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Abstract

Model extraction attacks on Graph Neural Networks (GNNs) have traditionally
been studied under assumptions of high homophily and full access to the graph
structure, which oversimplifies real-world attack scenarios. In practice, attackers
often lack access to the original graph topology, making structure-free settings more
realistic and critical to study, as they reflect common constraints in privacy-sensitive
or proprietary graph-based systems. This study investigates model extraction under
such constraints and identifies graph homophily as the central factor driving attack
success. Through extensive empirical evaluation, we show that homophily between
the training and test node partitions is the primary driver of extraction success:
higher homophily markedly increases attack fidelity. Counterintuitively, we find
that heterophily-resilient GNN architectures are more vulnerable to these attacks
than homophily-sensitive models. Furthermore, while Graph Structure Learning
(GSL) methods can improve extraction fidelity by inferring proxy graph structures,
their benefits are strongly dependent on underlying homophily levels and are most
pronounced in high-homophily scenarios. Our findings establish homophily as
a central factor in GNN security, providing new insights for designing robust
architectures and defenses in structure-limited environments.

1 Introduction

Graph Neural Networks (GNNs) have emerged as powerful tools for learning on graph-structured
data, achieving state-of-the-art performance across various tasks [1, 2, 3, 4]. Their wide deployment
in critical applications has made understanding their security and privacy implications increasingly
important [5, 6, 7], particularly the threat of model extraction attacks [8, 9, 10, 11]. In these attacks,
an adversary aims to reconstruct a surrogate model that approximates the functionality of a target
GNN, thereby compromising intellectual property and facilitating downstream attacks. Existing
works [9, 12, 13, 14, 15] on GNN model extraction have predominantly assumed the attacker has
full or partial access to the graph structure, leveraging node connectivity to achieve high-fidelity
extraction. Recently, however, growing attention has been focused on more realistic structure-free
settings [13], where the underlying topology is private. In these scenarios, attackers must rely solely
on node features and model outputs, necessitating new strategies for querying and surrogate training.
This has spurred interest in Graph Structure Learning (GSL) methods [15, 16, 17, 18, 19, 20, 21, 22],
which infer latent graph structures from feature information alone to enhance extraction performance
under these constraints [13, 14, 23, 24], as illustrated in the Figure 1.

While prior approaches have addressed the absence of structural information in model extraction,
the role of target graph homophily in shaping attack performance remains poorly understood. Ho-
mophily, which is the tendency of connected nodes to share labels or features [25, 26], directly
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affects how much information a target GNN encodes in node representations. In a high-homophily
graph, label signals propagate smoothly across neighborhoods, meaning that even without access
to the original topology, an attacker’s queries to the target model can capture rich correlations be-
tween node features and labels [27, 28]. In contrast, low-homophily (heterophilic) graphs, where
connected nodes have dissimilar labels, pose a significant challenge for extraction because node
features alone provide weaker cues about neighborhood label distributions [3, 27, 26]. Without
access to the graph structure, an attacker loses this critical source of information, making surro-
gate training far less effective. Thus, homophily levels go beyond being a general property of
graphs to fundamentally influence the success of extraction attacks in structure-limited settings.
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Figure 1: A general framework of model extraction
attacks without graph structure. The attacker first probes
the target model (trained on the private (G,X, Y )) by
sending queries with node features XA. The model’s
predictions are collected to form a new set of labels YA.
Without access to the true graph structure G, the attacker
uses a GSL method to infer a proxy structure G′ and
the trains a surrogate model on this completely synthetic
graph (G′, XA, YA).

Traditional GNNs such as Graph Convolutional
Networks (GCNs) rely on neighborhood aggre-
gation [2, 29, 30], effectively smoothing node
features to exploit homophily. However, this
mechanism fails under heterophily, leading to
reduced model accuracy and potentially easier
extraction if the model collapses to trivial solu-
tions. In contrast, advanced architectures such
as Frequency Adaptive GCNs (FAGCNs)[29]
are specifically designed to handle heterophilic
graphs by decomposing node features into low-
and high-frequency components and adaptively
combining them through learnable gating mech-
anisms. Such models maintain higher accuracy
in heterophilic settings, but their complex adap-
tation may introduce new challenges or oppor-
tunities for extraction attacks.

