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Abstract
Coarse-grained models have become ubiquitous
in biomolecular modeling tasks aimed at studying
slow dynamical processes such as protein folding
and DNA hybridization. Although these models
considerably accelerate sampling, it remains chal-
lenging to recover an ensemble of all-atom struc-
tures corresponding to coarse-grained simulations.
In this work, we introduce a generative approach
called FlowBack that uses a flow-matching objec-
tive to map samples from a coarse-grained prior
distribution to an all-atom data distribution. We
construct our prior distribution to be amenable to
any coarse-grained map and any type of macro-
molecule, and we find that generated structures
are more robust and contain less steric clashes
than those generated by previous approaches. We
train a protein-specific model on structures from
the Protein Data Bank which achieve state-of-the-
art results on bond quality and on clash score. Fur-
thermore, we train a model on DNA-protein data
which achieves excellent reconstruction and gen-
erative capabilities on complexes from the PDB
as well as on coarse-grained simulations of DNA-
protein binding.

1. Introduction
For decades, coarse-grained (CG) force-fields have ex-
panded the time and length scales accessible to molecu-
lar dynamics simulations. By reducing the simulated de-
grees of freedom and smoothing the underlying free energy
landscape, these simulation techniques can directly pro-
vide insight into slow processes and rare events such as
protein folding and DNA hybridization (Clementi, 2008;
Noid, 2013; Saunders & Voth, 2013; Kmiecik et al., 2016;
Mohr et al., 2022; Shmilovich et al., 2020). However, the
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finer-grained, all-atom (AA) details of CG simulations are
often of interest to i) obtain structure and dynamics that ex-
pose molecular mechanisms ii) access physical observables
contingent on the AA coordinates for comparison with ex-
perimental data (e.g., X-ray scattering) or iii) determine the
validity of the CG force-fields (Badaczewska-Dawid et al.,
2020; Nishimura et al., 2024).
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Figure 1. FlowBack enables accurate, transferable, and efficient
flow-based backmapping from coarse-grained to all-atom models
of proteins (top) and protein-DNA complexes (bottom).

Backmapping is the process of recovering AA configura-
tions from CG data, and numerous methods have been
developed for this purpose ranging from rules-based ap-
proaches to data-driven ones. The former category generally
performs geometrically guided initialization or structures
from a fragment library then performs structural refinement
and/or energy minimization to resolve problematic interac-
tions (Lombardi et al., 2016; Wassenaar et al., 2014; Gopal
et al., 2010; Brocos et al., 2012; Machado & Pantano, 2016;
Rotkiewicz & Skolnick, 2008). These approaches work well
in a number of cases, but are typically deterministic, and
therefore fail to capture the ensemble of all-atom configura-
tions compatible with a single coarse-grained structure, and
may suffer from time-intensive energy minimization. In-
creasingly, data-driven approaches have been applied to the
problem of molecular backmapping. Most early approaches
were based on Generative Adversarial Networks (GANs)
or Variational Autoencoders (VAEs) architectures and were
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non-transferable across different protein sequences (Stief-
fenhofer et al., 2021; 2020; An & Deshmukh, 2020; Wang
et al., 2022; Shmilovich et al., 2022)

Recently, several generative approaches were developed for
transferable backmapping of protein traces (Yang & Gómez-
Bombarelli, 2023; Jones et al., 2023; Liu et al., 2023; Chen-
nakesavalu & Rotskoff, 2024). These approaches variously
employ a CG-conditioned VAE, mapping tripeptide con-
formations via a transformer, and denoising diffusion mod-
els. Although these works have shown great promise in
producing generative samples, they have limitations asso-
ciated with narrow training sets (Liu et al., 2023; Yang &
Gómez-Bombarelli, 2023), exhaustive cost of generating
fragment ensembles (Chennakesavalu & Rotskoff, 2024),
mode collapse (Yang & Gómez-Bombarelli, 2023), and long
inference time (Jones et al., 2023; Liu et al., 2023).

