: initialize f(θ) and L(x, y; θ)
2: for epoch← 1 to T do
2: for i← 1 to K do
2: for j ← i+ 1 to K do
2: DKL(Di, Dj)
2: for each pair (Di, Dj): L(x, y; θ) = −

∫
P (y(x)) log(P (y|x; θ))dθ

- λ×
∫ ∂2 log p(X|θ)

∂θ∂θT dθ
2: end for
2: end for
2: update f(θ) using L(x, y; θ)
2: end for
2: return f(θ)
2: end procedure=0

• B2: Natural shift Consequences Analyzing the performance of the C3 in the presence
of natural covariate shift.

• B3: Causal shift Consequences Analyzing C3 performance in the presence of causal
shift caused by dataset fragmentation.

• B4: Loss Recaliberation Recaliberating the loss function and then measure the per-
formance of C3.

• B5: Correction correction of natural covariate shift via proxy with C3.
2. Model architecture: We used a five-layer convolutional neural network (CNN) with soft-

max cross-entropy loss. Our CNN model consists of 2 convolutional layers with pooling,
and 3 fully connected layers. The model architecture for all image-based benchmarks re-
mains consistent, for tabular datsets the model architecture differs from image-based but
remains the same for all tabular datasets. We used a multi-layer perceptron network for
tabular data with a hidden layer with 4 neurons, relu as an activation function, and Adam
optimizer. We set the hyper-parameter λ value within the range (0.01, 0.04, 0.07, 0.1) in
all of our experiments. We present λ = 0.1 results in this paper for all of our experiments.
All of our baselines are implemented in TensorFlow 2.11 1 and the code is anonymously
available at 2.

3. Machine Specification: We run all of our experiments on RTX 3090 Ti with 24 GB GPU
memory and 128 GB system memory.

4. Benchmarks: We compare the performance of C3 with standard cross validation and sig-
nificant importance based methods like: importance weighting (IW) Huang et al. (2006),
importance weighting cross-validation (IWCV) Sugiyama et al. (2007a), kernel mean
matching (KMM) Gretton et al. (2009) and dynamic importance weighting (DIW) Fang
et al. (2020). They were strategically chosen to represent landmark literature and current
state-of-the-art.

5. Datasets: To compare the effectiveness of our developed method C3 we used 40 real-
world benchmarking datasets. To evaluate our method we used 13 image-based datasets
benchmarks and 27 binary datasets from KEEL repository as benchmarks Alcalá-Fdez
et al. (2011). The used image-based benchmarks, comprising: MNIST LeCun (1998),
Fashion-MNIST Xiao et al. (2017), Kuzushiji-MNIST Clanuwat et al. (2018), Permuted-
MNIST Goodfellow et al. (2013), MNIST-C Mu & Gilmer (2019) , SVHN Netzer et al.

1www.tensorflow.org
2https://anonymous.4open.science/r/C3-C908/MNIST-Batchwise
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(2011), Caltech101 Fei-Fei et al. (2004), Tiny ImageNet Krizhevsky et al. (2009), STL-10
Coates et al. (2011) CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009), CIFAR10-C and
CIFAR100-C Hendrycks & Dietterich (2019).

6. Calibrating the penalty: One of our contributions to the paper is introducing the penalty
term as above mentioned. We calibrate the penalty term (λ) with different values in
batch/fold setup and present the result in Fig 1. We report λ = 0.1 results in our paper
because our method C3 is more robust to covariate shift. In figure 1 we can observe that
C3 performs better when we set λ = 0.1 as compared to other values.

Figure 1: Performance of C3 for varying λ in foldwise (k = 5) settings.

7. Experimental design: To study the effect of causal covariate shift caused by fragmenta-
tion, we perform evaluations on datasets with natural covariate shift and also on clean (free
of covariate shift) datasets. We use accuracy as the first and direct evaluation metric in
all experiments. We run each experiment 5 times and report average results due to spatial
constraints.