In this work, we investigate structure-free model
extraction attacks, where the attacker has no
access to the graph topology, and analyze how
graph homophily and the target model’s architec-
tural capacity to handle heterophily collectively govern attack performance. Through comprehensive
experiments spanning ten datasets and six baseline methods, across a range of homophily levels
and model architectures, our results demonstrate that: (1) Train-test homophily is a pivotal factor
governing extraction fidelity, with higher homophily substantially favoring the attacker. (2) Contrary
to what might be expected, target models designed for heterophily resilience, are generally more
vulnerable to these attacks than standard GCNs. (3) The fidelity gains from using GSL methods to
infer missing structure are highly homophily-dependent, offering significant improvements primarily
in high-homophily settings.

These findings underscore homophily not only as a fundamental property shaping graph learning but
also as a critical security determinant, revealing nuanced and architecture-specific vulnerabilities
in GNNs. In particular, our results provide new insights into GNN vulnerabilities under practical,
structure-limited constraints by highlighting how the key factors of graph homophily and target model
architecture jointly govern extraction susceptibility. Both dimensions must therefore be carefully
considered when designing effective attacks and developing robust defenses against model extraction.
The main contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first to establish that train-test homophily is a
pivotal factor that substantially governs the success of structure-free model extraction attacks
on GNNs.

• We provide the novel and counterintuitive finding that GNN models specifically designed
to be resilient to heterophily are more vulnerable to these extraction attacks than standard
GCNs; and we further demonstrate that the effectiveness of using GSL methods to infer
missing topology for the attack is highly dependent on homophily, offering significant gains
mostly in high-homophily settings.

• We conduct extensive experiments across multiple benchmark datasets and GNN architec-
tures, providing comprehensive empirical evidence to support our findings and ensure the
robustness of our conclusions.
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2 Background and Notations

Graph Neural Networks. We model the target system as an attributed graph G = (V,E,X, Y ),
where V is the set of n nodes, E ⊆ V × V the original edge set, and X = {xi | vi ∈ V } the
node-attribute set with xi ∈ Rd. Each node vi ∈ V is associated with a label yi ∈ Y drawn from a
finite label space Y . A target GNN is parameterized by θ and defines a mapping fθ : V → Y that
produces a prediction pi = fθ(vi) ∈ P for every node. We assume the attacker has black-box query
access to fθ but no knowledge of the true edge set E.

Graph Homophily (Total Homophily). Let G = (V,E) be a graph with node labels {yu | u ∈ V }.
The (total) homophily level [15, 25, 27] h ∈ [0, 1] is defined as

htotal =
|{(u, v) ∈ E | yu = yv}|

|E|
. (1)

A high value (htotal ≈ 1) indicates that connected nodes are likely to share the same label, whereas a
low value (htotal ≈ 0) reflects heterophily.

Train–Test Homophily. Let Vtrain ⊆ V and Vtest ⊆ V denote the sets of training and test nodes,
respectively. The train–test homophily is computed over edges connecting training and test nodes:

htrain-test =
|{(u, v) ∈ E | u ∈ Vtrain, v ∈ Vtest, yu = yv}|

|{(u, v) ∈ E | u ∈ Vtrain, v ∈ Vtest}|
. (2)

Model Extraction Attack Against Graph Learning Model. The attacker creates a surrogate dataset
G′ = (VA, E

∗
A, XA) consisting of an attack node set VA ⊆ V selected by the attacker, synthetic edges

E∗
A ⊆ VA × VA (possibly different from the true edges EA ⊆ E among VA), and the corresponding

attributes XA = {xi | vi ∈ VA}. The attacker queries the target model to obtain predictions
PA = {fθ(vi) | vi ∈ VA}, and trains an extraction model fθ′ on the surrogate data (G′, PA). The
goal is to minimize the generalization gap Ev∼V [ℓ(fθ′(v), fθ(v))] under the constraint that E is
unknown.

