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Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a powerful approach for enhanc-
ing large language models’ question-answering
capabilities through the integration of external
knowledge. However, when adapting RAG sys-
tems to specialized domains, challenges arise
from distribution shifts, resulting in suboptimal
generalization performance. In this work, we
propose TTARAG, a test-time adaptation method
that dynamically updates the language model’s
parameters during inference to improve RAG
system performance in specialized domains.
Our method introduces a simple yet effective
approach where the model learns to predict re-
trieved content, enabling automatic parameter
adjustment to the target domain. Through ex-
tensive experiments across six specialized do-
mains, we demonstrate that TTARAG achieves
substantial performance improvements over
baseline RAG systems.

1 Introduction

Retrieval-Augmented Generation (RAG) (Izacard
and Grave, 2021; Lewis et al., 2020; Edge et al.,
2024) has emerged as a crucial approach for en-
hancing large language models (LLMs) (Radford
et al., 2019; Brown et al., 2020; Bubeck et al.,
2023) by addressing their inherent knowledge limi-
tations. Through the integration of external knowl-
edge sources (Pasca, 2019; Bollacker et al., 2008;
Jin et al., 2019), RAG systems not only improve the
accuracy of LLM responses but also help mitigate
hallucination issues while eliminating the need for
extensive model retraining.

However, while most current research has fo-
cused on the effectiveness of RAG systems for
general domains, significant challenges persist in
adapting these systems to specialized domains.
These systems often struggle with distribution
shifts and domain-specific data dependencies (Xu
et al., 2025; Shi et al., 2024), frequently failing to

accurately utilize information in domain-specific
contexts (Miller et al., 2020; Liu et al., 2022). This
limitation is particularly problematic in critical do-
mains such as healthcare (Raja et al., 2024), legal
services (Reji et al., 2024), and financial applica-
tions (Yepes et al., 2024), where accuracy and reli-
ability are paramount.

To address these challenges, test-time adaptation
(TTA) (Sun et al., 2020; Hardt and Sun, 2024; Kar-
manov et al., 2024) offers a promising solution for
enhancing model performance. TTA allows models
to dynamically adapt their parameters at inference
time through self-supervised learning objectives,
without the need for labeled data (Chen et al., 2022;
Liang et al., 2024). This approach is particularly
valuable when dealing with domain shifts and distri-
bution changes that weren’t anticipated during ini-
tial training. Building on these insights, we propose
a simple yet powerful method for adapting RAG
systems during inference: TTARAG. Our approach
generates self-supervised learning signals by divid-
ing retrieved passages into prefix-suffix pairs and
training the model to predict suffix content from
prefix context. This technique enables LLMs to
perform real-time parameter updates when encoun-
tering new domains, effectively leveraging domain
knowledge stored within the model parameters.

Through extensive experiments across six spe-
cialized domains, we demonstrate that TTARAG
achieves substantial performance improvements
over baseline RAG systems. Our approach con-
sistently outperforms both standard RAG and base-
lines like Chain-of-Thought and In-Context Learn-
ing, achieving the best results in 19 out of 24 exper-
imental settings while maintaining computational
efficiency. These results validate the effectiveness
of our approach for domain-specific applications.



2 Methodology

Our approach introduces a test-time adaptation
mechanism for retrieval-augmented generation that
enables model optimization during inference with-
out access to ground truth labels. The key inno-
vation lies in designing a self-supervised learning
objective using retrieved passages as supervision
signals.

2.1 Overview

Given a test input query ¢ and retrieved passages
{p1, ..., pr}, we formulate a self-supervised adap-
tation objective by splitting passages into prefix-
suffix pairs for prediction:
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where 6 represents the model parameters.

2.2 Context Processing

The adaptation process begins with careful process-
ing of the retrieved passages to create meaningful
prefix-suffix pairs for training.

Length Filtering To ensure sufficient context for
meaningful adaptation, passages shorter than a con-
figured minimum length threshold are filtered out.

