
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC OPTIMIZATIONS OF LLM ENSEMBLES WITH
TWO-STAGE REINFORCEMENT LEARNING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancement of LLMs and their accessibility have triggered renewed interest
in multi-agent reinforcement learning as robust and adaptive frameworks for dy-
namically changing environments. This paper introduces RL-Focal, a two-stage RL
agent framework that routes and ensembles LLMs. First, we develop the Decider
RL-agent, which learns to dynamically select an ensemble of small size (mi) among
N LLMs (mi ≪ N) for incoming queries from a user-defined downstream task
i, by maximizing both error-diversity and reasoning-performance of the selected
ensemble through iterative updates of task-adaptive rewards and policy. Second, to
enable effective fusion of dynamically selected LLMs, we develop the stage-2 Fu-
sion RL-agent, which learns to resolve reasoning conflicts from different LLMs and
dynamically adapt to different ensemble teams composed by the Decider Agent for
different downstream tasks. Third, we introduce the focal diversity metric to better
model the error correlations among multiple LLMs further improving the general-
ization performance of the Decider Agent, which actively prunes the ensemble com-
binations. By focal diversity, we enhance performance across tasks by effectively
promoting reward-aware and policy-adaptive ensemble selection and inference
fusion. Extensive evaluations on five benchmarks show that RL-Focal achieves the
performance improvement of 8.48% with an ensemble of small size compared to
the best individual LLM in a pool and offers stronger robustness. Code is available
at https://anonymous.4open.science/r/rl-focal-8DCF/

1 INTRODUCTION

The error reduction through combining multiple models (Bauer & Kohavi, 1999; Ali & Pazzani,
1996) known as the modern development of ensemble learning (Dietterich, 2000), dates back to
late 1990s and has been visited extensively in machine learning techniques (Breiman, 2001; 1996;
Freund et al., 1996) and with subsequent integration into deep learning architectures (Shazeer
et al., 2017). Recently, ensemble learning has gained prominence in the domain of LLMs, with
applications at the architectural level via Mixture-of-Experts (MoE) layers (Jiang et al., 2024; Liu
et al., 2024a; Grattafiori et al., 2024), at the generation level through knowledge distillation and
weighed combination (Wan et al., 2024; Yu et al., 2024; Huang et al., 2024; Mavromatis et al., 2024;
Yao et al., 2024b), and at the output level through post-inference aggregation (Jiang et al., 2023;
Tekin et al., 2024a) based on supervised learning. However, in this study, we show that ensemble
learners applied to outputs of task-agnostic predictors such as LLMs, have problem induced instability
due to the lack of adaptability. Therefore, supervised-trained ensemble learners offer temporary
solutions which become outdated when the task distribution of incoming queries changes. This
leads to inefficient implementation due to redundant prompts to LLMs that often lack sufficient error
diversity to provide worthwhile outputs. Hence an efficient ensemble system should dynamically
route queries to diverse LLMs and generate an output by learning to combine conflicting outputs in a
task-agnostic manner.

Our design, RL-FOCAL, is motivated to develop two-stage reinforcement learning agents to iteratively
learn from new environmental changes to adapt/update the rewards and policy based on the learned
knowledge from previous experiments. We first review the recent related work to motivate why
ensemble by RL is attractive and then describe the novel contributions of our RL-Focal approach.

Ensemble Learning in LLMs: Related Work and Open Challenges. The ensemble at each token
generation step (Wan et al., 2024; Yu et al., 2024; Huang et al., 2024; Mavromatis et al., 2024; Yao
et al., 2024b) and the mixture of experts (MoE) (Jiang et al., 2024) methods both require significant

1

https://anonymous.4open.science/r/rl-focal-8DCF/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

computational resources and full access to the model parameters, making it challenging to generalize
to diverse contexts and adapt to domain shifts.

In post-inference aggregation ensemble learning category, most LLM ensemble research centered on
supervised solutions (Jiang et al., 2023; Tekin et al., 2024a) and utilized majority voting to perform
inference-time ensemble (Wang et al., 2022b; Fu et al., 2022; Li et al., 2022; Wang et al., 2022a). The
downside of majority voting is the poor definition of equality between divergent answers. Two threads
of research further improve majority voting, one utilizes the BLEU score as the heuristic to compare
answers (Li et al., 2024), and the other enhances the BLEU score-based answer-combination method
by assigning weights (Yao et al., 2024a) or creating a debate environment (Liang et al., 2023; Wan
et al., 2024; Du et al., 2023; Chan et al., 2023). LLM-based Multi-Agents (Guo et al., 2024) carry
similar motivations in terms of exploiting multiple LLMs to work collaboratively for a particular
task. However, neither the dynamic selection of agents nor the aggregation of outputs for a given task
have been systematically explored. Similarly. LLM routing aims to identify the most suitable model
among the pre-defined set of LLMs for a given prompt query. Unfortunately, routing is inherently
limited by the performance of the chosen model and the dependency of using another external LLM
to understand/rank the matching of a prompt query to the given pool of LLMs (Ong et al., 2024).