In this work, we present FlowBack as a flow-based approach
to generative backmapping. We leverage the recently devel-
oped flow-matching objective (Lipman et al., 2022; Albergo
& Vanden-Eijnden, 2022; Liu et al., 2022) to accurately, ef-
ficiently, and transferably generate physically plausible and
statistically meaningful AA structures from CG simulations.
Like diffusion-based approaches, flow-matching learns to
transform a noisy prior into a target data distribution. Unlike
diffusion models, the prior can be much more flexible and
bespoke to a given molecular structure. Furthermore, the
linear nature of the flow-based interpolant and deterministic
integrator often leads to more efficient training and infer-
ence than diffusion models (Song et al., 2024; Liu et al.,
2022). These properties have already been leveraged to gen-
erate novel protein backbones (Yim et al., 2023; Bose et al.,
2023), protein configurational ensembles (Jing et al., 2024),
receptor-targeted peptide design (Lin et al., 2024), and small
molecules (Song et al., 2024) with greater efficiency than
analogous diffusion-based approaches (Trippe et al., 2022;
Wu et al., 2022; Watson et al., 2022)). We use this frame-
work to treat backmapping as a super-resolution problem,
where the positions of all AA atoms are initialized with
some noise surrounding their respective CG beads. This
serves as an informative and roto-translationally invariant
prior that can be generalized to arbitrary coarse-graining
mappings and other classes of biomolecules.

We train a protein-specific model on structures up to 1000-
residues from the Protein Data Bank (PDB). We evaluate
this model on benchmarks that include static PDB structures,
AA trajectories of fast-folding proteins, and CG trajectories
generated by a machine-learned (ML) forcefield, and we
demonstrate superior performance compared to previous
models. Furthermore, we demonstrate the flexibility of our
CG prior by training a second model to backmap CG DNA-
protein structures. We train this model on a much smaller
subset of structures from the PDB but still observe excellent

reconstruction of both static structures and CG trajectories.

2. Methods
2.1. Flow-matching

Inspired by continuous normalizing flows (CNF)(Chen et al.,
2018), the flow-matching framework defines a deterministic
vector field vθ(t, x) that integrates some prior distribution
q0 to a distribution approximating the training data q1 where
t is the integration time and x is an intermediate sample
(Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu
et al., 2022). Training is conducted by using a simulation-
free loss function that can be defined by regressing against
the target vector field ut(x) and produces the data probabil-
ity distribution pt(x),

L(θ) = Et,x∼pt(x)

[
||vθ(t, x)− ut(x)||2

]
. (1)

In practice ut is challenging to calculate, but it has been
shown (Lipman et al., 2022) that it is possible to instead
regress against the conditional vector field ut(x|x1) which
produces the probability path pt(x|x1) given training sam-
ples from the target data distribution q(x1),

L(θ) = Et,x1∼q(x1),x∼pt(x|x1
)
[
||vθ(t, x)− ut(x|x1)||2

]
.

(2)

It was further shown (Albergo & Vanden-Eijnden, 2022;
Tong et al., 2023) that the vector field can be defined from
an arbitrary source distribution by sampling from the joint
distribution q0(x0)q1(x1) where q(x0) is our prior distribu-
tion. In the context of molecular backmapping, given an
AA training structure x1 and a mapping M of AA atoms to
CG beads, we construct our prior distribution by normally
distributing each AA atom around its cognate CG bead as
x0 ∼ N (x1[M ], σ2

pI), where x1[M ] indicates the CG map-
ping of the AA structure. The parameter σp determines how
tightly the AA beads are distributed, and the distribution
of structures serves as a physically informed prior q0(x0).
Given samples x1,x0 from our training data and prior dis-
tributions, we can define our relative vector field ut as the
difference between these structures x1 − x0 and obtain a
linearly interpolated and noised structure xt at time point t
along the flow,

µt = tx1 + (1− t)x0

xt ∼ N (µt, σ
2
t I).

(3)

2.2. Training

To train the model, we sample the vector field at various
times and generate an interpolated and noised structure xt.
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We pass this structure to an Equivariant Graph Neural Net-
work (EGNN) and compute a learned vector field vθ as
the difference between the output and input structures. We
adopt this strategy from previous approaches (Hoogeboom
et al., 2022; Igashov et al., 2022) which show that EGNNs
are better at predicting configurations rather than noise or
fields directly. Details of the EGNN architecture can be
found in Appendix A4.2. We pass the network our CG map
M to ensure that CG beads remain constant in the predicted
structure. We estimate the vector by finding the Euclidean
difference between the interpolated and predicted structures,

vθ = EGNN(xt, t,M)− xt. (4)

This learned vector field can then be regressed against the
reference field ut to form our flow-matching loss. The
complete training loop is presented in Algorithm 1.

Algorithm 1 Training Loop
1: Input: Training data distribution q1, masked prior

q0, prior noise σp, flow-matching noise σt, model
EGNNθ, coarse-grained mask M

2: for epoch = 1 to N do
3: x1 ∼ q1(x1)
4: x0 ∼ q0(x0)← N (x1[M ], σ2

pI)
5: t ∼ U(0, 1)
6: µt ← tx1 + (1− t)x0

7: xt ∼ N (µt, σ
2
t I)

8: xt[M ]← µt[M ]
9: vθ ← EGNNθ(xt, t,M)− xt

10: ut ← x1 − x0

11: Take gradient step ∇θ∥vθ − ut∥2
12: end for
13: return EGNNθ

Details on optimization of σp and σt are in Appendix A4.1.

