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Abstract001

Retrieval-Augmented Generation (RAG) has002
emerged as a powerful approach for enhanc-003
ing large language models’ question-answering004
capabilities through the integration of external005
knowledge. However, when adapting RAG sys-006
tems to specialized domains, challenges arise007
from distribution shifts, resulting in suboptimal008
generalization performance. In this work, we009
propose TTARAG, a test-time adaptation method010
that dynamically updates the language model’s011
parameters during inference to improve RAG012
system performance in specialized domains.013
Our method introduces a simple yet effective014
approach where the model learns to predict re-015
trieved content, enabling automatic parameter016
adjustment to the target domain. Through ex-017
tensive experiments across six specialized do-018
mains, we demonstrate that TTARAG achieves019
substantial performance improvements over020
baseline RAG systems.021

1 Introduction022

Retrieval-Augmented Generation (RAG) (Izacard023

and Grave, 2021; Lewis et al., 2020; Edge et al.,024

2024) has emerged as a crucial approach for en-025

hancing large language models (LLMs) (Radford026

et al., 2019; Brown et al., 2020; Bubeck et al.,027

2023) by addressing their inherent knowledge limi-028

tations. Through the integration of external knowl-029

edge sources (Pasca, 2019; Bollacker et al., 2008;030

Jin et al., 2019), RAG systems not only improve the031

accuracy of LLM responses but also help mitigate032

hallucination issues while eliminating the need for033

extensive model retraining.034

However, while most current research has fo-035

cused on the effectiveness of RAG systems for036

general domains, significant challenges persist in037

adapting these systems to specialized domains.038

These systems often struggle with distribution039

shifts and domain-specific data dependencies (Xu040

et al., 2025; Shi et al., 2024), frequently failing to041

accurately utilize information in domain-specific 042

contexts (Miller et al., 2020; Liu et al., 2022). This 043

limitation is particularly problematic in critical do- 044

mains such as healthcare (Raja et al., 2024), legal 045

services (Reji et al., 2024), and financial applica- 046

tions (Yepes et al., 2024), where accuracy and reli- 047

ability are paramount. 048

To address these challenges, test-time adaptation 049

(TTA) (Sun et al., 2020; Hardt and Sun, 2024; Kar- 050

manov et al., 2024) offers a promising solution for 051

enhancing model performance. TTA allows models 052

to dynamically adapt their parameters at inference 053

time through self-supervised learning objectives, 054

without the need for labeled data (Chen et al., 2022; 055

Liang et al., 2024). This approach is particularly 056

valuable when dealing with domain shifts and distri- 057

bution changes that weren’t anticipated during ini- 058

tial training. Building on these insights, we propose 059

a simple yet powerful method for adapting RAG 060

systems during inference: TTARAG. Our approach 061

generates self-supervised learning signals by divid- 062

ing retrieved passages into prefix-suffix pairs and 063

training the model to predict suffix content from 064

prefix context. This technique enables LLMs to 065

perform real-time parameter updates when encoun- 066

tering new domains, effectively leveraging domain 067

knowledge stored within the model parameters. 068

Through extensive experiments across six spe- 069

cialized domains, we demonstrate that TTARAG 070

achieves substantial performance improvements 071

over baseline RAG systems. Our approach con- 072

sistently outperforms both standard RAG and base- 073

lines like Chain-of-Thought and In-Context Learn- 074

ing, achieving the best results in 19 out of 24 exper- 075

imental settings while maintaining computational 076

efficiency. These results validate the effectiveness 077

of our approach for domain-specific applications. 078
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2 Methodology079

