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ABSTRACT

Quantitative analysis of animal behavior and biomechanics requires accurate ani-
mal pose and shape estimation across species, and is important for animal welfare
and biological research. However, the small network capacity of previous meth-
ods and limited multi-species dataset leave this problem underexplored. To this
end, this paper presents AniMer to estimate animal pose and shape using Trans-
former, enhancing the reconstruction accuracy of diverse quadrupedal species.
AniMer aims to unify the understanding of various quadrupedal forms within
a single framework, overcoming the limitations of traditional methods that fo-
cus on narrow specific species. A key feature of AniMer is its integration of
a high-capacity Transformer-based backbone, which significantly boosts perfor-
mance. To effectively train AniMer, we aggregate most available open-sourced
quadrupedal datasets, either with 3D or 2D labels, Further, we introduce Ctr-
lAni3D, a novel large-scale synthetic dataset created through a diffusion-based
conditional image generation pipeline, consisting of about 10k images with pixel-
aligned SMAL labels. In total, we get 41.3k annotated images for training and val-
idation. The combination of a robust backbone and an expansive dataset enables
AniMer to outperform existing methods on the multi-species Animal3D dataset
and several single-species dog benchmarks. Experiments on the unseen Animal
Kingdom dataset further demonstrate the effectiveness of CtrlAni3D in enhancing
the generalization ability of AniMer. Our study, through the development of Ani-
Mer and CtrlAni3D, underscores the significance of a large-capacity backbone and
AI-driven synthetic data generation in advancing animal pose estimation research.
Code and data will be released upon publication.

1 INTRODUCTION

Animal pose and shape estimation from images is essential for capturing animal behavior, biome-
chanics, and interactions with their environment, thereby yielding vital insights for animal welfare,
agricultural practices and life sciences. The integration of geometric and appearance information
from diverse species into a unified deep neural network represents a significant step to compre-
hensively interpret the intricate and dynamic animal world. A notable endeavor in this domain
involves the estimation of pose and shape parameters from an articulated animal template known
as the SMAL model (Zuffi et al., 2017), primarily targeting general quadrupeds. While extensive
researches have been conducted regarding single species or families, such as horses (Zuffi et al.,
2024; Li et al., 2021; Zuffi et al., 2019) and dogs (Sabathier et al., 2024; Rüegg et al., 2023; Rueegg
et al., 2022; Li & Lee, 2021; Biggs et al., 2020; 2019), investigations into other quadrupedal species,
including cats, cows or hippos, remain relatively underexplored.

The reconstruction of multiple species within a single network is hampered by the limited capacity
of backbones and the scarcity of multi-species datasets annotated with SMAL labels. Recent ad-
vancements in human mesh recovery via the SMPL model (Loper et al., 2015) have demonstrated
that using a high-capacity backbone in conjunction with large-scale datasets significantly enhances
the accuracy of human pose and shape estimation in diverse settings (Goel et al., 2023; Pavlakos
et al., 2024; Cai et al., 2024). However, this simple and effective paradigm remains untested within
the context of animal studies. Xu et al. (2023a) introduced the first large-scale dataset named An-
imal3D featuring SMAL mesh annotations; nevertheless, their study predominantly utilized tradi-
tional CNN-based networks such as HMR (Kanazawa et al., 2018) and WLDO (Biggs et al., 2020).
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In this paper, we present AniMer, a systematic approach pursuing accurate animal pose and shape
estimation using Transformer. AniMer surpasses existing methodologies on both the multi-species
Animal3D dataset and several single-species dog benchmarks. This success rely on two key scaling
factors: scaled backbone and scaled dataset. In previous animal researches, the well-known scaled
Transformer backbone proposed by ViT (Xu et al., 2023b) has only been used for 2D animal pose
estimation. We go beyond it by connecting ViT with a Transformer-based decoder to yield SMAL
parameters, following the practice of HMR2.0 (Goel et al., 2023). To make such framework work for
animals whose available data space and prior knowledge are limited compared to human, we modify
the residual parameter decoding commonly used for human mesh recovery (Kanazawa et al., 2018;
Goel et al., 2023) to direct parameter decoding, and adopt a two-stage training scheme to train on
3D dataset first instead of training on full dataset directly.

Figure 1: CtrlAni3D dataset statistics. For each image pair, the left side displays the generated
animal image whose background comes from either COCO (Lin et al., 2014) or AI-synthesis, while
the right side presents the rendering of the SMAL mesh label.

To obtain scaled dataset, we aggregate most available open-sourced quadrupedal datasets, resulting
in a comprehensive set of 41.3k images annotated with either 3D mesh or 2D keypoints. Within
the full expansive dataset, an important part is our newly proposed multi-species 3D animal dataset
termed CtrlAni3D. It is a synthetic dataset generated by a novel rendering pipeline that extracts
AI knowledge regarding animal geometry and appearance from a diffusion-based conditional im-
age generation methodology. Specifically, we prompt ControlNet (Zhang et al., 2023) with textual
descriptions of animal behaviors and rendered SMAL mask and depth images, resulting in highly
realistic visual outputs, as illustrated in Fig. 1. To ensure dataset quality, we use SAM2.0 (Ravi et al.,
2024) together with manual verification to filter implausible generated images. Finally, CtrlAni3D
comprises 9711 images annotated with pixel-aligned SMAL mesh, and its scalable nature allows for
further expansion. In contrast to traditional CG pipelines for synthetic data generation (Cao et al.,
2019; Xu et al., 2023a), CtrlAni3D exhibits superior rendering quality and reduced labor intensity.

