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ABSTRACT

Pipeline parallelism is a cornerstone of large-scale model training, yet its effi-
ciency is fundamentally limited by straggler-induced pipeline bubbles. This issue
is exacerbated by static scheduling approaches, including handcrafted heuristics
and Integer Linear Programming (ILP), that are inherently brittle to real-world
execution time variance. In this work, we introduce CONDUCTOR, a dynamic,
two-tiered scheduling framework that, to our knowledge, is the first to virtually
eliminate straggler-induced bubbles under realistic, stochastic conditions. The key
insight is to decouple global, long-horizon scheduling from local, instantaneous
load balancing. At a coarse grain, a reinforcement learning (RL) agent leverages
millisecond-scale inference to generate robust global schedules, adapting to run-
time dynamics in scenarios where traditional static solvers are intractable. At a
fine grain, we introduce a dynamic computation migration mechanism that re-
solves residual micro-bubbles by offloading sub-computations, such as attention
heads, from transiently slower to faster devices within a single timestep. Evaluated
on large-scale LLM training configurations, our framework outperforms state-of-
the-art static scheduling baselines by 5%-14% in throughput and demonstrates
superior resilience to injected system noise and execution variance. We believe
our results establish a new paradigm for adaptive pipeline scheduling, moving
beyond static plans to achieve true zero-straggler performance in practical, large-
scale training environments.

1 INTRODUCTION

Pipeline parallelism (PP)(Huang et al., 2019; Fan et al., 2021; Narayanan et al., 2019; 2021b) has
become a cornerstone for training large-scale deep learning models, enabling computation to scale
beyond single-device memory limits by partitioning a model’s layers across a fleet of workers . How-
ever, its efficiency is frequently undermined by pipeline bubbles, periods of device idleness arising
from inter-stage dependencies. A primary cause of these bubbles is the straggler problem(Lin et al.,
2025), where the entire pipeline stalls, waiting for the slowest stage to complete its computation like
Figure3, the difference in computation time across microbatches results in bubbles in pipeline stages
. This issue is exacerbated by the strict sequential dependencies inherent in PP, causing any local
delay to propagate globally and leading to significant underutilization of computational resources.

Finding an optimal pipeline schedule that minimizes these stragglers is an NP-hard problem (Arató
et al., 2005). Existing static scheduling approaches fall into two main categories, both of which
are fundamentally ill-suited for the dynamic nature of real-world execution. The first, hand-
crafted heuristics, such as the naive load balancing in GPipe (Huang et al., 2019), are simple to
implement but rely heavily on an idealized assumption of uniform computation time. The 1F1B
Harlap et al. (2018) scheduling strategy achieves faster memory release by performing the back-
ward propagation at the earliest possible opportunity. This assumption is consistently violated in
practice due to a confluence of factors: architectural heterogeneity (e.g., the quadratic complex-
ity of self-attention), the intrinsic asymmetry of Forward/Backward/Weight-Update (F/B/W) passes
(Qi et al., 2024; Fan et al., 2021), and system-level stochasticity like network bandwidth fluctua-
tions and kernel performance variance. The second category, optimization-based methods like
Integer Linear Programming (ILP) (Cai et al., 2020), can theoretically find a static optimum.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, their practical application is crippled by two fundamental flaws: first, their computational
complexity grows exponentially with problem scale, making them intractable for large configura-
tions; second, and more critically, the static ”optimal” solution they produce is extremely sensitive
to the inevitable, subtle performance perturbations of real-world GPU execution, often rendering
it suboptimal in practice. In essence, all static methods share a common, fatal flaw: they at-
tempt to pre-compute a single, fixed solution for an inherently dynamic and stochastic system,
a fundamental mismatch that leads to their brittleness.

F/B/W

F/B/WF/B/W

F/B/WF/B/W

F/B/W

F/B/W

F/B/W F/B/W

F/B/W

F/B/W

F/B/W

Device 0

Device 1

Device 2

Device 3

Column 1 Column 3Column 2

Straggler

Figure 1: In any given column, the device with the longest execution time becomes the ’straggler’
for that step (e.g., Device 2 in Column 1). Because all devices must synchronize at the end of a
column before starting the next, this straggler dictates the pace of the entire pipeline, forcing faster
devices into idle states and creating performance bottlenecks.

