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ABSTRACT

In this paper, we study the statistical limits of deep learning techniques for solving
elliptic partial differential equations (PDEs) from random samples using the Deep
Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify
the problem, we focus on a prototype elliptic PDE: the Schrédinger equation on a
hypercube with zero Dirichlet boundary condition, which is applied in quantum-
mechanical systems. We establish upper and lower bounds for both methods,
which improve upon concurrently developed upper bounds for this problem via
a fast rate generalization bound. We discover that the current Deep Ritz Method
is sub-optimal and propose a modified version of it. We also prove that PINN
and the modified version of DRM can achieve minimax optimal bounds over
Sobolev spaces. Empirically, following recent work which has shown that the
deep model accuracy will improve with growing training sets according to a power
law, we supply computational experiments to show similar-behavior of dimension
dependent power law for deep PDE solvers.

1 INTRODUCTION

Partial differential equations (PDEs) play a prominent role in many disciplines of science and engi-
neering. The recent deep learning breakthrough and the rapid development of sensors, computational
power, and data storage in the past decade has drawn attention to numerically solving PDEs via
machine learning methods (Long et al., 2018; 2019; Raissi et al., 2019; Han et al., 2018; Sirignano &
Spiliopoulos, 2018; Khoo et al., 2017), especially in high dimensions where conventional methods
become impractical. The set of applications that motivate this interest is wide-ranging, including
computational physics (Han et al., 2018; Long et al., 2018; Raissi et al., 2019), inverse problem
(Zhang et al., 2018; Gilton et al., 2019; Fan & Ying, 2020) and quantitative finance (Heaton et al.,
2017; Germain et al., 2021). The numerical methods generated by the use of deep learning techniques
are mesh-less methods, see the discussion in (Xu, 2020). A natural deep learning technique in the
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problems that are based on a standard feed-forward type of architecture takes advantage (when
available) of a variational formulation, whose solution coincides with the solution of the PDE of
interest. Despite the success and popularity of adopting neural networks for solving high-dimensional
PDEzs, the following question still remains poorly answered.

For a given PDE and a data-driven approximation architecture, how large
the sample size and how complex the model are needed to reach a prescribed
performance level?

In this paper, we aim to establish the numerical analysis of such deep learning based PDE solvers.
Inspired by recent works which showed that the empirical performance of a model is remarkably
predictable via a power law of the data number, known as the neural scaling law (Kaplan et al., 2020;
Hestness et al., 2017; Sharma & Kaplan, 2020), we aim to explore the neural scaling law for deep
PDE solvers and compare its performance to Fourier approximation.

Among the various approaches of using deep learning methods for solving PDEs, in this work, we
focus on the Deep Ritz method (DRM) (E & Yu, 2018; Khoo et al., 2017) and the Physics-Informed
Neural Networks (PINN) approach (Sirignano & Spiliopoulos, 2018; Raissi et al., 2019), both of
which are based on minimizing neural network parameters according to some loss functional related
to the PDEs. To provide theoretical guarantees for DRM and PINN, following (Lu et al., 2021bj;
Duan et al., 2021; Bai et al., 2021), we decompose the error into approximation error (Yarotsky, 2017;
Suzuki, 2018; Shen et al., 2021) and generalization error (Bartlett et al., 2005; Xu & Zeevi, 29;0
Farrell et al., 2021; Schmidt-Hieber et al., 2020; Suzuki, 2018). However, instead of the O(1="n)

(n is the number of data sampled) slow rate generalization bounds established in prior work (Lu
et al., 2021b; Shen et al., 2021; Xu, 2020; Shin et al., 2020), we utilize the strongly convex structure
of the DRM and PINN objectives and provide an O(1=n) fast rate generalization bound (Bartlett
et al., 2005; Xu & Zeevi, 2020) that leads us to a non-parametric estimation bound. Our theory also
suggests an optimal selection of network size with respect to the number of sampled data. Moreover,
to illustrate the optimality of our upper bound, we also establish an information-theoretic lower bound
which matches our upper bound for PINN and a modified version of DRM.

We also test our theory by numerical experiments. Recent works (Hestness et al., 2017; Kaplan et al.,
2020; Rosenfeld et al., 2019; Mikami et al., 2021) studying a variety of deep learning algorithms
all find the same polynomial scaling relation between the testing error and the number of data. As
the number of training data N increases, the population loss L of well-trained and well-tuned models
scales with n as a power-law L / ni for some . (Sharma & Kaplan, 2020) also scans over a large

range of and problem dimension d and finds an approximately / % scaling law. In Section 4, we
conduct numerical experiments to show that this phenomenon still appears for deep PDE solvers and
this neural scaling law tests more idiosyncratic features of the theory.

1.1 RELATED WORKS

Neural Scaling Law The starting point of our work is the recent observation across speech, vision
and text (Hestness et al., 2017; Kaplan et al., 2020; Rosenfeld et al., 2019; Rosenfeld, 2021) that the
empirical performance of a model satisfies a power law scales as a power-law with model size and
dataset size. (Sharma & Kaplan, 2020) further finds out that the power of the scaling law depends on
the intrinsic dimension of the dataset. Theoretical works (Schmidt-Hieber et al., 2020; Suzuki, 2018;
Suzuki & Nitanda, 2019; Chen et al., 2019b; Imaizumi & Fukumizu, 2020; Farrell et al., 2021; Jiao
et al., 2021c) explore the optimal power law under the non-parametric curve estimation setting via a
plug-in neural network. Our work extends this line of research to solving PDEs.

Deep Network Based PDE Solver. Solving high dimensional partial differential equations (PDEs)
has been a long-standing challenge due to the curse of dimensionality. At the same time, deep
learning has shown superior flexibility and adaptivity in approximating high dimensional functions,
which leads to state-of-the-art performances in a wide range of tasks ranging from computer vision
to natural language processing. Recent years, pioneer works (Han et al., 2018; Raissi et al., 2019;
Long et al., 2018; Sirignano & Spiliopoulos, 2018; Khoo et al., 2017) try to utilize the deep neural
networks to solve different types of PDEs and achieve impressive results in many tasks (Lu et al.,
2021a; Li et al., 2020). Based on the natural idea of representing solutions of PDEs by (deep) neural
networks, different loss functions for solving PDEs are proposed. (Han et al., 2018; 2020) utilize the
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Feynman-Kac formulation which turns solving PDE to a stochastic control problem and the weak
adversarial network (Zang et al., 2020) solves the weak formulations of PDEs via an adversarial
network. In this paper, we focus on the convergence rate of the Deep Ritz Method (DRM) (E & Yu,
2018; Khoo et al., 2017) and Physics-Informed neural network (PINN) (Raissi et al., 2019; Sirignano
& Spiliopoulos, 2018). DRM (E & Yu, 2018; Khoo et al., 2017) utilizes the variational structure of
the PDE, which is similar to the Ritz-Galerkin method in classical numerical analysis of PDEs, and
trains a neural network to minimize the variational objective. PINN (Raissi et al., 2019; Sirignano &
Spiliopoulos, 2018) trains a neural network directly to minimize the residual of the PDE, i.e., using
the strong form of the PDE.

Theoretical Guarantees For Machine Learning Based PDE Solvers. Theoretical convergence
results for deep learning based PDE solvers raises wide interest recently. Specifically, (Lu et al.,
2021b; Grohs & Herrmann, 2020; Marwah et al., 2021; Wojtowytsch et al., 2020; Xu, 2020; Shin
et al., 2020; Bai et al., 2021) investigate the regularity of PDEs approximated by neural network and
(Lu et al., 2021b; Luo & Yang, 2020) further provide a generalization analysis. (Nickl et al., 2020)
introduces a prior over the solution of the PDE and considers an equivalent white noise model (Brown
& Low, 1996). (Nickl et al., 2020) provides the rate of convergence of the posterior. Our paper does
not need to introduce the prior on the target function and provides a non-asymptotic guarantee for
finite number of data. At the same time, (Nickl et al., 2020) can only be applied to linear PDEs
while our proof technique can be extended to nonlinear ones. All these papers also fail to answer
the question that how to determine the network size corresponding to the sampled data number to
achieve a desired statistical convergence rate. (Hiitter & Rigollet, 2019; Manole et al., 2021) consider
the similar problem for the optimal transport problem, i.e. Monge-ampere equation. Nevertheless, the
variational problem we considered is different from (Hiitter & Rigollet, 2019; Manole et al., 2021)
and leads to technical difference. The most related works to ours are two concurrent papers (Duan
et al., 2021; Jiao et al., 2021a;b). However, our upper bound is faster than (Duan et al., 2021; Jiao
et al., 2021a;b). In this paper, we also show that generalization analysis in (Lu et al., 2021b; Duan
et al., 2021; Luo & Yang, 2020) are loose due to the lack of a localization technique (De Boor &
De Boor, 1978; Bartlett et al., 2005; Koltchinskii, 2011; Xu, 2020). With observation of the strong
convexity of the loss function, we follow the fast rate results for ERM (Schmidt-Hieber et al., 2020;
Xu & Zeevi, 2020; Farrell et al., 2021) and provide a near optimal bound for both DRM and PINN.

1.2 CONTRIBUTION
In short, we summarize our contribution as follows

* In this paper, we first considered the statistical limit of learning a PDE solution from
sampled observations. The lower bound shows a non-standard exponent different from
non-parametric estimation of a function.

¢ Instead of the O(lzpm slow rate generalization bounds in (Lu et al., 2021b; Duan et al.,
2021; Jiao et al., 2021a;c), we utilized the strongly convex nature of the variational form
and provided a fast rate generalization bound via the localization methods (Van De Geer,
1987; Bartlett et al., 2005; Koltchinskii, 2011; Srebro et al., 2010; Xu & Zeevi, 2020).
We discovered that the current Deep Ritz Methods is sub-optimal and propose a modified
version of it. We showed that PINN and the modified version of DRM can achieve nearly
min-max optimal convergence rate. Our result is listed in Table 1.

* We tested the recently discovered neural scaling law (Hestness et al., 2017; Kaplan et al.,
2020; Rosenfeld et al., 2019; Hashimoto, 2021) for deep PDE solvers numerically. The
empirical results verified our theory.

2 SET-UP

We consider the static Schrodinger equation with zero Dirichlet boundary condition on the domain
which we assume to be the unit hypercube in RY. In order to precisely introduce the problem, we
recall some standard notions. We consider our domain as = [0; 1]¢ and use L?( ) to denote the
space of square integrable functions on  with respect to the Lebesgue measure. We let L1 () be
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Upper Bounds Lower Bound
Objective Function | Neural Network [ Previous Bound [ Fourier Basis
2s 2
. 2s 2 d+4s 4 |Ogn 2s 2 2s 2
Deep Ritz n 9+2s 2 |logn n n d+z 2 n d+zs 4
P 9N 1 (Duan et al., 2021)
. . 2s 2 2s” 2 2s 2
Modified Deep Ritz | n @2 2 logn / n d+z 3 n @+ 3
2s 4
_2s 4 n d+as 8 |og n _2s 4 25 4
PINN n d+z a|ogn . n d+z a n oz a
g (Jiao et al., 2021a)

Table 1: Upper bounds and lower bounds we achieve in this paper and previous work. The upper
bound colored in red indicates that the convergence rate matches the min-max lower bound.

the space of essentially bounded (with respect to the Lebesgue measure) functions on and C(@ )
denotes the space of continuous functions on @

Letf 2 L2( ),V 2LY( ),and,g 2 L1( ). Ourfocus is on the analysis of Deep-Learning-based
numerical methods to solve the elliptic PDE:

u+Vu=*Ff in ; 51
u=g on@ 2.

2.1 LoSS FUNCTIONS FOR SOLVING PDES AND INDUCED EVALUATION METRIC

In this paper, we mainly focus on analyzing Deep Ritz Methods (DRM) and Physics-Informed Neural
Network (PINN). In this subsection, we first introduce the objective function and algorithm of the
two methods.

Deep Ritz Methods (E & Yu, 2018; Sirignano & Spiliopoulos, 2018) Recall that the equation 2.1
is equivalent to following variational form
z z

u =arg Hrr;gn) EPRM(y) := arg H”JE”) % kruk? +V juj? dx fudx; (2.2)
[0} (0]

where U is minimized over H}( ) with boundary condition given by g on @

This variational form provides the basis for the DRM type method for solving the static Schrédinger
equation based on neural network ansatz. More specifically, the energy functional given in equa-
tion 2.2 is viewed as the population risk function to train an optimal estimator approximation of the
solution to the PDE within a parameterized hypothesis function class ' HZ( ). In this paper, we
also rely on the strong convexity of the DRM objective with respect to the H* norm.

Proposition 2.1. For DRM, we further assume 0 < Vinin V. (X)  Vmax, then we have

2 2

[EDRM [EDRM K K, <

EDRM(U) EDRM(u )
holds for all u 2 H3( )

Physics-Informed Neural Network (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018). PINN
solves 2.1 via minimizing the following objective function
z

u =arg min EP™@):=arg min  j u(x) Vu(x)+ f(x)jdx:
H5( ) Hg( )

The objective function EP™N can also be viewed as the population risk function and we can train
an optimal estimator approximation of the solution to the PDE within a parameterized hypothesis
function class F H3( ). In this paper, we also rely on the strong convexity of the PINN objective
with respect to the H? norm, for which we need some additional assumptions on the potential.
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Proposition 2.2. For PINN, we further assume V. 2 L1 ( ) with 0 < Cpin < V?2 V0 <
Cmin <V(X) Vmax and V(X)  Vmax, then we have for allu 2 H}( )

1
2 (1 + Vimax + V2ax)

EPMwW) EP™Ww)  ku u ki

2

PINN PINN .
maxf1; Cming BT W BT

2.2 ESTIMATOR SETTING

Empirical Loss Minimization In order to access the d-dimensional integrals, DRM (E & Yu,
2018; Khoo et al., 2017) and PINN (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018) employ
a Monte-Carlo method for computing the high dimensional integrals, which leads to the so-called
empirical risk minimization training for neural networks. To define the empirical loss, let Xj gj‘zl be
an i.i.d. sequence of random variables distributed according to the uniform distribution P in domain

. We also have access to noisy observations f; = £(Xj)+ j (1 J n) of the right hand side of
the PDE (2.1), where j are i.i.d. bounded random variables with zero mean and independent of Xj.
Define the empirical losses Ep, by setting

R 1 Xh g , 1 o
En (U)=ﬁ jd EkrU(Xj)k +§V(XJ)JU(X1)J fjuXj) (2.3)
i=1
PINN 1Xh H 2i
En (U)=ﬁ i uXj) VEXuXp) +f (2.4)

i=1
where j | represents the Lebesgue measure of the domain.

Once given an empirical loss Ep,, we apply the empirical loss minimization to seek the estimation Up,
i.e. Un = argmin, > En(u), where F is the parametrized hypothesis function space we consider.
Some examples can be reproducing kernel Hilbert space (Chen et al., 2021b) and tensor training
format (Richter et al., 2021; Chen et al., 2021a). In this paper, we consider sparse neural network and
truncated Fourier basis, which can achieve min-max optimal estimation rate for the non-parametric
function estimation (Tsybakov, 2008; Schmidt-Hieber et al., 2020; Farrell et al., 2021; Suzuki, 2018;
Chen et al., 2019b; Jiao et al., 2021c; Nitanda & Suzuki, 2020).

Sparse Neural Network Function Space In this paper, the hypothesis function space F is ex-
pressed by the neural network function space following (Schmidt-Hieber et al., 2020; Suzuki, 2018;
Farrell et al., 2021). Let us denote the ReLU? activation by 3(x) = maxfx3;0g (x 2 R), which
is used in (E & Yu, 2018). For a vector X, (X) is operated in an element-wise manner. Define the
space of all neural networks with height L, width W, sparsity constraint S and norm constraint B as

(L;W;S;B) = F(W® 5() +bL) W® 3() +b@)  (WDx +bpD)
WwB 2Rt W-pL) 2 R: W@ 2 W d:p@M 2 RW- (WD 2 RW W) 2 RW(1 < | < L);

kW Dk + kbPky) — S; max kw®k; .4 kbPkq  Bg; (2.5)
I=1
where denotes the function composition, k Kg is the “p-norm of the matrix (the number of non-zero
elements of the matrix) and K kg .4 is the “ 5 -norm of the matrix (maximum of the absolute values
of the elements).

Truncated Fourier Basis Estimator We also consider the Truncated Fourier basis as our esti-
mator. Denote the domain we are interested in by [0;1]9. For any z 2 N9, we consider the
corresponding Fourier basis function ,(x) := e? X (x 2 ). Angfunction 2 L2( )
can be, represented as a weighted sum of the Fourier basis T(X) (= 5\ Tz 2(X), where
f, .= F(X) .(X)dx (8 z 2 NY) is the Fourier coefficient. This inspires us to use the Fourier basis
whose ipslex lies in a truncated set Z = fz 2 Zjkzkq g to represent the function class F as
F =f kzk, &z zjaz 2 R; kzk4q g.
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3 LOWER BOUND

In this section, we aim to consider the statistical limit of learning the solution of a PDE. As discussed
in Propositions 2.1 and 2.2, we directly consider the H! norm for DRM and H? norm for PINN as
the evaluation metric. The lower bounds are shown as follows.

Theorem 3.1 (Lower bound). We denote u (f) to be the solution of the PDE 2.1 and we can access
randomly sampled data £X;; figi=1. .n asdescribed in Section 2.2. We further assume u (f) 2 H®
for agivens 2 Z*. Then we have the following lower bounds.

n

DRM Lower Bound. For all estimators : RY R " ¥ HS( ), we have

inf  sup  Ek (FXi;figizi ) U (F)kY. &n avss a: G.1)
u 2Hs( ) ’

n

PINN Lower Bound. For all estimators : RY R N ¥ HS( ), we have

inf sup Ek (FXiifigicy n) U (Fk4, &n @5 (3.2)
u 2Hs( )

Given that n i is the minimax rate of estimating the k-th derivative of a -smooth density in L2
(Liu & Wang, 2012; Prakasa Rao, 1996; Miiller & Gasser, 1979), the lower bound obtained here is
the rate of estimating the right hand side function ¥ in terms of the H * norm. Given the H * norm
error estimate on T, we can achieve an estimate of U, which provides an alternative way to understand
our upper bound. (See discussion in Appendix E.) The lower bound is non-standard, for the 2s 2 in
the numerator is different from the 2s 4 in the denominator.

4 UPPER BOUND

To theoretically understand the empirical success of Physics-Informed Neural Networks and the
Deep Ritz solver, in this section, we aim to prove that the excess risk Epn := E(un) E(U )ofa
well-trained neural networks on the PINN/DRM loss function will follow precise power-law scaling
relations with the size of the training dataset. Similar to (Xu, 2020; Lu et al., 2021b; Duan et al.,
2021; Jiao et al., 2021a;b), we decompose the excess risk into approximation error and generalization
error. Different from the concurrent bound (Duan et al., 2021; Jiao et al., 2021a), we provide a fast
rate O(1=n) by utilizing the strong convexity of the objective function established in Section 2.1 and
achieve a faster and near optimal upper bound. We show that the generalization error can be bounded
by the fixed point (i.e. the solution of (r) = r) of the local Rademacher complexity
(N =Ra(fl(W)jku u ks rog);

where Rp, is the Rademacher complexity, 1(u) = u+Vu;k ka = k kg2 for PINN and
1(u) = kruk?+Vu;k ka =k k1 for DRM. We put detailed definition and analysis in Appendix
B.4. We first provide a meta theorem to decompose the error into approximation and a fast rate
generalization error. Then we plug in the approximation and generalization error calculated in
Appendix B.3 and Appendix B.2 and finally achieve the following upper bounds. We also put a more
detailed proof sketch in Appendix A.2.

Physics Informed Neural Network.

Theorem 4.1. (Informal Upper Bound of PINN with Deep Neural Network Estimator) With proper
assumptions, consider the sparse Deep Neural Network function space (L;W;S;B) with pa-
rameters L = O(1); W = O(nd+2ds 1), S = O(nﬁ); B = O(nd+2ds ), then the Physics
Informed estimator OB\, = miny2 (L.w:s:8y) ER™N(u) satisfies the following upper bound with
high probability

KOBNN U k%, . n @27 logn:
Theorem 4.2. (Informal Upper Bound of PINN with Truncated Fourier Series Estimator) With proper
assumptions, consider the Physics Informed Neural Network objective with a plug-in Fourier Series
estimator OFS{NE" = mingor () EFMN(U) with = (n av2s), then with high probability we have

; 2s 4
KORUEr  u k2, . n @z a:



Published as a conference paper at ICLR 2022

Deep Ritz Methods.
Theorem 4.3. (Informal Upper Bound of DRM with Deep Neural Network Estimator) With proper as-
sumptions, consider the sparse Deep Neural Network function space (L; W; S; B) with parameters

L=0(1); W = O(nd+2ds 2); S = O(nd+2ds 2); B = O(nd+2ds 2), then the Deep ritz estimator
OBRM = Minuz (L.w:s:zy ER™M(u) satisfies the following upper bound with high probability

2s 2
koSN u k%. - n @2 2 logn:

Theorem 4.4. (Informal Upper Bound of DRM with Truncated Fourier Series Estimator) With proper
assumptions, consider the Deep Ritz objective with a plug in Fourier Series estimator QFgier =

mingzre () ERfMU) with = (n av252), then with high probability we have

. 2s 2
Kabowier gy k2, . n @ 2
Remark.