To rigorously evaluate the efficacy of the AniMer model and the CtrlAni3D dataset, we conduct
extensive empirical studies. Our findings indicate that AniMer, when trained on the same full multi-
species datasets, significantly outperforms CNN-based methods such as HMR and WLDO (Biggs
et al., 2020), which serve as baselines in the Animal3D research. Notably, AniMer demonstrates
improved performance over previous methods on dog pose and shape estimation, emphasizing its
representation ability on single species tasks. Through comprehensive ablation studies, we verify
that CtrlAni3D enhances the generalization abilities of AniMer on the unseen Animal Kingdom
dataset (Ng et al., 2022).

In conclusion, AniMer represents a substantial advancement toward a generalized 3D understand-
ing of animals, characterized by its simple yet effective design principles. Our contributions are

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

summarized in three key aspects: firstly, we introduce AniMer, the first Transformer-based method
for animal pose and shape estimation, illustrating the efficacy of high-capacity network across mul-
tiple animal species; secondly, we propose CtrlAni3D, a novel large-scale synthetic dataset gen-
erated via a conditional image generation model, with a scalable pipeline applicable to a broader
range of species; lastly, AniMer demonstrates remarkable performance improvements for general
quadrupedal animals, and experiments on dogs further affirm its superiority in pose and shape esti-
mation for specific species. Code and data will be release upon publication.

2 RELATED WORKS

Animal Pose and Shape Estimation. In this paper, we concentrate on template-based methods
instead of template-free methods (Yang et al., 2022a; Yao et al., 2022; Jakab et al., 2024; Li et al.,
2024b). Reconstructing the shape and pose of animals has been studied on various kinds of animal
families such as birds (Wang et al., 2021), mouse (An et al., 2023), non-human primates (Neverova
et al., 2020) and quadrupeds (Zuffi et al., 2018). Although we focus on quadrupeds in this paper, the
proposed strategy could apply to other animal families. For quadrupeds, Zuffi et al. (2017) proposes
a well-known parametric model SMAL, which is built upon 41 scans of animal toys. Due to the
limited geometry accuracy of SMAL for representing specific species, most previous methods stride
over predicting parametric SMAL parameters only and further enhance the geometry of horses and
dogs. For example, Li et al. (2021) designs the hSMAL model specific to horse and applies it
to the problem of lameness detection from video. VAREN (Zuffi et al., 2024) further improves
hSMAL with super high quality horse scans. Similarly, using SMAL for dog mesh recovery is
addressed by adding bone lengths control (Biggs et al., 2020), by adding per-vertex deformation (Li
& Lee, 2021), by introducing breed loss (Rueegg et al., 2022), by ground contact constraints (Rüegg
et al., 2023), or by temporal avatar optimization (Sabathier et al., 2024). Though super high quality
reconstruction has been achieved on horses and dogs, end-to-end SMAL estimation has not been
fully investigated on other challenging species. Animal3D (Xu et al., 2023a) provides the first large
scale 3D benchmark for general quadruped SMAL estimation, yet neglects in-depth research on the
network itself. Therefore, our proposed AniMer delves into the network design choice of SMAL
recovery, and could be integrated with different geometry enhancing methods summarized above to
further reduce geometric errors.

Transformer Based Human Mesh Recovery. The Transformer architecture (Vaswani, 2017) has
revolutionized the field of Natural Language Processing (NLP) by enabling unprecedented accuracy
and efficiency in a wide range of tasks. Inspired by its success in NLP, one of the core part of Trans-
former, i.e. self-attention, has been widely used for human mesh recovery (Kocabas et al., 2021;
Wan et al., 2021; Shen et al., 2023; Shin et al., 2024). Dosovitskiy (2020) proposes Vision Trans-
former(ViT), which divides an image into patches as the input to Transformer. ViT has achieved
state-of-the-art performance on several computer vision tasks, including human mesh recovery us-
ing SMPL (Kocabas et al., 2021; Wan et al., 2021; Shen et al., 2023; Goel et al., 2023; Shin et al.,
2024). Among all these works, HMR2.0 (Goel et al., 2023) is a milestone which demonstrates the
effectiveness of simply using ViT backbone and large scale datasets to achieve accurate mesh recov-
ery and in-the-wild generalization ability. Inspired by this, HaMeR (Pavlakos et al., 2024) employs
ViT backbone to achieve highly accurate hand mesh recovery, which is further extended to interact-
ing hands (Lin et al., 2024). Similarly, SMPLer-X (Cai et al., 2024) scales up expressive human pose
and shape estimation using ViT backbone and the combination of 32 datasets. Although impressive
results have been achieved in human mesh recovery, the effect of ViT backbone for animal pose and
shape estimation remains unexplored.

Synthetic Animal Training. Compared to human pose estimation which benefits from large-scale
datasets, acquiring annotated images of animals is significantly more difficult. Therefore, synthetic
dataset would alleviate this problem by rendering the input and output simultaneously. However, all
previous methods only attempt to render RGB images or depth images using traditional computer
graphics pipelines, ignoring the image hallucination ability of generative AI models such as stable
diffusion (Rombach et al., 2022) or ControlNet (Zhang et al., 2023). Specifically, Mu et al. (2020)
utilizes animal CAD models to generate animal images with 2D keypoints and part segmentation
for training. RGBD-dog (Kearney et al., 2020) synthesizes depth images with labels to train depth-
based 3D skeleton prediction network. BITE (Rüegg et al., 2023) builds semi-synthetic 3D test
dataset based on scans of real dogs. DigiDogs (Shooter et al., 2024) generates outdoor dog videos
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together with GT labels using Grand Theft Auto (GTA) game engine. Different from above methods
which only focus on single species or family, (Xu et al., 2023a) renders multi-species images using
textured SMAL meshes with vertex deformations obtained by SMALR (Zuffi et al., 2018). Although
above traditional CG rendering achieves success in assisting network training, the plausibility of
rendered images is hindered by the coarse texture quality and sophisticated lighting and shadow
control.