Passage Splitting FEach passage is split into
prefix-suffix pairs using a two-tier strategy:

e Primary Strategy Passages are split at first
natural linguistic boundaries marked by punc-
tuation (periods, commas, semicolons, colons,
exclamation marks, and question marks)

e Fallback Strategy When no suitable
punctuation-based split exists, the passage
is divided at its midpoint, ensuring each
segment contains at least three words.

2.3 Parameter Adaptation Process

The adaptation process employs a gradient-based
optimization approach:

2.3.1 Initialization

Prior to the adaptation process, the model param-
eters are reset to their original pre-trained state to
ensure a clean starting point for each adaptation
iteration. An AdamW optimizer is then initialized
with carefully configured hyperparameters: learn-
ing rate « for controlling update step sizes, epsilon
¢ for numerical stability, and weight decay A for
regularization.

2.3.2 Training Loop

For each batch of prefix-suffix pairs:

N
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where N is the gradient accumulation steps and
zdapt is the loss for the ¢-th pair.

During training, the complete text (prefix and
suffix) is first tokenized. The model then computes
the loss on the suffix prediction task, where prefix
tokens are masked during label preparation. To
ensure stable training, gradients are accumulated
over two steps and clipped to a maximum norm
threshold. The AdamW optimizer then updates
model parameters using these accumulated gradi-
ents. Since we only adapt on 1-5 prefix-suffix pairs
in our experiments, the computational overhead
remains acceptable.

2.4 Response Generation

After parameter adaptation, the model generates
the final response using the adapted parameters 6’:

y = argmax P(y|q, {p1,...pc};0')  (3)
Yy

This approach enables effective domain adapta-
tion through self-supervised learning on retrieved
passages, allowing the model to dynamically align
with the target domain during inference time with-
out requiring ground truth labels.

3 Experiments

3.1 Datasets

We conduct experiments on CRAG (Yang et al.,
2024) as the evaluation benchmark. CRAG is a
comprehensive RAG benchmark containing 2,706
question-answer pairs across five domains: Fi-
nance, Sports, Music, Movie, and Open domain.
The questions are constructed through web content-
based creation where annotators formulate real-
world questions answerable through web search.

To evaluate the effectiveness of TTARAG in the
medical domain, we conduct additional experi-
ments on two specialized datasets: PubMedQA
(Jin et al., 2019), which contains 1,000 biomedi-
cal research question-answer pairs, and BioASQ
(Tsatsaronis et al., 2015), comprising 500 expert-
curated question-answer pairs from the biomedical
literature.



Table 1: Performance comparison across different domains. Numbers represent accuracy scores (%). Best results

for each model group are shown in bold.

CRAG Medical
Model Finance Sports Music Movie Open Overall BioASQ PubMedQA
Llama-3.1-8b-it
Base 17.4 27.6 34.9 31.3 42.4 29.8 55.6 46.6
CoT 17.9 30.2 37.6 31.5 45.8 31.6 54.6 50.8
ICL 16.1 24.8 33.5 294 40.4 28.0 49.8 53.6
TTARAG 20.1 29.5 37.7 34.6 41.5 31.9 75.0 57.4
A vsBase +2.7 +1.9 +2.8 +3.3 -0.9 +2.1 +19.4 +10.8
Llama-2-7b-chat
Base 14.7 23.2 36.5 30.4 39.2 27.8 54.1 47.6
CoT 15.7 26.7 34.3 314 41.5 29.1 55.1 48.2
ICL 16.0 24.2 36.1 31.2 39.2 28.4 55.6 434
TTARAG 16.4 25.8 40.7 33.8 41.1 30.5 71.8 54.0
A vsBase +1.7 +2.6 +4.2 +3.4 +1.9 +2.7 +17.7 +6.4
ChatGLM-3-6b
Base 9.8 18.7 314 22.4 334 22.0 51.4 19.8
CoT 12.7 20.6 28.4 25.8 33.9 23.6 44.3 224
ICL 9.9 18.2 30.8 22.1 33.0 21.8 50.8 19.2
TTARAG 14.0 22.1 33.5 25.5 38.1 25.7 58.4 44.8
A vsBase +4.2 +3.4 +2.1 +3.1 +4.7 +3.7 +7.0 +25.0