* There is a common belief that Machine learning based PDE solvers can break the curse of
dimensionality (E & Yu, 2018; Grohs et al., 2018; Lanthaler et al., 2021). However, we

obtained an n 2 #+a convergence rate, which can become super slow in high dimension.
Our analysis showed that it is essential to constrain the function space to break the curse of
dimensionality. (Lu et al., 2021b) considered the DRM in Barron spaces. (Ongie et al., 2019)
showed that functions in the Barron space enjoy a smoothness S at the same magnitude
as d, which will also lead to convergence rate independent of the dimension using our
upper bound. Neural network can also approximate mixed sparse grid spaces (Montanelli &
Du, 2019; Suzuki, 2018) and functions on manifold (Nitanda & Suzuki, 2020; Chen et al.,
2019b) without curse of dimensionality. Combined with these approximation bounds, we
can also achieve a bound that breaks the curse of dimensionality using Theorem B.12 and
B.9. In this paper, we aim to consider the statistical power of the loss function in common
function spaces and leave the curse of dimensionality as a separate topic.

e QOur bound is faster than the concurrent bound (Duan et al., 2021; Jiao et al., 2021a) for
we provided a fast rate O(1=n) by utilizing the strong convex1ty of the objectlve function

and improved the > convergence rate from N @43 to n %= 2 for Deep Ritz and from
2s 4
n a8 ton a3 for PINN. Compared to the lower bound provided in Section 3, our

bounds for PINN is near-optimal while the upper bound for DRM is sub-optimal. We believe
our bound is tight and put the discussion in Appendix E. We’ll propose a modified version
of DRM to match the upper and lower bound in the next section.

* For upper bound of DRM, due to a technical issue, we assumed that the observation we
access is clean, i.e f; = £(Xj). We conjecture that add noising on observation will not
effect the rate and leave this to future work.

5 MODIFIED DEEP RITZ METHODS

Comparing the lower bound in Section 3 and the upper bound in Section 4, we find out that the
Physics-Informed Neural Network achieves min-max optimality while the Deep Ritz Method does
not. In this section, we propose a modified version of Deep Ritz which can be statistically optimal.

As discussed in Appendix E, the reason behind the suboptimality of DRM comes from the high
complexity introduced via the uniform concentration fpound of the gradient term in the variational
form. At the same time, we further observed that the kruk?dx does not require any query from
the right hand sige function ¥, which means that we can easily make another splitted sample to
approximate the kruk?dx term more precisely.

MDRM Xh- o1 0 2i 1Xh- o1 ; i2 i
()= JJikrU(Xj)k + o i EV(Xj)JU(Xj)J fju(X;)
j=1 j=1
5.1
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R
Once we sampled more data for approximating  jruj?dx, we can achieve an near optimal bound
. . 2
for the Truncated Fourier Estimator when % & nd+zs 4,

Theorem 5.1. (Informal Upper Bound of DRM with Truncated Fourier Series Estimator)With proper
assumptions, consider the Deep Ritz objective with a plug in Fourier Series estimator Qfgufet =

. . 1 2
Minuzr ( ) ENOM(u) with = (n@=2s3) and N & n@2s=, then we have
: 2s 2
KOEHEST U K - n @S

Remark. We still cannot achieve optimal rate for neural network even with modified DRM methods.
The reason is because the number of neurons is not a good complexity measure for the gradient of the
function. Thus, the bound for (r) = Ry(Fl(u)jku u kiﬂ rg) is not enough for achieving
optimal convergence rate. However, following (Schmidt-Hieber et al., 2020; Suzuki, 2018; Imaizumi
& Fukumizu, 2020; Chen et al., 2019b; Farrell et al., 2021) to use deep networks for estimating
functions, we optimize the best neural network with constrained sparsity in our paper. Here we
conjecture that there exists a computable complexity measure that can make DRM statistically optimal
and leave finding the right complexity of the neural network’s gradient to be future work.

6 EXPERIMENTS

In this section, we conduct several numerical experiments to verify our theory. We follow the neural
network and hyper-parameter setting in (Chen et al., 2020). Due to the page limit, we only put the
experiments for Deep Ritz Methods here.

6.1 THE MODIFIED DEEP RITZ METHODS

In this section, we conduct experiments which substantiate our theoretical results for modified Deep
Ritz methods. For simplicity, we take V (X) = 1 in qur experiment. We conduct experiment in
2-dimension and select the solution of the PDEasu =, kzk ° ,(X) 2 H3. We show the log-log
plot of the H* loss against the number of sampled data for s = 4 in Figure 1. We use an OLS
estimator to fit the log-log plot and put the estimated slope and corresponding R? score in Figure 1.
As our theory predicts, the modified Deep Ritz Method converges faster than the original one. All the
derivation of the two estimators is listed in Appendix E.

6.2 DIMENSION DEPENDENT SCALING LAW.

We conduct experiments to illustrate that the
population loss of well-trained and well-tuned
Deep Ritz method will scale with the d-
dimensional training data number N as a power- . .
law L / Ni We also scan over a range of d CogtNumber of Training Dte) Log(Number of Training Data)

and and verify an approximately / % scal-
ing law as our theory suggests. We use the same
test function in Section 6.1 as the solution of our .
PDE. For simplicity, we take V (X) = 1 in our Figure 1: The log—log plot and estimated conver-
experiment. We train the deep Ritz method on &¢Nc€ slope. for Mthﬁed DRM gnd DRM using
20, 80, 320, 1280, 10240 sampled data points Fou'rler basis, showing the median error over 5
for 5,6,7,8,9,10 dimensional problems and we replicates.

plot our results on the log-log scale. Results are

shown in Figure 2. We discover the L / n@+2 scaling law in practical situations.

$507 1H J0 607

(a) Deep Ritz Methods (b) Modified Deep Ritz Methods
7=7 %7

Theory

PErEri PETET]
0.6595 0.7953
R2 Score 0.91 0.89

6.3 ADAPTATION TO THE SIMPLER FUNCTIONS.

(Sharma & Kaplan, 2020) showed that the neural scaling law will adapt to the structure that the target
function enjoys. This adaptivity enables the neural network to break the cure of the dimensionality
for simple functions in high dimension. (Suzuki & Nitanda, 2019; Chen et al., 2019a) also observed
this theoretically. For solving PDEs, we also observed this adaptivity in practice. Here we tested the
following two hypothesis



Published as a conference paper at ICLR 2022

nt 1/

Law Coefficie

Figure 2: We verify the dimension dependent scaling law empirically. The multiplicative inverse
of the scaling law coefficient is highly linear with the dimension d, showing the mean error over 2

replicates.

* Random Neural Network Teacher. Following (Sharma & Kaplan, 2020), we also tested

random neural network using He initialization (He et al., 2015) as the ground turth solution
U . (De Palma et al., 2018) showed that random deep neural networks are biased towards
simple functions and in practice we observed a scaling law at the parametric rate. Specifically,
we obtained a linear estimate with slope = 0:50679429 and a R? score = 0:96 in the
log-log plot. See Figure 3(a).

Simple Polynomials. Neural network can approximate simple polynomials exponentially
fast (Wang et al., 2018). Thus, we select the ground truth solution to be the following

simple polynomial in 10 dimensional spaces U (X) = X3X2 + =+ XgXi0: In this example,
we obtained a linear estimate with slope = 0:49755418 and a R? score = 0:99 in the

log-log plot. See Figure 3(b).

7 CONCLUSION AND DISCUSSION

Conclusion In this paper, We considered the
statistical min-max optimality of solving a PDE
from random samples. We improved the previ-
ous bounds (Xu, 2020; Lu et al., 2021b; Duan
et al., 2021; Jiao et al., 2021a) by providing the
first fast rate generalization bound for learning
PDE solutions via the strongly convex nature of
the two objective functions. We achieved the
optimal rate via the PINN and a modified Deep
Ritz method. We verified our theory via numer-
ical experiments and explored the dimension
dependent scaling laws of Deep PDE solvers.

Figure 3: Neural networks have the ability to adapt
to simple functions and achieve convergence with-
out curse of dimensionality, showing the median
error over 5 replicates.

Discussion and Future Work Here we discuss several drawbacks of our theory

* We restricted our target function and estimators in W11 instead of H due to bounded-
ness assumption made in the local Rademacher complexity arguments. However, typical
functional used in physics is always unbounded, such as the Newtonian potential Wlkdz’

which limits the application of our theory.
This paper did not discuss any optimization aspect of the deep PDE solvers and always as-

sumed that global optimum can be achieved. However, it is important to investigate whether
the optimization error (Suzuki & Akiyama, 2020; Chizat, 2021) will finally dominate.

Instead of solving a single PDE, recent works (Long et al., 2018; 2019; Li et al., 2020;
Lanthaler et al., 2021; Bhattacharya et al., 2020; Fan & Ying, 2020; Feliu-Faba et al., 2020)
considered the so-called "operator learning”, which aims to learn a family of PDE/inverse
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problems using a single network. It is interesting to investigate the generalization bound and
neural scaling law there.

* We find out that the sparsity of the neural network is not a good complexity measure of
neural network’s gradient. We conjecture that there exists an oracle complexity measure,
whose approximation and generalization bounds can lead Modified DRM to achieve the
optimal convergence rate.
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Appendix

A APPENDIX ORGANIZATION AND PROOF SKETCH

A.1 NOTATIONS

In this section, we provide all the notations we need in the proof. Let RY be some open set. We
denote C( ) the space of continuous functions on  and C¥( ) the space of all functions that are k
times continuously differentiable on (8 k 2 Z™). For any n 2 Ng (Ng := Z™ [ f0g is the set of
all non-negative integers) and 1 p L, we define the Sobolev space W™P( ) by

WP )y :=FfF2LP( ): D f2LP( ); 8 2NJwithj j ng:

In particular, when p = 2, we define H"( ) := W™2( ) for any n 2 Ng. Moreover, for any
f2W™P( )withl p < A, we define the Sobolev norm by:

[

X o z
Kfkwnip( y 1= kD fkl_p( y
0jjn
In particular, when p = 1., we have:
Kfkwn:a¢ y:= max kD fkpacy:
P 0Ojjn
Consider the Fourier expansion f := =« T, 2(X) of the function ¥ 2 W™P( ). We can
equivalently express the Sobolev norm as:
X
Kfkwnip( y = kzk"Pjf,j°

z
where T, = R f(X) (X)dx = R f(x)e 2 MzXigyx (x 2 )isthez th Fourier coefficient of f.
Moreover, we use WO1 P() to denote the closure of C( ) in WLP( ). In particular, when p = 2,
we define H3( ) = Wol;z( ).
Furthermore, we use K K to present the vector 2 norm and, given a data sample FX;gjL, ,
kK Knp = (En P)"™ denote the empirical p norgg, where En @ L?(') ¥ Ris the corresponding
empirical average operator defined as EF := % ?:1 f(X;); 8 f 2 L2( ): Given two quantities
X and Y, we write X - Y when the inequality X CY holds, where C is some constant. For two
functions f and g mapping from R* to R, we write f = O(g) when there exist two constants C’ and
Xo independent of ¥ and g, such that the inequality f(x)  C°Qg(X) holds for any X ~ Xo. We use
X 7Y todenote X - Y andY - X.

A.2 APPENDIX ORGANIZATION AND PROOF SKETCH

In this section, we list the organization of the appendix and put a more detailed proof sketch of our
main results. We put all the proof of upper bounds in Appendix B and all the proof of lower bounds
in Appendix D. All the proof of the results about modified Deep Ritz method is given in Appendix C.
The proof of lower bounds is based on standard Fano method. In this section, we focus on the proof
sketch of the fast rate upper bound.

Error Decomposition. We first decompose the excess risk En := E(un) E(U ) of a well-
trained neural network on the PINN/DRM loss function into approximation error and generalization
error, similar to (Xu, 2020; Lu et al., 2021b; Duan et al., 2021; Jiao et al., 2021a;b). The regularity
results used in the decomposition are proved in Appendix B.1. Explicitly, for any ug 2 F( ), we
can decompose the excess risk as

EM@ =E@©) EU?)
= E(0) En(0) + En(®) En(ue) + En(ur) E(ur) + E(ur) E(U7)

E@ En(@ + En(ue) E@e) + E(uR) E@W):

Generalization Error Approximation Error

(A.1)
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where the expectation is on uniformly sampled data, F ( ) is the space of parametrized estimators
we used like truncated Fourier series or sparse neural networks, & is the minimizer of the empirical
loss E in F (' ) and u is the minimizer of the population loss E (i.e, ground truth solution). The
inequality in the third line follows from the fact that ( is the minimizer of the empirical loss E, in
the space F (), which implies E () En(Ug). We call the first term generalization error as it’s
measuring the difference between Ep, and E. We call the second term approximation error as it seeks
for a parametrized estimator Ug that approximates the ground truth solution u well in F (). The
upper bounds on generalization and approximation error that we achieved in this paper are listed in
Table 2.

Let n denote the number of sampled datapoints. For the generalization error, different from the
concurrent upper bound O(FLH) (Duan et al., 2021; Jiao et al., 2021a), we provide a faster and near

optimal upper bound O(%) by utilizing the strong convexity of the objective function established in
Appendix B.1. Via using the Peeling Lemma (Lemma B.4, for completeness, we also provide a proof),
we show that the generalization error can be bounded by the fixed point of the local Rademacher
complexity

(N =Rn(flU)jku uki rg);
where Rp, is the Rademacher complexity, 1(u) = u+Vuk ka = k kyz for PINNand
1(u) = kruk? +Vu;k ka =k kg1 for DRM. Once we show that (r) is of magnitude O( o)
we can achieve the O(%) convergence rate via solving the fix point equation (r) = O( %) =r)

r= O(%). Using the solution of the fixed point equation of the local Rademacher complexity to
bound the generalization error is a standard result in empirical process Bartlett et al. (2005); Srebro
et al. (2010); Koltchinskii (2011); Xu & Zeevi (2020); Farrell et al. (2021). The difference is that we
used the H'/H? norm to define the localized set, while the previous papers used the *, distance. The
way to obtain the fast rate generalization bound is using the Peeling Lemma.

We present the error decomposition results as a meta theorem, which is shown in Theorem B.12 for
PINN, Theorem B.9 for DRM and Theorem C.1 for MDRM, respectively. To make the final rate
depend on the data number only, we need bounds of the approximation error in Appendix B.3 and
bounds of the local Rademacher complexity in Appendix B.2.

Approximation Error. The proof of the approximation results of truncated Fourier series is easy
and intuitive. For completeness, we provide it in Appendix B.3.1. The proof of the approximation
results of neural networks follows from the fact that a B-spline approximation can be formulated as a
ReL U3 neural network efficiently. Our proof basically follows Duan et al. (2021); Jiao et al. (2021a),
while the only difference is the activation function. Our proof is also very similar to (Yarotsky, 2017,
Suzuki, 2018), but the depth of our network is of constant magnitude instead of O(ﬁ) magnitude,
where denotes the desired approximation error. Such improvement of depth results from the fact
that ReLLU3 activations can approximate B-splines more easily than the ReLU activations, which
is useful in our generalization analysis. Although the proof of the approximation results of neural
networks in the Sobolev space is standard, we still list it in Appendix B.3.2.

Generalization Error. As we discussed above, the generalization error can be bounded by tlbﬁx
point of the local Rademacher complexity, i.e. the solution of (r) = r. Once we have a O(" T.)

bound of (r), we can achieve the O(%) fast rate generalization bound we want. It remains to upper
bound the the local Rademacher complexity (r).

For the upper bound on the local Rademacher complexity of truncated Fourier series estimators, our
proof technique is similar to that of the kernel estimators, whose Rademacher complexity can be
bounded by the trace of the Gram matrix (i.e. the effective number of basis). One interesting @Iing we

2r
n
The term in the numerator is smaller than 9, which is the exact number of Fourier basis. This
improvement results from the H! norm localization. The detailed proof is given in Lemma B.6,
Lemma B.7 and Lemma B.8.

showed is that the final upper bound of the Rademacher complexity localized by H* norm is
d 2

For the upper bound on the local Rademacher complexity bound for neural network, we follow
Schmidt-Hieber et al. (2020); Suzuki (2018); Farrell et al. (2021) to use a Dudley integral theorem and
a covering number argument. The covering number arguments are shown in Theorem B.4, Theorem
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B.5 and Theorem B.6. The final local Rademacher complexity bounds are given in Lemma B.17 and
Lemma B.18. The difference is that the complexity of gradient of ReLLU3 activation function makes
the covering number depend exponentially on the neural network’s depth. However, the improvement
of neural network’s depth to constant magnitude mentioned above in the approximation results saves
this problem. One drawback of our proof is that the H? norm localization wouldn’t improve the
bound for Rademacher complexity and leads to sub-optimal upper bounds. We hypothesize that
our bound is tight for sparse neural network and put seeking a right complexity measure of neural
network for solving PDEs as a future work.

| Objective Function |  Estimator || Approximation | Generalization [| Complexity Measure |
PINNs Neural Network || N = % N : Number of parameters
Fourier Seriers 26 2 = :maximum frequency
DRM Neural Network || N = %ﬂ N : Number of parameters
Fourier Seriers 26D = :maximum frequency
MDRM Neural Network || N = % ] N : Number of parameters
Fourier Seriers 2 D 0 :maximum frequency

Table 2: Approximation and generalization results we achieved in this paper.

B PROOF OF THE UPPER BOUNDS

B.1 REGULARITY RESULT FOR THE PDE MODEL.

Regularity Results of the DRM Objective Function

Theorem B.1. We consider the static Schrédinger equation on the unit hypercube on RY with the
zero Direchlet boundary condition:

u+Vu=~fon ;
u=0o0n@
where f 2 L?( )andV 2 LT( )with0 < Vmin  V(X)  Vmax > 0. There exists a unique
weak solution ug to the equivalent variational problem (Evans, 1998):
n,Z h i z o
us = argmin EP"M@u) :=argmin -~ kruk®+Vjuj® dx fudx : (B.2)
u2Hg( ) u2H3( )

(B.1)

Then for any u 2 H( ), we have:

min(1; Vimin)
2

max(1; Vimax)

EDRM(U) EDRM(US) 5

Proof. To show that Ug satisfies estimate B.3, we first claim that for any u 2 H( ),

Z Z
EPRMu) EP*M(ug) = % kru rugk®dx + % V(us u)?dx: (B.4)
In fact, by plugging in the first equation of B.1, one has that
1 Z 1 Z YA
EP®M(ug) = > krugk?dx + > V jugj?dx fugdx
1 Z 1 Z YA
=5 krugk?dx + = Vjugj?dx+ ( ug Vug)ugdx
1 z 1 z
=5 krugk?dx + ( ug)ugdx 5
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Furthermore, applying Green’s formula to the true solution Ug yields:

Z Z Z
EPRM(yg) = 1 krugk?dx + ( ug)ugdx % Vjugj?dx
@u 1 z 1 z
= —Sugdx = krugk®dx > Vjugjldx
@ Z@n 2 5 2

= % krugk?dx Vjusj?dx;

where the last identity above follows from the second equality in B.1. Now for any u 2 H( ),
applying Green’s formula to U and the true solution Ug implies:

Z Z Z Z Z
EPRMu)  EP®M(ug) = % kruk?dx + % V juj?dx fudx + = krugk?dx + 1 V jugj?dx
Z Z Z
% kiruk2dx + = VijuiPdx+ ( ug Vus)udx+% kruskzdx+% V jugj?dx
Z YA VA
= % kruk?dx + ( ug)udx + 1 krugk?dx + 1y us U ‘dx
Z VA Z
1 1 1
=1 kruax s Bsgx rug rudx+ - krugk?dx+: V ug u ‘dx
2 2 e @n 2 2 2
= % kru rugk®dx + % V(us u)?dx;

where the last identity above again follows from the second equality in B.1. This completes our proof
of identity B.4. Using the assumptions on the potential function V then implies:
z z i

] h
MAXVma) "y pugkldx+ (us )P dx

2
_ max(1; Vimax)

EDRM(U) EDRM(US)

5 ku ugkZic y;
z z i

; h
1; Vi
EPR()  EPM(g) (L Vimin) . M) kru rugkidx+ (us U)° dx
mMin(1; Vimin) ]
= %ku Uskfa y:
This completes our proof of B.1. O

Regularity Results of the PINN Objective Function

Theorem B.2. We consider the static Schrédinger equation on the unit hypercube on R® with the
Neumann boundary condition:

u+Vu=~Ffon ;
u=0o0n@
where ¥ 2 L?( )andV 2 L1( ) with V2 V > Cnin;0 < Cimin < V(X)  Vmax and

V(X)  Vmax. Then there exists a unique solution ug 2 H3( ) to the following minimization
problem (Brezis, 2010):

(B.5)

z
n o
us = arg min EP™N(u) := argmin j u Vu+fjPdx : (B.6)
u2H3( ) u2H3( )
Then for any u 2 H3( ), we have:
minfl; Cmingku  Uskfzc y  EP™(U) EP™(Us)  2(1+ Vimax + ViaadKu  Uskfiz( o
(B.7)
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Proof. Forany u2 H}( ), welett =u u ,then we have i 2 H3( ).
Z Z

EP™w) E™Nug)= ju Vu u +Vujldx= j o Vujidx
Z Z Z (B.8)
= ( w)?dx+ V2u?dx 2 Vo bdx:

Using Green’s formula, we have:
Z Z Z

o
Ve wdx+ r(Vu) rudx = @—V bds = 0;
e On
where the last equality above follows from the fact that &t 2 H&( ). This further implies:
z z z
EFNNwW) EM™N@ug) = ( w)?dx+ V2wldx+2 r(Vu) rodx
z z z z

= ( w)?dx+ V22dx+2 Vkruk’dx+2 drV rudx:

Using Green’s formula again, we have:

Z Z Z v Z Z
2 drV rudx= r(u® rvdx= @—nuzds o2 Vdx = o2 Vdx:
@

Then we can further deduce that: 7 7

EPNNwW) EM™N@ug) = ( w)?dx+ (V2 V)wldx+2 Vkrukidx:

For we have assumed V 2 L1( ) with 0 < Cpin < V2 V;0 < Cmin <V (X) Vmax and
V(X) Vmax, thus we have

minfl; Crmingku  UskZz y  EP™™(U)  E™™N(Ug)  2(1 + Viax + VAg)ku  Ugkfize
(B.9)
O

B.2 AUXILIARY DEFINITIONS AND LEMMATA ON GENERALIZATION ERROR

To bound the generalization error, we use the localized Rademacher complexity (Bartlett et al., 2005).
Recall that the Rademacher complexity of a function class G is defined by

h 1 X i
Rn(G) =EzE sup = i9(Zj) Zi; iZn

where Z; are i.i.d samples according to the data distributions and j are i.i.d Rademacher random
variables which take the value 1 with probability % and value 1 with probability %

The following important symmetrization lemma makes the connection between the uniform law of
large numbers and the Rademacher complexity.