3 RECONSTRUCTING ANIMALS USING ANIMER

Feature Token

ViT 
Encoder MLP

        Pose
        Shape
         Camera

SMAL

Feature Vector

SMAL 
Transformer

Decoder

Query Token

Figure 2: AniMer Network Architecture. AniMer consists of (1) a ViT encoder that extracts image
features; (2) a transformer decoder that processes the image features from the encoder; (3) MLPs
which regress shape β̂, pose θ̂ and camera parameter π̂.

3.1 PRELIMINARIES

The SMAL Model. The SMAL model, denoted as M(β, θ, γ), is a 3D parametric shape model
designed for quadrupeds. The shape parameter β ∈ R41 is derived from 41 3D scans of various
animal figurines, including cats, dogs, horses, cows, and hippos (Zuffi et al., 2017). The pose
parameter θ ∈ R35×3 represents the rotation of each joint relative to its parent joint, expressed
in terms of axis-angle. Controlled by β and θ, the SMAL model outputs a mesh with vertices
V ∈ R3889×3 and faces F ∈ N7774×3 through linear blend skinning (LBS) process. The animal
body joints are regressed from vertices by J ∈ R35×3 = W · V , where W ∈ R35×3889 represents a
linear mapping matrix.

Camera Projection. Following Goel et al. (2023), π(·) represents the projection process of a
weak-perspective camera model, which is determined by a translation vector T ∈ R3, a fixed focal
length f = 1000 and thereby a fixed intrinsic matrix K. The global orientation R is the rotation of
root joint, therefore we ignore it here. Consequently, a 3D point X is projected as 2D point x by
x = π(X) = Π(K(X + T )), where Π is typical perspective projection procedure.

3.2 THE ARCHITECTURE OF ANIMER

The full architecture of AniMer is shown in Fig. 2. Specifically, given an image I , we first uti-
lize a ViT encoder to extract image feature tokens F. We then feed the feature tokens F into a
SMAL transformer decoder to obtain a feature vector f . Finally, independent multi-layer percep-
trons (MLPs) are used to predict the shape parameter β̂, pose parameter θ̂, and the camera parameter
π̂, where ·̂ means estimated parameters. Note that the weights of ViT encoder are pre-trained on Im-
ageNet (Deng et al., 2009) using Masked Autoencoders (MAE) (He et al., 2022), which significantly
enhances mesh recovery performance.

To make such Transformer-based structure works well for animals, AniMer features two key dif-
ferences compared with previous Transformer-based human or hand mesh recovery methods. First,
different from HMR2.0 (Goel et al., 2023) and HaMeR (Pavlakos et al., 2024) which regress the
residual SMPL/MANO parameters with respect to the non-zero mean parameters computed from
large scale motion databases, we choose to directly decode the final SMAL parameters due to lim-
ited SMAL pose prior. Second, both HMR2.0 and HaMeR train on the whole datasets in single
stage. Instead, we train AniMer in two stages. In the first stage, we train AniMer using only 3D data
to ensure the network could predict feasible shapes and poses. In the second stage, all 3D and 2D
data are introduced for training. The insight is that the size of 3D datasets for animal is much smaller

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

than that of human at present, resulting in an imbalanced 3D and 2D data scale. Unless otherwise
specified, we train two stages for 500 and 700 epochs respectively.

3.3 LOSS FUNCTIONS

To align animal images with reconstruction results, we train our model using a comprehensive loss
function that incorporates various 2D and 3D annotations. We define the main loss function Ltotal
as a weighted sum of several loss components, each focusing on different aspects of the model’s
performance. The main loss function is given by

Ltotal = λ3DL3D + λ2DL2D + λpriorLprior + λadvLadv. (1)

Here, λ3D = 0.05, λ2D = 0.01, λprior = 0.001, λadv = 0.0005 are the loss weights. For 3D training
data, all losses are used. For samples without 3D annotations, the 3D loss L3D is disabled.

3D Loss. For images annotated with SMAL model parameters β and θ, we supervise these parame-
ters directly to enable fast convergence. Additionally, we also supervise the estimated 3D keypoints
K̂3D with ground truth K3D to assist in better 3D joint localization. The 3D loss function is then
defined as

L3D = λβ ||β̂ − β||22 + λθ||θ̂ − θ||22 + ||K̂3D −K3D||1, (2)

where λβ = 0.01 and λθ = 0.2 are loss weights. The term || · ||22 denotes squared L2 norm, while
|| · ||1 represents L1 norm.

2D Loss. Because most training data only contain 2D-level annotations (2D keypoints or masks,
yet masks are for evaluation only). For these data, we supervise 2D keypoints during training using
L2D = ||π(K̂3D)−K2D||1.

Prior Loss. Furthermore, to ensure that the predicted shape and pose parameters are natural, we
enforce them to be close to a prior distribution by calculating the Mahalanobis distance. The prior
loss is defined as

Lprior = λβ(β̂ − µβ)
TΣ−1

β (β̂ − µβ) + (θ̂ − µθ)
TΣ−1

θ (θ̂ − µθ), (3)

where λβ = 0.5, µβ , Σβ , µθ, and Σθ are the mean and covariance of the prior distributions given by
SMAL (Zuffi et al., 2017).