3.2 Baselines

We evaluate TTARAG against several strong base-
lines, including prompting techniques (Chain-of-
Thought (Wei et al., 2022), In-Context Learning
(Brown et al., 2020)) and state-of-the-art pretrained
RAG models (Ret-Robust (Yoran et al., 2024),
RAAT (Fang et al., 2024) , Self-RAG (Asai et al.,
2023)). Detailed descriptions of each baseline are
provided in Appendix B.

3.3 Experimental Results

Table 1 presents comprehensive evaluation results
across different domains and model architectures.
Several key observations emerge from our experi-
ments: TTARAG demonstrates consistent improve-
ments across specialized domains, with Llama-3.1-
8b-it showing notable gains in Finance (+2.7%),
Music (+2.8%), and Movie (+3.3%) domains, and
particularly strong performance in medical do-
mains (BioASQ +19.4%, PubMedQA +10.8%).
All three model architectures benefit from our ap-
proach: Llama-3.1-8b-it achieves the highest over-
all accuracy (31.9%), Llama-2-7b-chat shows re-
markable adaptation capability in medical domains

(+17.7% on BioASQ), and ChatGLM-3-6b demon-
strates significant improvements in PubMedQA
(+25.0%) and consistent gains across CRAG do-
mains (+3.7% overall). While both CoT and ICL
show some improvements over the base models,
TTARAG consistently outperforms these baselines
in specialized domains, with the only exception
being Open domain tasks where CoT occasion-
ally shows stronger performance, particularly with
Llama-3.1-8b-it (45.8% vs 41.5%).

Table 2 presents a performance comparison be-
tween different RAG models across various do-
mains. Notably, three of the models (Ret-robust,
RAAT, and Self-rag) are pre-trained RAG mod-
els based on Llama-2. Despite Ret-robust using
the larger Llama-2-13b as its base, and RAAT and
Self-rag using Llama-2-7b, all three pre-trained
RAG models perform worse than the Llama-2-7b-
chat model (which achieves 27.8% overall accu-
racy). This underperformance is consistent across
most domains, with only RAAT showing strength
in the BioASQ medical domain (64.9%). The re-
sults suggest that current RAG pre-training meth-
ods have limited generalization capabilities, as they



Table 2: Performance comparison with state-of-the-art pretrained RAG models.

CRAG Medical
Model Finance Sports Music Movie Open Overall BioASQ PubMedQA
Base 14.7 23.2 36.5 30.4 39.2 27.8 54.1 47.6
Ret-Robust  14.6 20.6 33.2 324 33.5 26.1 24.7 28.4
RAAT 13.4 18.1 28.6 25.2 31.7 22.7 64.9 46.6
Self-rag 114 19.8 22.5 20.9 26.7 19.8 57.1 434
TTARAG 16.4 25.8 40.7 33.8 41.1 30.5 71.8 54.0

fail to match or exceed the performance of the base
model, even when using larger model architectures.
TTARAG outperforms all other models across all
domains, demonstrating the effectiveness of its
approach compared to existing RAG pre-training
methods.

The effectiveness of segment-based adaptation
We compare our segment-based approach (split-
ting passages into prefix-suffix pairs) with a base-
line that does not segment the passage, where we
perform next-token prediction on the entire pas-
sage without segmentation. The results in Table 3
demonstrate that the segmentation strategy yields
consistent performance gains across all model ar-
chitectures: +1.1% for Llama-3.1-8b-it, +0.4%
for Llama-2-7b-chat, and +0.7% for ChatGLM-
3-6b. We attribute these improvements to the front-
to-back prediction task better aligning with natu-
ral language understanding compared to token-by-
token prediction, enabling more effective param-
eter updates. The larger improvement observed
with Llama-3.1-8b-it (+1.1%) suggests that higher-
capacity models may particularly benefit from
structured adaptation approaches.