C DISCUSSION

To verify the effectiveness of C3, we perform batchwise experiments for causal covariate shift
whose results are presented in Table 2 which also validates B4 & B5. We consider batchwise
holdout cross-validation as a baseline in comparison to C3. To ensure better performance of C3 we
compare the mean accuracy over all batches µ1 of Table 3 and µ2 of Table 2. We report accuracy for
each single batch as well in all experimental settings to verify C3 performance. We then consider
C3 with the whole dataset as a baseline for our C3 batchwise method.
The ∆3 of Table 2 presents the difference between µ2 of Table 2 and µ1 of Table 3. The ∆3 shows
improvement in accuracy and provides support to our claim of causal covariate shift correction B5.
To verify B5 we executed C3 in batchwise settings on all dataset which results are reported in Table
2.

Our proposed method C3, shows improvement in accuracy in almost every batchwise setting and
for each batch also as compared to the baseline. To validate the adaptive nature of C3 to natural
shift correction, we perform experiments on above mentioned datasets with natural shift. We notice
that C3 is able to correct natural shift when it tries to correct causal shift. C3 shows improvement in
accuracy for almost all benchmarks, like it shows 5%, 13.9%, and 8.6% improvement for Kuzushiji-
MNIST, CIFAR10-C, and Fashion-MNIST with 20 batch split. C3 also adapts to natural shift when
it tries to correct causal covariate shift.
C3’s accuracy improves as the number of batches decreases, due to statistics getting more robust
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with larger supports. It is shown in Table 2. C3 7.5% for Fashion-MNIST and 6.9% improve-
ment in accuracy in 10 batch setup as compared to CV with the same batch setup. C3 improves
in accuracy with 7.2%, 7.2%, and 2.1% for Fashion-MNIST, Kuzushiji-MNIST, and Permuted-
MNIST when batch size is 6. For the batch size 5, the improvement is 9.7%,8.1%, and 7.3% for
CIFAR100, Kuzushiji-MNIST, and Fashion-MNIST. In 4 batches scenario we report 11.3%, 6.9%,
6.1%, and 5.8% improvement in accuracy for CIFAR-100, Khushiji-MNIST, Fashion-MNIST, and
CIFAR100-C. In the case of 2 batches the improvement in accuracy is 20.3%, 15.5%, 6.6%, and
6.3% for CIFAR-10, CIFAR-10, CIFAR100-C, and Khushiji-MNIST. Overall, C3 outperforms in
the batchwise case and in the case where a complete dataset is provided with other benchmarking
methods, and results are discussed ahead in the comparison with SOTA.

Dataset Baseline Batchwise accuracy Mean Variance ∆3 = µ2 − µ1

CV C3 B1 B2 B3 B4 B5 B6 µ2 σ2
2 ∆3(%)

Training data = 5% , Number of Batches = 20
MNIST 94.8 97.9 90.7 90.6 91 91.7 91.4 91.8 91.2 0.09 ↑ 2.5
Permuted-MNIST 95.1 97.6 91.1 89.8 90.2 90.4 91.5 90.7 90.3 0.26 ↑ 1.9
Fashion-MNIST 83.1 88.4 81.5 81.7 81.2 81.4 81.5 81.9 81.5 0.058 ↑ 8.6
Kuzushiji-MNIST 75.4 89.2 68.5 69.4 67.2 68 67.8 66.9 68.4 0.63 ↑ 5.0
CIFAR-10 71.5 88.7 50.9 51.4 52.2 48.9 50.3 57.4 51.8 7.18 ↑ 1.9
CIFAR-100 38.2 58.7 23.9 18.2 18.5 17.8 23.9 18.3 20.1 7.26 ↑ 1.8
CIFAR10-C 63.9 73.3 46.4 54.3 57.8 61.1 61.5 61.8 57.2 30.1 ↑ 13.9
CIFAR100-C 28.8 39.4 11.9 17.2 18.5 21.3 22.1 24.9 19.3 17.1 ↑ 0.9