To address these challenges, we argue for a paradigm shift away from static planning towards a strat-
egy of dynamic, real-time control. Our key insight is that the sources of performance loss occur
at different temporal and operational scales, and must therefore be decoupled and addressed
with tools of corresponding granularity. Macro-level pipeline dependencies determine the ”base
size” of bubbles, while micro-level execution variances exacerbate the problem at every step. Based
on this, we introduce CONDUCTOR, a dynamic, multi-granularity control framework.

At a coarse grain, we employ a reinforcement learning (RL) agent to tackle the macro-level
scheduling problem. The motivation for this choice is that RL learns a policy, not a fixed plan.
Unlike ILP solvers that can take minutes to hours to re-solve, our pre-trained RL policy leverages
its millisecond-scale inference latency to make near-instantaneous scheduling adjustments in
response to runtime dynamics, such as network fluctuations or node preemptions, demonstrating
a level of robustness and real-time responsiveness unattainable by static methods.

At a fine grain, we recognize that even an RL policy cannot perfectly predict and negate all mi-
nor performance variances caused by hardware or kernel-specific characteristics. To this end, at
a fine grain, we recognize that even an RL policy cannot perfectly predict and eliminate all mi-
nor performance variances arising from hardware or kernel-specific characteristics. To this end,
we introduce a dynamic computation migration mechanism that, based on profiling results
from preceding steps, reactively offloads a small, decomposable portion of computation (e.g.,
mlp) from historically slower to historically faster devices. This process is carefully designed such
that its communication overhead is effectively overlapped with ongoing local computation, thereby
maximally eliminating residual bubbles caused by stragglers without introducing new stalls.

Our primary contributions are:

1. A Novel Reinforcement Learning Formulation for Pipeline Scheduling Made
Tractable via Heuristic-Guided Exploration. We successfully apply RL to the dynamic
pipeline scheduling problem. We overcome the intractably large action space by introduc-
ing a two-phase training strategy: (i) Behavioral Cloning on a strong deterministic heuristic
(Zero Bubble) to rapidly bootstrap the agent into a high-performance region of the policy
space, followed by (ii) online PPO refinement with Domain Randomization. This latter
step trains the policy on a distribution of execution timings, learning a robust schedule that
is resilient to the system variance that cripples static approaches.

2. A Fine-Grained, Variance-Reduction Migration Mechanism with a Stall-Free Over-
lap Guarantee. We introduce a dynamic computation migration strategy that systemati-
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cally eliminates residual stragglers within a single pipeline stage. The mechanism is built
on two core technical ideas: (i) a symmetric pairing algorithm that matches the k-th fastest
device with the k-th slowest to provably reduce completion time variance, and (ii) a hybrid
migration model that intelligently partitions and offloads discrete (Attention Heads) and
continuous (MLP blocks) computations. Crucially, we provide a formal analysis in Ap-
pendix A that defines the stall-free overlap bound, proving the conditions under which the
entire communication overhead of migration is masked by concurrent local computation.

3. An End-to-End System and Empirical Demonstration. We built and evaluated the com-
plete CONDUCTOR framework on large-scale GPT-3 model training configurations. Our
experiments validate the synergistic relationship between our two tiers: the RL agent cre-
ates a “good enough” global schedule that minimizes large-scale bubbles, creating the
low-overhead conditions necessary for the fine-grained migration to efficiently polish the
schedule to near-zero bubble performance. This combined approach yields throughput
improvements of 5-14% over highly optimized static baselines and demonstrates superior
robustness in the presence of injected system noise.

2 QUANTITATIVE ANALYSIS OF THE PROBLEM

The straggler phenomenon(Lin et al., 2025), a primary source of inefficiency in pipeline parallelism,
arises from temporal imbalances in stage execution. A quantitative understanding of these imbal-
ances is crucial for developing robust scheduling solutions. This section dissects the key factors
contributing to this variance, from architectural determinism to system-level stochasticity.