Our approach introduces a test-time adaptation080

mechanism for retrieval-augmented generation that081

enables model optimization during inference with-082

out access to ground truth labels. The key inno-083

vation lies in designing a self-supervised learning084

objective using retrieved passages as supervision085

signals.086

2.1 Overview087

Given a test input query q and retrieved passages088

{p1, ..., pk}, we formulate a self-supervised adap-089

tation objective by splitting passages into prefix-090

suffix pairs for prediction:091

Ladapt = −
k∑

i=1

logP (psuffixi |pprefixi , q; θ) (1)092

where θ represents the model parameters.093

2.2 Context Processing094

The adaptation process begins with careful process-095

ing of the retrieved passages to create meaningful096

prefix-suffix pairs for training.097

Length Filtering To ensure sufficient context for098

meaningful adaptation, passages shorter than a con-099

figured minimum length threshold are filtered out.100

Passage Splitting Each passage is split into101

prefix-suffix pairs using a two-tier strategy:102

• Primary Strategy Passages are split at first103

natural linguistic boundaries marked by punc-104

tuation (periods, commas, semicolons, colons,105

exclamation marks, and question marks)106

• Fallback Strategy When no suitable107

punctuation-based split exists, the passage108

is divided at its midpoint, ensuring each109

segment contains at least three words.110

2.3 Parameter Adaptation Process111

The adaptation process employs a gradient-based112

optimization approach:113

2.3.1 Initialization114

Prior to the adaptation process, the model param-115

eters are reset to their original pre-trained state to116

ensure a clean starting point for each adaptation117

iteration. An AdamW optimizer is then initialized118

with carefully configured hyperparameters: learn-119

ing rate α for controlling update step sizes, epsilon120

ϵ for numerical stability, and weight decay λ for121

regularization.122

2.3.2 Training Loop 123

For each batch of prefix-suffix pairs: 124

θt = θt−1 − α · 1

N

N∑
i=1

∇θLi
adapt (2) 125

where N is the gradient accumulation steps and 126

Li
adapt is the loss for the i-th pair. 127

During training, the complete text (prefix and 128

suffix) is first tokenized. The model then computes 129

the loss on the suffix prediction task, where prefix 130

tokens are masked during label preparation. To 131

ensure stable training, gradients are accumulated 132

over two steps and clipped to a maximum norm 133

threshold. The AdamW optimizer then updates 134

model parameters using these accumulated gradi- 135

ents. Since we only adapt on 1-5 prefix-suffix pairs 136

in our experiments, the computational overhead 137

remains acceptable. 138

2.4 Response Generation 139

After parameter adaptation, the model generates 140

the final response using the adapted parameters θ′: 141

y = argmax
y

P (y|q, {p1, ..., pk}; θ′) (3) 142

This approach enables effective domain adapta- 143

tion through self-supervised learning on retrieved 144

passages, allowing the model to dynamically align 145

with the target domain during inference time with- 146

out requiring ground truth labels. 147

3 Experiments 148

3.1 Datasets 149

We conduct experiments on CRAG (Yang et al., 150

2024) as the evaluation benchmark. CRAG is a 151

comprehensive RAG benchmark containing 2,706 152

question-answer pairs across five domains: Fi- 153

nance, Sports, Music, Movie, and Open domain. 154

The questions are constructed through web content- 155

based creation where annotators formulate real- 156

world questions answerable through web search. 157

To evaluate the effectiveness of TTARAG in the 158

medical domain, we conduct additional experi- 159

ments on two specialized datasets: PubMedQA 160

(Jin et al., 2019), which contains 1,000 biomedi- 161

cal research question-answer pairs, and BioASQ 162

(Tsatsaronis et al., 2015), comprising 500 expert- 163

curated question-answer pairs from the biomedical 164

literature. 165
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Table 1: Performance comparison across different domains. Numbers represent accuracy scores (%). Best results
for each model group are shown in bold.

CRAG Medical

Model Finance Sports Music Movie Open Overall BioASQ PubMedQA

Llama-3.1-8b-it

Base 17.4 27.6 34.9 31.3 42.4 29.8 55.6 46.6
CoT 17.9 30.2 37.6 31.5 45.8 31.6 54.6 50.8
ICL 16.1 24.8 33.5 29.4 40.4 28.0 49.8 53.6
TTARAG 20.1 29.5 37.7 34.6 41.5 31.9 75.0 57.4
∆ vs Base +2.7 +1.9 +2.8 +3.3 -0.9 +2.1 +19.4 +10.8

Llama-2-7b-chat

Base 14.7 23.2 36.5 30.4 39.2 27.8 54.1 47.6
CoT 15.7 26.7 34.3 31.4 41.5 29.1 55.1 48.2
ICL 16.0 24.2 36.1 31.2 39.2 28.4 55.6 43.4
TTARAG 16.4 25.8 40.7 33.8 41.1 30.5 71.8 54.0
∆ vs Base +1.7 +2.6 +4.2 +3.4 +1.9 +2.7 +17.7 +6.4

ChatGLM-3-6b

Base 9.8 18.7 31.4 22.4 33.4 22.0 51.4 19.8
CoT 12.7 20.6 28.4 25.8 33.9 23.6 44.3 22.4
ICL 9.9 18.2 30.8 22.1 33.0 21.8 50.8 19.2
TTARAG 14.0 22.1 33.5 25.5 38.1 25.7 58.4 44.8
∆ vs Base +4.2 +3.4 +2.1 +3.1 +4.7 +3.7 +7.0 +25.0