Fidelity. Given a test node set Vtest ⊆ V , fidelity measures the agreement between the surrogate
model fθ′ and the target model fθ on Vtest. Formally, fidelity [13, 31, 32, 8, 11] is defined as

Fid(fθ′ , fθ) =
1

|Vtest|
∑

v∈Vtest

1[argmax fθ′(v) = argmax fθ(v)] , (3)

where 1[·] denotes the indicator function. We report the mean fidelity together with its standard
deviation across multiple runs.

Graph Structure Learning. To compensate for the absence of the true edge set E, the attacker may
optionally refine the synthetic edges E∗

A via a GSL module. Concretely, the GSL module takes the
surrogate attributes XA and an initial synthetic edge set Ẽ(0)

A (commonly a k-nearest-neighbor graph
or a fully-connected graph over VA) and learns an optimized structure E∗

A by minimizing

LGSL = LAlign(Z
∗
A, PA) + λLStruct(E

∗
A, Z

∗
A, (VA, Ẽ

(0)
A , XA)). (4)

Here, Z∗
A denotes the node representations produced by an auxiliary GNN gϕ operating on

(VA, E
∗
A, XA), LAlign measures the discrepancy between gϕ’s predictions and the target model’s

predictions PA = {fθ(vi) | vi ∈ VA}, and LStruct imposes structural priors (such as sparsity, smooth-
ness, feature-structure consistency, or homophily) on the learned edges E∗

A and representations Z∗
A.

The hyper-parameter λ balances the fidelity of target model imitation (via LAlign) against structural
plausibility (via LStruct). The resulting E∗

A is then used in the surrogate dataset G′ = (VA, E
∗
A, XA)

for downstream model extraction.

3 Research Questions

While recent work has explored structure-free model extraction attacks on GNNs, many fundamental
aspects of their efficacy remain poorly understood. In particular, the role of graph homophily, which
refers to the degree to which connected nodes share labels or features, has not been systematically
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examined in the context of extraction attacks where attackers lack access to the graph structure. This
work aims to fill that gap by addressing the following research questions:

RQ1: How does graph homophily influence the effectiveness of structure-free model extraction
attacks? Given that homophily affects how label information propagates in a graph, we investigate
how different forms of homophily, such as global homophily and train-test homophily, affect the
fidelity of surrogate models trained without access to the graph structure.

RQ2: How does the choice of a homophily-sensitive (GCN) versus a heterophily-resilient
(FAGCN) architecture affect extraction susceptibility under structure-free conditions? We
analyze whether the robustness of target models to heterophilic graphs translates to greater resilience
or vulnerability to extraction attacks, and how this relationship changes across the homophily
spectrum.

RQ3: Can GSL methods enhance extraction fidelity in structure-free settings, and how does
their effectiveness depend on the underlying graph homophily? By leveraging GSL techniques,
we assess whether inferred or synthesized topologies can meaningfully improve attack performance
in low-structure, low-homophily scenarios.

4 Empirical Investigation
In this section, we perform extensive experiments across ten datasets and six baseline methods to
answer the three research questions mentioned in Sec 3.

Table 1: Fidelity comparison against GCN and FAGCN models. On highly homophilic datasets, most
methods achieve high fidelity when targeting GCN, whereas on datasets with low homophily, the overall attack
performance is relatively lower. When targeting FAGCN, the overall fidelity is higher with smaller performance
variance, particularly on low-homophily datasets where multiple methods exhibit significant improvements
compared to the GCN results.