Recently, RL approaches (Chakraborty et al., 2025; Fu et al., 2025) are proposed, which can dynamic
adjust ensemble weights for an ensemble of size N (N is fixed for all tasks). Ensemble by RL holds
the potential of creating an adaptive ensemble model (Song et al., 2023; Chua et al., 2018), ranging
from time-series prediction (Liu et al., 2020; Németh & Szűcs, 2022; Perepu et al., 2020), ensemble
pruning (Partalas et al., 2009; Liu & Ramamohanarao, 2020), to Tree-of-Thought (ToT) family of
in-context learning of LLMs (Ouyang et al., 2022; Liu et al., 2024b; Monea et al., 2024; Zhang et al.,
2021; Sun et al., 2024; Liu et al., 2024c). Yet, these existing RL approaches struggle to tackle the
challenges when the ensemble of LLMs (base learners) offers very different inference performance
with respect to diverse downstream reasoning tasks, given heterogeneous neural architectures fine-
tuned with different LLM serving objectives as well as the challenges of whether it is feasible to
dynamically compose an ensemble from a pool of base learners on demand to better address the
inference performance demand of each downstream user task.

Our contributions:

• To best of our knowledge, for the first time in literature, we formulate the ensemble problem as a
decentralized partially observable Markov Decision Process and separate the model selection and
inference fusion into two stages.

• In Stage-1, we train a Decider RL-agent performing simultaneous actions to decide which model
should be selected to serve a user-query based on the diversity metrics of the current model pool.
The agent adaptively prunes the possible ensemble combinations to create the best ensemble set
that minimizes the error correlation among the member models based on the focal diversity score.

• In Stage-2, we train the Fusion RL-agent to generate the fusion decision from different and possibly
conflicting outputs generated by the member models of the selected ensemble.

• Extensive evaluations conducted on five benchmark datasets show that RL-Focal can surpass the
best-performing base-model, outperform 12 representative SOTA LLMs tested by up to 8.48%,
and outperforms five recent LLM ensemble approaches by up to 3% at significantly lower cost.

2 PRELIMINARIES AND MOTIVATION
Bias-Variance Trade-off and Ensemble Learning. To demonstrate the effectiveness of EL learning
bias-variance decomposition of quadratic loss is often used (Song et al., 2023). Even though the
decomposition is defined for regression estimators, it is a fundamental concept that can also be
generalized to any estimators, including LLMs.

Assume that an estimator f̂(x) aims to approximate the true relation y = f(x) + ϵ by reducing the
expected quadratic loss for an input x and label y sampled from a dataset D:

E[(y − f̂)2] = E[(f̂ − E[f̂])2] + (y − E[f̂])2 + σ2 = Var(f̂) + Bias(f̂)2 +Var(ϵ). (1)

Equation 1 is the well-known bias-variance decomposition of an estimator under a given noise ϵ
with zero mean and σ2 variance (James et al., 2013). Here, σ2 is irreducible and there is a trade-off
between the estimator variance and the bias. As the estimator raises its complexity to approximate the
true estimator, its variance will increase as it tries to capture more data points. Ensemble methods aim
to reduce the bias and variance jointly e.g., by representing the parts of the hypothesis space with each

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

estimator (Dietterich, 2000). Following (Krogh & Vedelsby, 1994), one can present the ambiguity
decomposition by defining the ensemble model as the convex combination of its component models:
f̂ens =

∑
i wif̂i where

∑
i wi = 1. The ambiguity decomposition shows that the quadratic error of

the ensemble estimator is guaranteed to be less than or equal to the average quadratic estimators of its
component estimators, which is formalized as follows:

(y − f̂ens)
2 =

∑
i

wi(f̂i − y)2 −
∑
i

wi(f̂i − f̂ens). (2)