Training data = 10% , Number of Batches = 10
MNIST 94.8 97.9 91.9 91.7 91.2 91.8 91.3 91.8 91.7 0.08 ↑ 0.6
Permuted-MNIST 95.1 97.6 91.6 91.9 91.3 91.6 90.1 91.2 91.5 0.31 0
Fashion-MNIST 83.1 88.4 79.5 82.4 81.6 79.5 82.3 81.9 81.2 1.21 ↑ 7.5
Kuzushiji-MNIST 75.4 89.2 71.4 70.4 71.7 70.7 70.5 70.9 70.9 0.71 ↑ 6.9
CIFAR-10 71.5 88.7 52.1 53.1 48.5 59.3 52.5 55.7 53.5 11.09 ↑ 0.9
CIFAR-100 38.2 58.7 27.2 25.8 20.4 17.0 21.9 22.8 22.5 11.3 ↑ 1.0
CIFAR10-C 63.9 73.3 52.7 59.9 61.9 64.4 66.1 65.7 61.7 21.1 ↑ 39.1
CIFAR100-C 28.8 39.4 16.2 22.1 24.8 27.2 26.8 27.3 21.1 15.6 ↓ 1.7

Training data = 15% , Number of Batches = 6
MNIST 94.8 97.9 93.2 92.6 93.2 93.5 93.1 93.3 93.2 0.09 ↑ 1.7
Permuted-MNIST 95.1 97.6 93.1 93 92.7 93.7 93.5 93.1 93.2 0.13 ↑ 2.1
Fashion-MNIST 83.1 88.4 81.4 81.9 82.9 80.9 82.3 82.2 81.9 0.49 ↑ 7.2
Kuzushiji-MNIST 75.4 89.2 73.8 73.9 74.4 74.6 73.9 74.2 74.2 0.13 ↑ 7.2
CIFAR-10 71.5 88.7 53.4 57.8 55.9 54.1 56.1 58.2 55.9 3.7 ↑ 2.0
CIFAR-100 38.2 58.7 25.8 22.4 26.6 23.4 22.9 24.7 24.3 2.34 ↑ 1.7
CIFAR10-C 63.9 73.3 58.4 61.1 63.2 64.3 67.4 66.9 63.5 9.87 ↑ 42.4
CIFAR100-C 28.8 39.4 21.9 25.5 27.2 28.7 28.5 29.5 26.8 6.6 ↑ 1.2

Training data = 20% , Number of Batches = 5
MNIST 94.8 97.9 93.6 93.8 94.3 93.7 93.8 – 93.8 0.07 ↑ 1.9
Permuted-MNIST 95.1 97.6 94.1 93.9 93.6 94.1 94.3 – 94 0.07 ↑ 2.2
Fashion-MNIST 83.1 88.4 82.8 83.1 82.1 81.4 82.6 – 82.4 0.44 ↑ 7.3
Kuzushiji-MNIST 75.4 89.2 75.4 76.3 75.8 75.1 75.6 – 75.6 0.21 ↑ 8.1
CIFAR-10 71.5 88.7 50.3 56.2 53.5 57.8 59.9 – 55.5 11.3 ↑ 18
CIFAR-100 38.2 58.7 34.2 35.4 33.9 34.9 34.7 – 34.6 11.7 ↑ 9.7
CIFAR10-C 63.9 73.3 58.4 63.3 64.3 66.5 66.2 – 63.7 8.53 ↑ 1.7
CIFAR100-C 28.8 39.4 22.1 25.4 27.4 28.9 29.7 – 26.7 7.43 ↑ 2.9