Lemma B.1 (Symmetrization Lemma). Let F be a set of functions. Then

1 X
Esup = u(Xj) Ex p u(X) 2Rnh(F):
uzk N,
Lemma B.2 (Ledoux-Talagrand contraction (Ledoux & Talagrand, 2013, Theorem 4.12)). Assume
that : RY¥Ris L-Lipschitz with (0) = 0. Let ¥ ;giL, be independent Rademacher random
variables. Thenforany T R"

h X h X i

1
E sup i (ti) 2L E sup iti
(t1; itn)2T 3 (ti; ta)2T j—4
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Let (E; ) be a metric space with metric . A -cover of aset A E with respectto is a collection
of points Xy; iXng A such that for every X 2 A, there exists i 2 f1; ;Ng such that

(X; Xj) . The -covering number N ( ;A; ) is the cardinality of the smallest -cover of the
set A with respect to the metric . Equivalently, the -covering number N ( ; A; ) is the minimal
number of balls B (X; ) of radius needed to cover the set A.

Theorem B.3 (Dudley’s Integral theorem). Let F be a function class such that supsog kfkn.2 M.
Then the Rademacher complexity R (F) satisfies that
n Zmq o
Rn(F) OianI 4 +{5Fﬁ logN(;F;k kn:2)d

Lemma B.3 (Talagrand Concentration Inequality). Consider a function class F defined on a prob-
ability measure such that for all ¥ 2 F, we have kfk4 E [f]=0;E [f?] 2, Then for
any t > 0, we can have the following concentration results. #

r

1 X 1 X 2t 2 2t
Py 2z SUp=  F(zi) 2SupEp., » = F@EH+ —+=— et

f2F N . f2F 7" N, n n

Lemma B.4 (Peeling lemma (Bartlett et al., 2005)). Consider some measurable function class F.

Assume that there exists a sub-root function (r) satisfying
Rh(ff 2 F jE[f] rQ) () (@Br=>=0): (B.10)
Then we have "

1 Pn #
E sup n__i=1 if(zi) 4 (),
P2Zn sz E[f] +r r

Proof. Denote F(r) = ff 2 F jE[f] rg to be the localized set with radius r. Then for a fixed set
of datapoints fz Ii:gi”:l and a ﬁ)}fd set of Rgdemacher random Variab}fs T igjL,, we have:
1

P
15N f(z: 150 f(z X
E iz, sup 2210 ) E .,z Sup D=L 0 (=) + Bz sup
f2r  E[f]+r F2F(r) r =0 F2F (rai+1)nF (rai)
Ra(F() , X Ra(F(ra*t) () X (4™
r o ra +r r o ord+r
i=0 j=0
M, X272 4@
r i=o0 rd +r r
O

We also modify the peeling lemma above, as we aim to apply it to derive the upper bound for the
Modified Deep Ritz Method (MDRM).
Lemma B.5 (Peeling Lemma For MDRM). Given some measurable function class F and two
continuous mappings g; h : F ¥ R, we define a class F of vector-valued functions by:
F:=fg f;h f)jf2Fg:
Forany f 2 F, we use g¢ and h¢ to denote the two compositionsg f and h F, respectively. For
any r > 0, the localized set F, is defined by:
Fr =1 he) 2 F JEx[9r ()] + Ey[he(Y)]  ro:
Moreover, the modified Rademacher Complexity of F, is defined by:
Rn:m(Fr) == Rn fo¢j(0f; he) 2 Frg + R (fhej(9¢; hs) 2 Frg
Assume that there exists some function :[0; 1) ¥ [0; 1) and some r? > 0, such that for any
r > r?, we have:
@4r) 2 (r)and Ry;m(Fr) (r):

Then for any r > r?, we have:

h 1
E. Exy[sup "

f2F

P _
e 0r0G) + = L i) 4 ),
Exlgr ()] + Ey[he(Y)] + 1 ro’

Proof. The proof is the same as the original peeling lemma, thus we omit the detailed proof here. [
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B.2.1 LoCAL RADEMACHER COMPLEXITY OF TRUNCATED FOURIER BASIS

Definition B.1. (Fourier Series) Given a domain o [0;1]9. For any z 2 N9, we consider the
corresponding Fourier basis function ,(x) := e? "X (x 2 ). With respect to the Fourier basis,
any function ¥ 2 L2( ) can be decomposed as the following sum:

X
f(x) = f, .(X): (B.11)
z2Nd

R -
where for any z 2 N9, the Fourier coefficient f, = £(x) L (X)dx.

Definition B.2. (Truncated Fourier Series) For a fixed positive integer 2 Z*, we define the space
F ( ) of truncated Fourier series as follows:

n < 0
F()= f= f, , f,=0; 8kzkq4 > (B.12)
z2Nd

P
Equivalently, we can decomposeany f 2F ( )asf:= |, f; 2.

Lemma B.6. (Local Rademacher Complexity of Localized Fyuncated Fourier Series) Fog a fixed
2 Z™*, we consider a localized class of functions F . ( )= f2F () ksz,_.l( ) , where
> 0 is fixed. Then we have the following upper bound on the local Rademacher complexity:

h i# r__

1 X a2
Ra(F:())=Ex E sup  — iFOG) Xy Xn - =z (B.13)
f2F ()N n

P
Proof. Take an arbitrary function ¥ 2 F , (). B:t f =k, Tz zbe the Fourier basis
expansion of . kf k,2_|1( y implies constraint ., jf2j?kzk? _  on the Fourier coeffi-
cients(Adams & Fournier, 2003).

F)
On the other hand, substituting the Fourier expansion into the average sum % iy if(Xi) and
using Cauchy-Schwarz inequality imply:

1 X 1 X > 1 X X
n ifCXi) == i f, (X)) = n it, 20Xi)

i=1 i=1  kzka kzka  i=1
1 oo 3 < X |2
n ifzj°kzk kK 2(Xi)
kzkq kzkq i=1
P- X i 2
I Z(>(ﬂ

“n kzk
kzk4 i=1

Nl

NI

P
where we have used the constraint ., jfzj°kzk? . in the last step above. Moreover, by
taking expectation with respect to the i.i.d Rademacher random variables j (1 i n) and the
uniformly sampled data points FX;g{L,; on both sides and applying Jensen’s inequality, we can
deduce that:

2 3
hy X i P- <X X 2 1

ExE n iTOX5) - TEX; 4 T AX) 7O
i=1 kzk+ i=1

(0] 1.

p,@ h >x X : 2IA2

- EX 3 @ Z(XI)

kzkq i=1
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Using independence between the random variables j (1 i n), we can further simplify the
expectation inside the square root above as below:
h < x| 2 X h>x 2l
Ex: — 2(Xj = Ex: — (X
x " ek 2O X gk 2O
kzk4 i=1 kzk i=1
j— 1
= _ Ex; k2 2(Xi)
kzkq i=1
_ XXX
. kzkz © kzk2 = " 2
kzk4 i=1 kzk4

Combining the two bounds above yields the desired upper bound:
Ex E sup — if(Xi) X3 i Xn - — nd2= _— "=
f2F ()N, n n

Lemma B.7. (Local Rademacher Complexity of Localized Truncated Fourier Series’ Gradient) For
afixed 2 Z*, we consider a localized class of functions G . ( ) =fkrfkjf 2 F . ( )g, where
> 0 is fixed. Then for any sample X;giL, , we have the following upper bound on the local
Rademacher complexity: .
h L X i o
Rn(G;())=Ex E sup — ikrf(Xik X3 Xn - = 21 (B.14)
f2F ()N n

P
Proof. Take an arbitrary function f 2 F . ( ). Letf =, f; ; be the Fourier basis
expansion of . Similarly, the norm restriction condition kf szl( ) can be reduced to the
following condition about Fourier coefficients:

jf2j%kzk? .
ka:L

P
Moreover, substituting the Fourier expansion into the average sum % ?:1 ikrf(X;)k and using
Cauchy-Schwarz inequality imply:
1 X 1 X > 1 X X
ST k=2 kT r Kk S K (XK
i=1 i=1 kzk4 kzk4 i=1

1 .

1 X 1 XX 2
= jf,j2kzk? —kr ,(Xik

1
2

o kzk
kzkq kzkq i=1
- =< x| 2 1
- — —Kr ;(Xjk :
- K z(Xi)
kzka i=1
. P o .
where we have used the constraint ., jf2j°kzk? _  in the last step above. Moreover, by
taking expectation with respect to the i.i.d Rademacher random variables j (1 i n) and the

uniformly sampled data points FX;gjL; on both sides and applying Jensen’s inequality, we can
deduce that:

2 3
hqy X i P- xX X 2 1
i 2
ExE = ikrf(X))k . —Ex. 4 —kr ;(X)k O
n._ n ’ . kzk
i=1 kzk+ i=1
O 1
p,@ h > > . 2iA2
kzkq i=1
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Using independence between the random variables j (1 i n), we can further simplify the
expectation inside the square root above as below:
h > x . LD h x| 2l
Ex: _ @kr Xk = Ex: _ kzkkr‘ 2(Xi)k
kzk+ i=1 kzk+ i=1
<X X h 2 2i
- 1
—_ a E)(; @kl" Z(X|)k
kzk4 i=1
X X g 2zK2 X
= j i—m——— -n 1.n¢
L kzk2
kzkq i=1 kzk4
Combining the two bounds above yields the desired upper boum#
h 1 X im Pp
Ex E sup  — ikrf(Xpdk Xi; ;Xp - — nd= — 2:
f2F, ()N, n n

O

Lemma B.8. (Local Rademacher Complexity of Localized Truncated,fourier Series’ Laplacian) Foy
afixed 2 Z*,we consider a localized class of functionsJ . ( )= f2F () kszHz( ) ,

where > 0 is fixed. Correspondingly, we define a localized class of Laplacians K . ( ) :=
f fjf2J. ( )g. Thenforanysample X;gjL, , we have the following upper bound on the
local Rademacher complexity:
b Hor_
h 1 X i B}
Ra(K;())=Ex E  sup = i FOKG) Xoo i Xn - — 20 (BIS)
f2F ()N, n

P
Proof. Take an arbitrary function ¥ 2 3. (). Let ¥ =, T, ; be the Fourier basis
expansion of . Similarly, the norm restriction condition kf k2H2( ) can be reduced to the
following condition about Fourier coefﬁc)ie(nts:
jfzi’kzk® .
kal

P
Moreover, substituting the Fourier expansion into the average sum % ?:1 i T(Xj) and using
Cauchy-Schwarz inequality imply:
1 X 1 X > 1 X X
n i FOX) = - i 2 (X)) = ifz  2(Xi)
1 .
if,j2kzk* —
J ZJ . ka2
kzk4 kzkq i=1
P- > X 2
z(xi)

Nl

2
z(xi)

S|

NI

i
“n ~ kzk?
kzkq i=1

where we have used the constraint ., jfzj°kzk® . in the last step above. Moreover, by

taking expectation with respect to the i.i.d Rademacher random variables j (1 i n) and the
uniformly sampled data points FX;g{L; on both sides and applying Jensen’s inequality, we can
deduce that: > 3

hqy X £ )i P- 4, XX ( )2%5
ExE - i TOXi) - —Ex; 5 2(Xi
n._. n Kzka i kzk
(@) 1
@E i Xi A
7 X; z( |)

Nl
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Using independence between the random variables j (1 i n), we can further simplify the
expectation inside the square root above as below:
h > > . 2 X h>x . 2l
Ex; _ kzk2 (X)) = Ex; _ kzk2 2(Xi)
kzk4 i=1 kzk4 i=1
<X X h 2 2i
— 1 H H
= _ Ex; WJ 2(Xi)j
kzkq i=1
X X 16 4kzk4 X
- jj——— _n 1.n
. kzk4
kzk4 i=1 kzk4
Combining the two bounds above yields the desired upper bound:
i r_
h 1 X i P-p__ Y
Ex E sup  — i FOG) X Xpn - — nd= - 2
f2F . ()N, n n

B.2.2 LocAL RADEMACHER COMPLEXITY OF THE DEEP NEURAL NETWORK MODEL

In this section we aim to bound the local Rademacher Complexity of a Deep Neural Network. We
first bound the covering number of the function space composed by the gradient of all possible neural
networks and then apply a Duley Integral to achieve the final bound.

Definition B.3. Let | denote the I-ReLU activiation function. Here we use 3 := maxf0; xg3(E
& Yu, 2018) as the activation function to ensure smoothness. We can define the space consisting of
all neural network models with depth L, width W, sparsity constraint S and norm constraint B as
follows:

n
(L;W;S;B):= (WD 5()+b®B)  (wWDx+pD)jwh 2R W:pD 2 R;  (B.16)
w® 2 gW d-p@ 2 RW W 2 RW W 2 RW (1 < | < L); (B.17)

X o]
kWDko + kbPko) — S; max kW®k;.4 kbPkqy B : (B.18)

I=1
where k ko measures the number of nonzero entries in a matrix and K k4 .4 measures the maximum
of the absolute values of the entries in a matrix.
Foranyd 2 Z™*, we refer to an arbitrary elementin  (L; W;S; B) as a ReLU3 Deep Neural Network.
Then for any index1 k L, we use Fi to denote the k ReLU3 Deep Neural Network composed
by the first k layers, i.e:

Fr(®) := (WE 30)+bE)  (WPx+bE):

Also, we use (L;W;S; B) to denote the space consisting of all Fi. In particular, when k = L, we
have:
FOO = FLeg = WS 3() +b8)  (WPx+bP); and  ((L;W;S;B) = (L W;S;B):
Furthermore, given that the domain [0; 119 is bounded, we have sup,, kxkq = 1.

Lemma B.9. (Upper bound on 1-norm of functions in DNN space) Forany 1 kL, the
following inequality holds:

k 1 k 1 k
sup kFk(ka Wz (B _d)> =z 277 k+L.
x2 ; Fk2 k(L;W;S;B)

Proof. We use induction to prove this claim.
Base cases: When k = 1, we have that forany X 2 and any F; 2 1(L;W;S; B), the following
holds:

kF100ka = kWOx +bPky kW Pk kxka + kb®kq

) (B.19)
dkwWPk,.4 +B dB+B 2B _d)%
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When k = 2, we have that forany X 2 and any F2 2 2(L;W;S; B), the following holds:

kF2(00ka = kWP 5(F1()) +b&ka  kWEkak s(Fi(x))ka +kb®ka WKW Pk .4 kF; (XK, + B:
By applying the bound proved in the case when k = 1, we have:
kFa(x)k. WB(@@B +B)+B =WB*d+1)>+B
=WB*d®*+3d?+3d+1)+B 8W(B _d)":

where the last inequality follows from the assumption that W 2.
Inductive Step: Now we assume that the claim has been proved fork 1, where3 k L. Similarly,
forany X 2 andany Fx 2 (L;W;S; B), we have:

KRk = KWL 5(Fic 100) +bPka  kWEkak a(Fic 100)ka + Kbk
WKWk, 1 kFie 100K +B WBKFk 100K% + B:

Using inductive hypothesis, we can further deduce that:

13 3 _3

k k 1 k
KFk()kea WB W =z (B_d)z 2z 3*+6,p

Wt B _d)=r 2% I g

Wsk 21 1(B_d)53k21 1[23k23 3k+6+1]

Wak 21 1(B_d)53k21 123k23 K42 (k 3)
* 1, W

kK 1
=W 2 (B_d)532 2 2

Taking supremum with respect to X 2 and Fx 2 «(L; W;S; B) on the LHS implies that the given
upper bound also holds for k. By induction, the claim is proved. O

We also need to show that the ReLU3 activation function is a Lipschitzness functions over a bounded
domain.

Lemma B.10. For any k 2 Z™*, consider the k ReLU activation function  defined on some
bounded domain D RY (i.e, sup,op kxkq ~ C for some C > 0). Then we have that for any
X;y 2 D, the following inequalities hold:

K1(x) 1(0)ka kx yka;
K2(x) 2(y)ka 2Ckx ykaq;
k 3(xX) 3s(y)ki 3C%kx ykq:

Proof. This is because jr 1(X)j = jmaxfl;0gj = 1, jr »(X)j] = j2maxfx;0gj 2C and
jr 3(X)j = j3maxfx;0g%j 3C2. O

Lemma B.11. (Relation between the covering number of DNN space and parameter space) For any
1 k L, suppose that a pair of different two networks Fy; Gk 2 «(L; W;S; B) are given by:

Fr(®) := (WE 30)+bE)  (WwPx+bD;
Gk(¥) = WL 3()+b%)  (WEx +bS):

Furthermore, assume that the k k4 norm of the distance between the parameter spaces of Fy and
Gk is uniformly upper bounded by , i.e

kw® w@Pka.2 s k® bPky; ;@1 1 k) (B.20)

Then we have:

k 1 k 1 k
supkF(X) Gr(ka Wz (B _d)> =z —2%7 k+igk 1. (B.21)
X2
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Proof. Let’s prove the claim by using induction on K.
Base Case: When k = 1, we have that for any X 2 and any F1;G; 2 1(L; W; S; B) satisfying
constraint B.20, the following holds:

kKF1(x) Gi(¥)ka = kw®Px+b8  w®x bPkq
kw®  Wkq kxkq + kb bPkq (B.22)
d+ = (d+1) 2(@B_d 2 (B_d=
When k = 2, we have that for any X 2 and any F2; G, 2 (L;W;S; B) satisfying constraint
B.20, the following inequality holds:
KF2()  G200ka = kW 3(F100) +b W 5(G100) bk
KW 3(F100) WS 3(Ga())ka + kb b ka
WS 3(F1() WE a(Fa(0)ka +kWE 3(F1(x)) WE 3(G1()ka +
By applying the upper bound proved in equation B.19, we can upper bound the first part
kWE 3(F1() W& a(Fa(x)ka by:
KW 3(F109) WE s(Fi0ka kW Wkak s(F100)ka
W kFi (k3 W[2(B _d)?:

By applying the Lipschitz condition proved in Lemma B.10 and the bound proved in equation B.22,
we can further upper bound the second part ng) 3(F1(X)) W((;z) 3(G1(X))k4 by:

W 3(F1()) WP 3Gi00ka  kWSkak a(F1(x)  a(Gi())ka

WB 3 sup kFi(x)k3 KkF1(X) Gi(X)k1
Fi2 1(L;W;S;B)

WB 3[2(B_d)?? 2 (B_d)
24 W(B _d)°:

Summing the two upper bounds above yields:
kFa(x) Go(X)ka 8W(B _df+24 WB _df+ 24 wWB_d":

where we again use the assumption d 2 in the last step.
Inductive Step: Now we assume that the claim has been proved for K 1, where kK 3. For any
x2 and Fx 2 «(L;W;S;B), we have that:
KFk()  Gr(0ka = kWE? 5(Fk 100) +bE WG (G 1(x)  bg'ka
KWE 3(Fic 100) WE? 3(Gk 100)ka +Kbe? b ka
KWE 3R 100) WS 3(Gi 1())ka +

Applying triangle inequality helps us upper bound the first term above as follows:

kWE a(Fk 1(x))  WE? 3(Gk 1(x))ka
KW 3(Fie 100) W a(Fk 1))ka +kWE 3(Fk 1(x)) W 3(Gk 1(x))ka
kW W%k a(Fk 1())ka +KkWEkak 3(Fk 1(X))  3(Gk 1(X))ka
WkKF 1()k3 +BWKk 3(Fk 1(X))  3(Gk 1(X))ka:

From Lemma B.9, we can upper bound the first term  WkFy 1(x)k3 by:

3k

WKF 100Ky WPz (@B _d)* 7 2272 3k,
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Moreover, applying Lemma B.10 and the inductive hypothesis let us upper bound the second term
BWKk 3(Fk 1(X))  3(Gk 1(X))kq as follows:

BWK 3(Fx 1(X))  3(Gk 1(X))ka

BW 3 sup kKFk 100k%  kFk 1(X) Gk 1(X)ka
x2 ; Fk 12 k 1(L,W;S;B)

3BW W3 C LB d)5 3T 18 T L 2 E () G 1(X)ka
3BW \/\/3k 2 l(B d)5 3k 2 123k 1 1 2k+4 W*(B_d)%2¥ k+23k 2

11 3k 1
273 3k+5:

Combining the two upper bounds derived above yields:

k 1 k 1 k
KF(X) Gr(ka W= 1(B d)L 32¥ 3k+6

1 3k 1
273 3k+5+

3 1W7(B )=t ke,

where the last inequality above follows from k 3. Taking supremum with respect to X 2  on the
LHS implies the given upper bound also holds for k. By induction, the claim is proved. O

Theorem B.4. (Bounding the DNN space covering number) Fix some sufficiently large N 2 Z*.
Consider a Deep Neural Network space (L;W;S;B) with L = O(1);W = O(N);S = O(N)
and B = O(N). Then the log value of the covering number of this DNN space with respect to the
inf-norm kF (X)k4 := supy, jF(X)j, which is denoted by N( ; (L;W;S;B);k k1), can be
upper bounded by:
h i
logN(; (L;W;S;B);k kqa)=0 S log( *)+3-log(WwB) (B.23)

Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). By picking
k = L in Lemma B.11, we get the following upper bound on the covering number with respect to
k kli

5 3'— 1 123|- 1 |42

Furthermore, note that the number of feasible configurations is upper bounded by
(W + 1)-S.(Schmidt-Hieber et al., 2020; Farrell et al., 2021) Plug in the previous inequality and
yields:

w+1)t
S

logN(; (L;W;S;B);k kq) log (W +1)LS

h 14, 3L

1
Slog LW +1)t3t w2 _d) e 2t L
. i

53‘—11

3L 1wt (B = 23L bl

i
- S log( Y+ Llog(3W) +3-log(W(B _d))+3-log?2 :

Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L=0(1);W =0O(N);S = O(N) and B = O(N), we can further deduce that:

h i
logN(; (L;W;S;B);k kq) - S log( 1)+3“log(WB) :

This finishes our proof. O

Now let’s consider upper bounding the covering number of the I, norm of the sparse Deep Neural
Networks’ gradients. Note that forany 1 k L 1, any K ReLU3 Deep Neural Network
Fk 2 k(L;W;S;B)isamapfromRYto RY. Foranyl | W, we use Fy(X) to denote the
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I-th component of the map Fi. This helps us write the map Fy(X) and its Jacobian matrix J[Fk](X)
explicitly as:

Fr(X) = [2Fk;1(X); Fr2(X); 5 Fiew (Q]" 2 RW

7P () @X2 Fi;1(X) a=Fx; 1(X)

eFi2(X) g% Fr2(X) Fk 2(X) W d
J[F]X) = ] 2R :

= Few () 5= Fiow (X) o= Fiow ()

In particular, when k = L, we have thatany F_ 2 | (L;W;S;B) = (L;W;S;B) is a map from
RY to R. Thus, its Jacobian can be explicitly written as the following row vector:
0
J[FLIC) = [7FL(X) FL(X) MFL(X)] 2R &
Lemma B.12. (Upper bound on 1.-norm of Jacoblan/Gradient of elements in the DNN space) For
anyl k L, thefollowing inequality holds:
1 k
sup kI[Fk] (k1 Bt kHigk 1,
x2 Fr2 (L;W;S;B)

Proof. We use induction on K to prove the claim.
Base case: k = 1. By the definition of Jacobian matrix, we have that for any X 2  and any
Fi1 2 1(L;W;S;B), the following holds:
kIF1]0ka =kw®ka dB  2(B _d)*:

Inductive Step: Assume that the claim has been proved for Kk 1, where 2k L. For any
X2 andany Fx 2 (L;W;S;B), by applying the Chain Rule, we can write the Jacobian matrix
J[Fk](X) as I[Fk](X) = W,(:k)J[ 3 Fk 1](X), where the ReLU3 activation function 3 is applied
to each component F 1.1 (1 | W) of the map Fi. Then we have the following upper bound:

KIFIOke  KWEkakd[ 3 Fi 1](0ka WBKJI[ 3 Fi 1]()ka: (B.24)

Note that the composition 3 Fg 1 is a map from RY to RW . Hence, the Jacobian matrix J[ 3
Frk 1](X) is of shape RW 9. Applying the Chain Rule again implies:

OFk 11(X).
0x;

p- ¢
kJ[ 3 Fx 1](0ka = 1SIUDW( i3 2(Fk 1;1(x)) )k

j=1

Furthermore, forany 1 | W, the summation on the RHS above can be upper bounded by:

i3 2(Fk 1|(x))@':"7;'(x) 3kFk 1 (XK (
i=1 J -

j@g Fic 1109))  3kFic 100K3 kI[P 1](xKa:
J

Now let’s take supremum with respect to | and apply the inductive hypothesis and Lemma B.9. This
yields:

k[ 3 Fr 1]k 3W3k 2 l(B d)53k 2 123k 1 1 2k+4 3k 22 1 53'<22 123'< 21 1 kr2gk 2

:\Nsk 21 1 1(B d)# 123k271 3k+5gk 1.

(B.25)
By substituting equation B.25 into equation B.24, we can derive the final bound:

K 1 k 1 K
KI[F](Oka WBKI[ 3 Fx 1]J00ka Wz (B _d)* =z 2%z 3k+5gk 1

k
! 12321 k+13k l:

where the last inequality above follows from kK 2. Taking supremum with respect to X 2 and
Fk 2 k(L;W;S;B) on the LHS implies that the given upper bound also holds for k. By induction,
the claim is proved. O
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For the convenience of the following proof, we first prove this lemma for vector 2 norm and 1. norm.
Lemma B.13. Given any two row vectors u;v 2 R 9, we have:

kuk kvk ku vka:

Proof. Assume that the two vectors U; v 2 RY can be explicitly written as U = [Ug; Ugp; ; Ug] and
V = [v1;Ve;  ;Vqg], respectively. By applying Cauchy-Schwarz inequality, we have:
ot vt 2
2 X Do
kuk kvk = € u? € vZ
i=1 i=1
MY
X X D2 ¢
= uw+ Vv 2% uf% vZ
i=1 i=1 i=1 i=1
> > Do > _
uiZ + Vi2 2 ujvi = JUj ViJ2
i=1 i=1 i=1 i=1
> 2
jui vij =ku Vvki:
i=1
Taking the square root on both sides yields the desired inequality. O

Then we upper bound the Lipschitz constant of the gradient of the neural network. Given a DNN
space (L;W;S; B), we define a corresponding DNN Gradient space ¥ (L;W;S; B) as:

r (L;wW;S;B):=fkrFkjF 2 (L;W;S;B)g: (B.26)

Lemma B.14. (Relation between the covering number of the DNN Gradient space and parameter
space) Forany1 k L, suppose that a pair of different two networks Fy; Gk 2 «(L;W;S;B)
are given by:

Fi) = (WE 50 +bE%)  (WEx+bE);
Gk() = (WS s()+b5")  (WEx +bE):

Furthermore, assume that the k k3 norm of the distance between the parameter spaces is uniformly
upper bounded by , i.e

kw®  wkaa k@ @2 ;61 1 k) (B.27)
Then we have:

3k

1 k 1 k
supkI[F](¥) J[Gk]Oka Wz (B _d)~ =z 27z k+ligk 2. (B.28)
X2

In particular, when k = L, we have:

3L

sup kIrFL OOk krGL ook W=z (B _d)* 7 2%z iz 2. (g
X2

Proof. We use induction on K to prove the claim.
Base case: When k = 1, we have that forany X 2 and any F1;G; 2 1(L; W;S; B), the following
holds:

KI[F1]) J[Gi](ka =kw® wWks d 2 (B_d*
Inductive Step: assume that the claim has been proved for K 1, where 2 kL. Then for

any X 2 and Fi; Gk 2 «(L; W; S; B) satisfying constraint B.27, applying the Chain Rule and
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triangle inequality help us upper bound the inf-norm kJ[Fx](X) J[Gk](X)k1 by:
KIFKIX)  JIGKIka =kWII[ 5 F 11x) WEJ[ 3 Gk 1](ka
KW 5 Fie 100 WEI[ s Fie 1J00ka +kWEI[ 5 Fie 1J00 WEI[ 5 Gi 1](ka

kW Wi kI[ 3 Fe 1J00ka +kWEkakd[ 5 Fr 1100 J[ s Gk 1]()ka

WkKJI[ 3 Fk 1]J(X)ka +BWKI[ 3 Fk 1](X) J[ 3 Gk 1](¥)Kka:
(B.30)
Using equation B.25 helps us upper bound the first term by:

k 1 k 1 k
WKJI[ 3 Fi 1]()ka =B _d)Tz 1%z Sk+5gk 1. (B.31)

Note that the two compositions 3 Fyx 1and 3 Gk 1 both map from RY to RW . Hence, the two
Jacobian matrices J[ 3 Fx 1](X) and J[ 3 Gk 1](X) are of shape RW 9. Applying the Chain
Rule again implies:

X .
s Fe () I0a Gr dd0ka= sup (i3 2P 100 P HO 5 g, 10020k 209,
11w j=1 @Xj ax X
Foranyl | W, the summation on the RHS above can be upper bounded by:
2(Fk 1|(X))M 2(Gk 111 (@)M
j=l
LG 1;.(x))@Fk@;J§'(X) 3 5(Gk 1 (x))@Fk@;J'(X)
X
+ 3 2(Gk 1|(X))w 3 2(Gk 1.1 (x))MJ
i=1 XJ @X;
J3 2(Fk 1a(X)) 3 2(Gk 1;|(x))kwj+ i3 2(Gk 1;|(X))k@Fk 1(x) @Gk 1,|(X)j:

0x; 0x; 0x;

j=1 Jj=1

We denote the two summations above by T; and T, respectively:

@Fk l;I(X)j_

P ¢
Ti:=  J32(Fk 11(¥)) 3 2(Gk 11(X))k ax:
j

Jj=1

OFk 13(X) @Gk 1, |(X)J

0x; 0xj
For the first sum T4, applying Lemma B.9, Lemma B.10, Lemma B.11 and Lemma B.12 yields the
following upper bound:

>
To:= 3 2(Gk 1;1(X)k
i=1

F X
T, 6 sup kKFr 1(X)ka kFx 1(X) Gk 1(x)ka M
X2 i Fi 12 k 1(LiW;S;B) - 0%
6 sup KFk 100ka kFk 1(X) Gk 1()kakI[Fk 1](x)ka
x2 'Fk 12 1(|_-W-s-B)
3 53k 2 4 3k 21 1 k42 3K 22 1 53k22 123k 21 1 k+23k 2

13k

Wi?’ > (B_d)i2 2721 1 k+23k 2 — \/\/73k 21 3(B_d)753k21 323k23 3k+632k 3:
For the second sum T3, applying Lemma B.9 and inductive hypothesis yields:

2
T, 3 sup KGk 1(X)ka kJI[Fk 1](x) J[Gk 1](x)ka
X2 ; Gk 12 k 1(L,W;S;B)

Kk 2 Kk 2 kK 1 3k 2 4 53k 2 1 gk 1 4
3 W3 l(B_d)53 123 1 2k+4 > _ > 2 > k+232k 4

— Wsk%(B d)#z?’k% 3k+632k 3:
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Combining the two upper bounds on T; and T yields:

@F X @G X
2P 10T 3 G 100 Y
j=1
53k 1 3 3k 3
Ti+T, 2 D A

By taking supremum with respecttol | W on the LHS yields:
sk 1 g 53k 1 1 _3K 3

BWKI[ 3 Fi 1) J[s Gk 1J(Qka W™z (B_d)y =z 272z 3Kz 3

(B.32)
By adding the two upper bounds in B.31 and B.32, we can deduce that:

kJ[Fk](X) \][Gk](x)kl Wi(B d) 1, 12 21 3k+53k 1

+ s 1,801 skreqok 3

L 1,951 krigk 2,

where the last inequality above follows from k 2. Taking supremum with respect to X 2  on the
LHS implies the given upper bound also holds for K. By induction, the claim is proved.

In particular, when k = L, we have rF (x) = J[F_](X)" forany X 2 . Applying Lemma B.13
then yields:

sup KrFL(x)k krG (x)k =sup krJ[FL](x)"k krJ[G_](x)"k
X2 X2

sup KI[FLI(X)  J[GLI()ka

112 3L 2
273 k+132L 2:

This finishes our proof of the Lemma. O

Theorem B.5. (Bounding the DNN Gradient space covering number) Fix some sufficiently large N 2
Z*. Consider a Deep Neural Network space  (L; W;S;B)withL = O(1); W = O(N);S = O(N)
and B = O(N). Then the log value of the covering number of the DNN Gradient space with respect
tothe k kg norm kKF (X)k4 = sup,, jF(X)j, whichisdenotedby N( ; r (L;W;S;B);k ka),
can be upper bounded by: h ;

logN(:r (L;W:;S;B);k ka)=0 S log( 1)+3“log(WB) : (B.33)

Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). Using
equation B.29 in Lemma B.14, yields the following upper bound on the covering number with respect
tok kq:

5

W= (B _d) 2%t g 2

Furthermore, note that the number of feasible configurations is upper bounded by: (W“;l)l_

(W + 1)-S:(Schmidt-Hieber et al., 2020; Farrell et al., 2021). Plug this inequality into the previous
estimation then yields:

logN(; (L;W;S;B);k ki) log (W + 1)-S

h
Slog
h

sL 1 1 s3L 1 1,3

Wi B d) 2%t L+igoL 2

1 L
53 1_3 1
T L+1

1
.S log( 1)+2Llog(8W) + 3-log(W (B _d))+3-log?2 :

Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L=0();W =0(N);S =0O(N) and B = O(N), \ﬁ/e can further deduce that:i

logN(; (L;W;S;B);k kq) - S log( 1) +3-log(WB) :
This finishes our proof. O
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Now let’s consider upper bounding the covering number of the Laplacian of the sparse Deep
Neural Networks. Note that for any 1 k L 1, any k ReLU3 Deep Neural Network
Fk 2 «k(L;W;S;B) is a vector-valued function mapping from RY to RW . Moreover, we define the
Laplacian of Fx(X), which is denoted by  [Fx](X), as follows:

[Fd) =[ Fii(®); Fr2(X); 5 Few (1" 2R%Y;
where forany1 | W, we have:
- ¢ 02
Fra(x) = . WFK;I(X):
j=1 J

In particular, when k = L, we have thatany F|_ 2 | (L;W;S;B) = (L;W;S;B) is a scalar-
valued function mapping from RY to R. Thus, its Laplacian can be explicitly written as:
X g2

FU = FLo9=
L L it @XJZ

FL(X):

For both Lemma B.15 and Lemma B.16 below, we consider a fixed Deep Neural Network space
(L;W;S;B) with L = O(1); W = O(N); S = O(N) and B = O(N), where N 2 Z™* is fixed
and sufficiently large.

Lemma B.15. (Upper bound on 1-norm of Laplacian of elements in the DNN space) For any
1 k L, we have the following upper bound:

sk 1 4 53k 1 1
sup k [FK]X)koa. =0 W =z (B_d) =z :
X2 Fk2 k(L;W;S;B)

Proof. We use induction on K to prove the claim.
Base case: k = 1. Note that any F; 2 1(L;W;S;B) is a linear transform, so the Laplacian
[F1](X) must be the zero vector for any X 2 . This implies:

k [F1](0ka =0 - (B _d)2:

Inductive Step: Assume that the claim has been proved fork 1, where2 k L. For any X 2
and any Fx 2 (L; W; S; B), using linearity of the Laplacian operator implies:

[Fdo) =WE [3 Fic 1]00:
Taking the inf-norm on both sides of the identity above implies:
k [FdOOka  kWE%ak [5 Fe 1d00ka  WBK [5 Fi 1J09ka:
It now remains to upper bound the term kK [ 3 Fx 1](X)kq.Foranyl | W, we will use the

Chain Rule to write the I-th component [ 3 Fx 1](X) | in an explicit form. Forany 1 j d,

we have:
e 2[F 11001 =3 2lFic 110l Fic 1100
Differentiating with respect to Xj on both sides above yields:
2 2 2
@@ng oFi 41001 =6 alFi 1] 5P 1100+ 3 ofF 1;.(x)1&Fk 109: (B34)
Summing the expression above from j = 1 to J = d implies:
X @2
[2 FcaC) = T a[Fk 13(X)]
j=1 J
> @ 2 X a2
= 6 1[Fk 1a(X)] —Fk 1) +32[Fk ()] ——Fk 11(X)
0% . X2
j=1 j=1""1
o) 1,
X 4 X 52
6 1[Fk 11001 @  —Fi 1100 A +3 2[Fk 11(X)] —Fr 1;(X) :
j=1 0x; j=1 0
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We denote the two summations above by U; and U», respectively:

OX 1,
Up:=6 1[Fk 1a(x)] @ &Fk () A
j=1 =™
P ¢ 02
Uz :=3 2[Fk 1a(X)] WFk 11(X) -
i=1 77

On the one hand, by applying Lemma B.9 and Lemma B.12, we can upper bound U; by:

2
U, 6 sup ka 1(X)k_1_ sup kJ[Fk 1](X)k1
x2 ; Fk 12 k 1(L;W;S;B) x2 Fk 12 k 1(LiW;S;B)

] W3k 22 1(B d)%zﬁ 21 1 ka2 W3k 2 1(B d)53k 2 123k 19 2k+432k 4

53k 1 3
2

k 1
Wz (B _d) ;

where the last step above follows from k L and L = O(1).
On the other hand, by applying Lemma B.9 and the inductive hypothesis, we have:

2
Uz 3 sup kFie 100Qka k [Fr 1]()ka
X2 ;Fk 12 k 1(LiW;S;B)
S3 W3 B ) 7 13t 1 2k W= 1(B_d)53k22 1
) Wsk 21 3(B_d)53k21 3;
where the last step above follows from k L and L = O(1).
Summing the two bounds on U; and U, implies that forany 1 | W, we have:
sk 1 3 s3k 1 3
[ 3 Fg 1](X) | U +U, . W 2 (B_d) 2 . (B.35)
Taking supremum with respectto 1l | W then yields:
sk 1 g 53k 1 1
k [FdCOka  WBK [3 Fe 1]J(X)ka - W =2 (B_d) =z

Taking supremum with respectto X 2 and Fx 2 ¢(L; W;S; B) on the LHS implies that the given
upper bound also holds for k. By induction, the claim is proved. O

Lemma B.16. (Relation between the covering number of the DNN Laplacian space and parameter
space) Forany1 k L, suppose that a pair of different two networks Fy; Gk 2 «(L; W;S;B)
are given by:

F0) = WE2 () +b2%)  (WEx +bE);

Gk(¥) = WL 3()+b%) (WX +bT):
Furthermore, assume that the k k4. norm of the distance between the parameter spaces is uniformly
upper bounded by , i.e

kw® w2 s k® bPky ;@1 1 k) (B.36)

Then we have:

sk 1 4
2

supk [Fd00  [GU0ka = O w8 _d) (B37)

Proof. We use induction on K to prove the claim.

Base case: k = 1. Note that any F; 2 1(L;W;S;B) is a linear transform, so the Laplacian
[F1](X) must be the zero vector for any X 2 . Hence, for any X 2  and any F1;G; 2
1(L; W; S; B), we have:

k [Fd)  [Gil(ka =0 - (B_d)*
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Inductive Step: assume that the claim has been proved for kK 1, where2 k L. Then for any
X2 and Fy; Gk 2 k(L; W;S;B) satisfying constraint B.36, applying linearity of the Laplacian

operator indicates:
k Fd) Gk =kWE [5 Fe 10 WE [3 G 1](0ka

= WP W [ R

+ W[5 Rl [s Gk X
kW Wk [3 Fe 100k
+kW®ak [3 Fe 10  [3 Gk 1](ka:

For the first term kW,(:k) Wék)k 2k [ 3 Fk 1](X)ka, applying the bound in equation B.35 and
equation B.36 yields:

kW Wik [ 5 Fe 1100k -

53¢ - 3

(B.38)

3

For the second term kWék)klk [ 3 Fk 1] [ 3 Gk 1](X)ka, we need to upper bound
thenormk [ 3 Fx 1](X) [ 3 Gk 1](X)ka at first. Note that forany 1 | W, we can
use equation B.34 to write the I-th component of [3 Fk 1](X) [ 3 Gk 1](X) as:

X ¢ X ¢
[3 Fk1J®) [3 Gk 1](X) = @x2 3[Fk 11(X)] T 3[Gk 11(X)]
i=1 9%

B > 0 D ¢ 0 2
=6 1[Fk 1;(¥)] x. —Fk 1|(X) 6 1[Gk 1;1(X)] @7Gk 1:1(X)
2 X 52

*3 alFi 1001 @@2Fk 600 3 2l 1) @@zek e

=6 1[Fk 1:1(3]

0 X @ 2
—Fg 1|(X) 6 1[Gk 1 (X)] —Fk 11(X)
j=1 2%

j=1 @XJ

0x

+6 1[Gk 1;|(X)]_

0 —Fy 1|(X) 6 1[Gk 1;1(X)]
J—l % i

0 —G 1|(X)
j= %

@x 0x

X 52

+3 Z[Fk I(X)] @X-2
j=1°"1

Fk 11(¢) 3 2[Gk 11(X)] Fk 11(xX)

X g2
@ 2

+ 3 2[Gk 1|(X)] @@sz 11(x) 3 2[Gk 1;|(X)] @@sz 11(X):

‘We denote the four summations above by V1;V2; V3 and Vg, respectively.