3.2 Baselines166

We evaluate TTARAG against several strong base-167

lines, including prompting techniques (Chain-of-168

Thought (Wei et al., 2022), In-Context Learning169

(Brown et al., 2020)) and state-of-the-art pretrained170

RAG models (Ret-Robust (Yoran et al., 2024),171

RAAT (Fang et al., 2024) , Self-RAG (Asai et al.,172

2023)). Detailed descriptions of each baseline are173

provided in Appendix B.174

3.3 Experimental Results175

Table 1 presents comprehensive evaluation results176

across different domains and model architectures.177

Several key observations emerge from our experi-178

ments: TTARAG demonstrates consistent improve-179

ments across specialized domains, with Llama-3.1-180

8b-it showing notable gains in Finance (+2.7%),181

Music (+2.8%), and Movie (+3.3%) domains, and182

particularly strong performance in medical do-183

mains (BioASQ +19.4%, PubMedQA +10.8%).184

All three model architectures benefit from our ap-185

proach: Llama-3.1-8b-it achieves the highest over-186

all accuracy (31.9%), Llama-2-7b-chat shows re-187

markable adaptation capability in medical domains188

(+17.7% on BioASQ), and ChatGLM-3-6b demon- 189

strates significant improvements in PubMedQA 190

(+25.0%) and consistent gains across CRAG do- 191

mains (+3.7% overall). While both CoT and ICL 192

show some improvements over the base models, 193

TTARAG consistently outperforms these baselines 194

in specialized domains, with the only exception 195

being Open domain tasks where CoT occasion- 196

ally shows stronger performance, particularly with 197

Llama-3.1-8b-it (45.8% vs 41.5%). 198

Table 2 presents a performance comparison be- 199

tween different RAG models across various do- 200

mains. Notably, three of the models (Ret-robust, 201

RAAT, and Self-rag) are pre-trained RAG mod- 202

els based on Llama-2. Despite Ret-robust using 203

the larger Llama-2-13b as its base, and RAAT and 204

Self-rag using Llama-2-7b, all three pre-trained 205

RAG models perform worse than the Llama-2-7b- 206

chat model (which achieves 27.8% overall accu- 207

racy). This underperformance is consistent across 208

most domains, with only RAAT showing strength 209

in the BioASQ medical domain (64.9%). The re- 210

sults suggest that current RAG pre-training meth- 211

ods have limited generalization capabilities, as they 212
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Table 2: Performance comparison with state-of-the-art pretrained RAG models.

CRAG Medical

Model Finance Sports Music Movie Open Overall BioASQ PubMedQA

Base 14.7 23.2 36.5 30.4 39.2 27.8 54.1 47.6

Ret-Robust 14.6 20.6 33.2 32.4 33.5 26.1 24.7 28.4
RAAT 13.4 18.1 28.6 25.2 31.7 22.7 64.9 46.6
Self-rag 11.4 19.8 22.5 20.9 26.7 19.8 57.1 43.4

TTARAG 16.4 25.8 40.7 33.8 41.1 30.5 71.8 54.0

fail to match or exceed the performance of the base213

model, even when using larger model architectures.214

TTARAG outperforms all other models across all215

domains, demonstrating the effectiveness of its216

approach compared to existing RAG pre-training217

methods.218

The effectiveness of segment-based adaptation219

We compare our segment-based approach (split-220

ting passages into prefix-suffix pairs) with a base-221

line that does not segment the passage, where we222

perform next-token prediction on the entire pas-223

sage without segmentation. The results in Table 3224

demonstrate that the segmentation strategy yields225

consistent performance gains across all model ar-226

chitectures: +1.1% for Llama-3.1-8b-it, +0.4%227

for Llama-2-7b-chat, and +0.7% for ChatGLM-228

3-6b. We attribute these improvements to the front-229

to-back prediction task better aligning with natu-230

ral language understanding compared to token-by-231

token prediction, enabling more effective param-232

eter updates. The larger improvement observed233

with Llama-3.1-8b-it (+1.1%) suggests that higher-234

capacity models may particularly benefit from235

structured adaptation approaches.236

Table 3: The effectiveness of segmentation.

Strategy Llama-3.1-8b-it Llama-2-7b-chat ChatGLM-3-6b

TTARAG 31.9 30.5 25.7
wo seg 30.8 30.1 25.0

We also conduct hyper-parameter analysis about237

the number of adaptation pairs and learning rate in238

Section C.239

On the computation efficiency To evaluate the240

computational overhead of our approach, we mea-241

sure the total inference time across different con-242

figurations and compare it with baseline methods.243

Table 4 shows the total and average inference times 244

for different numbers of adaptation pairs (1-5), 245

compared against Chain-of-Thought (CoT) and the 246

original model without adaptation. The results are 247

based on processing 2,706 queries from the CRAG 248

dataset. 249

Table 4: Computation time analysis

Metric 1pair 2pair 3pair 4pair 5pair CoT Vanilla

Total 4,740 5,723 6,621 7,001 7,023 11,688 961
Avg 1.75 2.11 2.45 2.59 2.60 4.32 0.36