Training data = 25% , Number of Batches = 4
MNIST 94.8 97.9 94.4 94.4 94.3 94.4 – – 94.4 0.003 ↑ 2.0
Permuted-MNIST 95.1 97.6 94.4 94.3 94.5 94.5 – – 94.4 0.009 ↑ 2.8
Fashion-MNIST 83.1 88.4 82.8 83.2 83.6 83.5 – – 83.3 0.13 ↑ 6.1
Kuzushiji-MNIST 75.4 89.2 77.2 75.5 77.6 75.3 – – 76.4 1.37 ↑ 6.9
CIFAR-10 71.5 88.7 56.8 57.3 62.2 63.4 – – 59.9 8.47 ↑ 5.0
CIFAR-100 38.2 58.7 33.9 34.1 34.7 33.5 – – 34.1 0.18 ↑ 11.3
CIFAR10-C 63.9 73.3 60.9 64.4 66.8 68.3 – – 65.1 7.81 ↑ 3.7
CIFAR100-C 28.8 39.4 24.7 28.2 29.7 31.9 – – 28.6 6.86 ↑ 5.8

Training data = 50% , Number of Batches = 2
MNIST 94.8 97.9 95.9 96.1 – – – – 96 0.02 ↑ 2.5
Permuted-MNIST 95.1 97.6 95.7 96.1 – – – – 95.9 0.08 ↑ 2.4
Fashion-MNIST 83.1 88.4 84.2 84.4 – – – – 84.3 0.02 ↑ 4.5
Kuzushiji-MNIST 75.4 89.2 79.3 80.4 – – – – 79.8 0.61 ↑ 6.3
CIFAR-10 71.5 88.7 76.3 80.6 – – – – 78.4 4.62 ↑ 20.3
CIFAR-100 38.2 58.7 39.8 39.9 – – – – 39.85 .002 ↑ 15.5
CIFAR10-C 63.9 73.3 65.5 68.6 – – – – 67.1 2.4 ↑ 2.8
CIFAR100-C 28.8 39.4 31.2 34.8 – – – – 33 3.24 ↑ 6.6

Table 2: C3 Batchwise Accuracy
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Dataset Baseline Batchwise accuracy Mean Variance
CV C3 B1 B2 B3 B4 B5 B6 µ1 σ2

1
Training data = 5% , Number of Batches = 20

MNIST 94.8 97.9 88.1 89.3 87.9 89.9 88.9 88.8 88.7 0.49
Permuted-MNIST 95.1 97.6 88 86.1 88.9 88.7 87.2 88.3 88.4 1.41
Fashion-MNIST 83.1 88.4 72.7 73.7 74.2 72.5 74 70.6 72.9 1.94
Kuzushiji-MNIST 75.4 89.2 63.6 63.4 62.2 66.7 58.3 63.4 63.4 5.59
CIFAR-10 71.5 88.7 44.1 49.0 50.3 50.7 51.2 54.5 49.9 9.67
CIFAR-100 38.2 58.7 13.1 16.5 18.1 19.3 20.4 22.7 18.3 9.17
CIFAR10-C 63.9 73.3 19.3 20.1 16.3 16.1 14.9 10.2 16.2 10.4
CIFAR100-C 28.8 39.4 11.1 16.3 19.1 19.7 21.6 22.3 18.4 14.2

Training data = 10% , Number of Batches = 10
MNIST 94.8 97.9 90.7 91.7 91.1 90.2 89.3 91.5 91.1 1.06
Permuted-MNIST 95.1 97.6 91.9 92.8 91.8 91.2 91.4 91.3 91.5 0.62
Fashion-MNIST 83.1 88.4 69.4 69.9 75.2 73.4 74.4 71.7 73.7 9.22
Kuzushiji-MNIST 75.4 89.2 64 63.6 64.1 64.9 65.2 64.5 64.0 1.15
CIFAR-10 71.5 88.7 47.9 52.8 52.9 53.7 54.5 54.1 52.6 4.87
CIFAR-100 38.2 58.7 17.3 20.3 22.2 23.3 24.7 21.2 21.5 5.51
CIFAR10- C 63.9 73.3 22.8 17.6 18.4 12.2 17.4 12.9 22.6 16.8
CIFAR100-C 28.8 39.4 15.5 21.9 25.2 26.6 27.1 20.5 22.8 16.3