0 X @ 2
Vi =6 1[Fk 1;(X)] ~—Fk 1|(X) 6 1[Gk 11(X)] —Fk 11(X) ;

i=1 @x; j=1 0x;
V2 =6 1[Gk 1;1(X)] @@ Fi 1|(X) 6 1[Gk 1;:1(X)] @@ka 11(%) 2?
j=1 J j=1 XJ
Vs :=3 3[F«k 1-|(X)] i Fk 1a(X) 3 2[Ck 1-|(X)] i Fk 1a(0);
- , @ 2 , @ 2
@2 X @2
Vq =3 2[Gk 1;|(X)] 0 ok 1) 3 2[Gk 1|(X)] T >~ Gk 11(X):
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By applying Lemma B.9, Lemma B.10, Lemma B.11 and Lemma B.12, we can upper bound V; by

Vi=6 1[Fk 1;(X)] 1[Gk 1:1(X)] @@7Fk 11(%) i
j

1,

i=1
o

6iFk 11(X) Gk 1.1(X)j@ @@ Fi 1) A 6kFi 1(X) Gk 100k kI[Fk 1](X)k%
Xj

) W3k 22 1(B_d)53k22 123k 21 1 k+23k 2

) W3k 21 3(B_d)53

where the last step above follows from k

k 2 k 2 k 1
W3 l(B d)53 123 1 2k+432k 4
s

L and L = O(2).
2
Furthermore, note that forany 1  J  d, we can upper bound the difference & Frk 1a(X)

2
@@T,-Gk 11(x)  as follows:

2 2
@@JFK 1200 @@J Ge 1) @@J Fe 1) @@Xjek 1)
= @7)(ij 1;|(X)+@@Xij 1;1(X) @@J Frk 11(x) @@J Gk 1;(X) (B.39)
@@J Fk 1a(xX) + @@J Gk 11(X) @@J Frk 11(X) @@J Gk 11(x) :
Note that 1(Gk 1.1(X))

0. Combining the non-negativity with equation B.39, Lemma B.9
Lemma B.12 and Lemma B.14 helps us upper bound V>, by

2
Va=6400k 1100 Fe () G 1)
j=1 @ J @ _l
6kGk 1(X)k1 ﬂFk nX) + ﬂGk 1:1(X) ﬂFk 11(X) ﬁGk 11(%)
g @Xj ’ @Xj ’ @Xj ’ @Xj ’
b 10 1
6kGk 1(X)k1 @ ﬂFk 11(X) "‘X ﬂGk 1-|(X)A@X g —Fk 11(X) ﬂGk n(x) A
j=1 0% ’ j=1 0% ’ @xj 0x; ’
6kGk 1(X)k1 kJ[Fk 1](X)k1+kJ[Gk 1)k J[Fk 1] I[Gk 1]1(X)
6 53k 2 4 3'< 13 K+2

oW T (B _d) Tttt ek 2
1,3k 1 3

2

where the last step above follows from k

k+132k 4

L and L = O(1).
Moreover, using Lemma B.9, Lemma B.10 and Lemma B.15 helps us upper bound V3 by

Va= 3 alFc 1] 3 alG 1i00] @@ZFK 1)

2

3 2[Fk 11(X¥)] 3 2[Gk 1:1(X)] o sz 11(%)

6 sup kFy 1(X)k1 kKFk 1) Gk 1()kak [Fk 1]()ka
x2 ;Fk 12 k 1(L;W;S;B)
i 6\/\/3k 22 1(B_d)53k22 123'< 21 1 ka2

Wak 22 1(B_d)53k22 123k 21 1 k+23k 2
Wak 22 1(B_d)53k22 1

13
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where the last step above follows from k L and L = O(1).
Finally, applying Lemma B.9 and inductive hypothesis helps us upper bound V, by:
K @2 P ¢ @2
Va =3 5[Gk 1.1(X)] ~—Fk 1;1(X) — Gk 1;1(X)
@ 0%
j=1""1 j=1""1
3kGk 100K3Kk [Fk 1]®)  [Gk 1](¥)ka

Jaw T LB _dys T ¥t Aes Wit g o)t

1

sk 1 3 53k 1 3

- Wz (B_d) =z :
where the last step above follows from k L and L = O(1).
Combining the four bounds on V3; V»; V3 and V4 implies:

X 3k 1 3 s3k 1 3
[3 Fka®) [3 Gk 1l(x) = Vi W (B_d) 7
i=1
Taking supremum with respect to 1 | W gives us an upper bound on the second term
kWEkak [3 Fi 109  [3 Gk 1]00ka:

k 1 k 1
KWk [s Fe 100 [3 Gk ke - WB W = (B_d)>">

3

3k s3k 1 1

= Wit B )

(B.40)
Combining the two bounds derived in equation B.38 and equation B.40 then implies:

sk 1 4 53k 1 sk 1 4 53k 1 1
2

k [FJ)  [Gka - W™z (B_d)™ 2z + W™z (B_d)

3k

1
. Wz (B_d)
Taking supremum with respect to X 2  on the LHS implies that the given upper bound also holds
for k. By induction, the claim is proved. O

53k 1 1
2 :

Given a Neural Network function space  (L;W; S; B), we define a corresponding Neural Network
Laplacian space (L;W;S; B) as:

(L;w;s;B)=f FjF 2 (L;W;S;B)g: (B.41)
Theorem B.6. (Bounding the Neural Network Laplacian space covering number) Fix some suffi-
ciently large N 2 Z*. Consider a Deep Neural Network space (L;W;S; B) with L = O(1); W =
O(N);S = O(N) and B = O(N). Then the log value of the covering number of the DNN
Laplacian space with respect to the k kg norm kF (x)k1 := sup,, jF (x)j, which is denoted by

N(; (L;W;S;B);k kq), can be upper bounderc]i by: ;

logN(; (L;W;S;B);k ki)=0 S log( !)+3“log(WB) : (B.42)

Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). Applying
Lemma B.16 yields that there exists some constant C = O(1), such that the covering number with
respect to K k4 can be upper bounded by:

s

cWi (B _d)*

Furthermore, note that the number of feasible configurations is upper bounded by

(W +1) Ls (Schmidt-Hieber et al., 2020; Farrell et al., 2021). Then we plug this into the pervious
estimation and yields: " #

S
logN(; (LiW;S;B);k ki) log (W +1)-° T
CW——=2 (B_d~ =z _

h L 1 L 1
Slog W+Dw == (B _d)~ =z
h i
- S log( )+ Llog(W)+3-log(W(B _d)) :

W+1)*
S

3L 1 1
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Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L=0();W =0(N);S = O(N) and B = O(N), we can further deduce that:

h i
logN(:; (L;W;S;B);k k1) - S log( )+3“log(WB) :

This finishes our proof. O

Lemma B.17 (Local Rademacher Complexity Bound of DNN Estimator for Deep Ritz Method).
Consider a Deep Neural Network space F( ) = (L;W;S;B)withL =0(1);W =0O(N);S =
O(N) and B = O(N), where N 2 Z™* is fixed to be sufficiently large. Moreover, assume that the
gradients and function value of F( );u ;V and T are uniformly bounded
n o
max  sup Kukpa¢y; sup Krukpac oy ku kpag oy Kru kpagoy Vimaxs KFK gy C:
u2F( ) u2F ()

(B.43)

Forany = 0, we consider a localized set L defined by:

L()=fu:u2F( )ku ukiy g
Fhen for any, & n 2, the Rademacher complexity of a localized function space S,( ) =
h:=jj 3 kruk kruk® +3V(@uj? juj?) f(u u) u2L () canbe

upper bounded by a sub-root function
1

()=0 nL log (BWn)
i.e. we have
4) 2()andRa(S () () (B.44)

holds forall &n 2.

Proof. Firstly, we will check that for any u 2 L ( ), the corresponding function hin S ( ) is
Lipschitz with respect to u u and kruk kru k. Note that for any u;;u, 2 L () with
corresponding functions hy;h, 2 S (), applying boundedness condition B.43 yields:
. 1 1 . L . .
jhi(x)  h2(x)j 5 krup()k?  kru(x)k® + EJV (jjur(x)?  u20)%) + JFQjjuL(x)  U2(x)j
C krui(X)k kruy(x)k + (C?+C)jur(x) uz(X)j
=C krup(X)k kru (x)k kru,(X)k  kru (x)k
+(C?+C) (L) U (x) (W) u(X):

Let’s pick L = C? + C > C. Applying the Talagrand Contraction Lemma B.2 helps us upper bound
the local Rademacher complexity R,(S ( )) by

#
1 X hy 1 i
Rn(S ( ))=ExE  sup = i = kruk® kruk® +ZV(@Gui? juj?) f@u u)
uaL ()., 2 2
2! “
1 X
2LELE sup  — i u(xi) u (xp)

w2l Oy 4
11X, 0 0
+ 2LEE o« sup i kru(xpk kru (x)k
uzL ()N,
n o n o
-Rhn u u:u2L +R, kruk kruk:u2lL

From the localization constraint ku u szl( y=ku u ksz( y*tkru ru kzl_z( y» We can
deduce that

ku u ke I:Land kKru ru ke (B.45)
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Moreover, note that [0; 1]¢. Applying triangle inequality yields:
z z

2 2
kruk kru k L2 )= kru(x)k kru (xX)k dx kru(x) ru (x)k®dx
— 2 P-.
=kru ru ki, ) kruk kruk L2 :
(B.46)
Using inequality B.45 and inequality B.46, we have:
n o n o
RW(S()-Rh u u:u2L +R, Kkruk kruk:u2L
n o]
Rn u u:u2 (LLW;S;B)ku uKkizc) -
n o

+Rn  kruk kruk:u2 (L;W;S;B); kruk kru k 2 P-
L

(Geer & van de Geer, 2000; Rakhlin et al., 2017) showed a “upper isometry” property, where the

metric K ki, is equivalent to kK Kn.» with high probability. Combining this fact with Theorem B.3,

we can bound the local Rademacher complexities using Dudley integral:

n
Ri(S())-Ran u u:u2 (LiwW;S;B);ku u ki 2 B
n p_©
+Rn  kruk kruk:u2 (L;W;S;B); kruk kru k L2y o
n
Rhn u u:u2 (LiW;S;B);ku U kn: 2p7
n p©
+Rn  kruk kruk:u2 (L;W;S;B); kruk kru k , 20
n;
. p 22P-a
- 0<|r<n‘ZICL 4 +1}ﬁ logN(; (L;W;S;B);k kn:2)d
12 Z 2p7q
+0 infzm 4 +% logN(;r (L;W;S;B);k kn:2)d
12 Z ,p-
_ H + — . . . . .
0<|rlfZFL 4 i}n logN(; (L;W;S;B);k kq)d
12 Z ,p-
+ inf, 4 +p= logN(;r (L;W;S;B);k ka)d
o< <2~ n
Forany & %, we pick :% - P- and plug in the upper bounds proved in Theorem B.4 and
Theorem B.5, which implies:
1 1 %PV i ZP-V— i
Rn(S () - - +1&ﬁ S log( 1)+3Llog(WB) d +1&ﬁ S log( 1)+3Llog(WB) d
1 1

L
- Si log (BWn):

O

Lemma B.18 (Local Rademacher Complexity Bound of DNN Estimator for Physics Informed Neural
Network). Consider a Deep Neural Network space F( ) = (L;W;S;B) withL = O(1);W =
O(N);S = O(N) and B = O(N), where N 2 Z™ is fixed to be sufficiently large. Moreover,
assume that the gradients and function value of F (' );u ;V and f are uniformly bounded
n o
max  sup kuk_acy; sup Kk ukpag oy ku kpag oy kou kpag oy Vimaxs KFkpag oy C:
u2F( ) u2F ()
(B.47)

Forany = 0, we consider a localized set M defined by:
M()=Ffu:u2F( h;ku uki. g
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n
Thenforany & n 2, the Rademacher complexity of a localized function space T ( ) := h:=
o)

ij Cu Vu+f)? (u Vu +f)2 u2M () canbeupperbounded by a sub-root

function .

log (BWn)

L

():=0 =

i.e. we have
4) 2 ()andRa(T () () (B.48)

holdsforall &n 2.

Proof. Firstly, we will check that for any u 2 L ( ), the corresponding function hin S ( ) is
Lipschitz with respecttou U and U u . Note that for any u;; uz 2 L () with corresponding
functions h1; hy, 2 S (), applying boundedness condition B.47 yields:

jha(x) ha(¥)j j w uz V(ur upjj ur Vur+ uz Vuy+2fj
(2C2+4C)(j ur  upj+Cjur upj)
= (2C*+4C) ( u1(x) u(x)) ( u2x) u (x))

+(2C+4C%) (U1(¥) U (X)) (U2(x) U (X))

Let’s pick L = maxf2C? +4C; 2C3 +4C?g. Applying the Talagrand Contraction Lemma B.2 helps
us upper bound the local Rademacher complexity R,(T ( )) by

h 1 X i
Rn(T ( ))=ExE  sup i (u Vu+f)2 (u Vu +f)?
" #

1 X
2LELE sup i uXi) u X))
' #

1
+2LEwE o  sup = ouxd) u )
uzm ()M,

n [9) n o
-Rhn u u:u2mMmM + R u u:u2MmM
n o
-Rn u u:u2 (LLW;S;B);ku U ki 2 N
n o
+Rp u u:u2 (L;w;S;B);k u u kizg ) -
n p_©
Rhn u u:u2 (LiW;S;B);ku uKkno 277
n p o
+Rp u u:u2 (L;wW;S;B);k u Ukn2 2
Z prq
- 0<|rlf2pf 4 + 1% logN(; (L;W;S;B);k Kn:2)d
Z Zp*q
+O<|rlf2p7 4 +1&ﬁ logN( ; (L;W;S;B); k Kkn:2)d
12 Z ,p-
- 0<|rlf2p7 4 + % logN(; (L;W;S;B);k kq)d
12 Z ,p-
+0<|r<1f2p7 4 +1&ﬁ logN( ; (L;W;S;B);k ka)d
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Forany & 2, we pick = % - P- and plug in the upper bounds proved in Theorem B.4 and

Theorem B.5, Wthh implies:
1 1 2PV i ZP-V i
Ra(MT () - =+ {}ﬁ S log( 1)+3tlog(WB) d + i}ﬁ S log( 1)+3tlog(WB) d

n

=1

n
r L
- S:; log (BWn):

B.3 AUXILIARY DEFINITIONS AND LEMMATA ON APPROXIMATION ERROR
B.3.1 APPROXIMATION USING TRUNCATED FOURIER BASIS

Lemmgs B.19. Given > 0 and a fixed integer 2 Z™. For any function f 2 H (), we let

f = |, Tz 2bethebestapproximation of f inthe space F ( ). Then for any 0 < ,
we have the following inequality:
kf fkG (o, 20 Dkfky

Proof. Forf 2 H ( ), we know the)Iiourier coefficient satisfies
jfzj?kzk? . kFKZ,

kal
We directly construct f = kzka T,  to be the truncated Fourier series of the function f, then
we have > >
kf FKG (- jf,j?kzk? 2C. ) if2i%kzk? 20 kFKZ,
kzkq kzka

B.3.2 APPROXIMATION USING NEURAL NETWORK

In this section, we aim to provide approximation bound for deep neural network. Our proof of the
approximation upper bound is based on the observation that the B-spline approximation(De Boor &
De Boor, 1978; Schumaker, 2007) can be formulated as a ReLU3 neural network efficiently(Suzuki,
2018; Giihring et al., 2020; Duan et al., 2021; Jiao et al., 2021a). Although the proof of the
approximation of the neural network to the Sobolev spaces is a standard approach, we still demonstrate
the proof sketch here.

Definition B.4. (Univariate and Multivariate B-splines) Fix an arbitrary integer | 2 Z*. Consider a
corresponding uniform partition | of [0; 1]:

1:0= t(()') < tg') < < t|(|)1 < tl(') =1

where tgl) = 1 (80 i I). Nowforanyk 2 Z*, we can define an extended partition . as:
0= O o=@ << < <®=1=0= =, ,

Based on the extended partition ., the univariate B- splmes of order k with respect to partition
are defined by:

h i
NSO = D ) 5 it maxf(x  ©;0g% L x 21[0,1]; i 2 i (B.49)

i+k
where Ik = F k+ 1, k+ 2 ;1 1g and t(') tf'lk] denotes the divided difference
operator.
Equivalently, fg any x 2 [0; 1], we can rewrite the univariate B-splines N,(;'i‘)(x) in an explicit form:
P n . Ok 1
o f). fol D max x o L@ i1 kD)
P, o p
N =_" % tagmax x 50+ K Zbx0+b; (k+1 i 0)  (BS0)
§PI n - Ok 1 ]
= =i ke Giimax x40 (0 k+1 i 11)
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where fa;;j k+1 i 0,0 j k 1g,fhinj k+1 i 0,1 n Kk 2gand
fei; jI k+1 i I 1,1 k+1 j | 1garesome fixed constants.
For any index vector i = (iy;i2; ;ig) 2 Iﬁk, we can define a corresponding multivariate B-spline
as a product of univariate B-splines:

N (x) = leNl(;‘i‘j)(xj): (B.51)
Definition B.5. (Interpolation Operator(Schumaker, 2007)) Take some domain [0; 1]9 and two

arbitrary integers k;1 2 Z*. Consider the extended partition . and the corresponding set of
multivariate B-splines fN,(;‘?(x)giZ,ld_k defined in Definition B.4. For any i 2 Iﬂk, we define the
domain ; :=fx2 :x;2 [tij;t}j+k]; 1 j dg. There exists a set of linear functionals
f igizig,, where ;: LY ) * R(8i21g,)), suchthatforany i 2 12 andp 2 [1; 1], we have:

d

(NS = i andj i(F)j 99 D2k + 1) % Pifkiog y; 8F2LP( ) (B.S2)
The corresponding interpolation operator Qx| is defined as:

>
Quif = (NS 8 F 2 L1 ):

I;i
i2|lc<izl

Theorem B.7. [(Schumaker, 2007)] Fix f 2 WS( ) with [0;1]%s 2 Z* and p 2 [1; ).
Then for any k;I;r 2 Z* withk sand0 r s, we have that there exists some constant
C =C(k;s;r;p; d), such that:

1 s r
kf Qk;|kar( ) C T kkas( )-
Theorem B.8. (Approximation result of Deep Neural Network) Fix some dimensiond 2 Z*, some
domain [0;1]9. We pick some | = Na 2, for any s;r 2 Z* with0 r sandany
functionu 2 HS( ), there exists some sparse Deep Neural Network upny 2 (L; W; S; B) with
L=0();W =0(N);S = O(N); B = O(N), such that:

kUDNN u kH"( ) - N SfTr'(U kHS( ): (B.53)

Proof. We firstly show that the given function U can be approximated well by some linear combi-
nation of multivariate splines, which is denoted by Ug,. Note that N is assumed to be sufficiently

large. Hence, we may pick | = dN de = (N %) 2 Z™* to be the partition size of the B-splines.
Moreover, by pickjng K = 4 and p = 2 in Theorem B.7, we have that the linear combination

Ugp := Qqyu = 219, i(u )N,S?) satisfies:
1 sr s r
ku UspkHr( )y = ku Q4;|U kHr( ) C T ku kHS( ):CN a ku kHS( )-
P
We will then show that the linear combination U, = 5, g i(f)N|(;?) can be implemented by

some Deep Neural Network Upny 2 (L; W; S;B) with L = O(1); W = O(N); S = O(N) and
B = O(log N). Firstly, note that for x 0, both X and x? can be expressed in terms of the ReLU3
activation function 3 with no error:

x= 5la(x+3) 5a(x+D+Tsx+1) 3500 +6]
= L+ 4sx+D+I 500 4]

Applying the explicit formula listed in equation B.50 implies that forany 3 i | 1, the

univariate B-spline function Nl(;?) (X) (x 2 [0; 1]) can be implemented by some ReLLU3 Deep Neural
Network Vpnn with both scalar input and scalar output. We have that for Vpnn, the depth Ly is 2 and
the maximum width Wy, is upper bounded by 11.
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Secondly, for any X;y 0, we have that the product operation X Y can be expressed in terms of the
ReL U3 activation function 3 with no error:

1
><y=§[(x+y)2 x> y4
h

1
1 3XFYy+2) 4s(x+y+1)+3s(x+y) .
1

3(X+2)+4 3(x+1) 33(X) 3(y+2)+43(y+1) 3a3(y)+4:

In (Schumaker, 2007), it has been proved that the B-splines are always non-negative, i.e Nl(;Ai') )
0; 8 x 2 [0; 1]. Therefore, by multiplying the non-negative univariate B-splines, we can implement

any multivariate B-spline NI(;?) = ;’le'(;?j) (Xj) with some ReLU3 Deep Neural Network ppyw:.

We have that for ppnn;, the depth L, = dlog, de + 2 and the maximum width W, = maxf11d; 2dg.