2.3. Inference

Given a vector field vθ(x, t) parameterized by our trained
EGNN, inference proceeds by i) sampling an initial structure
x0 from the coarse-grained prior q0(x0), ii) updating xt and
t via Euler integration, and iii) repeating this process for
N time steps. To ensure an exact correspondence between
the CG and AA configurations, we enforce that all CG
beads, as denoted by the CG mapping M , are fixed and that
no updates are applied to these positions. The complete
inference loop is presented in Algorithm 2.

2.4. Training Data

Protein Training Set The AA training data were collated
from previous work (Jones et al., 2023), which consists of
over 65K configurations obtained from the Protein Data

Algorithm 2 Inference Loop
1: Input: Prior noise σp, trained model EGNNθ, coarse-

grained mapping M , time step ∆t
2: x0 ∼ N (x1[M ], σ2

pI)
3: t← 0
4: x0[M ]← µt[M ]
5: while t < 1.0 do
6: vθ ← EGNNθ(xt, t,M)− xt

7: xt ← xt + vθ ·∆t
8: t← t+∆t
9: end while

10: return x1

Bank (Berman et al., 2000) via the SidechainNet (King &
Koes, 2021) extension of ProteinNet (AlQuraishi, 2019). Se-
quences between 20-1000 residues in length were included
in the training set. All proteins were coarse-grained to rep-
resentations containing only their Cα atoms.

DNA-Protein Training Set Sequences were aggregated
from the PDB (Berman et al., 2000; 2003) according to
all DNA-protein sequences listed in the DNAProDB server
(Sagendorf et al., 2017; 2020). Sequences were removed
that contained non-cononical base pairs or protein residues.
Sequences containing abasic sites or any nucleotide whose
atom members deviated from the expected types were also
removed. Remaining sequences were stripped of any ions,
ligands, waters, or other components that were not DNA or
protein chains. More detail on training sets in included in
Appendix A2.

2.5. Evaluation Metrics

All evaluation metrics have been previously reported and
used to compare generatively backmapped structures (Yang
& Gómez-Bombarelli, 2023; Jones et al., 2023). Metrics
are summarized below, and more detail can be found in
Appendix A3.

Bond Quality Score evaluates the physical plausibility of
generated structures and the bond network by identifying
the percent of bonds that are within 10% of the reference
bond graph. A bond quality score of 100% is optimal.
Clash Score quantifies steric clashes in generated structure
by calculating the percent of residues that are within 1.2Åof
any other residue. A clash score of 0% is optimal.
Diversity Score (DIV) evaluates the consistency of the AA
training structure (i.e., ground truth) with the ensemble of
generated structures produced by FlowBack. Backmapping
is an inherently one-to-many operation, since multiple AA
structures are consistent with a single CG structure. It is a
desirable feature of a backmapping algorithm to produce a
physically plausible diversity of AA structures of which the
reference structure is one. A DIV score of 1 indicates all
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generated structures are identical (deterministic) and a score
near zero indicate high diversity in the generated ensemble.

2.6. Model Comparisons

We compare the FlowBack protein model against a rules-
based deterministic backmapping approach, PULCHRA
(Rotkiewicz & Skolnick, 2008), along with two recently de-
veloped generative approaches, GenZProt (Yang & Gómez-
Bombarelli, 2023) and DiAMoNDBack (Jones et al., 2023),
which are based on a variational autoencoder (VAE) and
autoregressive diffusion model, respectively. The GenZProt
model has the advantage of fast inference speed as it re-
quires only i) encoding the CG prior ii) sampling from the
VAE latent space and iii) decoding latent coordinates into
AA structures, however its training set was limited to intrin-
sically disordered proteins and has shown evidence of mode
collapse and limited diversity (Jones et al., 2023). The DiA-
MoNDBack model achieves improved diversity and clash
scores relative to GenZProt, but inference takes relatively
longer as each residues must be denoised sequentially. For
trajectory data, we make additional comparisons against a
DiAMoNDBack model fine-tuned (DiAMoNDBack-FT) on
fast-folding protein data from DEShaw Research (DESRES)
(Lindorff-Larsen et al., 2011).