2.1 STAGE-LEVEL COMPUTATIONAL SKEW

In Large Language Models (LLMs), a natural workload imbalance exists between the initial/final
stages and the intermediate stages of the pipeline. The first stage (PP Stage 0) performs token
embedding, a large table-lookup operation that is often memory-bandwidth bound and is absent
from all subsequent stages. Conversely, the final stage (PP Stage N-1) is uniquely tasked with
computing the output logits and the cross-entropy loss, a process that includes computationally
expensive Softmax operations not performed elsewhere. Although practitioners attempt to balance
the pipeline by manually partitioning the Transformer layers, these unique, non-divisible tasks at the
pipeline’s entry and exit points make achieving perfect temporal equality practically infeasible.

2.2 MICROBATCH-LEVEL EXECUTION VARIANCE

Although packing techniques are commonly used in LLM training to ensure each microbatch
has a uniform total sequence length, execution time per microbatch can still vary significantly.
This variance stems from the architecture of the Transformer block, specifically the self-attention
mechanism’s computational complexity, which is quadratic with respect to sequence length
(O(T 2d))(Vaswani et al., 2017).

Consequently, different combinations of sequences within a packed microbatch will result in dif-
ferent computational loads, even if the total number of tokens is identical. For instance, the com-
putational load for four 4K-length sequences is only 50% of that for two 8K-length sequences. In
training scenarios involving long sequences, the portion of FLOPs from the attention mechanism
becomes more dominant. When processing a sequence of length T and model dimension d, the
FLOPs ratio between the attention mechanism and the MLP block can be expressed as:

Attention Ratio =
4Td2 + 2T 2d

12Td2 + 2T 2d
, MLP Ratio =

8Td2

12Td2 + 2T 2d
(1)

This formula illustrates that variations in T directly impact the computational profile, making the
execution time of each microbatch difficult to predict accurately. We profiled two combinations with
a hidden layer size of 4096 and a sequence length of 8192: one with eight 1K segments and the other
with a single 8K segment. Their respective times were 0.569 ms and 3.616 ms, showing a significant
practical difference.
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2.3 INTRINSIC ASYMMETRY OF F/B/W PASSES

Even in an idealized scenario where all other variables are held constant, the core computational
passes, Forward (F), Backward-input (B), and Backward-weight (W), have inherent FLOPs dis-
crepancies. As analyzed in prior work(Qi et al., 2024), their execution times typically follow the
inequality TB > TF > TW . This intrinsic asymmetry is a fundamental source of pipeline bubbles,
as any scheduling model that assumes temporal equality among these passes will inherently diverge
from the real-world execution profile.

2.4 STOCHASTICITY IN COMMUNICATION AND SYSTEM RUNTIME

Beyond deterministic computational factors, non-computational and stochastic elements contribute
significantly to pipeline variance. Pipeline parallelism often spans multiple compute nodes, making
network latency a critical variable(Wu et al., 2025). Handcrafted schedules often ignore the com-
munication time (Tcomm) required to transfer activations and gradients between stages. In practice,
factors such as network bandwidth fluctuations, resource preemption in shared clusters, sudden la-
tency spikes, and varying network topologies introduce unpredictable jitter into Tcomm. This makes
the communication time between different device pairs non-uniform and dynamic, posing a substan-
tial challenge for static schedulers.

In summary, these factors do not operate in isolation; their concurrent and compounding effects
mean that scheduling models based on idealized assumptions(Narayanan et al., 2021b; Fan et al.,
2021) (e.g., assuming F/B/W passes are equal, or even just accounting for their theoretical differ-
ences) are insufficient. This discrepancy between the predicted schedule and the actual execution
trace leads to an accumulation of pipeline bubbles, exacerbating the straggler phenomenon and sig-
nificantly hampering the overall efficiency of distributed training.

3 DYNAMIC PIPELINE SCHEDULING WITH REINFORCEMENT
LEARNING

While handcrafted or ILP-based(Cai et al., 2020) schedules can approach optimality under static
assumptions, their prohibitive re-solve latency renders them intractable for dynamic adaptation. Re-
inforcement Learning (RL)(Murphy, 2025) offers a compelling alternative. The significant com-
putational cost of RL is amortized over a single, offline training phase. Once trained, the policy’s
millisecond-scale inference latency allows for virtually instantaneous rescheduling with negligible
overhead, a capability indispensable for online adaptation. However, learning a policy from scratch
in such a large, combinatorial action space remains computationally prohibitive. To address this,
we introduce a learning framework that synergizes the strengths of heuristic scheduling with the
adaptability of RL.