Here, the first term is the weighted average error of individual estimators and the second term is
the ambiguity term showing the variance between the individual estimators. Thus, the second result
of this decomposition is that the greater the ambiguity, i.e., the higher error correlation between
individual estimators, the lower overall error the ensemble may result. More explicitly, according
to (Brown et al., 2005), one can substitute the ensemble estimator, f̂ens = 1

M

∑
i f̂i in Equation 1 to

break down the variance component even further to obtain bias-variance-covariance decomposition:

E[(f̂ens − y)2] = Bias +
1

N
Var + (1− 1

N
)Covar. (3)

As the averaged covariance term implies, the quadratic loss of ensemble networks depends on the
error correlation among its estimators. Thus, the selected estimators used to construct an ensemble
learner are expected to make uncorrelated errors in order for the ensemble to obtain a lower overall
error, and each of the component estimators should cover a part of the hypothesis space to ensure that
the average bias and variance are lower.

Weighted Consensus of Ensemble Learner and its Instability. Modern deep learning models, incl.
LLMs, target cross-domain generalization. The few-shot learners are the pioneering efforts for this
capability. The k-shot models are able to learn the relation between the input and the label for a task
T with a very small number of samples, i.e., (xi, yi) ∼ T for 1 ≤ i ≤ k where k is small, e.g., in
the range of 1, . . . , 5. The zero-shot models learn to produce the desired output with no y given. Let
wbest denote the best weight assigned to each estimator for a given task T . An ensemble estimator
f̂ens, created by the convex combination of its component models, is fit to the task T as follows:

wbest = argmin
w

E(x,y)∼T [(
∑
i

wif̂i(x)− y)2]. (4)

The problem with such an ensemble estimator arises when the task changes over time or when the
contexts are different. The current weights, w, are fitted for the given task T under a given context
or at a given time. But when the task changes, the weights representing the importance of each
estimator may lose their cross-estimator assessment validity and create instability. Consider a pool of
N LLMs, one LLM can be good at commonsense-reasoning, while another is good at STEM-related
topics, and so forth. In this paper we argue that an ideal way of composing an ensemble ensemble
estimator f̂ens from the pool of candidate LLMs is task-adaptive, i.e., to construct the ensemble that
is most-effective for each given task by selecting a subset of models in the pool, which offers the
task-specific strength and complimentary wisdom. Our experiments have shown that an ensemble
estimator of smaller size with high error diversity can outperform the large ensemble of all LLMs
with better generalization performance and at lower runtime cost.

3 RL-FOCAL: DESIGN METHODOLOGY
We first give an architectural overview in Figure 1 with highlight of five steps: (1) We examine
the current model pool Et, assuming the pool initially has N LLMs, and the diversity metrics are
calculated to create the observation of the Decider Agent (see Section 3.4 for detail). (2) The Decider
RL-Agent learns to select models to create a new pool denoted as Et+1 of size m LLMs for a task-
specific query xt where m≪ N . (3) The input query xt is sent to each of the LLMs in the new pool
to obtain the Fusion Agent’s observation. (4) The Fusion Agent learns to combine their outputs to
make the fusion decision. (5) Both the Decider RL-Agent and Fusion RL-Agent are trained with the
global state and fusion results via reinforcement learning using a Centralized Critic Net (Schulman
et al., 2017). This process iterates until all episodes are finished, or it continues indefinitely in an
online setup.

Problem Formulation. Let x1, . . . ,xn denote a sequence of input queries/prompts with length n,
where each prompt xi is sampled from a task Tj , denoted by xi ∼ Tj . The queries can originate from
a single task or from a group of tasks T1, T2, . . . , TJ , e.g., Math, Biology, and History with varying
difficulties. Consider a query x sampled from these tasks is targeted to an ensemble of N LLMs,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of RL-Focal two stage ensemble by reinforcement learning agents.

denoted by Et = {M1, . . . ,MN} to obtain the desired output y at time t. As the task distribution and
difficulty levels of the queries alter over time, a non-stationary environment is formed to which this
pool of N LLMs needs to adapt. We assume a regular temporal cycle, such as a Math-related query
likely followed by another Math query, and task switches are possible but not in high frequency. In
this setting, the first problem is to dynamically find a small subset of m LLMs from the pool that
are the most suitable for the query task, and learn to infer the best ensemble team of the selected m
models, and generate the set of outputs ŷ1, . . . , ŷm, where 1 ≤ m ≤ N . This motivates the design
of our Decider RL-Agent. The second problem is to resolve the potential reasoning conflict among
the generated outputs from the selected ensemble of m LLMs to make the final ensemble decision,
ŷfusion, such that the ensemble error, i.e., ŷfusion − y, is minimized. This motivates the design of
Fusion RL-Agent. Each stage exhibits temporal dependence and dynamics, requiring an exploitative
approach to identify the best possible model selection and provide a fusion-enhanced solution using
feedback from the environment in the form of task-adaptive rewards and decision policy.