3. Results
3.1. Proteins with all-atom reference

We evaluate our model on two all-atom datasets that have
been previously used to benchmark generative backmapping
approaches (Jones et al., 2023). In both cases, the model
is provided with only the Cα trace of each test protein.
The first is a set of 24 PDB structures from the CASP12
(Schaarschmidt et al., 2018) challenge consisting of both sin-
gle and multi-chains and varying from 80 to 600 residues in
length. We generated five structures for each protein, corre-
sponding to five unique samples from each CG prior which
are integrated forward by our learned ODE. Additionally, we
performed inference using a slightly larger Gaussian noise
prior than was used during training and term these structure
FlowBack-N (details in Appendix A4.1). As illustrated in
Table 1, both models outperform previous generative ap-
proaches in bond and clash score. Although the vanilla
FlowBack model achieves superior performance in these
metrics, the higher noise model generated a more diverse
ensemble as demonstrated by a diversity score equal to that
of the DiAMoNDBack model with very little degradation
in the bond and clash performance.

Next we perform inference on coarse-grained traces of
11 fast-folding DESRES proteins each containing 2000
frames(Lindorff-Larsen et al., 2011). In Table 2 we show
comparisons to the same models listed above in addition

Table 1. Model performance on 24 proteins from CASP12.

MODEL BOND (↑) CLASH (↓) DIV (↓)

PULCHRA 98.91 0.15 1
GENZPROT 96.26 ±0.01 8.43± 0.22 0.87
DBACK 99.18± 0.04 0.57± 0.09 0.03
FLOWBACK-N 99.47 ±0.01 0.18± 0.25 0.03
FLOWBACK 99.67 ±0.01 0.08± 0.09 0.19

to the DiAMoNDBack-FT model which was fine-tuned on
a subset of DESRES data (Jones et al., 2023). FlowBack
outperforms all previous models, despite only being trained
on PDB structures. Clash score in particular is extremely
low with only 0.06% of residues clashing and only 1.4%
of structures containing at least one clash. The diversity
score is higher than DiAMoNDBack models but lower than
GenZProt, and can be improved substantially from 0.23 to
0.08 by using the higher noise variant of the model, again
with little degradation in bond and clash performance.

Table 2. Model performance across 11 fast-folding proteins gener-
ated by DEShaw Research

MODEL BOND (↑) CLASH (↓) DIV (↓)

PULCHRA 98.45 0.20 1
GENZPROT 94.85 ±0.002 6.01± 0.04 0.83
DBACK 97.98± 0.002 0.33± 0.01 0.03
DBACK-FT 98.73± 0.004 0.18± 0.01 0.02
FLOWBACK-N 98.11 ±0.004 0.11± 0.05 0.08
FLOWBACK 99.56 ±0.003 0.06± 0.01 0.23

3.2. Coarse-grained protein trajectories

As a final test of our protein model, we backmap trajecto-
ries generated by a CG machine-learned forcefield (Majew-
ski et al., 2022) that have no corresponding AA reference
structures (details in Appendix A4.1). This task is more
challenging as the ensemble of Cα positions may be out
of distribution compared to PDB training data. As illus-
trated in Table 3, although the average bond quality for
GenZProt and DiAMoNDBack drop on this task, we find
that FlowBack continues to perform well as demonstrated
by a >99.6% bond for both noise levels. Similarly, clash
score increases to >1.3% for comparison models, while
clash remains <0.31% for FlowBack. It is not possible to
compute a diversity score without a reference structure, how-
ever we can use the average RMSD of generated structures
with respect to each other as a proxy for this metric (Wang
et al., 2022; Jones et al., 2023). We find that the higher
noise model can obtain RMSD comparable to that of DiA-
MoNDBack while still maintaining robust bond and clash
scores. There results indicate that our model is generalizable
to different forcefields and robust to out-of-distribution CG
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traces.

Table 3. Average Performance across 3 protein trajectories gener-
ated by a CG force-field

MODEL BOND (↑) CLASH (↓) RMSD (↑)

PULCHRA 99.23 0.75 0
GENZPROT 96.57 ±0.01 11.36± 0.03 0.21± 0.06
DBACK 97.73± 0.01 1.38± 0.04 1.68± 0.21
DBACK-FT 98.47± 0.02 1.26± 0.04 1.56± 0.19
FLOWBACK-N 99.63 ±0.02 0.31± 0.10 1.69± 0.18
FLOWBACK 99.71 ±0.01 0.25± 0.13 1.28± 0.18
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c

Figure 2. a) FlowBack performance on DNA-protein complexes.
Bond quality distributions on complexes from the test set. Exem-
plars of four randomly selected DNA-protein complexes showing
the b) CG structures and c) one AA generative backmapping.