Target Model Dataset GCN-true GCN-kNN MLP LDS SLAPS HESGSL

GCN

actor 30.41 ±1.11 41.38 ±1.35 46.34 ±1.39 OOM 43.93 ±1.75 44.92 ±0.74

chameleon 26.54 ±2.82 62.72 ±1.61 50.35 ±0.98 39.01 ±2.22 51.67 ±1.37 50.92 ±1.50

citeseer 55.84 ±0.88 76.98 ±0.08 67.94 ±0.32 76.07 ±0.71 77.16 ±0.64 75.32 ±2.35

cora 62.06 ±0.65 69.48 ±0.25 62.78 ±0.44 71.05 ±0.35 72.82 ±0.80 69.76 ±1.65

cornell 48.65 ±6.89 63.24 ±5.27 68.65 ±2.42 61.86 ±9.09 65.95 ±3.08 64.32 ±8.42

minesweeper 69.81 ±0.16 69.81 ±0.16 69.81 ±0.16 OOM 69.78 ±0.18 69.79 ±0.17

pubmed 78.66 ±0.23 79.46 ±0.36 79.82 ±0.71 OOM 80.10 ±0.94 81.60 ±1.31
squirrel 14.02 ±0.63 33.76 ±2.06 39.31 ±1.10 35.62 ±1.39 38.46 ±1.55 38.69 ±1.67

texas 45.41 ±15.22 55.68 ±8.88 61.08 ±6.78 54.93 ±10.32 60.00 ±8.84 60.54 ±4.10

wisconsin 61.57 ±2.97 62.55 ±4.75 60.00 ±8.23 62.45 ±3.64 67.06 ±6.85 62.75 ±5.06

FAGCN

actor 48.34 ±0.92 54.59 ±1.19 67.78 ±1.20 OOM 68.86 ±1.35 67.70 ±0.69

chameleon 28.25 ±2.02 45.61 ±0.92 53.60 ±1.88 46.40 ±1.63 54.47 ±1.77 53.99 ±2.25

citeseer 57.40 ±2.16 79.36 ±0.23 71.70 ±0.19 76.73 ±1.21 75.50 ±0.80 76.22 ±1.29

cora 64.02 ±0.53 70.68 ±0.28 65.72 ±0.61 71.45 ±0.84 72.50 ±1.88 75.00 ±0.73
cornell 70.27 ±13.78 75.14 ±4.01 81.62 ±4.83 73.99 ±6.56 82.16 ±6.51 77.84 ±8.42

minesweeper 61.87 ±0.45 61.88 ±0.47 61.87 ±0.45 OOM 61.88 ±0.46 61.84 ±0.43

pubmed 84.10 ±0.69 84.70 ±0.29 86.38 ±0.29 OOM 85.12 ±1.70 84.64 ±0.25

squirrel 18.00 ±1.62 37.64 ±1.69 54.27 ±1.18 37.67 ±1.65 47.72 ±2.19 49.84 ±0.57

texas 54.05 ±22.61 81.08 ±5.41 84.32 ±5.86 80.07 ±4.07 82.16 ±6.22 85.95 ±5.20
wisconsin 78.43 ±8.43 83.92 ±2.91 85.10 ±3.28 82.13 ±4.78 84.31 ±2.40 85.88 ±0.88

Datasets. To evaluate model extraction attacks across different homophily conditions, we select
10 benchmark datasets ranging from strongly homophilic to strongly heterophilic graphs. This
includes three homophilic citation networks: Cora, Citeseer, and Pubmed, where connected nodes
often share class labels. For heterophilic scenarios, we use social networks: Actor, Chameleon, and
Squirrel, where connected nodes typically differ in labels, and webpage networks: Cornell, Texas,
and Wisconsin, which exhibit moderate heterophily. We also include Minesweeper as a non-social
graph with unique structural patterns. App. A.2 provides dataset descriptions and summary statistics.

Protocol of Experiments. We evaluated how graph homophily impacts structure-free model ex-
traction attacks on GNNs. We measured surrogate model fidelity using various GSL methods in a
transductive node classification task under Topology Inference. We also analyzed total and train-test
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homophily to assess their impact on extraction effectiveness across GNN architectures, targeting
GCN (sensitive to homophily) and FAGCN (resilient to heterophily).