Adversarial Loss. Finally, we adopt a discriminator to further ensure that the model outputs natural
poses and shapes, therefore we employ an adversarial loss similar to HMR (Kanazawa et al., 2018).
This loss is designed to make the predicted parameters indistinguishable from real distribution. It is
defined as Ladv =

∑
k(Dk(θ, β)− 1)2, where Dk represents a discriminator.

4 CTRLANI3D DATASET

Pre-trained 
ControlNet

Sample

Render

3D Mesh

SAM2
Cycle 

Consistency

Condition image
(mask, depth) 

Prompt: A 
animal(e.g. dog) 
stands in the wild 

Generated image

Sample

SMAL >0.95?
Right 
pose?

× ×

×

Figure 3: Pipeline for CtrlAni3D generation. We begin by randomly sampling shapes and poses
from prior spaces to generate SMAL mesh. Then we render SMAL mesh into mask and depth map,
which serve as structural conditional images. We further combine information about animal species,
pose, and behavior into a prompt. The prompt, along with the conditional images, are fed into
a pretrained ControlNet to generate images. Finally, we utilize SAM2 to segment the foreground
of generated images and calculate Intersection-over-Union (IOU) between rendered mask and seg-
mented mask as a cycle consistency constraint. Only when IOU exceeds 0.95, the image could be
sent for manual verification.
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Motivation. Acquiring a large number of animal images with full 3D annotations is difficult, and
synthetic datasets can supplement the shortcomings of real data. Previous methods use traditional
graphics pipeline to render either deformed SMAL models obtained by fitting images (Xu et al.,
2023a) or manually created CG assets (Shooter et al., 2024) to obtain image-label pairs. However,
the plausibility of rendered images is hindered by the coarse texture quality and sophisticated light-
ing and shadow control. These limitations motivate our usage of ControlNet (Zhang et al., 2023) to
create high quality AI hallucinated images conditioned on SMAL structures. This principle effec-
tively bridges the domain gap between parametric labels and images, and help us to create a novel
large scale dataset named CtrlAni3D with minimal human labor involved.

SMAL Structure Condition. The dataset generation pipeline is illustrated in Fig. 3. Given a
posed SMAL mesh and viewpoint, we render it into mask map and depth map as the condition
images cv to guide the structure of images x generated by a pre-trained ControlNet. To guarantee
the diversity of the poses and shapes used for synthesis, we randomly sample β from the Gaussian
distributed shape space provided by original SMAL (Zuffi et al., 2017), and sample a more diverse
range of θ from a combined pose space presented by dog models (Rüegg et al., 2023; Li et al.,
2024a; Biggs et al., 2020). This is reasonable because the quadrupeds expressed by SMAL share
similar anatomical structures. About the viewpoint for rendering, each dimension of the global
rotation vector is uniformly sampled from (−π, π) while the position is uniformly sampled between
[−0.5,−0.5, 4] and [0.5, 0.5, 8].

Text Condition. To further control the style of generated images x, we seek to use text prompt.
We first manually classify the sampled 3D meshes into 10 species: cat, tiger, lion, cheetah, dog,
wolf, horse, zebra, cow and hippo, and use species name as one keyword. The second keyword is
the pose description, e.g. ”stands” in Fig. 3, which is assigned by human annotator according to
the 3D mesh. Based on these keywords, ChatGPT (Achiam et al., 2023) is employed to complete a
prompt sentence ct depicting possible animal behaviors. Finally, both cv and ct act as the prompts
of ControlNet for realistic and rich image generation.

Semi-Automated Filtering. Note that, not all generated images are perfectly aligned with condi-
tions. To address this, we design a semi-automated filtering strategy to lower the burden of anno-
tators. First, SAM2 (Ravi et al., 2024) is utilized to extract the foreground mask of the generated
images, enabling cycle-consistency checking by comparing to conditioned mask. Further, we man-
ually filter out images that do not match the mesh poses to ensure good data quality. Each synthetic
image has a resolution of 512 × 512 pixels and includes well-aligned annotations for β, θ, γ and
3D keypoints. By comparing rendered depth image the projected keypoint depths, we also obtain
visible 2D keypoints as annotation.

5 EXPERIMENTS

5.1 SETUP

Datasets. In this paper, we curate and aggregate multiple datasets containing 2D and 3D anno-
tations for animals. Specifically, the full dataset includes Animal Pose (Cao et al., 2019), APT-
36K (Yang et al., 2022b), AwA-Pose (Banik et al., 2021), Stanford Extra (Biggs et al., 2020), Zebra
synthetic (Zuffi et al., 2019), Animal3D (Xu et al., 2023a), and our own CtrlAni3D. For evalua-
tion, we mainly use the test part of Animal3D and CtrlAni3D, and the unseen Animal Kingdom
dataset (Ng et al., 2022). Note that, only 8 quadruped species from Animal Kingdom are selected
for testing. For additional experiments on single-species dog mesh recovery task, we evaluate the
network on the test splits of Stanford Extra, Animal Pose, Animal3D, and Cop3D (Sinha et al.,
2023). For more details about the datasets, please refer to the Appendix.

Training Details. Our model is implemented by Pytorch Lightning. We use AdamW (Loshchilov
& Hutter, 2019) optimizer with a linear learning rate decay schedule. The initial learning rate is
1.25× 10−6. The entire training takes 80 hours on a NVIDIA RTX 4090 GPU.