3.1 PROBLEM FORMULATION AS AN MDP

We model the scheduling problem as a Markov Decision Process (MDP), defined by the tuple
(S,A,P,R, γ).

State (S): A state st ∈ S at timestep t is a feature vector representing the pipeline’s status. It includes:
(i) the status of each computational operation (F, B, W for every micro-batch), categorized
as pending, ready-to-schedule, executing, or completed; and (ii) the status of each of the N
devices, including their current workload and estimated time of availability.

Action (A): An action at ∈ A is the selection of a single operation to schedule from the set of currently
available operations, denoted as ready operations. The action space is discrete, and the
agent is constrained to select only from this valid set.

Transition (P): The transition to the next state st+1 is deterministic, occurring after an operation is sched-
uled. The state is updated based on the operation’s simulated execution time, which deter-
mines when the assigned device becomes free and which subsequent operations are added
to the ready operations set.
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Reward (R): We design a multi-objective reward function to guide the agent towards minimizing the
total execution time (makespan) while respecting a given memory budget. The reward Rt

at each step is a weighted sum of four components:

Rt = w1R
efficiency
t + w2R

balance
t + w3R

memory
t + w4R

chain
t (2)

where:

– Refficiency is inversely proportional to the increase in the pipeline’s makespan, incen-
tivizing the agent to fill idle gaps.

– Rbalance is based on the negative variance of device finish times, directly penalizing
schedules that create stragglers.

– Rmemory is a penalty term activated when peak memory usage Mt exceeds a soft budget
Mbudget, e.g., Rmemory = −max(0,Mt −Mbudget).

– Rchain provides a bonus for scheduling operations that unlock a larger number of sub-
sequent dependent operations, prioritizing the critical path.

3.2 POLICY LEARNING VIA HEURISTIC-GUIDED EXPLORATION

To make policy learning tractable and effective, we propose a two-phase training strategy that boot-
straps the RL agent with expert knowledge.

Phase 1: Policy Pre-training via Behavioral Cloning. We first generate a set of high-quality
scheduling demonstrations using a strong, deterministic heuristic (e.g., the Zero Bubble schedule).
These state-action pairs serve as an ”expert policy.” The RL agent’s network is then pre-trained in
a supervised fashion to mimic these expert decisions. This Behavioral Cloning (BC) phase rapidly
initializes the policy in a promising region of the parameter space, ensuring the agent begins with a
competent, low-bubble scheduling strategy.

Phase 2: Policy Refinement via PPO. After pre-training, we transition to online reinforcement
learning using Proximal Policy Optimization (PPO). The agent now interacts with a simulated en-
vironment, using the feedback from the reward function to explore the policy space. Crucially, its
exploration is guided from the effective starting point established by BC. This allows the agent to
focus its learning on discovering non-obvious scheduling improvements that outperform the original
heuristic, particularly in handling the stochasticity that the static heuristic cannot.

3.3 ENHANCING POLICY ROBUSTNESS VIA DOMAIN RANDOMIZATION

A policy trained on deterministic execution times will be brittle. To learn a policy that is robust
to real-world variance, we employ Domain Randomization during the PPO refinement phase. For
each training episode, we parameterize the simulation by sampling the component times TP and
communication times T comm from distributions derived from the Live Profiling Phase, which capture
observed mean and variance. Training across this spectrum of simulated environments forces the
agent to learn a policy that is not overfitted to one specific timing but is instead resilient to a wide
range of potential runtime conditions.

3.4 ONLINE ADAPTATION WITH DYNAMIC TRIGGERING

The final, robust policy is deployed for inference during the actual training run. A lightweight
monitor compares the expected completion time of each operation against its actual completion
time. If the deviation exceeds a predefined threshold, the current real-world state of the pipeline is
fed to the trained agent. Leveraging its millisecond-scale inference, the agent instantly generates
a new, revised schedule for all remaining operations, a capability made practical and effective by
the robustness instilled through our training methodology. Naive scheduling heuristics such as ZB-
H1/2 often induce additional pipeline bubbles, as they fail to account for the intrinsic execution
time imbalances of the F/B/W passes. Our RL-based scheduler, however, can discover superior
scheduling policies, frequently converging to the same optimal schedule as an ILP solver but with
significantly lower latency. This ability to rapidly find a high-quality schedule is illustrated in the
examples provided in Figures 2, which show a clear reduction in makespan under different situation.
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Figure 2: ZBPP vs RL

4 DYNAMIC CROSS-DEVICE COMPUTATION BALANCING

While the global policy minimizes makespan, residual inefficiency arises from execution time vari-
ance within parallel computation columns. The completion time of any column t for a given pass
P ∈ {F,B,W}, denoted as TP

col,t, is bottlenecked by the straggler device: TP
col,t = maxi T

P
i,t. Our

objective is to minimize this value by dynamically re-distributing intra-column load.