Baselines. We employ five GSL and structure-free methods: (1) GCN-true: Uses the original
graph structure as input for the GCN; (2) GCN-kNN [5]: Constructs a k-nearest neighbor graph
based on node feature similarity for GCN input; (3) HESGSL [15]: Enhances GSL with homophily
regularization during structure generation, encouraging edges between same-class nodes to improve
predictions in homophilic settings; (4) LDS [23]: Learns a pseudo-adjacency matrix from node
features to create a surrogate graph for structure-aware message passing without true topology; (5)
MLP: A baseline using a multi-layer perceptron to predict node labels based on features and target
model outputs, without graph structure; (6) SLAPS [19]: Jointly optimizes structure learning and
self-supervised feature prediction, inferring graph topology from node features and using auxiliary
tasks to stabilize training and enhance classification. The App. A.3 shows the hyperparameter tuning
process.

Homophily as a Key Factor in Structure-Free Graph Model Extraction. To address
RQ1, we investigate the role of graph homophily in structure-free model extraction at-
tacks. Our key observation is a strong, consistent relationship between train-test homophily
and attack success, as measured by extraction fidelity (see Figure 2). We find that at-
tacks are highly effective on high-homophily graphs (e.g., Cora, CiteSeer), achieving up
to 77% fidelity, but perform poorly on low-homophily graphs (e.g., Actor, Chameleon).
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Figure 2: GSL methods’ fidelity vs. dataset homophily
shows a positive correlation: higher homophily boosts
fidelity to 70–90% across most attacks, while low-
homophily datasets show lower fidelity. Notably, attack
fidelity is often higher for FAGCN than GCN, especially
on low-homophily datasets, indicating that both the tar-
get model’s heterophily adaptability and proxy graph’s
train-test homophily influence extraction difficulty.

This is because high homophily enables the
learned proxy graph to reliably connect test
nodes to like-labeled training nodes, allowing
the surrogate model to better approximate the
target GNN’s behavior. In low-homophily set-
tings, this label propagation is disrupted, leading
to ineffective surrogate models. For homophily
measures of proxy graphs and their correlation
with fidelity, see App. A.4.

Architectural Vulnerability to Extraction. To
address RQ2, we compare the extraction sus-
ceptibility of a homophily-sensitive GCN with
a heterophily-resilient FAGCN. Our key find-
ing is a counterintuitive security trade-off: the
FAGCN target model is consistently more vul-
nerable to extraction than the GCN target across
most datasets (Table 1). This vulnerability gap
is most pronounced on low-homophily, het-
erophilic graphs. We posit that because FAGCN
is designed to be less reliant on potentially noisy
graph structure and more reliant on node fea-
tures in these settings, its decision boundary be-
comes easier for an attacker to learn from feature
signals alone. This is evidenced by the MLP sur-
rogate, which performs poorly against GCN but

becomes highly competitive against FAGCN. On high-homophily graphs, the disparity between the
two targets narrows, as both architectures can be approximated effectively.

Homophily-Dependent Fidelity Gains in GSL-Enhanced Extraction. To address RQ3, we
evaluate whether GSL methods improve extraction fidelity and how this depends on homophily. Our
findings reveal that the effectiveness of GSL is highly dependent on the underlying graph homophily.
According to Table 1, in high-homophily settings (e.g., Cora, CiteSeer), GSL methods consistently
and significantly outperform feature-based MLP surrogates. This is because the learned pseudo-
structures successfully approximate the homophilic neighborhood aggregation of the target GNN,
leading to substantial fidelity gains. Conversely, in low-homophily environments (e.g., Squirrel,
Chameleon), GSL methods offer mixed or even negative returns compared to a simple MLP. The
learned structures often incorrectly inject homophily where little exists, creating a mismatch with the
target model’s behavior. This misalignment is particularly detrimental when attacking heterophily-
resilient architectures like FAGCN. The key insight is that the benefit of GSL is contingent on its
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ability to infer a structure that aligns with the homophily pattern the target model was trained on.
When this alignment is achieved, fidelity improves; when it is not, GSL can be counterproductive.
Therefore, GSL enhances extraction primarily in high-homophily scenarios.