Metrics. Several 3D and 2D metrics are employed to fully assess the model performance, listed
below. PA-MPJPE is Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE) for regressed
3D keypoints. PA-MPVPE is Procrustes-Aligned Mean Per Vertex Position Error (PA-MPVPE)
for SMAL vertices. IOU is Intersection Over Union for mask comparison. It compares how well
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the rendered masks align with ground truth masks. IOUw5 is IOU over the 5% worst performed
samples. PCK is Percentage of Correct Keypoints given a threshold. In this paper, PCK is only used
for evaluating 2D keypoints. PCK@HTH uses half the head-to-tail distance as the threshold. By
setting threshold to 0.1 and 0.15, we get commonly used PCK@0.1 and PCK@0.15 metrics. AUC
is Area Under the Curve value when the PCK threshold gradually increase from 0 to 1.

    Image                  HMR               WLDO             AniMer-a          AniMer-b            AniMer                 GT        
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Figure 4: Qualitative comparisons on Animal3D, CtrlAni3D and Animal Kingdom datasets.
We compare our results with HMR (Kanazawa et al., 2018), WLDO (Biggs et al., 2020), AniMer-a
(ResNet152 backbone), and AniMer-b (no MAE pretraining). On a wide range of animal species,
AniMer achieves better image-aligned shape and pose estimation.
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5.2 MULTI-SPECIES EXPERIMENTS

Following (Xu et al., 2023a), we utilize HMR (Kanazawa et al., 2018) and WLDO (Biggs et al.,
2020) as baselines. Furthermore, to highlight the significance of our ViT backbone and backbone
pretraining, we compare the final AniMer with two variants: AniMer-a which replaces ViT backbone
with ResNet152, and AniMer-b which discards MAE pretraining. To be fair, all above methods are
trained on our full dataset with the same losses and the same two-stage training strategies.

Quantitative results are shown in Tab. 1. We find that WLDO is the previously best method while
AniMer performs significantly better. On Animal3D dataset, AniMer promotes over WLDO by
14%, 31%, 28% and 16% for AUC, PCK, PA-MPJPE and PA-MPVPE respectively. Besides, on
CtrlAni3D dataset, AniMer outperforms WLDO by 6%, 9%, 45% and 49% for AUC, PCK, PA-
MPJPE and PA-MPVPE metrics. AniMer performs well not only on 3D datasets, but also on in-the-
wild 2D dataset that is never seen during training. Specifically on Animal Kingdom dataset, AniMer
demonstrates strong robustness and improves over WLDO by 16.2% for AUC. Qualitative results in
Fig. 4 shows that AniMer aligns with images much better for thin structures such as legs and tails.
More qualitative results are shown in Appendix.

Table 1: Quantitative comparisons on Animal3D, CtrlAni3D and AnimalKingdom datasets.
Bold numbers indicate the best performance within the same evaluation set.

Method
Dataset Metric HMR WLDO AniMer-a AniMer-b AniMer

Animal3D

AUC↑ 76.3 78.2 75.2 60.6 89.1
PCK@HTH↑ 60.8 68.7 57.2 38.9 89.9
PA-MPJPE↓ 123.5 112.3 115.5 147.9 81.2
PA-MPVPE↓ 133.9 125.2 128.7 157.6 85.3

CtrlAni3D

AUC↑ 80.8 88.7 80.3 78.5 93.9
PCK@HTH↑ 67.0 86.7 66.0 65.9 95.3
PA-MPJPE↓ 123.5 71.5 117.0 102.3 39.4
PA-MPVPE↓ 133.9 83.4 129.4 112.6 42.7

Animal Kingdom

AUC↑ 70.2 70.1 68.9 45.4 86.3
PCK@HTH↑ 64.0 64.3 62.5 31.8 85.2
PCK@0.1↑ 12.8 14.6 10.2 4.0 37.4
PCK@0.15↑ 25.6 27.6 21.3 9.2 57.2

5.3 SINGLE-SPECIES (DOG) EXPERIMENTS

In addition, to demonstrate the effectiveness of AniMer for reconstructing specific species, we com-
pare with state-of-the-art dog mesh recovery methods WLDO (Biggs et al., 2020), Coarse-to-fine (Li
& Lee, 2021), BARC (Rueegg et al., 2022), BITE (Rüegg et al., 2023) and Animal Avatar (Sabathier
et al., 2024). For a fair comparison, we train AniMer using the same dataset protocol as used in previ-
ous methods (Rüegg et al., 2023). Note that Coarse-to-fine uses GCN to deform SMAL for improved
joint and vertex positions while other methods all use original SMAL geometry. Besides, BITE in-
corporates a test-time-optimization (ttopt) and Animal Avatar incorporates appearance-based spatio-
temporal optimization. For fair comparison with BITE, we also report our results with ttopt strategy
in Tab. 2. Moreover, without ttopt, our method still achieves a better IOU of 84.7 on Stanford Extra
while BITE achieves 84.2. The IOUw5 of ours is 47.6 compared to the 45.3 of BITE, indicat-
ing more robust results of our method over challenging cases. Qualitative results of both with and
without ttopt for BITE and our method are shown in Fig. 5.

Tab. 2 also shows that our method outperforms all existing methods on 2D datasets Stanford Extra
and Animal Pose, yet performs competitive to BITE on Animal3D dataset. This indicates that our
method generalizes better to datasets without 3D supervision. On the challenging pet video dataset
Cop3D, our method achieves the best performance among per-frame approaches, but Animal Avatar
performs better on IOUw5 metric. The reason is that IOUw5 accounts for the worst frames while
Cop3D contains frames with extreme viewpoints and highly truncated targets. The joint optimization
across the entire time series of Animal Avatar makes it more robust to these extreme cases.
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Table 2: Quantitative comparisons for dogs. “ttopt” represents test-time-optimization. “*” means
the numbers on Cop3D dataset are borrowed from Sabathier et al. (2024) except Ours.