4.1 DECOMPOSABLE COMPUTATION AND PASS-SPECIFIC TIME MODELING

Precise load balancing requires a decomposable model of computation. We partition each primary
pass P into its core components: self-attention (Att) and multi-layer perceptron (MLP). The execu-
tion time for device i in column t for pass P is modeled as:

TP
i,t = (TP

i,t)
Att + (TP

i,t)
MLP + T comm

i,t (3)

Component execution times are derived from the Live Profiling Phase. A key modeling assumption
for the weight gradient pass (W) is that its computation is concentrated in the MLP component, as
the attention mechanism has minimal direct parameter gradients. Thus, we assume (TW

i,t )
Att ≈ 0(Li

et al., 2025).

4.2 VARIANCE REDUCTION VIA SYMMETRIC PAIRING

To reduce the maximum execution time, we employ a variance reduction strategy via symmetric
pairing. For a given pass P , devices are sorted by their execution times, yielding an ordered permu-
tation π such that TP

π(1),t ≤ · · · ≤ TP
π(N),t.

We form ⌊N/2⌋ pairs by matching the k-th fastest device with the k-th slowest. For each pair
k = (π(k), π(N − k+ 1)), the target transfer load T

(k),P
transfer is the amount of computation required to

equalize their execution times:

T
(k),P
transfer =

TP
π(N−k+1),t − TP

π(k),t

2
(4)

This target load guides the subsequent migration. As shown in Figure3, computation load can be
migrated between faster and slower devices, and during this process the communication time is
completely overlapped (masked) by computation.

4.3 HYBRID MIGRATION STRATEGY

The target load T
(k),P
transfer is realized by partitioning the underlying computations of the slower device

in each pair. The migration strategy differs by pass type.

For F and B Passes: We employ a hybrid, prioritized strategy. We first attempt to satisfy the
target load by migrating discrete attention heads, which are computationally self-contained. Any
remaining load is then satisfied by migrating a continuous fraction of the MLP computation.

6
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ATT(0) MLP(0)

ATT(1) MLP(1)

Device 0

Device 1

ATT(0) MLP(0)

ATT(1) MLP(1)

MLP(0)

Device 0

Device 1

Figure 3: Slower devices offload part of their computation to faster devices

1. Attention Head Migration: Let T (k),P
head be the average execution time per attention head on the

slower device. We determine the number of integer heads to migrate, h(k),P , as:

h(k),P =

⌊
T

(k),P
transfer

T
(k),P
head

⌋
(5)

This is the maximum number of heads that can be migrated without exceeding the target.

2. Residual MLP Migration: After migrating heads, a residual transfer load, T (k),P
rem , may remain:

T (k),P
rem = T

(k),P
transfer − h(k),P · T (k),P

head (6)

If T (k),P
rem > 0, we migrate a fraction of the MLP computation. The MLP splitting ratio, α(k),P , is

calculated based on this residual load:

α(k),P = min

(
1,

T
(k),P
rem

(TP
π(N−k+1),t)

MLP

)
(7)

For the W Pass: Based on the assumption that (TW )Att ≈ 0, the computation is entirely within the
MLP component. Therefore, the migration strategy simplifies to only splitting the MLP computa-
tion. The splitting ratio α(k),W is calculated directly from the total target load:

α(k),W = min

(
1,

T
(k),W
transfer

(TW
π(N−k+1),t)

MLP

)
(8)

This re-balancing is performed only if the induced communication overhead does not negate the
gains. A formal analysis is provided in the Appendix A.