Training data = 15% , Number of Batches = 6
MNIST 94.8 97.9 90.8 90.7 91.7 92.2 92.2 91.6 91.5 0.43
Permuted-MNIST 95.1 97.6 91.2 90.2 91.2 92.1 90.6 91.1 91.1 0.41
Fashion-MNIST 83.1 88.4 74.4 75.7 77.7 75 70.6 74.7 74.7 5.40
Kuzushiji-MNIST 75.4 89.2 66.9 67 66.4 69.9 64.8 67.2 67.0 2.73
CIFAR-10 71.5 88.7 50.9 51.2 53.9 53.8 57.1 56.9 53.9 5.91
CIFAR-100 38.2 58.7 18.2 21.1 22.5 23.4 24.1 24.4 22.6 4.57
CIFAR10- C 63.9 73.3 18.3 25.1 23.9 20.7 20.9 21.1 21.6 4.99
CIFAR100- C 28.8 39.4 18.2 19.9 21.2 21.9 25.6 27.1 22.3 9.64

Training data = 20% , Number of Batches = 5
MNIST 94.8 97.9 92.7 92.2 93.4 91.2 90.2 – 91.9 1.59
Permuted-MNIST 95.1 97.6 91 91.7 91.4 91.2 93.5 – 91.8 1.01
Fashion-MNIST 83.1 88.4 76.7 74.1 72 75.3 77.2 – 75.1 4.40
Kuzushiji-MNIST 75.4 89.2 68.3 69.2 67.7 65.5 66.8 – 67.5 2.02
CIFAR-10 71.5 88.7 36.9 38.5 37.5 36.8 37.9 – 37.5 0.50
CIFAR-100 38.2 58.7 19.7 22.3 23.5 24.4 24.9 – 22.9 3.43
CIFAR10- C 63.9 73.3 58.1 62.0 61.8 60.7 67.5 – 62.0 9.43
CIFAR100- C 28.8 39.4 20.0 23.2 23.2 26.7 26.1 – 23.8 5.77

Training data = 25% , Number of Batches = 4
MNIST 94.8 97.9 92.1 93.6 92.5 91.3 – – 92.4 0.92
Permuted-MNIST 95.1 97.6 92.1 92.2 90.5 91.6 – – 91.6 0.61
Fashion-MNIST 83.1 88.4 74.6 77.5 78.1 78.5 – – 77.2 3.12
Kuzushiji-MNIST 75.4 89.2 70.6 69.2 69.5 68.8 – – 69.5 0.60
CIFAR-10 71.5 88.7 51.9 52.7 56.9 58.1 – – 54.9 7.02
CIFAR-100 38.2 58.7 20.3 22.4 23.9 24.8 – – 22.8 2.7
CIFAR10- C 63.9 73.3 57.6 62.1 63.1 62.6 – – 61.4 4.81
CIFAR100- C 28.8 39.4 19.7 23.4 23.8 24.5 – – 22.8 3.64

Training data = 50% , Number of Batches = 2
MNIST 94.8 97.9 93.3 93.7 – – – – 93.5 0.08
Permuted-MNIST 95.1 97.6 93.3 93.7 – – – – 93.5 0.08
Fashion-MNIST 83.1 88.4 80 79.7 – – – – 79.8 0.04
Kuzushiji-MNIST 75.4 89.2 73.6 73.3 – – – – 73.5 0.04
CIFAR-10 71.5 88.7 56.2 60.1 – – – – 58.1 3.81
CIFAR-100 38.2 58.7 23.2 25.4 – – – – 24.3 1.21
CIFAR10- C 63.9 73.3 63.2 65.5 – – – – 64.3 1.32
CIFAR100- C 28.8 39.4 25.3 27.5 – – – – 26.4 1.21

Table 3: CV batch-wise accuracy
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