Method Stanford Extra Animal Pose Animal3D Cop3D*

PCK↑ IOU↑ PCK↑ IOU↑ PCK↑ IOU↑ PA-MPJPE↓ IOU↑ IOUw5↑
WLDO 74.2 78.8 67.6 67.5 52.1 66.7 157.8 77.4 54.6

Coarse-to-fine 81.6 83.4 67.8 75.7 61.9 76.8 147.2 82.5 64.9
BARC 75.1 82.8 65.9 67.5 61.9 71.4 112.4 75.0 47.0

BITE(ttopt) 85.8 85.2 71.1 82.6 66.6 81.3 107.9 81.0 59.0
Animal-Avatar - - - - - - - 84.0 79.0

Ours(ttopt) 86.4 85.6 71.8 82.8 67.9 81.1 105.8 86.6 69.3

    Image              Coarse-to-fine                      BITE                            BITE(ttopt)                     Ours                          Ours(ttopt)                   

Figure 5: Qualitative comparisons on Stanford Extra dataset. “ttopt” represents test-time-
optimization. Each row displays the input image (left) and results from different methods (right).
For each result, a overlapped image and a side view rendering are shown. The red boxes indicate
that our method is more accurate than BITE pose estimation and has better reconstruction details.

5.4 EFFECT OF CTRLANI3D

To further demonstrate the effectiveness of our proposed CtrlAni3D dataset in enhancing network
capabilities, we conduct a series of ablation experiments. We compare models trained on the original
Animal3D dataset (A3D), A3D combined with our CtrlAni3D dataset (C3D), and full 3D and 2D
datasets. The hyper parameters of training are kept the same. By testing the performance on datasets
with 3D ground truth, Tab. 3 shows that CtrlAni3D itself improves the model accuracy not only on
CtrlAni3D testset, but also Animal3D testset. Furthermore, the incorporation of 2D datasets further
improve the performance by a large margin, proving that our large-scale training set collection is
one of the key to robust multi-species animal pose and shape estimation.

Table 3: Effect of CtrlAni3D on 3D evaluation datasets. We report PA-MPJPE and PA-MPVPE
(in mm) as 3D metrics, and AUC with PCK@HTH (in percentage) as 2D metrics. Bold numbers
indicate the best performance within the same evaluation set.

Training Data 3D Metric 2D Metric

Evaluation Dataset A3D C3D 2D PA-MPJPE↓ PA-MPVPE↓ AUC↑ PCK@HTH↑

Animal3D
✓ 87.3 93.2 86.3 83.6
✓ ✓ 82.5 88.0 88.0 88.2
✓ ✓ ✓ 81.2 85.3 89.1 89.9

CtrlAni3D
✓ 90.1 95.8 88.8 88.8
✓ ✓ 54.6 59.2 92.8 95.1
✓ ✓ ✓ 39.4 42.7 93.9 95.3
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Table 4: Effect of CtrlAni3D on 2D evaluation datasets. “*” means that only dog species are used
for Animal Pose and Stanford Extra. We report AUC, PCK@HTH, PCK@0.1 and PCK@0.15 as
2D metrics. Bold numbers indicate the best performance within the same evaluation set.

Training Data 2D Metric

Evaluation Dataset A3D C3D 2D AUC↑ PCK@HTH↑ PCK@0.1↑ PCK@0.15↑

Animal Kingdom
✓ 80.1 78.4 25.9 46.2
✓ ✓ 81.4 81.1 30.4 48.9
✓ ✓ ✓ 83.6 85.2 37.4 57.2

Animal Pose*
✓ 82.1 85.7 25.4 48.2
✓ ✓ 83.9 88.8 36.2 57.7
✓ ✓ ✓ 87.2 92.8 48.0 69.4

Stanford Extra*
✓ 84.7 90.1 39.6 64.1
✓ ✓ 86.6 92.4 49.8 73.0
✓ ✓ ✓ 89.3 94.8 66.3 84.2

Similarly, ablation studies on the unseen Animal Kingdom dataset further validates the value of
CtrlAni3D and full dataset collection for multi-species mesh recovery. Specifically, Tab. 4 indicates
that our model, when trained with CtrlAni3D, exhibits superior performance even on previously
unseen in-the-wild data. Qualitative comparisons in Fig. 6 further demonstrates that training with
CtrlAni3D helps AniMer to yield more accurate animal terminal body parts such as tails, limbs
and faces. Furthermore, on dog-specific datasets such as Animal Pose (only dog part) and Stanford
Extra, CtrlAni3D also improves the model performance though trained for multi-species tasks, see
bottom rows of Tab. 4.

Input Image w/o CtrlAni3D w/ CtrlAni3D

Figure 6: Effect of CtrlAni3D on Animal Kingdom datasets. Input and result images are zoom-in
cropped for visualization. Training with CtrlAni3D enhances the model’s ability to align tails, limbs
and faces. Red arrows indicate misalignments, while blue arrows indicate better alignments.

6 CONCLUSION

This paper presents AniMer, a simple yet effective method for accurate animal pose and shape
estimation. The key to the success of AniMer is a large capacity Transformer backbone together
with an aggregated large scale dataset. Within the aggregated dataset, we propose a novel synthetic
general quadruped dataset CtrlAni3D, which is rendered by prompting a controllable text-to-image
generation model ControlNet. Benefiting from our design philosophy, AniMer not only outperforms
previous methods for general quadruped mesh recovery, but also beats state-of-the-art single-species
reconstruction methods such as BITE for dog. We believe the principles behind AniMer would
inspire the mesh recovery tasks of the whole animal kingdom, and enable several down-stream
applications such as avatar creation and behavioral analysis.
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A APPENDIX

A.1 ABOUT CTRLANI3D

During the generation of CtrlAni3D dataset, we prompt the ControlNet using common names instead
of scientific names of animals. However, to better indicate the position our CtrlAni3D dataset in the
animal taxonomy, we list the most relevant scientific names of used animal species in Tab. 5.