Hence, we can further claim thatu = 5, g, i(u )Nl(fil), which is a linear combination of the
@) :

multivariate B-splines N|;;", can be implemented by some ReLU3 Deep Neural Network Upxw.
It remains to check that upny 2 (L;W;S;B) with L = O(1); W = O(N);S = O(N) and
B = O(N). Note that we can ensure that the hidden layers of Upny are of the same dimension W by
adding inactive neurons.

For the depth L of upnn, we have that L is equal to L + 1, where L denotes the depth of the
ReLU3 Deep Neural Network ppnn. Thus, we have L = L, + 1 = dlog, de + 3, which implies that
L =0(1).

For the width W of Upxn, we have that W jIZjWp, where W, denotes the width of the ReLU3
Deep Neural Network ppnn. This implies:

W ojIg i 11d = 11d( + k) = 11d(1 + 4)? = 0(I?) D W = O(N):

For the sparsity constraint S of Upnn;, starting from the third layer, the number of activated neurons is
half of the number of activated neurons at previous layer. This yields the following upper bound on

S:

2w
S 2W+W + j) 8W D) S =0(W)=0(N):
j=0
For the norm constraint B of upny, we have the following upper bound on B from equation B.50
and equation B.52:

B = O(maxflX ; sup i(u )g) = O(maxfl®;1%) = O(N):

i21g,
Now we have shown that parameters L; W; S; B of the Deep Neural Network Upnyn are of the desired
magnitude, which completes our proof. O

B.4 FINAL UPPER BOUND

In this subsection, we provide the proof of upper bounds for PINN and DRM. For both estimator,
we first provide a meta-theorem to illustrate the approximation and generalization decomposition
with a O(1=n) fast rate generalization bound(Bartlett et al., 2005; Xu, 2020). Then we use truncated
Fourier basis estimator and neural network estimator as example to obtain the final rate.

B.4.1 DEEP RITZ METHODS

Theorem B.9 (Meta-theorem for Upper Bounds of Deep Ritz Methods). Letu 2 HS( ) denote
the true solution to the PDE model with Dirichlet boundary condition:

u+Vu=Ffon ;
u=0o0n@ ;

where f 2 L?2( )andV 2 L1( )with0 < Vimin  V(X)  Vmax > 0. In Theorem B.1, it has
been proved that u can be obtained by minimizEng rt1he loss E(u):
n

(B.54)

i z

i o

u =argmin E(u) :=argmin - kruk? + Vjuj? dx fudx :
u2H2( ) u2Hg( )
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For a fixed function space F ( ), consider the empirical loss induced by the Deep Ritz Method:
1 Xh , 1 o i_
En(u) = 0 i Ekru(xj)k +5V KpiuXpj  FHUK;) (B.55)
j=1
where £Xjgj'_; are datapoints uniformly sampled from the domain . Then the Deep Ritz estimator
associated with function space F () is defined as the minimizer of E(u) over the function space

F():

Oprm = min Ep(u):
u2F( )

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (), the real solution u and f; V satisfy the following two conditions.

« The gradients and function value are uniformly bounded
n o
max  sup Kukp_a¢y; sup Krukpac yku kpag oy Kru kpag oy Vimaxs KFk gy C:
u2F( ) u2F( )

(B.56)
« All the functions in the function space F ( ) satisfies the boundary condition

u=00on@

At the the same tirpe, for any | 0, we assume the Rademacher complexity of a localizeg function
space S ()= h:=jj 3 kruk® kruk® +v(ui? jujd fu u) ku
o

u k,z_|1 can be upper bounded by a sub-root function = ( ):[0;1) ¥ [0;1),i.e.

4) 2 ()andRn(S () ()@ =0): (B.57)

For all constant t > 0. We denote r to be the solution of the fix point equation of local Rademacher
complexity r = (r). There exist two constants Cp; C such that with probability 1 C exp( Cqt),
we have the following upper bound for the Deep Ritz Estimator

n o]

t
2 ; 2y 4 L
Kprm U Kiy1 - uplzr?:f( , E(ug) E®U) max r =

Proof. To upper bound the excess risk E (™ := E(0prm) E(u ), following(Xu, 2020; Lu et al.,
2021b; Duan et al., 2021), we decompose the excess risk into approximation error and generalization
error with probability 1 e Cat, where Cq > 0is some constant:

EM™(Oprm) = E(Oprv)  E(U?) = E(Oprv) En(0prv) + En(Oprv)  En(ug)
+ En(ur) E(r) + E(ur) E@U)
E(0prv)  En(Oprv) + En(Ue) E(ue) + E(ug) E(7)
E(0prv) E(U )+ En(u) En(Oprm)
3 ) t
+- E EU’) +—;
JE(Ue) E@) + 5
(B.58)
where the expectation is on all sampled data. The inequality of the third line is because Oprym
is the minimizer of the empirical loss Ep, in the solution set F( ), so we have Epn(Oprm)
Fn(UF). The last inequality is based on the Bernstein jnequality. The variance of h = j ]
3 kruk® kruk?® +2V(uji? juj?) f(u u) canbe upper bounded by 2 E(ug)
E(u?) due to the strong convexity of the variation objective (B.60). According to the Bernstein

inequality, there exists some constant Cq > 0, such that with probability 1 e Cat we have:
s

En(ur) En(u) E(Ur)+E(QU)

tE(Us) E@?) 1 n o
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Note that B.58 holds for all function lies in the function space F. Thus, we can take Ug =
argming,or( y E(Ug) E(U?) and finally get

- I I }

Eap

=HQ) F(Omm) E(u );rEn(u) En(ui+§ Fizr;]:f() Eus) EU?) +%:

This inequality decompose the excess risk to the generalization error  Egen := E(Oprv) E(U )+
En(u ) En(Oprwm) and the approximation error  E,pp = infy 2r( ) E(Ug) E@U?) .

From the lemmata proved in Section B.3, we already have an estimation of the approximation error’s
convergence rate. So now we’ll focus on providing fast rate upper bounds of the generalization error

for the two estimators using the localization technique(Bartlett et al., 2005; Xu, 2020). To achieve the
fast generalization bound, we focus on the following normalized empirical process

Se( )= h(x)::%jhza ) (r>0):

First, we try to bound the expectation of the normalized empirical process. Applying the Symmetriza-
tion Lemma B.1, we can first bound the expectation as

o " o "
sup B AY)  Ex  sup - % 2R (S ( )):
n2Se( ) i=1 h2s() "=

where the function class Sy( ) is defined as:

h(x)

Se( )= hx) = Eh+r

ihz2s();

n h io
where S( )= h:=j j % kruk?® kruk® + %V (Guj? juj? f(u wu) :Thenap-
plying the Peeling Lemma B.4 to any function h 2 S(' ) helps us upper bound the local Rademacher
complexity Rn(Sr( ) with the function defined in equation B.57:

h 1P ih(xi)i# 4 (r)
Rn(Sr( ) =E Ex Sy a

Combining all inequalities derived above yields:
" 4

1)( )
sup Bxo — P(K) 2Rn(Sr( )
h2Sc( ) i=1

8 (n

r

(r > 0): (B.59)

Secondly we’ll apply the Talagrand concentration inequality, which requires us to verify the condition
needed. We will first check that the expectation value E[h] is always non-negative for any h 2 S( ):
z
1 .1 s 1 . -
E[h] = R (GkruQk™ + 2V (Jue)i” - Fxu(x))dx
z

i. i (%kru?(x)k2+%V(x)ju?(x)jz U’ (x))dx

—

J
=E(u) E@’ 0)E[h Oo:

We will proceed to verify that any i = E[[E]H? 2 S¢( ) is of bounded inf-norm. We need to prove

that any h 2 S( ) is of bounded inf-norm beforehand. Using boundedness condition listed in
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equation B.56 implies:
khkq = j jk% kruk? kru k® + %V (Gu? juij® f@u u)dka
%j krukjy +kru k¥ + %VM kuky +ku k¥ +j jkfkq kukq +ku kq
jTj 2C% + jijmaX 2C%+2j jC?2 =] j(Vimax +3)C%
By taking M :=j j(Vimax + 3)C2, we then have khkqy M for all h 2 S( ). Note that the
denominator can be lower bounded by jJE[h] + rj r = 0. Combining these two inequalities help us

upper bound the inf-norm kfikq = sup,, jh(X)j as follows:
__ kE[h] hks  2khkq 2M

Khka = e+ i ror

We will then check the normalized functions % in Sy( ) have bounded second moment,

which is satisfied because of the regularity results of the PDE. We aim to show that there exist some
constants ; > 0, such that for any h 2 S( ), the following inequality holds:

E(] ku u ki,  CE[I: (B.60)
The RHS of the inequality follows from strong convexity of the DRM objective function proved in
Theorem B.1:

The LHS of the inequality follows from boundedness condition listed in equation B.56 and the
QM-AM inequality:

E[h]=Eu) E(u) u kfag y:

Z 2
1 1, 0 ..
E[h?] = > kruk? kru k® + 5V Gui? juij®d fu u) dx
y4 z Z
2

% kruk?® kru k? dx+§ V2@Gui?  ju j®2dx+3  f2(u  u )%dx

Z Z

2 2

3 kruk kruk (kruk + kru k)2dx+§VI§ax jui juij Guj+ju j)dx
4 Z 4 Z

+3C%2 (u u)?dx 3C%2 kru ruk’dx+3C%(1+V2 ju u jldx

max

3C*(L+ VA ku U kg y:

max
By picking ! = W\/g and = Wlﬂ,nz), we have finished proving inequality B.60. Then

we can can upper bound the expectation E[1?] as:
_ El(h E[M)?] _ EMM’] E[hP E[h?]

2 .
BN = TEm e T jEn R EN R

Using the fact that E[h] 0 and inequality B.60, we can lower bound the denominator jE[h] + rj? as
follows:

. . 2

JE]+ 2 2Ehlr ST E[h?):

Therefore, we can deduce that:
2 2 0
E[R?] - El] 5 B _ e
JE[h] +rj2  20-E[h?]  2r

Hence, any function in the localized class Sy ( ) is of bounded second moment.
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It is easy to check that for any i 2 Sy ( ), we have

Ef E[] _

S = e O

i.e. any function in the localized class Sy( ) is of zero mean.

Now we have verified that any function i 2 Sy ( ) satisfies all the required conditions. By taking
to be the uniform distribution on the domain and applying Talagrand’s Concentration inequality
given in Lemma B.3, we have:

! 1 " 2t 2 2t .
Px sup = h(x) 2 sup Ex = h() + —=—+2— et
n2se( ) M iz n2s,( ) n._, n n

By using the upper bound deduced above and plugging in the expressions of and , we can rewrite
Talagrand’s Concentration Inequality in the following way. With probability at least 1 e t, the
inequality below holds:

.r
1 X 1 X hy>X 1 "%z gt
= nx)  sup = RA(xj) 2 sup Ex = AR) + —+ —
Nz n2se( ) M=y h2se() L n n
1 0
6 (n) + - + amt = (r):
r nr nr

Let’s pick the critical radius rg to be:

(B.61)

24Mt 36 't
ro = maxf2r e

Note that concavity of the function implies that (r) rforanyr r . Combining this with the
first inequality listed in B.57 yields:

6 2% (@R _1 (R L

r M 8 2 8
On the other hand, applying equation B.61 yields:
r r
It %t n _1
n ro n 36 6

AMt  4Mt n _1
nro n 24Mt 6

Summing the three inequalities above implies:

| g
_16 (o), tT 4Mmt 1 1 1 _1

o nro Nrg 8 6 6 2

(ro)

By picking r = rg, we can further deduce that for any function u 2 F (), the following inequality
holds with probability 1 e *:

E(u EUu) Ep(u)+Enu)_1X
E(u) E(u)+ro “n

1
hoa)  (1o) < 5
i=1
Multiplying the denominator on both sides indicates:
1h T 1
E =E(W) EU) EnW+En) ; E@W E@) +5r0=; E®+

Substituting the upper bound above into the decomposition E (™ Egen + % Eapp + % yields

that with probability 1 ~ 2e ™INTCa:19t e have:
3 t 1 3 t

1
E®  But+s Emtgy 5 EP+gr+s Emtan
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Simplifying the inequality above yields that with probability 1 ~2e MnTCa:10t we have:

t t 36 't t

(n) + 4= ; 2y 4 14, . L. SO+ =

E ro+3 Eupp = 3UF|2r'1:f() E(ug) E®UY) maxf2-*r ’24Mn’ ng =
N n o
- inf E(u E(u’) +max r ;—
LN (Uus) E(U9) =

Moreover, using strong convexity of the DRM objective function proved in Theorem B.1 implies:

minfl; Viying 2 )
TkO‘DRM u kHl( )

Combining the two bounds above yields that with probability 1 ~ 2e ™MiNfCa:10t e have:
n (o]

2 ; 2y 4+ .
kOprm U kHl( y - UFIZI"'I:f( ) E(ug) E@U9) max r o

EM™ =E(Oprv) E(u)

O

Deep Neural Network Estimator. For any N 2 Z*, there exists some Deep Neural Network in

(L;W; S;B) with L =0(1); W =0O(N); S =0(N); B = O(N), such that the approximation
error  Eu,p = O(N %5 1)) and generalization error  Ege, = O(N'OTQN). With optimal selection

d . . . _2s 2
N = nd+2s 2 to balance the bias and variance, we can achieve N 3+2s 2 log n convergence rate for

the DNN estimator.

Theorem B.10. (Final Upper Bound of DRM with Deep Neural Network Estimator) Under
the assumptions in Theorem B.9, we consider the Deep Ritz objective with the sparse Deep
Neural Network function space (L;W;S;B), where the parameters L = O(1); W =
O(nd+2ds 2); S = O(nd+2ds 2); B = O(nd+2ds 2), Then we have that the DNN estimator
OBRM = Miny2 (L.w:s:zy ER~M(u) satisfies the following upper bound with high probability:

2s 2
koS U k#. - n @ 2 logn:

Proof. On the one hand, by taking s = 1 and p = 2 in Theorem B.8 proved above, we have that
there exists some Deep Neural Network Upny 2 (L;W; S; B) with L = O(1); W = O(N);S =
O(N); B = O(N), such that.

2s

d 2ku kHs( )-

kuDNN u k|2_| 1) N

Applying strong convexity of the DRM objective function proved in Theorem B.1 yields the following
upper bound on the approximation error of DRM:
2s 2

Eapp - kuDNN u k|2_|1( ) N d

On the other hand, from Lemma B.17 proved above, we know that the function ( ) that upper
boyyds the local Rademacher complexity of the Deep Neural Network space is of the same magnitude

as SSnL log (BW n). By plugging in the magnitudes of L; W; S; B, we can determine the critical
radius - r
r 3tS . N(logN +logn)

. N -
= log(BWn) T(2IogN +logn) r Dr =

Combining the two bounds above with Theorem B.9 yields that with high probability, we have:
26D N (logN + log n):

n
By equating the two terms above, we can solve for the optimal N that yields the desired bound:

kopRM U K& - Egp+r - N

2(sd1) > ﬁ ) N > nd+2ds 3
n

Plugging in the optimal N gives us the magnitudes of the four parameters L = O(1); W =
d

O(n avs 2); S=0(ndz 2); B=0(n avss 2), as well as the final rate:

2s »  NlogN 2(s_1)
d 4+ —>  _n d26 D Iog n:

kobRN U kZ. - N
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Truncated Fourier Series Estimator. Forany 2 Z*, there exists some Truncated Fourier Series

d
in F () with approximation error  E,p, = O( 2 D) and generalization error  Egey = OZ(FZ).
With optimal selection = nd+2s 2 to balance the bias and variance, we can achieve n d+2s 2
convergence rate for the Fourier estimator.

Theorem B.11. (Final Upper Bound of DRM with Truncated Fourier Series Estimator) Under
the assumptions in Theorem B.9, we consider the Deep Ritz objective with the Truncated Fourier

Series function space F (), where the parameter = (nidwls 2). Then we have that the Fourier
estimator 05" = minyk () EERM(u) satisfies the following upper bound with high probability:

. 2s 2
kO™ u k¥, - n s 2

Proof. Letys firstly degjve the function () that upper bounds the local Rademagher complexity of
S()= h:=jj % kruk® kruk? +61V(juj2 jujd fu u) u2F.() .,
n

where F . ()= Vv2F () kvszl( ) denotes the localized Truncated Fourier Series
space. From Talagrand Contraction Lemma B.2, Lemma B.6 and Lemma B.7 proved above, we have
n (o)
RS () -Rn U U :U2F.( )ku Ukgyy ©-
n (0]
+Rn kru ruk:u2F; ( )ku ukyig) -
" #
h 1 X , i
-Ex E sup  — i(uCxy) u (X)) ku u ke )
n
uzk ; () ' j=1
H
h 1 X 1
+Ex B sup — kru(Xi) rou Gk kuu kg
2F ; =
u )= # . #
hy X i hy X i
+Ex E -— ikr ~u (Xpk +Ex E = i = u(Xp)
W iz N =1
H
h 1 X i
_Ex E sup = iVOXi) kvkfa
varF ()Mo 4
h 1 i
+Ex E sup = ikrv(Xik kvkg
v2F o ()M
H " H
hy X i hy X i
+Ex E q ikr = u (Xp))k +Ex E 0 i = u(Xp
i=1 i=1
r_ r—  r_ r— r_
. — g4 7k>UK2H1_ _ S 72(51)_ _i41y 2s 1.
n n n n n n
(B.62)
where u:= . p Y2 2(X) is the projection to the Fourier basis whose frequency is smaller
than and > U=, Uz z(X) is the projection to the Fourier basis whose frequency is
larger than . Then, the critical radius r can be determined as follows:
| gu—
d
Lg+}+ 2(51)’r)r’—+1+ 2s D).
n n n n

Moreover, by taking =sand = 1inLemma B.19 and applying strong convexity of the DRM
objective function proved in Theorem B.1, we can upper bound the approximation error  Egp, as
below:

Eapp - 2(s D).
Combining the two bounds above with Theorem B.9 yields that with high probability, we have:
A d 1
KOGRM™ U Kfs - Egp+r -+ XD
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By equating two of the three terms above, we can solve for that yields the desired bound:

d 1
> 2(5 l) ) > na+zs 2:
n

Plugging in the optimal gives us the final rate:

. d 1 2s 2
kogﬁ]ﬁer u kI2-|1 _ F_'_ 2(s 1)_|_ﬁ . n g+ z2:

B.4.2 PHYSICS INFORMED NEURAL NETWORK

Theorem B.12 (Meta-theorem for Upper Bounds of Physics Informed Neural Network). Letu 2
HS( ) denote the true solution to the PDE model with Dirichlet boundary condition:
u+Vu=~fon ;
u=0o0n@ ;
where f 2 L2( )andV 2 LT( )withV 3 V > Cmin;0 < Cin < V(X)  Vimax and

V(X) Vmax. In Theorem B.2, it has been proved that u can be obtained by minimizing the
loss E (u): nZ

(B.63)

o]
u = argmin E(u) := argmin j u Vu+fjdx :
u2H( ) u2H5( )
For a fixed function space F ( ), consider the empirical loss induced by the Physics Informed Neural
Network: .
1 X h_ _ ol
En()=— 11 ulX) VEXpPuXj+Tex5) o (B.64)
j=1
where X; gj‘zl are datapoints uniformly sampled from the domain . Then the Physics Informed
Neural Network estimator associated with function space F () is defined as the minimizer of En(u)
over the function space F( ):

Opinny = mMin Ep(u):
u2F( )

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (), the real solution u and f;V satisfy the following two conditions.

* The gradients and function value are uniformly bounded
n

max  sup Kukp_a¢y; sup krukiacy, sup K ukpagy;

u2F( ) u2F( ) u2F( ) o (B.65)

Ku kpa¢ y;kru Kpae yik U Kpag ) Vimaxs KFkLa ¢y C:

« All the functions in the function space F ( ) satisfies the boundary condition

u=00on@

At the the same tige, for any > 0, we assume the Rademacher complexity of a localized fupgtion

space T ( )= h:=jj (u Vu+f)2 (u Vu+f)? ku ukd, can
be upper bounded by a sub-root function = ( ):[0;1) ¥ [0;1),i.e.
“4) 2 ()andRn(T () ()@ =0): (B.66)

For all constant t > 0. We denote r to be the solution of the fix point equation of local Rademacher
complexity r = (r). There exists two constants Cp,; Cq such that with probability 1 C,exp( Cqt),
we have the following upper bound for the Physics Informed Neural Network Estimator
n o
t
ko k2. . inf E EU?) +max r;— :
PINN U K2 u.:IZF( ; (up) (u?) n
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Proof. To upper bound the excess risk EM, following(Xu, 2020; Lu et al., 2021b; Duan et al.,
2021), we decompose the excess risk into approximation error and generalization error with probabil-
ityl e Cat where Cq > 0 is some constant:

E(n)(oPINN) = E(Opnn) E(U?) = E(0pnn)  En(0pn) + En(0pn)  En(ur)
+ En(ug) E(ug) + E(ue) E(U)
E(@pn~) En(0pny) + En(up) E(up) + E(ur)

E(@mnw) E@U)+En(u) En(Gpmw)
3 - t
+ - E(u EWU?) +—;
> E(Ue) EW) + 5
(B.67)
where the expectation is on all sampled data. The inequality of the third line is because Opn
is the minimizer of the empirical loss Ey, in the solution set F( ), so we have En(Opnn)
En(ug). The last inequality is based on the Bernstein inequality. The variance of h = j j
0
(u Vu+f)®2 (u Vu +f)? canbeboundedby — E(ug) E(U?) due to the strong
convexity of the variation objective (B.69). According to the Bernstein inequality, there exists some
constant Cq > 0, such that with probability 1 e ©at we have:
S

EnUr) En(u) E@)+E@W) O = JE@R) EW) 4o

Note that C.5 holds for all function lies in the function space F. Thus, we can take U =
argming,or( y E(Ug) E(U?) and finally get

E® F(OPINN) E(u )"bEn(U) En(OPINNi"'gTFiZl"l:f( ) E(;,:) E(u?)}+2tn:
Een

E“PP

This inequality decompose the excess risk to the generalization error  Egen, := E(Opny) E(U ) +
En(u ) En(0pnn) and the approximation error  Eupp = infy.2r( y E(Ug) E(U?) .