5 Related Work

Advanced GNN Architectures for Heterophily. Traditional Graph Convolutional Networks (GCNs)
inherently smooth node features by aggregating information from neighbors, which performs well on
homophilic graphs where connected nodes tend to share similar labels [2, 9, 33, 34, 35, 36]. However,
in heterophilic scenarios [37, 15, 25, 27], where connected nodes often have dissimilar labels, this
smoothing effect can obscure important discriminative signals, leading to performance degradation.
To address these limitations, FAGCN[29] decomposes node features into low-frequency (smoothed via
neighborhood aggregation) and high-frequency (residual components) signals, adaptively combining
them using a learnable gate. Additionally, it introduces signed edge weights, enabling both low-
frequency smoothing and high-frequency enhancement through negative connections. This dual
mechanism, which combines frequency-adaptive gating and flexible edge weighting, effectively
handles heterophilic graphs by preventing oversmoothing and preserving discriminative node features,
thereby improving node classification performance.

Structure-Free Model Extraction via Graph Structure Learning. GNNs are effective primarily
due to topology-driven message passing [2]. However, in many practical scenarios like privacy-
preserving or proprietary-data settings, the true graph is unavailable. This forces GNNs to rely heavily
on intrinsic feature–label correlations such as homophily [1, 12, 9]. A naïve structure-free extraction
approach simply treats a target GNN as a feature-to-label black box and trains an MLP surrogate on
node features and outputs; however, this ignores the structural priors that GNNs exploit and thus limits
surrogate fidelity. To address this limitation, LDS [23], and more broadly GSL [3, 5, 24, 30, 20, 21,
22], aim to infer a pseudo-adjacency matrix from node features so that a surrogate GNN can perform
structure-aware aggregation even in the absence of the true topology [13], thereby substantially
improving extraction success compared with MLP baselines. Representative GSL methods further
refine this idea: SLAPS [19] jointly optimizes structure generation with self-supervised feature-
prediction objectives under the hypothesis that a structure suitable for reconstructing features will
also support label prediction, while auxiliary reconstruction losses stabilize end-to-end learning when
labeled data are scarce. HESGSL [15] extends this framework by introducing explicit homophily
regularization to encourage connections between nodes of the same class, making it particularly
effective in settings where the homophily assumption holds. Collectively, these approaches illustrate
a common strategy for structure-free settings: by reconstructing or regularizing a learnable pseudo-
graph through self-supervision and domain-specific inductive biases such as homophily, surrogate
GNNs can recover structure-aware behaviors of complex targets and achieve higher fidelity model
extraction than feature-only surrogates.

6 Conclusion

We investigate factors influencing structure-free model extraction fidelity in GNNs. We identify
homophily as a pivotal factor: high train-test homophily enables high-fidelity extraction, heterophily-
resilient architectures like FAGCN are unexpectedly more vulnerable, and GSL methods only provide
consistent gains in homophilic settings. These findings reveal that a model’s ability to handle
heterophily does not confer security and may even increase risk. We discuss the future work and the
limitations in App. B.
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A Appendix

A.1 Experiment Setting

All experiments were implemented using PyTorch and PyTorch Geometric for GNN and GSL method
implementations. Experiments were conducted on a machine equipped with an Intel Core i7-13620H
CPU and an NVIDIA GeForce RTX 4070 GPU to support the computational requirements of graph
processing and structure learning.

A.2 Dataset Description

We give the number of nodes, edges, homophily ratios and distinct classes of datasets we used in this
paper in Table 2.

Table 2: Benchmark dataset summary statistics from PyTorch Geometric [38]. The homophily ratio
h measures the proportion of edges connecting nodes of the same class, where values closer to 1
indicate strong homophily and values closer to 0 indicate heterophily.