Table 5: Scientific names of used animal species in CtrlAni3D. The size of generated images of
each species is listed at the right column.

Family Species Prompt Commands Count

Felidae

Felis catus Cat 80
Panthera leo Lion 630
Acinonyx jubatus Cheetah 299
Panthera tigris Tiger 280

Canidae Canis lupus familiaris Dog 2976
Canis lupus Wolf 413

Equidae Equus ferus caballus Horse 2228
Equus zebra Zebra 1460

Bovidae Bos taurus Cow 890
Hippopotamidae Hippopotamus amphibius Hippo 455
Total 9711

A.2 DESCRIPTIONS FOR FULL TRAINING DATASET

Animal Pose dataset. The Animal Pose dataset (Cao et al., 2019) includes five categories: dog, cat,
cow, horse and sheep, comprising a total of over 6,000 instances across more than 4,000 images.
Each animal instance in Animal Pose dataset is annotated with 20 keypoints.

APT-36k dataset. The APT-36k dataset (Yang et al., 2022b) contains 36000 images covering 30
different animal species from different scenes. There are typically 17 keypoints labeled for each
animal instance.

AwA Pose dataset. The AwA Pose dataset (Banik et al., 2021) is introduced for 2D quadruped
animal pose estimation. AwA contains 10064 images of 35 quadruped animal species and each
image is annotated with 39 keypoints.

Stanford Extra dataset. The Stanford Extra dataset (Biggs et al., 2020) consists of 20,580 images
and covers 120 dog breeds. Each image is annotated with 20 2D keypoints and silhouette.

Zebra synthetic dataset. The Zebra synthetic dataset (Zuffi et al., 2019) consists of 12850 images.
Each image is randomly generated that differs in background, shape, pose, camera, and appearance.

Animal Kingdom dataset. The Animal Kingdom dataset (Ng et al., 2022) includes a diverse range
of animal species across 8 major animal classes. We only use the part of pose estimation dataset to
evaluate our method.

Animal3D dataset. Animal3D dataset (Xu et al., 2023a) contains a total of 3379 images, which are
classified into 40 classes. Each image is annotated with SMAL (Zuffi et al., 2017) parameters, 2d
keypoints, 3d keypoints and mask.

CtrlAni3D dataset. Our dataset is annotated the same as Animal3D dataset. Fig. 1 shows overview
of our dataset. More details about our dataset can be found in Sec. 4. We randomly set train/test part
by a ratio 0.85/0.15.

By aggregating all above datasets for training, we set different sampling weights to different datasets
according to the dataset type and dataset size, see Tab. 6.
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Table 6: Full dataset statistics for training.
Dataset Number Ratio Training Sample Weight

Animal3D 3065 7.4% 1
CtrlAni3D 8277 20.0% 0.5

Animal Pose 1680 4.0% 0.15
AwA-Pose 2884 7.0% 0.15

Zebra Synthetic 12850 31.1% 0.05
Stanford Extra 7689 18.6% 0.15

APT-36K 4887 11.8% 0.15
Total 41332 100% -

     Image                Front view            Side view              Image             Front view          Side view       

Figure 7: Results on the Animal Kingdom dataset. For each case, we display the input image and
the output result including a front view rendering and a side view rendering.

A.3 ADDITIONAL RESULTS

We provide quantitative results on the Animal Kingdom dataset in Fig. 7. Even on these challenging,
in-the-wild images, AniMer still achieves reconstructions that align well with the images. This
demonstrates the robustness of AniMer. We also provide more qualitative comparisons in Fig. 8.
To better compare with Animal3D, we compare qualitative results with it on the result samples
presented in their paper (Xu et al., 2023a). Because they have not released their synthetic datasets,
we directly take their images and attach our results aside, see Fig. 9. Moreover, to highlight the
comparison of CtrlAni3D and the synthetic dataset proposed in Xu et al. (2023a), we follow their
strategy to first pretrain HMR on CtrlAni3D for 100 epochs and then on Animal3D for 1000 epochs,
see Tab.A.3. For more comparison, 200-epoch pretraining result is also attached.

In Table. 7, Table. 9, Table. 10, Table. 8 and Table. 11, we provide additional ablation study ex-
periments and their respective metric indicators. When training with Animal3D and CtrlAni3D
separately, they performed well on their respective evaluation sets. However, their performance did
not surpass the results obtained from the full training set. We believe that each training dataset can
effectively enhance the model’s performance.
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     Image                HMR               WLDO            AniMer-a         AniMer-b            AniMer                GT        
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Figure 8: More qualitative results.
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Figure 9: Qualitative results of Animal3D dataset. The last column is our qualitative results and the
others is from Animal3D (Xu et al., 2023a) paper.

Table 7: Full Ablation study result on Animal3D dataset. Performance of models on Animal3D
dataset when trained on the original Animal3D dataset (A3D), our CtrlAni3D dataset (C3D), 2D
supplementary datasets, or their combinations. We report PA-MPJPE (PA-J) and PA-MPVPE (PA-
V) in millimeter as 3D metrics, and AUC, PCK@HTH, PCK@0.1, PCK@0.15 in percentage as 2D
metrics. Bold numbers indicate the best performance.