Table 3: The effectiveness of segmentation.

Strategy  Llama-3.1-8b-it Llama-2-7b-chat ChatGLM-3-6b
TTARAG 319 30.5 25.7
WO seg 30.8 30.1 25.0

We also conduct hyper-parameter analysis about
the number of adaptation pairs and learning rate in
Section C.

On the computation efficiency To evaluate the
computational overhead of our approach, we mea-
sure the total inference time across different con-
figurations and compare it with baseline methods.

Table 4 shows the total and average inference times
for different numbers of adaptation pairs (1-5),
compared against Chain-of-Thought (CoT) and the
original model without adaptation. The results are
based on processing 2,706 queries from the CRAG
dataset.

Table 4: Computation time analysis

Metric 1pair 2pair 3pair 4pair Spair CoT Vanilla

Total 4,740 5,723 6,621 7,001 7,023 11,688 961
Avg 175 211 245 259 260 432 036

While our method does introduce additional
computational overhead compared to the original
model, it remains significantly more efficient than
CoT. The average processing time per query ranges
from 1.75s (1-pair) to 2.60s (5-pair), which is sub-
stantially lower than CoT’s 4.32s. This demon-
strates that TTARAG achieves its performance im-
provements with reasonable computational cost,
making it practical for real-world applications.

4 Conclusion

In this paper, we present TTARAG, a test-time adap-
tation approach for retrieval-augmented generation
that enables dynamic model optimization during
inference. Our method introduces a simple yet
effective self-supervised learning objective where
the model learns to predict retrieved content, al-
lowing automatic parameter adjustment to target
domains without requiring labeled data. Through
extensive experiments across six specialized do-
main, we demonstrate that TTARAG achieves con-
sistent improvements over the base RAG system,
suggesting that test-time adaptation is a promis-
ing direction for improving RAG systems’ perfor-
mance in specialized domains while maintaining
computational efficiency.



Limitations

While TTARAG demonstrates strong performance
improvements across various domains, there are
several important limitations to consider:

The test-time adaptation process introduces ad-
ditional computational overhead during inference.
As shown in our experiments, the adaptation step
increases the average inference time by 1.75-2.60
seconds per query compared to the base model,
depending on the number of adaptation pairs
used. This additional latency may impact real-
time applications where response speed is criti-
cal. What’s more, our approach requires additional
GPU memory during inference for adaptation train-
ing compared to standard RAG systems. For larger
models, this increased memory requirement may
limit deployment options, particularly in resource-
constrained environments.

Ethical Considerations

Test-time adaptation may potentially affect the
model’s safety alignment due to parameter updates.
However, since our method only updates parame-
ters for a limited number of iterations, the model’s
safety alignment likely remains largely intact, with
minimal risk of disruption. Nevertheless, we be-
lieve it is important to investigate the extent to
which gradient updates on domain-specific data
can impact a model’s established safety alignment
without compromising it. This represents an im-
portant direction for future research to better un-
derstand the relationship between adaptation and
safety preservation.
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A Related Work

A.1 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020; Borgeaud et al., 2022; Izacard and
Grave, 2021) has emerged as a powerful paradigm
for enhancing large language models (LLMs) with
external knowledge. By integrating a retrieval sys-
tem with LLMs, RAG enables models to access
and leverage external knowledge sources during
generation, effectively addressing the limitations
of static, parameterized knowledge in LLMs.