From the lemmata proved in Section B.3, we already have an estimation of the approximation error’s
convergence rate. So now we’ll focus on providing fast rate upper bounds of the generalization error
for the two estimators using the localization techinque(Bartlett et al., 2005; Xu, 2020). To achieve the
fast generalization bound, we focus on the following normalized empirical process

Elh]  h(x)
Elh] +r

First, we try to bound the expectation of the normalized empirical process. Applying the Symmetriza-
tion Lemma B.1, we can first bound the expectation as
" # 4 #
1 X 1 X hxi) Elh
sup Exe = h(X) Ee sup = heq)  Ehl 2Rn (T ( )):
n2T () Nz hat() My, Ehl+r

T ()= AKX := jh2T() (r=0):

where the function class Sr( ) is defined as:
h(x)
E[h] +r
n o
where T( )= h:=jj (u Vu+f)2 ( u Vu +7F)?> :Thenapplying the Peeling
Lemma B.4 to any function h 2 T ( ) helps us upper bound the local Rademacher complexity
Rn(T+( )) with the function  defined in equation B.66:

Tr( )= A(x) = jh2T() ;

h 1P neat 4 (0
Ra(Tr( ) =E Ex e —
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Combining all inequalities derived above yields:
" #

hd)  2Ra(fr( ) o)

r

sup Exo (r >0): (B.68)

h2T( ) i=1

Secondly we’ll apply the Talagrand concentration inequality, which requires us to verify the condition
needed. We will first check that the expectation value E[h] is always non-negative for any h 2 S( ):
z
1 - - 2 1 - - 2
E[h]:j—j jj (. u Vu+f)dx J—J jj Cu Vu +f)dx
=E(u) E®’ 0)E[h o

We will proceed to verify that any i = E[[E]] +r: 2 T ( ) is of bounded inf-norm. We need to prove

that any h 2 T( ) is of bounded inf-norm beforehand. Using boundedness condition listed in
equation B.65 implies:
khka =j j k( u Vu+f)2 (u Vu +f)’kqg =j j k( u Vu+F)’kqy
j J (k UKl + VmukaIkl + kfkl)2 .I j(Vmax + 2)2C2:

By taking M :=j j(Vimax + 2)°C2, we then have khkq M for all h 2 T( ). Note that the
denominator can be lower bounded by jJE[h] + rj r > 0. Combining these two inequalities help us

upper bound the inf-norm kfikq = sup,, jh(X)j as follows:
_ kE[h] hka  2khkq 2M

Khka = e+ 1] ror

We will then check the normalized functions % in Ty( ) have bounded second moment,

which is satisfied because of the regularity results of the PDE. We aim to show that there exist some
constants ; >0, such that for any h 2 T (), the following inequality holds:

E(?] ku ukfey  CE[h]: (B.69)

The RHS of the inequality follows from strong convexity of the PINN objective function proved in
Theorem B.2:

El]=E@) E() minfl;Cmingku U k{2 y:

The LHS of the inequality follows from boundedness condition listed in equation B.65 and the
QM-AM inequality:
z z
Eh2l=  (u Vu+f)2 (u Vu +f2%dx= ( u Vu+f)idx
z z
M2 (u Vu u+Vu)ddx 2M? [(u u)?>+V3u u)?dx

2M?2 maxf1; V 2

max

gku u sz2( )

By picking we have finished proving inequality B.69.

— 1 — 1
~ minfl;Cming and = 2MZmaxf1;V.2 g’
Then we can can upper bound the expectation E[N?] as:

E[M?] = El(h E[h])?] _ E[h*] E[NP E[h*]
JE[h] + rj? JE[] +rj>  JE[h] +rj?°

Using the fact that E[n] 0 and inequality B.69, we can lower bound the denominator jE[h] + rj? as
follows:

2r
0

JE[h] + rj2  2E[h]r E[h?]:
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Therefore, we can deduce that:
2 2 0
E[hZ] _ E[h ] _ 5 E[h ] — = 2:
JE[N] +rj2  20-E[h?]  2r

Hence, any function in the localized class Ty ( ) is of bounded second moment.

It is easy to check that for any i 2 T ( ), we have
E[h] E[h] _

=M = ERyr

0;

i.e. any function in the localized class Sy( ) is of zero mean.

Now we have verified that any function i 2 Sy ( ) satisfies all the required conditions. By taking
to be the uniform distribution on the domain and applying Talagrand’s Concentration inequality

given in Lemma B.3, we have:

" _ r__ #

1 X hg X b "oz gt .

Px sup — A(Xi) 2 sup Ex — A(x) + —+ — e
n2te () M izg 2T ( ) i=1 n n

By using the upper bound deduced above and plugging in the expressions of and , we can rewrite
Talagrand’s Concentration Inequality in the following way. With probability at least 1 e t, the
inequality below holds:

-
1 X 1 X hy>x 0 T2 gt
= h) sup = h(xj)) 2 sup Ex = AKX + —+—
Ny nz2se( ) M =1 h2se() Ny n n
1 0
6 () + L + AMt =: (r):
r nr nr

Let’s pick the critical radius rg to be:

ro = maxf2'4r (B.70)

24Mt 36 't
n '’ ng'

Note that concavity of the function implies that (r) rforanyr r . Combining this with the
first inequality listed in B.66 yields:

16 (r) 2" (5&) 1 () 1

r v 8 2 8
On the other hand, applying equation B.70 yields:
r r
0t %t n 1
n o n 36 't 6

AMt  4Mt n _ 1
nro n 24Mt 6
Summing the three inequalities above implies:

| g
_16 (o), tT _4Mt 1

1
ro Nrp nrob 8 6 6 2

1 1

(ro)

By picking r = rg, we can further deduce that for any function u 2 F (), the following inequality
holds with probability 1 e

EQW) E@U) En+En@u)_1

X 1
E(W E(u)+ro n e (=3

Multiplying the denominator on both sides indicates:
h i
1 1 1 1
Ee=E(W) E@U) En(W+Enu) 5 EW E@U) +5r0=; EM+
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Substituting the upper bound above into the decomposition E (™ Eeen + 3 Egpp + o yields
that with probability 1 ~ 2e ™INTLCadt e have:
3 t 1 1 3 t
E®™ Been+ 5 Eppt+ oo 5 B+ 2% s Bt op
Simplifying the inequality above yields that with probability 1 ~2e ™"fL:Cadt we have:
EM ro+3 Egp+ Yo3 inf E(ug) E@?) +maxflr ;24M E; yig + -
PP n UE2F () n n
, n t o
inf E(u E(u’) +max r ;—
WL (ug) E(U) =

Moreover, using strong convexity of the PINN objective function proved in Theorem B.2 implies:

E™=E@pn) E@U) minfl;Cringklpnny U kZz( o

Combining the two bounds above yields that with probability 1 ~2e ™MNTLCa0t e have:
5 , n t o
0] u k - inf E(u EUu?) +max r ;—
PINN H2() - 0 (Ur) u?) n

O

Deep Neural Network Estimator. For any N 2 Z™, there exists some Deep Neural Network in
(L;W;S; B) with L = O(1); W = O(N); S = O(N); B = O(N), such that the approximation

2(s 2) . . . . .
error  Eup = O(N ~@ ) and generalization error  Egen = O(N'OTQN). With optimal selection

N = nda+zs 2 to balance the bias and variance, we can achieve N 32 3 |og n convergence rate for
PINN estimator.

Theorem B.13. (Final Upper Bound of PINN with Deep Neural Network Estimator) Under
the assumptions in Theorem B.12, we consider the PINN objective with the sparse Deep
Neural Network function space (L;W;S;B), where the parameters L = O(1); W =
O(nid+2ds 2); S = O(nid+2ds 2) and B = O(nidwds 7). Then we have that the DNN estimator
OBINN = Minyz (L.w:s:B) ERNN(u) satisfies the following upper bound with high probability:

KOBNN U k%, . n @27 logn:
Proof. On the one hand, by taking S = 2 and p = 2 in Theorem B.8 proved above, we have that
there exists some Deep Neural Network upnyy 2 (L; W; S; B) with L = O(1); W = O(N); S =
O(N); B = O(N), such that.
kuDNN u k|2_|2( ) N ¥kUkHs( )

Applying strong convexity of the PINN objective function proved in Theorem B.2 yields the following
upper bound on the approximation error of PINN:

2s 4

Eapp - kupnn U k|2_|2( ) N d

On the other hand, from lemma B.18 proved above, we know that the function ( ) that upper bounds
the local Rademacher complexity of the Deep Neural Networks Upxy is of the same magnitude as

"s3t Lo : . . .
=>—log (BWn). By plugging in the magnitudes of L;W;S; B, we can determine the critical
radius r :

r 3LS

r
log(BWn) ~ %(ZlogN +logn) >r Dr ~

N (logN +logn)
- :

Combining the two bounds above with Theorem B.12 yields that with high probability, we have:

2(sd 2) + N (|Og N + Iog n):

DNN 2
kOPINN u kHz - Eapp+ r - N n
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By equating the two terms above, we can solve for the optimal N that yields the desired bound:

2(s 2)
d

N d
> — ) N 7 ndwas4;
=D

Plugging in the optimal N gives us the magnitudes of the four parameters L = O(1); W =
O(n aws 2); S=0(n avs 2); B=0(n awss ), as well as the final rate:

2s »  NlogN 2(s 2
a + —2

)
KopNY  u k. - N = - n @263 logn:

O

Truncated Fourier Series Estimator. Forany 2 Z™, there exists some Truncated Fourier Series

d
in F () with approximation error E,p, = O( 2(s 2)) and generalization error Egen = OZ(FA)
With optimal selection = nd+2s 4 to balance the bias and variance, we can achieve n d+zs 4
convergence rate for the Fourier estimator.

Theorem B.14. (Final Upper Bound of PINN with Truncated Fourier Series Estimator) Under the
assumptions in Theorem B.12, we consider the PINN objective with the Truncated Fourier Series

function space F (), where the parameter = (n av2s 2). Then we have that the Fourier
estimator QN = mingor () ERNN(u) satisfies the following upper bound with high probability:

; 2s 4
kog?k‘r’\'ler u k|2_|2 . n d+zs a

Proof. Let’s fitgtly derive the function () that upper bounds the local Rademacher cqgnplexity
of T():= h=jj (u Vu+f)®> (u Vu +7F)? u22J.() ,where
n o

J.()= v2F () kvk,2_|2( ) denotes the localized Truncated Fourier Series space.
From Talagrand Contraction Lemma B.2, Lemma B.6 and Lemma B.8 proved above, we have
n o
Ra(MT())-Ran u u:u2J;()ku ukpyz) -
n o
+Rn u u:u2J;( )hku ukpyz) N
" H
1 X !
_.Ex E sup = i(uCXi) u (Xi)) ku u k&g
u2fF ; () =g
H
h 1 X ) i
+Ex E sup  — i( ulXyp) u (Xj)) ku u K
uz2kF ; () n i=1
H " H#
hy X i hy X i
+Ex E - i >u((Xj) +Ex E - i = Uu(Xj)
W i n il
h 1 X i
_Ex E sup = iV(Xi) kvkfpe(
v2F ;. ()N
" -#
h 1 X i
+Ex E sup = i VOXi) kvkZoe
n
v2F () ' =g
H " H
hy X i hy X i
+Ex E 5 i =u(Xj) +Ex E 5 i = u(Xp)
i=1 i=1
r_ l’liz r_ l’iz S 2' r_
. — 4 7K>Uk"'2_ _ 54 L2 )_ _e41y 2(s 2.
n n n n n n
P (B.71)
where u:= |, p Y 2(X) is the projection to the Fourier basis whose frequency is smaller
than and > u:= |, U 2(X) is the projection to the Fourier basis whose frequency is
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larger than . Then, the critical radius r can be determined as follows:

r— d

+ 2(32),r)r,7+1+ 2(s 2).
n n '

d
2 +

S|

r
n
Moreover, by taking =sand = 1inLemma B.19 and applying strong convexity of the DRM

objective function proved in Theorem B.2, we can upper bound the approximation error  E,p, as
below:

Eapp _ 2(5 2):

Combining the two bounds above with Theorem B.12 yields that with high probability, we have:

d 1
Fourier 2 2(s 2).
KOPRN" U Khe - Bap+r o o ¢ 2.

By equating two of the three terms above, we can solve for that yields the desired bound:

7 2 2)) > naves -
n

Plugging in the optimal gives us the final rate:

2s 4

) d 1
KORE U kG . —+ 26 D

C PROOF OF MODIFIED DRM

In this section, we provide the proof of the modified deep Ritz method here. We first provide a similar
meta-theorem as we did for DRM.

Theorem C.1 (Meta-theorem for Upper Bounds of Modified Deep Ritz Method). Letu 2 HS( )
denote the true solution to the PDE model with Dirichlet boundary condition:

u+Vu=Ffon ;
u=00n@ ;
where f 2 L2( )andV 2 L1( )with0 < Vmin  V(X)  Vmax > 0. In Theorem B.1, it has
been proved that u can be obtained by minimizing the loss E (u): .
n h i o

u =argminE():=argmin =  kruk®+Vjuj® dx fudx :
u2H( ) U2HG( ) 2

(C.1)

For a fixed function space F ( ), consider the empirical loss induced by the Modified Deep Ritz
Method (N n):
1 Xh ot 1 XNy s J
Enn(W =55 § 0 Skruke +=7 jj SVOQOUOGE FOGUG)
i=1 j=1
(C2)
where X/gNL,; and X g}‘zl are datapoints uniformly and independently sampled from the domain
. Then the Modified Deep Ritz estimator associated with function space F ( ) is defined as the
minimizer of En.n(u) over the function space F ( ):

Omprv = Min  En;n(U):
u2F ()

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (), the real solution u and f; V satisfy the following two conditions.

 The gradients and function value are uniformly bounded
n

max  sup Kukp_a¢y; sup Krukpac yku kpag oy kru kpag oy Vimaxs KFk gy
u2F () u2rF ()
(C.3)
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« All the functions in the function space F ( ) satisfy the boundary condition

u=00on@

At the the same time, for any > 0, we assume the Rademacher complexity of the following
vector-valued function space

n
S():= (hi;h))hy:=j j % kruk® kruk®

o
ho:=j j %v(juj2 juj® fu u) ;ku ukd:
can be upper bounded by a sub-root function = ( ):[0;1) ¥ [0;1),1i.e.
(4) 2 ()andRnin(S () ()@ =>0); (C4)

where Rn:n(S) := Rn(Thij(hg; ho) 2 Sg) + Ra(Fhyj(hs; hy) 2 Sg). For all constant t > 0. We
denote r to be the solution of the fix point equation of local Rademacher complexity r = (r). There
exists two constants Cp; Cq such that with probability 1~ Cpexp( Cqt), we have the following
upper bound for the Modified Deep Ritz Estimator

n (0}
t
2 ; 2 .
- -+ —
KOvprm U Ky uF|2r|]=f( , E(ug) E@UY) max r =

Proof. To upper bound the excess risk E®MN:™ := E(0yprv) E(U ), following(Xu, 2020;
Lu et al., 2021b; Duan et al., 2021), we decompose the excess risk into approximation error and
generalization error with probability 1 e U

ENM = E(Ovprv) EU?) = E(Omprv) Enin(Ouprv) + Enin(Ovprv)  Enin(Ue)
+ Enn(Ue) E(ug) + E(ug) EU?)
E(@vprm) En:n(Ovprvm) + Encn(Ue) E(up) + E(UR)
E(Omprv) E@U )+ En:n(U)  En;n(Oumprm)]

- 4t
+2 E(ur) E@U) + minfN:ng’

(C.5)
where the expectation is on all sampled data. The inequality of the third line is because Gypry is the
minimizer of the empirical loss Ep, in the solution set F (), so we have En.n(Ovprv)  Encn(UE).
The last inequality is based on the Bernstein inequality. For any ug 2 F( ), we use hg.1; hg.o to
denote the following two functions:

[N

hea:=3 krugk?® kru k? ;
Lo, o
heo = EV (uej® juj®) fur u):

Applying Bernstein’s inequality twice to hg ;1 and hg ;5 implies that there exists some constant Cq,
such that with probability 1 ~ 2e Cat, the following two inequalities hold simultaneously:

s
t—E[hZ ]
En(hea) E(hea) %;
s
t—E[hZ ]
En(hr2) E(hg;2) %

Note that the variance sum E[hZ ;] + E[hZ ] can be upper bounded by 2 E@ue) E@U?) due
to the strong convexity of the variation objective (C.9). Adding the two inequalities above implies
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with probability 1 2e Cat we have:
En;n(UF) Enpn(u) EQUE)+E@U)= EN (hg;1) E(hgl) +En(hr2) E(hg;2)
tSEM2.,]  t-E[Mh2,]
o ;

N n
V4
u
%2t70 E[hZF;:L] + E[hlzz;l]
minfN; ng
s
2t E(ug) E@?) - 4t
- E(u Eu’) + ——:
minfN; ng (Ur) (L) minfN; ng
Note that C.5 holds for all function lies in the function space F. Thus, we can take U =
argming. g y E(Ugr) E(u?) and finally get:
(N;n) - 2 4t
EW F(OMDRM) E(U )+ %N;n(u ) EN;n(OMDRM%_FZ inf E(UF) E(U ) +—:
Z E2F () n
Egen T {z }
Eup
This inequality decomposes the excess risk to the generalization error Egen := E(Omprwm)

E(u )+En;n(u) EnN;n(Ovprm) and the approximation error  Egp, = infy_op ¢ y E(UF)

E(u?) . From the lemmata proved in Section B.3, we already have an estimation of the approx-
imation error’s convergence rate. So now we’ll focus on providing fast rate upper bounds of the
generalization error for the two estimators using the localization techinque(Bartlett et al., 2005; Xu,
2020). To achieve the fast generalization bound, we focus on the following two normalized empirical
processes:

Efhi]  hai(x)
E[hi] + E[hy] +r
Elh2]  ha(x)
Efhs] + E[ho] +

Sra( )= (X)) := j(hiih2)2S( ) (r=>0);

Sr2( )= Na(x) = j(hi;h2) 2S( ) (r=>0):
where the space S( ) is defined as:

n
S():= (hy;h) hy:=j j % kruk?® kruk®

T o
hy =] ] EV(Jujz juj® fu u) ;u2F() :

First, we try to bound the expectation of the two normalized empirical processes. Applying the
Symmetrization Lemma B.1, we can first bound the two expectations as:

" # " #
13X 1 X hy)  Elh]
sup Evw — Ay Evw  su = i 2RN (S :
hlzsrg( , % N . 1(y|) Yy hlzsf’( ) N - E[h1]+E[h2]+ r N( r,l( ))
' 2 3 " #

sup E 41Xh2(y-)5 E, sup 17X _ha(y) Efhel
22Sr2( ) g Nzt ! Y he2sp( ) N .=y Elha] + E[ho] +r

2Rn(Sr2( )):

where the function classes §r;k( )@ k 2)are defined as:
h1(x)

Elhi] + E[ha] +r
h2(x)

E[ha] + E[hz] + 1

Sra( )= fix) =

j(hiih2) 2S( ) ;

Sra( )= ()

j(hy;h)2S( )
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Applying the modified Peeling Lemma B.5 to any function h = (hy; hy) 2 S( ) helps us upper

bound the sum of the two local Rademacher complexities Ry (§r;1( ) + Rn(§r;2( )) with the
function defined in equation C.4:

" . v H
h 1 Pn i h 1P 0y i
N -hl(yi) n j=1 jh2(y')
Rn (St +Rn(S- =E E, sup N_=1_ +E Ep sup =~ 1
N( r,l( )) n( r,2( )) . Yy hZSP)E[hl]; E[h2]+l’ y0 ESP)E[hl]"'E[hZ]"'r
. E-oh wp & im1 i) sup LU0 jhay !
i h2s( ) E[hi] + E[h2] + 1 1o5¢ ) E[h1] + E[h2] + 1
4 (r
=Run(&( ) O
Combining all inequalities derived above yields:
" # 2 3
1 X 21X 5
sup  Ey N fi(y;) + sup Ey n fi2(y;)
f12Sek1( ) i=1 M22Sr;2( ) j=1 (C6)

2R (Sra( )+ 2Ra(Sra( N =2Rrn(S( ) 2 (r >0y

Secondly we’ll apply the Talagrand concentration inequality to the two function classes Sy.1( ) and

Sr:2( ), which requires us to verify the conditions needed. We will first check that the expectation
sum E[h1] + E[h;] is always non-negative for any (h1;hy) 2 S( ):