Animal3D Training Data 3D Metric 2D Metric

ExpNo. A3D C3D 2D PA-J↓ PA-V↓ AUC↑ P@HTH↑ P@0.1↑ P@0.15↑
1 ✓ 87.3 93.2 86.3 83.6 43.4 67.1
2 ✓ 109.7 115.4 82.6 78.7 32.3 54.5
3 ✓ ✓ 82.5 88.0 88.0 88.2 52.6 75.9
4 ✓ ✓ 82.0 86.5 88.7 89.2 56.8 78.6
5 ✓ ✓ 110.7 117.1 87.2 85.5 49.2 71.4
6 ✓ ✓ ✓ 81.2 85.3 89.1 89.9 59.4 79.8

Table 8: Full Ablation study result on AnimalPose dataset (dogs only). Performance of models
on AnimalPose dataset when trained on the original Animal3D dataset (A3D), our CtrlAni3D dataset
(C3D), 2D supplementary datasets, or their combinations. We report AUC, PCK@HTH, PCK@0.1,
PCK@0.15 in percentage as 2D metrics. Bold numbers indicate the best performance.

AnimalPose* Training Data 2D Metric

ExpNo. A3D C3D 2D AUC↑ PCK@HTH↑ PCK@0.1↑ PCK@0.15↑
1 ✓ 82.1 85.7 25.4 48.2
2 ✓ 79.6 80.6 27.7 48.3
3 ✓ ✓ 83.9 88.8 36.2 57.7
4 ✓ ✓ 86.3 91.7 43.9 67.0
5 ✓ ✓ 85.6 89.2 46.4 65.2
6 ✓ ✓ ✓ 87.2 92.8 48.0 69.4
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Table 9: Full Ablation study result on our CtrlAni3D dataset. Performance of models on Ctr-
lAni3D dataset when trained on the original Animal3D dataset (A3D), our CtrlAni3D dataset (C3D),
2D supplementary datasets, or their combinations. We report PA-MPJPE (PA-J) and PA-MPVPE
(PA-V) in millimeter as 3D metrics, and AUC, PCK@HTH, PCK@0.1, PCK@0.15 in percentage
as 2D metrics. Bold numbers indicate the best performance.

CtrlAni3D Training Data 3D Metric 2D Metric

ExpNo. A3D C3D 2D PA-J↓ PA-V↓ AUC↑ P@HTH↑ P@0.1↑ P@0.15↑
1 ✓ 90.1 95.8 88.8 88.8 53.6 79.5
2 ✓ 49.7 53.9 93.5 95.4 83.6 94.2
3 ✓ ✓ 54.6 59.2 92.8 95.1 80.2 93.2
4 ✓ ✓ 88.0 92.2 91.5 92.6 74.0 89.7
5 ✓ ✓ 41.2 44.7 93.9 95.4 85.4 94.7
6 ✓ ✓ ✓ 39.4 42.7 93.9 95.3 85.6 94.3

Table 10: Full Ablation study result on AnimalKingdom dataset. (8 classes) Performance of
models on AnimalKingdom dataset when trained on the original Animal3D dataset (A3D), our
CtrlAni3D dataset (C3D), 2D supplementary datasets, or their combinations. We report AUC,
PCK@HTH, PCK@0.1, PCK@0.15 in percentage as 2D metrics. Bold numbers indicate the best
performance.

AnimalKingdom Training Data 2D Metric

ExpNo. A3D C3D 2D AUC↑ PCK@HTH↑ PCK@0.1↑ PCK@0.15↑
1 ✓ 80.1 78.4 25.9 46.2
2 ✓ 76.7 77.7 24.1 40.3
3 ✓ ✓ 81.4 81.1 30.4 48.9
4 ✓ ✓ 82.3 83.6 34.2 54.5
5 ✓ ✓ 83.3 84.5 35.5 55.1
6 ✓ ✓ ✓ 83.6 85.2 37.4 57.2

Table 11: Full Ablation study result on STANFORDEXTRA dataset (dogs only). Performance
of models on STANFORDEXTRA dataset when trained on the original Animal3D dataset (A3D),
our CtrlAni3D dataset (C3D), 2D supplementary datasets, or their combinations. We report AUC,
PCK@HTH, PCK@0.1, PCK@0.15 in percentage as 2D metrics. Bold numbers indicate the best
performance.

STANFORDEXTRA* Training Data 2D Metric

ExpNo. A3D C3D 2D AUC↑ PCK@HTH↑ PCK@0.1↑ PCK@0.15↑
1 ✓ 84.7 90.1 39.6 64.1
2 ✓ 84.6 89.2 40.9 65.0
3 ✓ ✓ 86.6 92.4 49.8 73.0
4 ✓ ✓ 88.5 94.1 61.9 81.1
5 ✓ ✓ 88.7 94.1 62.7 81.6
6 ✓ ✓ ✓ 89.3 94.8 66.3 84.2

Table 12: Effective of CtrlAni3D. “HMR-Pretrained-Synthetic*” indicates that results are bor-
rowed from Animal3D (Xu et al., 2023a). “HMR-Pretrained-CtrlAni3D-Epoch100” represents that
we pretrain HMR for 100 epochs before training it on the Animal3D dataset. Similarly, “HMR-
Pretrained-CtrlAni3D-Epoch200” represents that we pretrain HMR for 200 epochs.

Animal3DMethod PCK@HTH↑ PA-MPJPE↓
HMR 60.5 127.8

HMR-Pretrained-Synthetic* 63.1 124.8
HMR-Pretrained-CtrlAni3D-Epoch100 64.0 121.9
HMR-Pretrained-CtrlAni3D-Epoch200 66.1 119.6
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