Recent advances in RAG have focused on several
key directions. First, researchers have explored dy-
namic retrieval processes (Jiang et al., 2023; Jeong
et al., 2024; Su et al., 2024) to improve the rele-
vance of retrieved content. Second, various filtering
mechanisms (Yoran et al., 2024; Yu et al., 2024,
Wang et al., 2024) have been developed to eliminate
irrelevant contexts and enhance RAG robustness.
Additionally, instruction-tuning methods (Liu et al.,
2024; Lin et al., 2024; Wei et al., 2024) have been
specifically designed to improve LLMs’ search and
RAG capabilities.

A.2 Test-time inference adaptation

Test-time inference adaptation aims to adapt pre-
trained models to unlabeled test data during infer-
ence time without accessing the source training
data. This paradigm has gained increasing atten-
tion as a practical solution for handling distribu-
tion shifts in real-world applications (Wang et al.,
2021; Chen et al., 2022; Boudiaf et al., 2022). Un-
like traditional domain adaptation methods that
require simultaneous access to both source and tar-
get domains, test-time adaptation only needs the
pre-trained model and target data, making it more
privacy-friendly and storage-efficient (Liang et al.,
2020).

Early works in this direction focused on hypoth-
esis transfer learning (Kuzborskij and Orabona,
2013), where models trained on source domains are
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adapted to target domains with limited labeled data.
Recent advances have extended this to fully un-
supervised scenarios, leveraging techniques like
entropy minimization (Wang et al., 2021), self-
training (Sun et al., 2020), and test-time normaliza-
tion statistics calibration (Schneider et al., 2020) to
adapt models using only unlabeled test samples.

Building on these advances, TTARAG introduces
a simple yet effective approach for test-time adapta-
tion in retrieval-augmented generation. By learning
to predict subsequent tokens in retrieved passages,
our method enables fully unsupervised adaptation
without requiring access to source domain data or
labeled examples.

B Baseline Details

We evaluate TTARAG using three state-of-the-art
instruction-tuned LLMs: Llama-2-7b-chat (Tou-
vron et al., 2023), Llama-3.1-8b-it (Meta-Al,
2024), and ChatGLM3-6b (GLM et al., 2024).
We compare against two widely adopted baselines:

Chain-of-Thought (CoT) A prompting tech-
nique that guides the model to generate step-by-
step reasoning before producing the final answer.

In-Context Learning (ICL) A method that pro-
vides relevant examples in the input prompt to
demonstrate the desired task behavior.

We also compare TTARAG with the three state-of-
the-art general domain pretrained RAG models:

Ret-Robust  An approach focused on improving
retrieval robustness through strategic passage selec-
tion during training. The model learns to discrimi-
nate between high-quality and low-quality retrieved
content by being trained on a carefully curated mix
of passages with different relevance levels.

RAAT A retrieval-augmented model that intro-
duces a novel noise-aware training strategy. It
specifically targets the challenge of distinguishing
between helpful and misleading retrieved informa-
tion by incorporating an adaptive training mecha-
nism that exposes the model to varying types of
retrieval noise.

Self-RAG  utilizes instruction fine-tuning to adap-
tively retrieve passages based on the question and
determine if the passage contains useful informa-
tion for answering the question.

C Hyperparameter Analysis

Learning Rate Analysis We investigate the sen-
sitivity of our method to different learning rates
during test-time adaptation with number of adapta-
tion pairs of 3. As shown in Figure 1, we evaluate
learning rates ranging from le-6 to le-4 across
all three model architectures. Llama-3.1-8B-it
achieves optimal performance at 1e-5 (31.9% ac-
curacy), with performance gradually declining at
higher learning rates. ChatGLM-6B shows more ro-
bust behavior across different learning rates, reach-
ing peak performance at 5e-6 to le-5 (25.8% ac-
curacy). Llama-2-7B-chat demonstrates the most
stable performance curve, with accuracy varying
only slightly (30.4-30.8%) across all tested learn-
ing rates, peaking at 1e-6 (30.8% accuracy). These
results suggest that smaller learning rates (1e-6 to
le-5) generally provide better and more stable adap-
tation, likely because they prevent over-aggressive
parameter updates that could disrupt the model’s
pre-trained knowledge. All models show consis-
tent improvement over their original performance
(indicated by dashed lines) across most learning
rates, validating the robustness of our approach.