Efhu] +Elhe] = = ] GKIuG9k + 3V GOUGOR  FGOuEO)dx
iZ

]
=E(W) E@) 0 Eh+Ehy] O

i G eoK + 2V 00w 07 FOOU60)dx

Next, We will verify that Sy.1( ) satisfies all three requirements. At first, we will show that any
Ay = % 2 Sy.1( ) is of bounded inf-norm. We need to prove that any hy 2 S1( ) is of
bounded inf-norm beforehand. Using boundedness condition listed in equation C.3 implies:

khlklzk% kruk? kru k? kq % kruky +kru k¥  CZ

By taking M1 := C2, we then have kh1kq4 My forall h; 2 S1( ). Note that the denominator of
My can be lower bounded by jE[h1] + E[h2] + rj r = 0. Combining these two inequalities help us
upper bound the inf-norm kfi; k4 = sup,, jh1(X)j as follows:

cik. — KEhi] hika 2khike  2M;
S E ]+ Ehel+ i r roo

Also, it is easy to check that for any f; 2 Sy.1( ), we have

E[hi] E[h4]

BN = e+ By +r O

i.e. any function in the localized class Sy.1( ) is of zero mean.
Moreover, we take 2 = SUPR, 2s,.1( ) E[h2] to be the upper bound on the second moment of

functions in Sy.1( ). Now we have verified that any function fi; 2 Sy.1( ) satisfies all the required

conditions. By taking to be the uniform distribution on the domain  and applying Talagrand’s

Concentration inequality given in Lemma B.3, we have:

hy X i ' 2t 4 "

halyi) + ——+—
N N

1 X
Px sup — Mi(xi) 2 sup Ey —
hi2Se () N =g m2sea() N o
(C.7)
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Moreover, We will verify that Sy.2( ) also satisfies all three requirements. At first, we will show that
any hy = % 2 Sy.2( ) is of bounded inf-norm. We need to prove that any hy 2 Sy( )

is of bounded inf-norm beforehand. Using boundedness condition listed in equation C.3 implies:

khok1 = k%v GuZ juj®) fU u)ky

%vmax kuky +ku kg +kfka kukq +ku kq
W 207 +2C7 = (Vi +2C

By taking My := (Viax + 2)C?, we then have khokq M, for all h, 2 S,( ). Note that the
denominator of Fiy can be lower bounded by jE[h1] + E[h2] +rj r > 0. Combining these two
inequalities help us upper bound the inf-norm kh;kq4 = sup,> jhi2(X)j as follows:
kE[hz] hoka 2khokq  2M;
khzkl = : - =. 2
jE[h1] + E[hz] +1j r r

Also, it is easy to check that for any fz 2 Sy.2( ), we have

Elh2] Elha] _
E[hi] + E[h2] +r ’
i.e. any function in the localized class Sy.2( ) is of zero mean.
Moreover, we take 5 = SUPh,2s,..( ) E[h2] to be the upper bound on the second moment of

E[hz] =

functions in Sy-2( ). Now we have verified that any function fiz 2 Sy.2( ) satisfies all the required
conditions. By taking to be the uniform distribution on the domain  and applying Talagrand’s
Concenération inequality given in Lemma B.3, we have: 3

1 X hy X T
Po4 sup = h(x) 2 sup Ep = Pa(y}) + TZ+TZS

22Sr2( ) M j=1 M22Sr2( ) j=1

et
(C.8)
By applying a union bound to the two inequalities derived in C.7 and C.8, we can derive that with
probability at least 1 ~ 2e !, the inequality below holds:

1 X 1 X 1 X 1 X
SomOD+ NG sup =T M)+ s S hp(d)
i=1 j=1 M12Sea( ) 7 i=1 f22Sr2( ) 7 j=1
. r
h X 1 2t 2 2t
2 sup By oo M) v R+
R12Sr1( ) i=1 r
h, > i ot 2
1 2 2
+2 sup Ep - hp(y)) + Ao e
N22Sr2( ) n._, n n
22S5r;2 j
16 (r) "t 2t( 1+ )
r 1 2
=l (4 + + == <
- n( 1+ 2) =

2t( 1+ 2
n

By the definition of 1 and 2, we have that the term ) can be upper bounded by:

2t( 1+ 2) _ HM(Mp+My) 4V +3)C2%t
n - nr nr '
Now we will derive some upper l?]ound onthesum 3+ 5. By deﬁnition we have that:
(1+ 2)* 2%+ 5=2 sup E[Mf]+ sup E[N3]

F1123r;1( ) F1ZZSr;Z( ) _
" ElZ] Eha? E(3] ElhoP
hes( ) JE[h1] + E[h2] + rj2  pos( y JE[h1] + E[h2] + rj?

2 2
4 sup - Elhi] * Efho] o
h2s( ) JE[h1] + E[h2] + 1]

=2
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2 2
Now it suffices to derive an upper bound of JE[EE?EE% for any h 2 S( ). The existence of such

an upper bound is guaranteed because of the regularity results of the PDE. We aim to show that there
exist some constants ; > 0, such that for any h 2 S( ), the following inequality holds:

(EMM]1+EMS])  ku ukisy  “(E[hy] + Efha): (C.9)
The RHS of the inequality follows from strong convexity of the DRM objective function proved in
Theorem B.1:
minf14; Vinind ku

The LHS of the inequality follows from boundedness condition listed in equation C.3 and the QM-AM
inequality:

E[hi] + E[ho] = E(u) E(u) U kg y:

Z z 2

2
E[h?] + E[h3] = % kruk? kru k® dx+ %V (Gu? juij® f@u u) dx
1 Z ) 1 Z Z
7 kruk? kru k? dx+ 5 V2@Gjuiz  ju j®%dx+2  f2(u  u )3%dx
1 z 2 1 z 2
= kruk kruk (kruk+kruk)Zdx+>V2  juj juj (uj+ju j)%dx
4 Z Z 2 Z

+2C%? (u u)%dx C? kru rukldx+2C%?(1+V2 ju u jdx

max

2C2(L+ VA 0KU U K y:

max
By picking = m and = Wﬁvz)’ we have finished proving inequality C.9. Then we
bound th EhZEmS]
can can upper boun the term W as:
0
E[h?] + E[h3] — E[hs] + E[hy] 0

JEhI+Ehl+ 12 5 Efhy]+Eh,] 2 '

Combining the bounds derived above helps us upper bound the term %( 1+ 2) asbelow:

| g r_S | g
2t 8t E[hf] + E[hg] 4 ot

—_ + —_ S n - :
nle* 2 N has( ) JEINi] + E[hg] + rj2 nr

~ 2t 2t( 1+ 2)
Thus, using the two upper boundson ~ £:( 1 + 2) and =——2>, we have

| g
16 (r) L& " 2t( 1+ 2)

1
+
r n(l 2) n

> 1 X
< e += hex)
N n._

i=1 j=1

r____
0 2
16 (), 4t 4(Vma +3)C%t _
r nr nr

(r):

Let’s pick the critical radius rg to be:

ro = maxf2*r (C.10)

24Mt 144 't

1] n ] n g-

Note that concavity of the function implies that (r) rforanyr r . Combining this with the
first inequality listed in C.4 yields:

16 (o) 2" (&) _ 1

I'o 214;%

~
N
-
2
b‘o
N

[o0]
|
|

N
e
I
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On the other hand, applying equation C.10 yields:
r —
4 0t 4% n 1

n ro n 144 t 6’
4(Vmax +3)C%t  4(Vimax +3)C2t n _1
nro n 24(Vmax +3)C2t 67

Summing the three inequalities above implies:

r—__
0 2
(ro) = 16 (ro)+ 4 0t +4(Vmax+3)C t }+}+}<}:
ro n ro Nro 8 6 6 2
By picking r = rg, we can further deduce that for any function u 2 F (), the following inequality
holds with probability 1  2e *:

E(u) EU)+EnnU) Enin(u)

—1Xh i <1-
EQ) E@u)+ro == hi) () <3:

i=1 2

Multiplying the denominator on both sides indicates:
h i
1 1 1 m . L
Ewn =E(W) EU)+Enn) Enn) 5 EQ@) E@) +3r0=3 E™+>ro

Substituting the upper bound above into the decomposition E (M Egen +2 Egpp + 2 yields
that with probability 1 ~4e ™INTLCadt e have:

3 t 1

4t
— R SR, = :
2 Eapp 2n 2

1
EM  Egn+ EM + 5T0+2 B+

Simplifying the inequality above yields that with probability 1 ~ 4e ™M"TL:Cadt we have:

8t t 36 0t 8t
EM™ ry+4 E,,,+—=3 inf E(u E’) + maxf2¥r ; 24|v|7 g+ —
0 PP UE2F () (UF) ) nd T h

, n tO

inf E(u E(Uu’) +max r ;—

LA (up) (u?) =

Moreover, using strong convexity of the DRM objective function proved in Theorem B.1 implies:
E™ = E(Owprv) E(U ) & KOypru U k|2_|1( ):

Combining the two bounds above yields that with probability 1 ~ 4e ™MiNfLiCagt e have:
n o
t
ko u k? . inf  E(u EU’) +max r;— :
MDRM H1( ) U 2F () ( F) ( ) n

O

Truncated Fourier Series Estimator. Next we aim to show that the truncated Fourier series
estimator can achieve the min-max optimal rate using the MDRM objective function. For any
2 Z7 satisfying 2 < N , there exists some Truncated Fourier Series in F () with approximation

error  Eu,p, = O( 2(3 D) and generalization error Egey = O(?). With optimal selection

= nd+2s 4 to balance the bias and variance, we can achieve N @+2s 2 convergence rate for the
Fourier estimator.

Theorem C.2. (Final Upper Bound of MDRM with Truncated Fourier Series Estimator) Under
the assumptions in Theorem C.1, we consider the Modified Deep Ritz objective with the Truncated
Fourier Series function space F ( ), where the parameter = (nd+25 2). Byassuming y < ——,

we have that the Fourier estimator Off5ier = minyor ¢ ) ENDRM(u) satisfies the foIIowmg upper
bound with high probability:

. 2s 2
koﬁsgﬁ}; u k|2_|1 . n d+zs a
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Proof. Following the same proof as shown for the DRM upper bound in Theorem B.11, we firstly
need to determine the cri}i_cal radius r r

Ldziz+ L%+E+i+ 2(31),r:
n N n N

d d 2 X . L. , d2
For we have assumed < —5—, the solution of the fixed point equation is r —+ % +

On the other hand, by taking =sand = 1inLemma B.19 and applying strong convexity of the
DRM objective function proved in Theorem B.1, we can upper bound the approximation error  Egp,
as below:

2(s 1)_

2 1).
Eap - 26

Combining the two bounds above with Theorem C.1 yields that with high probability, we have:
. d 2 1
KONDRM U Kfa - Eap+r . ——+ o XD
By equating the two of the three terms above, we can solve for that yields the desired bound:

d 2 .
7 2 1)) ? navzs a:
n

Plugging in the expression of ~gives the final upper bound:

d 2
koFourier u k2 + 2(s 2) + 1 n % :
MDRM H - n n - ’

D PROOF OF THE LOWER BOUNDS

D.1 PRELIMINARIES ON TOOLS FOR LOWER BOUNDS

In this section, we list the standard tools we use to establish the lower bound. The main tool we use is
the Fano’s inequailty and the Varshamov-Gilber Lemma.

Lemma D.1 (Fano’s methods). Assume that V is a unifrom random variable over set V, then for any
markov chain V. ¥ X ¥ ¥, we always have:

P evy 1 1ViX)+log2,
log(jVJ)
Lemma D.2 (Varshamov-Gillbert Lemma,(Tsybakov, 2008) Theorem 2.9). Let D 8. There
exists a subset V. = f ©@: ; @°®)gof D dimensional hypercube HP = f0; 1g° such that
© =(0;0; ;0) and the ; distance between every two elements is larger than 2:

x D -
k @ (., 5 forallo ik 2D8;
=1

D.2 PROOF OF LOWER BOUND

In this section, we provide the proof of the lower bound for learning a PDE. Our proof uses standard
Fano method to establish minimax lower bound but finally leads to a non-standard convergence rate.
We state standard results for Fano methods in Appendix D.1. Following is the proof our main lower
bound.

Theorem D.1 (Lower bound). We denote u (T) to be the solution of the PDE 2.1 and we can access
randomly sampled data X;; Yigi=1. :n as described in Section 2.2.

n

DRM Lower Bound. For all estimators : RY R ™ X HS( ), wehave

inf  sup Ek (FXi;figizt ) U (F)ky. &n avss a: ®.1)
u 2Hs( ) )
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n

PINN Lower Bound. For all estimators : RY R ™ X HS( ), wehave

inf  sup  Ek (FXi;figizt ) U (F)k3, &n avss a: D2)
u 2Hs( ) ’

Proof. We construct the following bump function to construct the multiple hypothesis test used for
proving the lower bound. Consider a simple C1 bump function supported on [0; 1]°

gx) = (Xi);Xx=(X1;  ;Xa);
i=1
where : R ¥ R is a non-zero funtion in C1(R) with support contained in [0; 1] and satisfies
(X) & 0; L (x) & 0. Then rg(x) & 0 and the support of function g is [0; 1]9.

1 dx
Next, we take m = [nzs i ] and consider a regular gird xd7; j 2 [m]¢. According to the Varshamov-

md=
Gilbert lemma, there exist om=8 (0; 1)-sequences D; G %2 10; 1gmd such that k ®
g2 %d forall 0 <k & k' 2M=8_ Then we construct the multiple hypothesis as

< ' _
Uk () = O_—_gmx xD)yk=12 ;2"

s+4d
j2(mye ’
where ! is a constant to be determined later. It is easy to find out that ux 2 CS.

Then we reduce solving the PDE to a multiple hypothesis testing problem, which considers all
mappings from n sampled data to the constructed hypothesis : R " R " ¥V := fu;ji =

1,2, 2mdzgg. Then we apply the local Fano method and check that we can obtain a constant
lower bound of P (\? & V) for any estimator V. From the local Fano method, we know that

1 XX -
VX)) o Dk (PviiPy);
V) z vV

where Py denotes the joint distribution of the sampled data (X;Y). In specific, X follows a uniform
distribution on [0; 1] and y = F(X)+ , where is independently sampled from a standard Gaussian
distribution N (0; 1). Then we have

dPyg

1
KL(PyjiPie) = Elog(g5) = k Uk + V uick? c!

mZS 4°

Using Fano inequality, if we select m / [nzs l4+0|] then we have the following lower bound when !
is taken to be sufficiently large:

1(V;X)+log2 Bt .
PV &V) 1 logGVi) 1 milog2 1=2:

At the same time, we can estimate the separation of the hypotheses in two different norms:

* Deep Ritz Method:

z 2 > z .

Krue  ruek?dx = kO krgkdx &
Rd

m2s 2+d m2s 2"

[0;1]d j2[m]d

¢ Physic Informed Neural Network:
z 2 X z
0 1
K Uuc  Uekdx= —— k & Oy, g(x)2dx & ——:
01 ma2s 4+d St i i Rd ma2s 4
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Plugginginm / [n= v ], we know that with constant probability we have

inf  sup  Ek (FXi;YiGi=. n) U (F)k%. &n @57, (D.3)
u 2Hs( ) )
inf sup  EK (FXi;Yigizt: ) U (F)k%, &n avosa; (D.4)
u 2Hs( ) ’

O

E INTUITION BEHIND THE SUB-OPTIMALITY OF THE UNMODIFIED DEEP
RITZ METHODS

In this section, we aim to discuss the intuition behind the sub-optimality of the unmodified DRM via
using the truncation Fourier basis. To simplify the notation, in this section we consider the following
simplest Poisson equation U = T on the hypercube with zero Dirichlet boundary condition. To
illustrate the necessity of the modification we made, we consider the difference between the following
two estimators

» Estimator 1. We use the truncated Fourier basis estimator to learn the right hand side
function f and then we invert the PDE exactly to get the estimated u.

» Estimator 2. We plug in a parametrization of the truncated fourier basis into the empirical
DRM objective

We would like to point out that estimator 1 isn’t build for computational consideration. Instead, we
use it to consider the statistical limit of our sampled data. We first show that the estimator 1 can
achieve the minimax optimal estimation error.

Error Of Estimator 1  Firstly, we show that if one wants to learn the function u in H} norm, one
need to learn the right hand side function f in Hy * norm. The Hy * norm is defined as the dual norm

of the H! norm, i.e. kukHO 1= MaXek,,, 1 hu; vi. Once we assume we have an estimate T of f in
(0]
Ho ! we can have an estimate of U via 0t := () 1 £, whose distance to U in the H! norm satisfies:

kru roky: = max hru ro; rvi

kaH(j)_ 1
= max h u O; vi
kaHl 1
0
D E
= max f fiv =kf fky
kaHé 1

Estimator 1 using the truncated Fourier estimator to estimate the right hand side function f. Suppose

we can access a random sample of observeil:;iata as Txi; F(X;)giL,, then the Fourier coefficient
f, :=Igu; ,i can be estimated as fy 1= % ?21 f(Xi) z(Xi). To bound the estimation error of
fi= kzka Z f, ,inHg %, we first apply the bias-variance decomposition:

2 2 2
Ekf fkZ . kEf i . +EKF EfK] .
P

We first bound the bias term KEf fk2H .. Given Ef = kzke Z f, ,, we have that for a
truncation set Z of the from Z := fz 2 N9jkzkq  Zg, the bias term can be controlled by:

>

<
K f, ki . C f2z 2 kzk 26 DkfKZ
kzkqa =>Z kzkq =>Z
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Next we estimate the variance of the estimator by decomposing the variance into the following sum:

> >
Ekf fk3 , E (fy )%k k& | jzj ‘var(fy):
kzkqa Z kzkqa Z
Finally we achievea Z 2 1 + ¥ upper bound for estimator 1. With optimal selection of Z, we

2s 2
can achieve the min-max optimal convergence rate N d+2s 4,

Difference Between Estimator 1 and Estimator 2 Next we aim to understand the Deep Ritz
Method objective functionyia plugging in a truncated Fourier series estimator. We consider an

estimator of the formu = @, ,(X), which lies in the space of truncated Fourier series. Then the
empirical DRM objective function can be expressed as
1
1 X X >
’n 0 r (xi) + 0z 2 (Xi)F(x): (E.1)
i=1 z z

We observe that (E.1) is a quadratic formula with respect to the Fourier coefficients U := (Uz)kzk, z-

Thus, we can rewrite it as the following matrix form
1

1 1 X
min EU>AU + u™f, where A = ST 04) : (E.2)
i=1 kika Zkjka Z
Based on the matrix formulation E.2, we can compare the solution given by the two estimators

¢ Estimator 1: The Fourier coefficients of the solution of Estimator 1 are

0, =diag kzk? (E.3)

¢ Estimator 2: The Fourier coefficients of the solution of Estimator 2 are
0, =A f (E.4)

Note that EA = kzk? kzka Z° Thus, we can further introduce another variance from the sampling

of A. By directly estimating O3 O, we will show that this term will be larger than the final
convergence rate. Notice that

>
ka;  0kf. =f~ (EA) ' A1 diag ke . , EA T AT f (E.5)

z
Next we aimto bound (EA) 1 A 1 . We first use the Matrix Bernstein Inequality(Tropp, 2015)

to bound the H? distance between Q1 and 0. According to the Matrix Bernstein Inequality, we have
that with probability 1 e !, the following inequality holds
r

zd t
(EA) A . s (E.6)

where k ki is the matrix operator norm respect to the vector k ki defined as kzk?, =
- 5 1
z”diag kzk kek, z Z- Note that

1+EA T A EA EA P A = €A ' A (EA EA * (E.7)

When n is large enough, we know that %I 61+ (EA) 1 A (EA) 6 I withhigh probability.

2
Thus the term kQ; 05 k2Hl isatthe scaleof (EA) A g %d, which is of the same magnitude

.. . . . d 2
as what we get from the empirical process approach in our main proof. It is also larger than ZT
which is the magnitude of the variance term for &t;. Therefore, here we conjecture that the our bound
for DRM itself is tight and leads to the sub-optimal convergence rate.

65



	Introduction
	Related Works
	Contribution

	Set-up
	Loss Functions for Solving PDEs and Induced Evaluation Metric
	Estimator Setting

	Lower Bound
	Upper Bound
	Modified Deep Ritz Methods
	Experiments
	The Modified Deep Ritz Methods
	Dimension Dependent Scaling Law.
	Adaptation To The Simpler Functions.

	Conclusion and Discussion
	Appendix Organization and Proof Sketch
	Notations
	Appendix Organization and Proof Sketch

	Proof of the Upper Bounds
	Regularity Result For the PDE model.
	Auxiliary definitions and lemmata On Generalization Error
	Local Rademacher Complexity of Truncated Fourier Basis
	Local Rademacher Complexity of the Deep Neural Network Model

	Auxiliary definitions and lemmata On Approximation Error
	Approximation using Truncated Fourier Basis
	Approximation using Neural Network

	Final Upper Bound
	Deep Ritz Methods
	Physics Informed Neural Network


	Proof of Modified DRM
	Proof of the Lower Bounds
	Preliminaries on Tools for Lower Bounds
	Proof Of Lower Bound

	Intuition Behind the Sub-optimality of the Unmodified Deep Ritz Methods