Actor Chameleon Citeseer Cornell Cora Minesweeper Pubmed Squirrel Texas Wisconsin
# Nodes (|V|) 7,600 2,277 3,327 183 2,708 10,000 19,717 5,201 183 251
# Edges (|E|) 26,752 31,421 4,676 280 5,278 39,402 44,327 198,493 295 466
Homophily Ratio (h) 0.22 0.23 0.74 0.30 0.81 0.71 0.80 0.22 0.11 0.21
# Classes (|C|) 5 5 6 5 7 2 3 5 5 5

For all datasets, we follow the experimental setting provided in Pei et al. [39], which consists of 10
random splits with proportions 48/32/20% corresponding to training/validation/test for each graph.

A.3 Hyperparameter Tuning

We conduct extensive hyperparameter tuning for all models using Microsoft’s Neural Network
Intelligence (NNI) framework [40], with each model having a tailored search space designed to
explore its specific architectural characteristics and optimization requirements: for the HESGSL
model, we tune eight parameters including learning rate (0.0001 to 0.01, uniform), weight decay
(0.00005 to 0.005, uniform), classifier hidden dimension (32 or 128), DAE hidden dimension (512
or 1024), neighborhood size (2 or 3), number of hops (2 or 3), alpha (0.1 to 1.0, uniform), and beta
(1.0 to 10.0, uniform); the SLAPS model optimization focuses on five parameters including learning
rate (0.0001 to 0.01, uniform), weight decay (0.00005 to 0.005), adjacency learning rate (0.0001 to
0.01, uniform), and two adjacency dropout rates (both ranging from 0.00005 to 0.5, uniform); for the
GCN and MLP baselines, we optimize three core parameters including learning rate (0.0001 to 0.01,
uniform), weight decay (0.00005 to 0.005, uniform), and hidden dimension (256, 512, or 1024); and
the LDS model tuning includes learning rate (0.0001 to 0.01, uniform), weight decay (0.00005 to
0.005, uniform), and hidden size (64 or 128). The tuning process employs Bayesian optimization
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with Tree-structured Parzen Estimator (TPE) for efficient exploration of each parameter space. We
allocate 50 trials per model for comprehensive search, with early stopping applied when performance
plateaus. Optimal configurations are selected based on validation set performance using our primary
evaluation metric, ensuring fair comparison across all models.

A.4 The Homophily Measures of Proxy Graphs

Table 3: The homophily measures of proxy graphs against an GCN model directly correlate with fidelity
results in Table 1. On high-homophily datasets, higher train-test homophily corresponds to significantly higher
extraction fidelity, whereas on low-homophily datasets, both homophily metrics remain relatively low, resulting
in generally poor attack performance.

Dataset Global Homophily (%) Train-Test Homophily (%)
GCN-kNN LDS SLAPS HESGSL GCN-kNN LDS SLAPS HESGSL

actor 36.24 OOM 40.94 ±2.09 52.70 ±2.72 29.10 OOM 37.36 ±1.94 39.57 ±2.60
chameleon 34.18 38.16 ±1.96 54.92 ±4.59 62.04 ±2.74 28.34 27.35 ±1.89 48.69 ±2.13 45.74 ±1.77

citeseer 67.57 71.46 ±1.03 60.96 ±0.36 67.59 ±3.98 61.79 66.20 ±3.68 88.35 ±2.40 79.71 ±7.34

cora 62.38 63.57 ±2.00 59.25 ±0.34 66.27 ±3.28 58.73 56.83 ±2.87 84.89 ±1.38 75.67 ±7.97

cornell 55.84 54.80 ±1.01 25.40 ±0.29 69.65 ±7.29 51.57 50.26 ±4.06 25.29 ±2.09 58.65 ±11.65
minesweeper 70.78 OOM 61.51 ±0.04 68.79 ±0.00 70.44 OOM 60.92 ±0.66 67.21 ±2.25

pubmed 77.97 OOM 76.76 ±2.17 79.79 ±0.84 82.76 OOM 88.14 ±4.43 79.59 ±3.11

squirrel 32.05 32.36 ±0.41 46.09 ±10.77 46.13 ±7.21 23.24 24.91 ±0.78 33.65 ±3.73 31.47 ±3.29

texas 52.36 51.97 ±0.50 28.48 ±0.14 60.94 ±8.13 40.11 47.03 ±4.42 28.66 ±2.17 48.03 ±9.84
wisconsin 54.13 55.22 ±2.37 27.80 ±0.08 76.91 ±2.06 50.00 44.80 ±2.67 27.75 ±0.96 66.20 ±6.29