Number of Adaptation Passages We examine
how the number of retrieved passages used for
adaptation affects performance. This study helps
determine the optimal amount of context needed
for effective adaptation while considering computa-
tional efficiency. As shown in Figure 2, we observe
different optimal points across model architectures.
Llama-3.1-8B-it achieves peak performance with
3 adaptation pairs (31.7% accuracy), while Llama-
2-7B-chat shows optimal results at 4 pairs (31.7%
accuracy). ChatGLM-6B maintains relatively sta-
ble performance between 2-5 pairs, peaking at 5
pairs (25.8% accuracy). Notably, all models show
performance degradation when using 10 pairs. This
degradation likely stems from over-aggressive pa-
rameter updates that disrupt the model’s pre-trained
knowledge. Too many adaptation pairs may cause
excessive deviation from the original parameters,
compromising the valuable knowledge acquired
during pre-training. These results indicate that a
moderate number of adaptation pairs (3-5) gen-
erally provides the best balance between adapta-
tion effectiveness and preserving the model’s pre-
trained knowledge.
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D Implementation Details

We use Llama-3.1-8b-instruct, ChatGLM-3-6b,
Llama-2-7b-chat as our backbone models. Here
we detail the hyperparameters and configuration
settings used in our implementation. For the op-
timization process, we employ a learning rate of
le-5, which provides a balance between adapta-
tion effectiveness and stability. To improve train-
ing efficiency while managing memory constraints,
we implement gradient accumulation with 2 steps.
Gradient clipping is set at 0.1 to prevent gradi-
ent explosions, particularly important during rapid
adaptation to new contexts. We use the AdamW
optimizer with weight decay of 0.01 and epsilon of
1le-8, which helps prevent overfitting while main-
taining numerical stability. Additional controls in-
clude filtering out sentences shorter than 6 tokens
and limiting adaptation to 3 pairs per step. These
parameters were determined through extensive ex-
perimentation across various domains, optimizing
for both adaptation performance and computational
efficiency. All experiments were conducted three
times and the average results are reported.

All experiments are conducted on NVIDIA

A100 GPUs with 80GB of memory. We utilize
a fixed random seed of 42, and the experimental
results are reported within a single run. For imple-
mentation, we use the following library versions:
transformers 4.30.2, torch 2.1.0.

Table 5: Number of samples in each domain of CRAG
dataset.

Domain Finance Sports Music Movie Open

#Samples 661 519 373 611 542

E Dataset Statistics

The statistics of the CRAG dataset are shown in
Table 5.

F Licensing

The CRAG, BioASQ and PubMedQA datasets are
released for academic usage. These datasets are de-
signed for evaluating RAG systems. Thus, our use
of these datasets is consistent with their intended
use.

The language models used in our experiments
are released under the following licenses: Llama-



2-7b-chat (Touvron et al., 2023) is released un-
der the Meta Llama 2 Community License Agree-
ment. It is a variant of the Llama 2 family released
in July 2023, featuring 7 billion parameters and
specifically optimized for dialogue applications.
Llama-3.1-8b-it (Meta-Al, 2024) is released un-
der the Llama 3 License. Released in April 2024,
it features 8 billion parameters and is specifically
designed for instruction-following tasks, represent-
ing one of the most advanced open-source LLMs.
ChatGLM3-6b (GLM et al., 2024) is released un-
der the Apache 2.0 License. It is a bilingual conver-
sational language model featuring 6 billion param-
eters, demonstrating strong performance in both
English and Chinese tasks. All these models are
open for academic usage.
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