While our method does introduce additional 250

computational overhead compared to the original 251

model, it remains significantly more efficient than 252

CoT. The average processing time per query ranges 253

from 1.75s (1-pair) to 2.60s (5-pair), which is sub- 254

stantially lower than CoT’s 4.32s. This demon- 255

strates that TTARAG achieves its performance im- 256

provements with reasonable computational cost, 257

making it practical for real-world applications. 258

4 Conclusion 259

In this paper, we present TTARAG, a test-time adap- 260

tation approach for retrieval-augmented generation 261

that enables dynamic model optimization during 262

inference. Our method introduces a simple yet 263

effective self-supervised learning objective where 264

the model learns to predict retrieved content, al- 265

lowing automatic parameter adjustment to target 266

domains without requiring labeled data. Through 267

extensive experiments across six specialized do- 268

main, we demonstrate that TTARAG achieves con- 269

sistent improvements over the base RAG system, 270

suggesting that test-time adaptation is a promis- 271

ing direction for improving RAG systems’ perfor- 272

mance in specialized domains while maintaining 273

computational efficiency. 274
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Limitations275

While TTARAG demonstrates strong performance276

improvements across various domains, there are277

several important limitations to consider:278

The test-time adaptation process introduces ad-279

ditional computational overhead during inference.280

As shown in our experiments, the adaptation step281

increases the average inference time by 1.75-2.60282

seconds per query compared to the base model,283

depending on the number of adaptation pairs284

used. This additional latency may impact real-285

time applications where response speed is criti-286

cal. What’s more, our approach requires additional287

GPU memory during inference for adaptation train-288

ing compared to standard RAG systems. For larger289

models, this increased memory requirement may290

limit deployment options, particularly in resource-291

constrained environments.292

Ethical Considerations293

Test-time adaptation may potentially affect the294

model’s safety alignment due to parameter updates.295

However, since our method only updates parame-296

ters for a limited number of iterations, the model’s297

safety alignment likely remains largely intact, with298

minimal risk of disruption. Nevertheless, we be-299

lieve it is important to investigate the extent to300

which gradient updates on domain-specific data301

can impact a model’s established safety alignment302

without compromising it. This represents an im-303

portant direction for future research to better un-304

derstand the relationship between adaptation and305

safety preservation.306

References307

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and308
Hannaneh Hajishirzi. 2023. Self-rag: Learning to309
retrieve, generate, and critique through self-reflection.310
arXiv preprint arXiv:2310.11511.311

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim312
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-313
ratively created graph database for structuring human314
knowledge. In Proceedings of the 2008 ACM SIG-315
MOD international conference on Management of316
data, pages 1247–1250.317

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,318
Trevor Cai, Eliza Rutherford, Katie Millican, George319
van den Driessche, Jean-Baptiste Lespiau, Bogdan320
Damoc, Aidan Clark, Diego de Las Casas, Aurelia321
Guy, Jacob Menick, Roman Ring, Tom Hennigan,322
Saffron Huang, Loren Maggiore, Chris Jones, Albin323
Cassirer, Andy Brock, Michela Paganini, Geoffrey324

Irving, Oriol Vinyals, Simon Osindero, Karen Si- 325
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 326
2022. Improving language models by retrieving from 327
trillions of tokens. In International Conference on 328
Machine Learning, ICML 2022, 17-23 July 2022, Bal- 329
timore, Maryland, USA, volume 162 of Proceedings 330
of Machine Learning Research, pages 2206–2240. 331
PMLR. 332

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and 333
Luca Bertinetto. 2022. Parameter-free online test- 334
time adaptation. In IEEE Conference on Computer 335
Vision and Pattern Recognition, pages 8344–8353. 336

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 337
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 338
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 339
Askell, et al. 2020. Language models are few-shot 340
learners. Advances in neural information processing 341
systems, 33:1877–1901. 342

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 343
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 344
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund- 345
berg, et al. 2023. Sparks of artificial general intelli- 346
gence: Early experiments with gpt-4. arXiv preprint 347
arXiv:2303.12712. 348

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna 349
Ebrahimi. 2022. Contrastive test-time adaptation. In 350
IEEE Conference on Computer Vision and Pattern 351
Recognition, pages 295–305. 352

Darren Edge, Ha Trinh, Newman Cheng, Joshua 353
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 354
and Jonathan Larson. 2024. From local to global: A 355
graph rag approach to query-focused summarization. 356
arXiv preprint arXiv:2404.16130. 357

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiao- 358
jun Chen, and Ruifeng Xu. 2024. Enhancing noise 359
robustness of retrieval-augmented language models 360
with adaptive adversarial training. arXiv preprint 361
arXiv:2405.20978. 362

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 363
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han- 364
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji- 365
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie 366
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, 367
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng 368
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu- 369
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam 370
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan 371
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, 372
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan 373
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, 374
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, 375
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan 376
Wang. 2024. Chatglm: A family of large language 377
models from glm-130b to glm-4 all tools. Preprint, 378
arXiv:2406.12793. 379