Table 4: Homophily measures of proxy graphs against an FAGCN model correlate with fidelity results in Table
1. Compared to GCN, FAGCN yields higher global and train-test homophily, showing a stronger correlation
with extraction fidelity. On high-homophily datasets, improved train-test homophily significantly boosts attack
success rates.

Dataset Global Homophily (%) Train-Test Homophily (%)
GCN-kNN LDS SLAPS HESGSL GCN-kNN LDS SLAPS HESGSL

actor 48.13 OOM 65.04 ± 0.72 71.27 ± 1.04 41.04 OOM 63.52 ± 0.68 66.43 ± 0.77
chameleon 37.01 38.04 ± 2.9 59.84 ± 2.52 60.7 ± 1.77 30.46 29.42 ± 1.44 53.51 ± 1.86 45.86 ± 2.68

citeseer 66.89 68.14 ± 2.69 60.75 ± 0.9 67.45 ± 4.18 61.79 63.51 ± 4.54 86.97 ± 4.58 74.63 ± 11.18

cora 62.54 63.26 ± 1.93 59.47 ± 0.66 61.03 ± 2.58 61.64 58.88 ± 4.58 85.4 ± 1.48 89.12 ± 5.38
cornell 67.57 66.74 ± 1.29 26.98 ± 0.14 69.76 ± 8.76 66.67 63.67 ± 4.71 27.31 ± 1.97 68.1 ± 8.97
minesweeper 63.49 OOM 55.21 ± 0.04 55.99 ± 0.0 61.64 OOM 55.2 ± 0.5 56.29 ± 0.35

pubmed 81.79 OOM 82.62 ± 1.89 83.56 ± 1.02 82.76 OOM 93.71 ± 1.37 87.18 ± 8.26

squirrel 32.89 34.38 ± 1.61 60.66 ± 1.25 54.47 ± 9.86 23.96 25.95 ± 0.7 46.53 ± 2.03 42.9 ± 4.7

texas 73.24 72.33 ± 0.81 42.13 ± 0.15 86.44 ± 1.26 70.06 68.54 ± 2.05 43.85 ± 2.5 78.58 ± 8.44
wisconsin 78.62 79.76 ± 0.96 33.99 ± 0.1 89.44 ± 2.67 73.21 74.56 ± 3.74 33.52 ± 2.45 79.67 ± 6.42

B Future Works and Limitations

Future work could explore additional factors affecting extraction under diverse graph structures and
develop principled strategies for improving robustness across varying homophily levels.

While our study provides new insights into the role of homophily in structure-free model extraction
attacks, several limitations remain. First, our study primarily considers surrogate training under
classification tasks. Other learning paradigms, such as link prediction or graph regression, may
exhibit different vulnerabilities, and their extraction dynamics remain largely unexplored. Second, our
evaluation is restricted to a fixed set of datasets and homophily regimes, which may not fully capture
the diversity of real-world graphs, particularly those with dynamic or evolving structures. Extending
our analysis to temporal graphs or multi-relational settings would provide a more comprehensive
understanding. Future work should examine structure-free extraction in dynamic and multi-relational
graphs, and extend the analysis beyond node classification to tasks like link prediction and regression.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the 5-8 sentences of abstract and last two paragrah of introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix B.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work is entirely empirical and does not include theoretical results. There-
fore, there are no assumptions or proofs to report.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the experimental settings and implementation sections, details are fully
described, including the data sources, model origins, the optimization ranges for hyperpa-
rameters, and other specific methodological procedures.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We can provide data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: It is provided in the experimental settings and implementation section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the Table 1-4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It is provided in the experimental settings and implementation section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

14



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No ethical violations are identified in the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No negative societal impacts
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

15

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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