5 EXPERIMENTS

5.1 SETUP

We demonstrate the superiority of our approach through two methods: first, by simulating whether
RL can build an efficient scheduler, and second, by implementing computational balance based on
Megatron-LM(Narayanan et al., 2021a), which is tested on GPT-3(Brown et al., 2020). Our exper-
iments utilize up to 16 NVIDIA A100 SXM 80G GPUs distributed across 4 nodes inter connected
by a RoCE RDMA network.

Compared methods:

7
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• ZB-1p(Qi et al., 2024): the activation memory limited to pMB(p:stage, MB:the memory of
B), which theoretically has the same peak memory as 1F1B.

• ZB-2p: the activation memory limited to 2pMB, which is the least amount of memory to
empirically achieve close to zerobubble

• 1F1B and 1F1B-I : 1F1B and interleaved 1F1B methods introduced by(Harlap et al., 2018)
and (Narayanan et al., 2021b):

5.2 EFFICIENCY OF RL

As illustrated in Figure4, RL-driven dynamic arrangement adds almost no extra idle time, indicating
our approach can produce a high-quality schedule in a short period.

Figure 4: Pure ZBPP ordering (no automation) vs. RL dynamic scheduling.

5.3 EFFICIENCY OF COMPUTATION BALANCING

Table 1: Experiment result between previous and ours

Setup
Model(GPT-3) 1.5B 6.2B 14.6B

#GPU 8 8 16
#Microbatch 24 24 48

Samples
per GPU
per second

ZB-2p/ours 14.5/15.1 4.32/4.51 1.81/1.9
ZB-1p/ours 12.9/13.4 3.88/4.02 1.61/1.66
1F1B-I/ours 13.1/13.6 4.01/4.16 1.54/1.62
1F1B/ours 11.8/13.0 3.5/3.78 1.4/1.57

Memory
(GB)

ZB-2p/ours 59/59 70/70 51/51
ZB-1p/ours 32/32 42/42 33/33
1F1B-I/ours 40/40 48/48 39/39
1F1B/ours 30/30 39/39 32/32

We evaluate the effect of the Chapter 4 computation-balancing scheme by comparing common
pipeline-parallel schedules with and without our method, while holding model size, batch size and
sequence length fixed. We present the throughput of all methods in Table1. The algorithm targets
intra-column runtime heterogeneity: using symmetric pairing and hybrid migration, it redistributes
decomposable work across devices in the same column to reduce the column-wise maximum com-
pletion time and thereby mitigate tail-induced bubbles.

Let Tmax be the column maximum and let α ∈ [0, 1] denote the fraction of the end-to-end makespan
dominated by that column. If balancing reduces Tmax by a relative amount r, then to first order
makespannew ≈ makespanold (1 − αr), so throughput improves roughly by the reciprocal of this
factor. Consequently, the attainable speedup depends jointly on the reducible fraction r (set by
migration granularity and effectiveness of pairing) and on α (set by the compute/communication
split).
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Across our benchmark suite and realistic communication costs, the method yields a conservative,
reproducible wall-clock improvement of ≈ 5% under typical device variance; when intra-column
skew is moderate to high, improvements of 10%−20% are common. The net gain is bounded by
migration overhead, the minimum decomposable work unit, and memory/ bandwidth constraints;
the supplementary material reports break-even points and confidence intervals for these trade-offs.

Next, we conducted a quantitative analysis by selecting different hidden layers and sequence lengths,
using the transfer of the MLP component as an example, to examine the benefits brought by our
computational balancing. We used a single-layer Transformer as a representative case study to
validate the correctness of the communication and overlap mechanisms. The result of linear scaling
with the fraction α = 0.1 present in Table2.

Table 2: Speedup (%) with hidden dimension (h) and sequence length (L) on α = 0.1.

Sequence Length (L) h = 2048 h = 4096 h = 5120

1,024 (1k) 5.1% 7.2% 8.5%
2,048 (2k) 6.2% 8.5% 9.4%
4,096 (4k) 7.0% 9.2% 9.8%
8,192 (8k) 7.3% 9.6% 10.2%
16,384 (16k) 6.8% 8.9% 9.5%
32,768 (32k) 5.5% 7.8% 8.7%

6 CONCLUSION AND DISCUSSION

In this paper, we introduced CONDUCTOR, a dynamic, multi-granularity control framework that ad-
dresses the straggler problem in large-scale pipeline-parallel training. Departing from the traditional
view of performance variance as purely random jitter, we posit that many latencies arise from peri-
odic, structural bottlenecks. Our approach precisely eliminates these bottlenecks through a flexible
and modular two-tiered strategy, where each component provides standalone value.