Moritz Hardt and Yu Sun. 2024. Test-time training 380
on nearest neighbors for large language models. 381
Preprint, arXiv:2305.18466. 382

5

https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2305.18466
https://arxiv.org/abs/2305.18466
https://arxiv.org/abs/2305.18466


Gautier Izacard and Edouard Grave. 2021. Leveraging383
passage retrieval with generative models for open do-384
main question answering. In Proceedings of the 16th385
Conference of the European Chapter of the Associ-386
ation for Computational Linguistics: Main Volume,387
pages 874–880, Online. Association for Computa-388
tional Linguistics.389

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju390
Hwang, and Jong Park. 2024. Adaptive-RAG: Learn-391
ing to adapt retrieval-augmented large language mod-392
els through question complexity. In Proceedings of393
the 2024 Conference of the North American Chap-394
ter of the Association for Computational Linguistics:395
Human Language Technologies (Volume 1: Long396
Papers), pages 7036–7050, Mexico City, Mexico. As-397
sociation for Computational Linguistics.398

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,399
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie400
Callan, and Graham Neubig. 2023. Active retrieval401
augmented generation. In Proceedings of the 2023402
Conference on Empirical Methods in Natural Lan-403
guage Processing, pages 7969–7992, Singapore. As-404
sociation for Computational Linguistics.405

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William406
Cohen, and Xinghua Lu. 2019. PubMedQA: A407
dataset for biomedical research question answering.408
In Proceedings of the 2019 Conference on Empirical409
Methods in Natural Language Processing and the410
9th International Joint Conference on Natural Lan-411
guage Processing (EMNLP-IJCNLP), pages 2567–412
2577, Hong Kong, China. Association for Computa-413
tional Linguistics.414

Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmo-415
taleb El Saddik, and Eric Xing. 2024. Efficient test-416
time adaptation of vision-language models. Preprint,417
arXiv:2403.18293.418

I. Kuzborskij and F. Orabona. 2013. Stability and Hy-419
pothesis Transfer Learning. In International Confer-420
ence on Machine Learning (ICML), pages 942–950.421

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-422
tus, Fabio Petroni, Vladimir Karpukhin, Naman423
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,424
Tim Rocktäschel, Sebastian Riedel, and Douwe425
Kiela. 2020. Retrieval-augmented generation for426
knowledge-intensive NLP tasks. In Advances in Neu-427
ral Information Processing Systems 33: Annual Con-428
ference on Neural Information Processing Systems429
2020, NeurIPS 2020, December 6-12, 2020, virtual.430

Jian Liang, Ran He, and Tieniu Tan. 2024. A compre-431
hensive survey on test-time adaptation under distribu-432
tion shifts. International Journal of Computer Vision,433
pages 1–34.434

Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do435
we really need to access the source data? source hy-436
pothesis transfer for unsupervised domain adaptation.437
In International Conference on Machine Learning438
(ICML), pages 6028–6039.439

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia 440
Shi, Maria Lomeli, Richard James, Pedro Rodriguez, 441
Jacob Kahn, Gergely Szilvasy, Mike Lewis, Luke 442
Zettlemoyer, and Wen tau Yih. 2024. RA-DIT: 443
Retrieval-augmented dual instruction tuning. In 444
ICLR. 445

Linqing Liu, Patrick Lewis, Sebastian Riedel, and Pon- 446
tus Stenetorp. 2022. Challenges in generalization in 447
open domain question answering. In Findings of the 448
Association for Computational Linguistics: NAACL 449
2022, pages 2014–2029, Seattle, United States. Asso- 450
ciation for Computational Linguistics. 451

Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Moham- 452
mad Shoeybi, and Bryan Catanzaro. 2024. Chatqa: 453
Surpassing gpt-4 on conversational qa and rag. In 454
NeurIPS. 455

Meta-AI. 2024. Llama 3 model card. 456

John Miller, Karl Krauth, Benjamin Recht, and Ludwig 457
Schmidt. 2020. The effect of natural distribution shift 458
on question answering models. In Proceedings of the 459
37th International Conference on Machine Learning, 460
ICML 2020, 13-18 July 2020, Virtual Event, volume 461
119 of Proceedings of Machine Learning Research, 462
pages 6905–6916. PMLR. 463

Marius Pasca. 2019. Wikipedia as a resource for text 464
analysis and retrieval. In Proceedings of the 57th 465
Annual Meeting of the Association for Computational 466
Linguistics: Tutorial Abstracts, page 24, Florence, 467
Italy. Association for Computational Linguistics. 468

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 469
Dario Amodei, Ilya Sutskever, et al. 2019. Language 470
models are unsupervised multitask learners. OpenAI 471
blog, 1(8):9. 472