3.3. DNA-Protein with all-atom reference

We trained a second FlowBack model to reconstruct AA
resolution from CG representations of DNA-protein com-
plexes. Proteins were simplified to Cα traces and DNA
to 3-site-per-nucleotide (3SPN) configurations (Hinckley
et al., 2013). We clustered and reserved 55 structurally dis-
tinct complexes for testing and generated five AA structures
from the model (details in Appendix A2.5). Evaluation of
bond quality in both protein and DNA components against
reference PDB structures revealed mean bond accuracies ex-
ceeding 99.6%, as illustrated in Figure 2. The bond quality
distribution for DNA was broader than that for proteins, with
1% of structures exhibiting bond quality below 99%. The
generated structures showed minimal clashes; specifically,
39/275 structures had a single pair of clashing residues, and
only 3/275 exhibited multiple clashes (Figure A1). Addi-
tionally, the structures maintained substantial populations

of hydrogen bonds, with generated structures containing
89% of protein-protein and 94% of DNA-DNA hydrogen
bonds compared to reference structures. However, DNA-
protein hydrogen bonds counts were only recovered at 72%,
likely due to the structural precision needed for bonding
pair formation and the model’s tendency to minimize side-
chain clashes (Figure A2). These results demonstrate that
our model successfully produces realistic structures and
interactions.

a b

c d

a

b

c

Figure 3. FlowBack performance on DNA-protein complex sim-
ulations. a-b) CG Frames selected from simulation of TBP and
corresponding AA samples generated for those frames. c) Average
bond quality of protein and DNA residues over simulation time. d)
The percentage of hydrogen bond contacts relative to number of
contacts in the corresponding PDB structure (1CDW).

3.4. DNA-protein trajectories

Lastly, we applied our DNA-protein model to CG trajecto-
ries generated by the AICG-3SPN.2 force-field (Li et al.,
2011; Tan et al., 2022) (details in Appendix A2.6). We
backmapped 500 frames from simulations perform by Tan
et al.(Tan & Takada, 2018) of a TATA-binding protein (TBP)
interacting with a 100-base pair DNA strand. CG and AA
configurations of the TBP system are shown in Figure 3
along with plots of bond quality and hydrogen bonding over
the trajectory. We found that our model achieved excellent
bond quality (>99%) for proteins, but produces lower DNA
bond score (∼96%) when compared to inference on PDB
structures. This is likely due to deformations of the 3SPN.2
structure due to the CG force-field that are not present in
training. Still, our models produces physically plausible
structures that consistently form hydrogen bonds during dur-
ing different stages of DNA-protein binding and distortion.

3.5. Correcting protein stereoisomers

Although the EGNN represents an efficient and expressive
network for predicting a conditional vector field, a careful
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reviewer pointed out that its lack of reflection invariance
can make it prone to predicting incorrect chiralities. Indeed,
we found that despite our protein training set consisting of
99.99% L-stereoisomers, 3.7% of predicted residues in the
PDB test set were in the D form. Although these may be
subtle structural differences, the biological significance of
even a small amount of incorrect stereoisomers cannot be
ignored. In Appendix A4.4, we include a description of a
mechanism that leverages the linearity and robustness of
our learned flow in order to ensure all residues are gener-
ated in the L-form. Unlike diffusion-based approaches, the
flow-matching protocol yields realistic looking structures
very early in the ODE integration. As such, we can de-
tect incorrect stereoisomers before all atomic positions have
been finalized, reflect the sidechain across the appropriate
plane of symmetry, and proceed with the integration given
the new structure. We find that this detection and reflection
procedure is optimally applied around t = 0.2 and has a
minimal impact on the bond quality and diversity. However,
modifying the structure during the integration process does
lead to a slight increase in clash of 0.24% and 0.13% for
the PDB and DES test sets, respectively. Updated scores for
all evaluation metrics on the PDB and DES test sets are in
Appendix A4.4.

4. Conclusion
We present FlowBack as a flow-matching approach for gen-
erative backmapping of proteins and DNA-protein com-
plexes. We demonstrate state-of-the-art results on structural
evaluation metrics as well as tunability to achieve improved
diversity during inference. Unlike previous approaches, this
architecture and training procedure is not tied to a specific
CG map or class of macromolecule, and the paradigm can
be generically extended to other classes of molecules such
as lipids (Orsi et al., 2008), peptoids (Zhao et al., 2020),
or organic semiconductors (Jackson, 2020). Future work
may include the exploration of more complex priors be-
yond Gaussians such as harmonic priors (Stärk et al., 2023;
Jing et al., 2023) which leverage information from the bond
network to maintain close proximity between neighboring
atoms. These priors may be tailored to particular classes of
biomolecules or to other data present in the PDB such as
small molecules and ions.
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