Based on the objectives of the two-stage solution and the dynamics of the environment, we study
a decentralized partially observable Markov decision process (DEC-POMDP) with shared rewards.
For each objective, we define an agent: the first is the Decider Agent, and the second is the Fusion
Agent. The agents are fully cooperative in minimizing ŷfusion − y and acting independently based
on local observations. Further, the second agent’s observation depends on the actions of the first
agent, and thus it is an extensive-form game (Zhang et al., 2021). A DEC-POMDP has the elements
(S,A,P,O,R, n, γ) (Yu et al., 2022) and, in our context, we define them as follows: S is the state
space, with s ∈ S. o(i) = O(i)(s) is the local observation of agent i creating the state vector
s = [o(1),o(2)]. n is the number of agents and n = 2 in our context. The joint action space is
denoted by A and P (s′|s,a) is the transition probability from s to s′ given by actions of agents
a = [a(1),a(2)] ∈ A. The shared reward is represented by R(s,a, s′) and γ is the discount factor.
Each agent uses its policy πθi(a

i|oi) parametrized by θi to produce an action ai based on its local
observations and jointly optimize the accumulated discounted reward: Eπ

[∑
t>0 γ

trt
]

where rt
denotes reward at time step t and π is the joint policy. We obtain the best parameters of the policy
functions by following Multi Agent Proximal Policy Optimization (MAPPO) (Yu et al., 2022) with
the Centralized Critic Net approximating the value of the current state (see Section C for more detail).

3.1 ACTIVE ENSEMBLE PRUNING WITH DECIDER AGENT

The Decider RL-agent is responsible for selecting the "best" models for the incoming query to
minimize redundant or unnecessary inferences. The ensemble selection should be performed by
respecting the error correlation among the member models of each ensemble in order to choose
the best ensemble that can effectively lower the squared error (recall Section 2). Multiple diversity
metrics (see Section 3.4) are used to learn the selection of the best ensemble team among a total of
2N −N−1 ensemble teams of size ranging 2 toN , given a pool ofN LLMs. Unlike the conventional
diversity-based ensemble approaches Brown et al. (2005); Tekin et al. (2024a), which examine all
possible combinations with diversity scores and accuracy measures to make the ranking decision,
we introduce RL based approach to navigate in the surface of diversity and accuracy. The Decider
RL-agent observes the diversity of the current model pool while aiming for the accuracy boost. It

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

periodically updates its policy to adapt to the changes in the environment, so that it can actively add
or remove models from the current pool. We define the elements of a Decider Agent as follows:

State: For K number of diversity metrics denoted by σ1, . . . , σK , the agent observes o
(1)
t =

[et, ∥et∥1, σ1, . . . , σK] at time t, where et = (e1, . . . , eN), ei ∈ {0, 1} is the binary vector repre-
senting the current model pool where ei = 1 ⇐⇒ Mi ∈ Et and ∥et∥1 is the current size of the
pool. The diversity metrics are calculated based on the historical data with a window size T . The
details of the designed metrics are given in Section 3.4. Action: The agent simultaneously decides
whether each model should be included in the model pool. Accordingly, we define the action at time
t as a binary vector a(1)t ∈ (a1, . . . , aN), ai ∈ {0, 1}, where each ai indicates whether the model
with index i is included in the pool. Each action ai is independent of the others, i.e., the selection of
one model does not depend on the selection of the others. Policy: At time t, the policy provides a
probability vector πθ1(a