Mahimai Raja, E Yuvaraajan, et al. 2024. A rag-based 473
medical assistant especially for infectious diseases. 474
In 2024 International Conference on Inventive Com- 475
putation Technologies (ICICT), pages 1128–1133. 476
IEEE. 477

Sneha Ann Reji, Reshma Sheik, A Sharon, Avisha Rai, 478
and S Jaya Nirmala. 2024. Enhancing llm perfor- 479
mance on legal textual entailment with few-shot cot- 480
based rag. In 2024 IEEE International Conference 481
on Signal Processing, Informatics, Communication 482
and Energy Systems (SPICES), pages 1–6. IEEE. 483

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver 484
Bringmann, Wieland Brendel, and Matthias Bethge. 485
2020. Improving robustness against common corrup- 486
tions by covariate shift adaptation. In Advances in 487
Neural Information Processing Systems, volume 33, 488
pages 11539–11551. 489

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Hang Wu, 490
Carl Yang, and May D Wang. 2024. Medadapter: Ef- 491
ficient test-time adaptation of large language models 492
towards medical reasoning. In EMNLP. 493

6

https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://arxiv.org/abs/2403.18293
https://arxiv.org/abs/2403.18293
https://arxiv.org/abs/2403.18293
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://arxiv.org/abs/2401.10225
https://arxiv.org/abs/2401.10225
https://arxiv.org/abs/2401.10225
http://proceedings.mlr.press/v119/miller20a.html
http://proceedings.mlr.press/v119/miller20a.html
http://proceedings.mlr.press/v119/miller20a.html
https://doi.org/10.18653/v1/P19-4005
https://doi.org/10.18653/v1/P19-4005
https://doi.org/10.18653/v1/P19-4005


Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu,494
and Yiqun Liu. 2024. DRAGIN: Dynamic retrieval495
augmented generation based on the real-time informa-496
tion needs of large language models. In Proceedings497
of the 62nd Annual Meeting of the Association for498
Computational Linguistics (Volume 1: Long Papers),499
pages 12991–13013, Bangkok, Thailand. Association500
for Computational Linguistics.501

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,502
Alexei Efros, and Moritz Hardt. 2020. Test-time503
training with self-supervision for generalization un-504
der distribution shifts. In International conference505
on machine learning, pages 9229–9248. PMLR.506

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-507
bert, Amjad Almahairi, Yasmine Babaei, Nikolay508
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti509
Bhosale, et al. 2023. Llama 2: Open founda-510
tion and fine-tuned chat models. arXiv preprint511
arXiv:2307.09288.512

George Tsatsaronis, Georgios Balikas, Prodromos513
Malakasiotis, Ioannis Partalas, Matthias Zschunke,514
Michael R Alvers, Dirk Weissenborn, Anastasia515
Krithara, Sergios Petridis, Dimitris Polychronopou-516
los, et al. 2015. An overview of the bioasq large-scale517
biomedical semantic indexing and question answer-518
ing competition. BMC bioinformatics.519

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno520
Olshausen, and Trevor Darrell. 2021. Tent: Fully521
test-time adaptation by entropy minimization. In In-522
ternational Conference on Learning Representations.523

Haoyu Wang, Tuo Zhao, and Jing Gao. 2024. Blendfil-524
ter: Advancing retrieval-augmented large language525
models via query generation blending and knowledge526
filtering. In EMNLP.527

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten528
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,529
et al. 2022. Chain-of-thought prompting elicits rea-530
soning in large language models. Advances in neural531
information processing systems, 35:24824–24837.532

Zhepei Wei, Wei-Lin Chen, and Yu Meng. 2024.533
Instructrag: Instructing retrieval-augmented gen-534
eration with explicit denoising. ArXiv preprint,535
abs/2406.13629.536

Ran Xu, Hui Liu, Sreyashi Nag, Zhenwei Dai, Yaochen537
Xie, Xianfeng Tang, Chen Luo, Yang Li, Joyce C.538
Ho, Carl Yang, and Qi He. 2025. Simrag: Self-539
improving retrieval-augmented generation for adapt-540
ing large language models to specialized domains.541
Preprint, arXiv:2410.17952.542

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla,543
Xiangsen Chen, Sajal Choudhary, Rongze Daniel544
Gui, Ziran Will Jiang, Ziyu Jiang, et al. 2024.545
Crag–comprehensive rag benchmark. arXiv preprint546
arXiv:2406.04744.547

Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebas-548
tian Laverde, and Renyu Li. 2024. Financial report549

chunking for effective retrieval augmented genera- 550
tion. arXiv preprint arXiv:2402.05131. 551

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan 552
Berant. 2024. Making retrieval-augmented language 553
models robust to irrelevant context. In ICLR. 554

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, 555
Chao Zhang, Mohammad Shoeybi, and Bryan Catan- 556
zaro. 2024. Rankrag: Unifying context ranking with 557
retrieval-augmented generation in llms. In NeurIPS. 558