The RL agent replaces the protracted solving process of traditional static methods, finding a high-
quality solution to the complex pipeline dependency problem in a fraction of the time. However, we
recognize that even such a near-optimal global schedule cannot perfectly nullify the minor perfor-
mance variances arising from hardware or kernel-specific characteristics. Leveraging millisecond-
scale inference, it rapidly generates robust global schedules, effectively handling runtime dynamics
that are intractable for traditional solvers like ILP. Similarly, at a fine grain, our dynamic compu-
tation migration mechanism can serve as a general enhancement technique, applied on top of
any high-quality initial schedule to eliminate residual performance imbalances.

However, these two strategies achieve their maximum efficacy when working in concert, forming
a complete, end-to-end optimization system. They exhibit an ideal complementary relationship: the
coarse-grained RL scheduler is responsible for rapidly converging to a ”good enough” state at the
macro level, ensuring initial pipeline bubbles are sufficiently small to create the ideal, low-overhead
conditions for fine-grained migration to operate. In turn, the fine-grained migration handles the
low-level system and hardware variances that an RL policy cannot perfectly model, polishing an
already excellent schedule towards perfect, ”zero-straggler” real-world performance. We believe
this modular, yet synergistic, design offers a powerful and effective blueprint for the next generation
of adaptive distributed training systems.
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A ANALYSIS OF STALL-FREE COMPUTATION MIGRATION
(FORWARD PASS)

This section provides a concise formal analysis of the conditions for stall-free migration during the
forward pass, a scenario relevant to inference. We model the offloading of a fraction α of a two-
layer Transformer MLP from a master rank to a stateless worker, correctly accounting for the full
round-trip communication cost.

A.1 THE STALL-FREE OVERLAP BOUND

For the master rank to avoid stalling, the critical path of the remote task must complete no later
than the master’s concurrent local computation. This critical path includes sending activations and
weights (Csend), remote execution (Tremote-fwd), and receiving the result (Crecv). The stall-free condi-
tion is Csend(α) + Tremote-fwd(α) + Crecv ≤ Tlocal-fwd(α).

Assuming linear scaling with the fraction α, where Tslow-fwd is the time for the full MLP forward
pass on one GPU, this inequality simplifies to the following upper bound for the migratable fraction,

α ≤ Tslow-fwd − (Csend act + Crecv)

2Tslow-fwd + Csend weights
=

4Beff
P − 2Beffs

dffnBnet

8Beff
P + 2s

Bnet

(9)

This final equation reveals that the maximum stall-free migration fraction is fundamentally deter-
mined by the ratio of computational performance (P ) to network bandwidth (Bnet), scaled by the
geometric properties of the model (Beff, d, dffn) and the data type size (s).

A.2 CASE STUDY: TWO-LAYER MLP ON AN A100 CLUSTER

We quantify αmax for our target configuration (dmodel = 5120, dffn = 20480, Beff = 4096) on a
100 GB/s network, using BF16 precision and a sustained A100 performance of 312 TFLOP/s.

• Total Forward Compute Time (Tslow-fwd): The 1.718×1015 FLOPs of the two-layer MLP
forward pass result in a compute time of approximately 5.51 ms.

• Communication Times:
– Activation Send (Csend act): Transferring the 41.9 MB input activation takes ≈ 0.42

ms.
– Result Receive (Crecv): Receiving the 41.9 MB output result also takes ≈ 0.42 ms.
– Full Weights Send (Csend weights): Transferring the full 2× 209.7 = 419.4 MB remote

weight slices (for α = 1) would take ≈ 4.19 ms.

Substituting these values into Eq. equation 9:

αmax ≈ 5.51− (0.42 + 0.42)

2× 5.51 + 4.19
=

4.67

15.21
≈ 0.307

Conclusion: Our analysis reveals a significant stall-free migration bound for the forward pass. Up
to 30.7% of the MLP’s computation can be offloaded to a remote worker with its entire round-trip
communication latency being fully masked by the master’s concurrent local computation. This rig-
orously confirms that our fine-grained migration is highly efficient even in compute-lighter scenarios
like inference.
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