A Related Work 559

A.1 Retrieval Augmented Generation 560

Retrieval Augmented Generation (RAG) (Lewis 561

et al., 2020; Borgeaud et al., 2022; Izacard and 562

Grave, 2021) has emerged as a powerful paradigm 563

for enhancing large language models (LLMs) with 564

external knowledge. By integrating a retrieval sys- 565

tem with LLMs, RAG enables models to access 566

and leverage external knowledge sources during 567

generation, effectively addressing the limitations 568

of static, parameterized knowledge in LLMs. 569

Recent advances in RAG have focused on several 570

key directions. First, researchers have explored dy- 571

namic retrieval processes (Jiang et al., 2023; Jeong 572

et al., 2024; Su et al., 2024) to improve the rele- 573

vance of retrieved content. Second, various filtering 574

mechanisms (Yoran et al., 2024; Yu et al., 2024; 575

Wang et al., 2024) have been developed to eliminate 576

irrelevant contexts and enhance RAG robustness. 577

Additionally, instruction-tuning methods (Liu et al., 578

2024; Lin et al., 2024; Wei et al., 2024) have been 579

specifically designed to improve LLMs’ search and 580

RAG capabilities. 581

A.2 Test-time inference adaptation 582

Test-time inference adaptation aims to adapt pre- 583

trained models to unlabeled test data during infer- 584

ence time without accessing the source training 585

data. This paradigm has gained increasing atten- 586

tion as a practical solution for handling distribu- 587

tion shifts in real-world applications (Wang et al., 588

2021; Chen et al., 2022; Boudiaf et al., 2022). Un- 589

like traditional domain adaptation methods that 590

require simultaneous access to both source and tar- 591

get domains, test-time adaptation only needs the 592

pre-trained model and target data, making it more 593

privacy-friendly and storage-efficient (Liang et al., 594

2020). 595

Early works in this direction focused on hypoth- 596

esis transfer learning (Kuzborskij and Orabona, 597

2013), where models trained on source domains are 598
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adapted to target domains with limited labeled data.599

Recent advances have extended this to fully un-600

supervised scenarios, leveraging techniques like601

entropy minimization (Wang et al., 2021), self-602

training (Sun et al., 2020), and test-time normaliza-603

tion statistics calibration (Schneider et al., 2020) to604

adapt models using only unlabeled test samples.605

Building on these advances, TTARAG introduces606

a simple yet effective approach for test-time adapta-607

tion in retrieval-augmented generation. By learning608

to predict subsequent tokens in retrieved passages,609

our method enables fully unsupervised adaptation610

without requiring access to source domain data or611

labeled examples.612

B Baseline Details613

We evaluate TTARAG using three state-of-the-art614

instruction-tuned LLMs: Llama-2-7b-chat (Tou-615

vron et al., 2023), Llama-3.1-8b-it (Meta-AI,616

2024), and ChatGLM3-6b (GLM et al., 2024).617

We compare against two widely adopted baselines:618

Chain-of-Thought (CoT) A prompting tech-619

nique that guides the model to generate step-by-620

step reasoning before producing the final answer.621

In-Context Learning (ICL) A method that pro-622

vides relevant examples in the input prompt to623

demonstrate the desired task behavior.624

We also compare TTARAG with the three state-of-625

the-art general domain pretrained RAG models:626

Ret-Robust An approach focused on improving627

retrieval robustness through strategic passage selec-628

tion during training. The model learns to discrimi-629

nate between high-quality and low-quality retrieved630

content by being trained on a carefully curated mix631

of passages with different relevance levels.632

RAAT A retrieval-augmented model that intro-633

duces a novel noise-aware training strategy. It634

specifically targets the challenge of distinguishing635

between helpful and misleading retrieved informa-636

tion by incorporating an adaptive training mecha-637

nism that exposes the model to varying types of638

retrieval noise.639

Self-RAG utilizes instruction fine-tuning to adap-640

tively retrieve passages based on the question and641

determine if the passage contains useful informa-642

tion for answering the question.643

C Hyperparameter Analysis 644

Learning Rate Analysis We investigate the sen- 645

sitivity of our method to different learning rates 646

during test-time adaptation with number of adapta- 647

tion pairs of 3. As shown in Figure 1, we evaluate 648

learning rates ranging from 1e-6 to 1e-4 across 649

all three model architectures. Llama-3.1-8B-it 650

achieves optimal performance at 1e-5 (31.9% ac- 651

curacy), with performance gradually declining at 652

higher learning rates. ChatGLM-6B shows more ro- 653

bust behavior across different learning rates, reach- 654

ing peak performance at 5e-6 to 1e-5 (25.8% ac- 655

curacy). Llama-2-7B-chat demonstrates the most 656

stable performance curve, with accuracy varying 657

only slightly (30.4-30.8%) across all tested learn- 658

ing rates, peaking at 1e-6 (30.8% accuracy). These 659

results suggest that smaller learning rates (1e-6 to 660

1e-5) generally provide better and more stable adap- 661

tation, likely because they prevent over-aggressive 662

parameter updates that could disrupt the model’s 663

pre-trained knowledge. All models show consis- 664

tent improvement over their original performance 665

(indicated by dashed lines) across most learning 666

rates, validating the robustness of our approach. 667

Number of Adaptation Passages We examine 668

how the number of retrieved passages used for 669

adaptation affects performance. This study helps 670

determine the optimal amount of context needed 671

for effective adaptation while considering computa- 672

tional efficiency. As shown in Figure 2, we observe 673

different optimal points across model architectures. 674

Llama-3.1-8B-it achieves peak performance with 675

3 adaptation pairs (31.7% accuracy), while Llama- 676

2-7B-chat shows optimal results at 4 pairs (31.7% 677

accuracy). ChatGLM-6B maintains relatively sta- 678

ble performance between 2-5 pairs, peaking at 5 679

pairs (25.8% accuracy). Notably, all models show 680

performance degradation when using 10 pairs. This 681

degradation likely stems from over-aggressive pa- 682

rameter updates that disrupt the model’s pre-trained 683

knowledge. Too many adaptation pairs may cause 684

excessive deviation from the original parameters, 685

compromising the valuable knowledge acquired 686

during pre-training. These results indicate that a 687

moderate number of adaptation pairs (3-5) gen- 688

erally provides the best balance between adapta- 689

tion effectiveness and preserving the model’s pre- 690

trained knowledge. 691
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Figure 2: Accuracy vs. Number of Adaptation Pairs

D Implementation Details692

We use Llama-3.1-8b-instruct, ChatGLM-3-6b,693

Llama-2-7b-chat as our backbone models. Here694

we detail the hyperparameters and configuration695

settings used in our implementation. For the op-696

timization process, we employ a learning rate of697

1e-5, which provides a balance between adapta-698

tion effectiveness and stability. To improve train-699

ing efficiency while managing memory constraints,700

we implement gradient accumulation with 2 steps.701

Gradient clipping is set at 0.1 to prevent gradi-702

ent explosions, particularly important during rapid703

adaptation to new contexts. We use the AdamW704

optimizer with weight decay of 0.01 and epsilon of705

1e-8, which helps prevent overfitting while main-706

taining numerical stability. Additional controls in-707

clude filtering out sentences shorter than 6 tokens708

and limiting adaptation to 3 pairs per step. These709

parameters were determined through extensive ex-710

perimentation across various domains, optimizing711

for both adaptation performance and computational712

efficiency. All experiments were conducted three713

times and the average results are reported.714

All experiments are conducted on NVIDIA715

A100 GPUs with 80GB of memory. We utilize 716

a fixed random seed of 42, and the experimental 717

results are reported within a single run. For imple- 718

mentation, we use the following library versions: 719

transformers 4.30.2, torch 2.1.0. 720

Table 5: Number of samples in each domain of CRAG
dataset.

Domain Finance Sports Music Movie Open

#Samples 661 519 373 611 542

E Dataset Statistics 721

The statistics of the CRAG dataset are shown in 722

Table 5. 723

F Licensing 724

The CRAG, BioASQ and PubMedQA datasets are 725

released for academic usage. These datasets are de- 726

signed for evaluating RAG systems. Thus, our use 727

of these datasets is consistent with their intended 728

use. 729

The language models used in our experiments 730

are released under the following licenses: Llama- 731

9



2-7b-chat (Touvron et al., 2023) is released un-732

der the Meta Llama 2 Community License Agree-733

ment. It is a variant of the Llama 2 family released734

in July 2023, featuring 7 billion parameters and735

specifically optimized for dialogue applications.736

Llama-3.1-8b-it (Meta-AI, 2024) is released un-737

der the Llama 3 License. Released in April 2024,738

it features 8 billion parameters and is specifically739

designed for instruction-following tasks, represent-740

ing one of the most advanced open-source LLMs.741

ChatGLM3-6b (GLM et al., 2024) is released un-742

der the Apache 2.0 License. It is a bilingual conver-743

sational language model featuring 6 billion param-744

eters, demonstrating strong performance in both745

English and Chinese tasks. All these models are746

open for academic usage.747

10


	Introduction
	Methodology
	Overview
	Context Processing
	Parameter Adaptation Process
	Initialization
	Training Loop

	Response Generation

	Experiments
	Datasets
	Baselines
	Experimental Results

	Conclusion
	Related Work
	Retrieval Augmented Generation
	Test-time inference adaptation

	Baseline Details
	Hyperparameter Analysis
	Implementation Details
	Dataset Statistics
	Licensing