(1)
t | o(1)

t) = [p1, p2, . . . , pN]. pi = Pr(ai = 1 | o(1)
t ; θ1) is the probability

for model i to be included in the model pool, θ1 is the policy parameters of Decider agent, and the
action ai is drawn from Bernoulli distribution with success probability pi, i.e., ai ∼ Bernoulli(pi).
The Decider agent makes multiple independent decisions simultaneously, which can be modeled in
RL at multi-action settings. We employ a branching solution to model each action branch with another
parameter set (Tavakoli et al., 2018). Specifically, the Decider Agent’s policy parameterized by a
Multi-layer Perceptron (MLP) consists of fully connected layers with sigmoid activation functions.
The final layer branches into separate heads for each action with its own set of weights:

z = ρ(WL−1(. . . ρ(W1o
(1)
t) . . .)),

p1 = ρ(W
(1)
L z), . . . , pN = ρ(W

(N)
L z),

(5)

where Wj is the weight matrix at layer j, ρ represents the sigmoid activation, z is the penultimate
layer outputs, and L is total number of layers where j = 1, . . . , L. The initial layers extract from
the current observation vector, o(1)

t , while the final parameters, W(1)
L , . . . ,W

(N)
L , independently

model the probability of each model being included in the next model pool. Therefore, during
training, the first layers are jointly trained while the last layers are tuned for each model separately.
Transition: The observation vector contains stochastic term which govern by joint distribution of
independent Bernoulli trials, P (et+1|o(1)

t ,a
(1)
t) = ΠN

i p
ei
i (1− pi)

1−ei , and also deterministic terms[
∥et+1∥1, σ(1), . . . , σ(N)

]
. Reward: The shared reward is the most important metric in our design

since it defines the objective of making ŷfusion = y for both RL-agents. To this end, we define the
reward function R : (at,ot, y) → rt, mapping the agent observation and action at time t to reward
value rt:

R(at,ot, y) =

{
1 if ŷfusion = y,

−1− α · ∥Et∥1
N

otherwise,
(6)

where α ∈ [0, 1] is the size-penalization constant to force the Decider Agent to decrease pool size.

Remarks:(1) The reward requires the final decision at time t, ŷfusion, generated by the Fusion Agent
and the correct output y, as illustrated in the steps of Figure 1. (2) Multi-agent RL systems carry
stability issues due to agents exhibiting mutual dependence with limited observations. We observed
that performing a warm start resulted in more stable training. However, to perform a warm start
on the Decider Agent, we need an evaluator metric to evaluate the created model pool. Thus, we
substitute ŷfusion with an interim prediction using plurality voting, which chooses the most voted
decision based on the current model pool. The interim prediction stabilized the training and helped
the Decider Agent’s policy network to converge. We provide an offline warm-start training procedure
in Algorithm 1 and discuss the details in Appendix C.

3.2 GENERATING FINAL DECISION WITH FUSION AGENT

Fusion Agent is responsible for reaching the final decision based on the possibly conflicting outputs
generated by the member models in the current pool, which forms the selected ensemble at the
current iteration t. The success of the Decider agent would be undervalued if the Fusion agent
fails to resolve the disagreement of the outputs to reach the correct final decision. As demonstrated
in (Dietterich, 2000), ensemble models can computationally achieve the global optimum by leveraging
the local optima of individual models as starting points. We advocate that the generated outputs by
each model (e.g., the probabilities assigned to each option in a multiple-choice question (MCQ))
may indicate/locate the vicinity of the global optimum, and the Fusion agent can perform a convex
combination to reach the optimum. We define the elements of the Fusion Agent as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: All candidate ensemble teams from the model pool are plotted with their focal diversity
scores, Fleiss Kappa, and Accuracy using the 4 popular LLM evaluation datasets. We use cubic
interpolation to create a surface, and the dark red represents a higher performance score.

State: The agent observes the outputs generated by the models in the m-sized pool and past
interactions with the environment. The output of models is a sequence of words for open-ended
questions (OEQ). In the case of MCQ, we can represent the observation as the probabilities assigned
to each choice (see Appendix B for more details). Then, the observation of the Fusion Agent is
o
(2)
t = [rt−1, . . . , rt−T ,p1, . . . ,pm], where pi = (pi1, . . . , pik) =Mi(xt) is the probability vector

that model Mi assigned to the choices for input xt denoted by pij = Pr(ŷj | xt;ψMi
) and k is the

number of choices and ψMi
is model i parameters (which remain frozen and inaccessible). Here,

rt−1, . . . , rt−T represents the past rewards until time t−T . Action: Based on the current observation,
the agent makes the final decision at = ŷfusion, which we define as the action that the agent can take.
In the case of multiple-choice questions, we can define the action at time t as at ∈ A = {0, . . . , k},
where each index indicates a choice and A is the action space. Policy: The policy of Fusion Agent
produces a probability distribution with the size of choices, and the action is the choice that maximum
probability assigned, i.e. at = argmaxa∈A πθ2(a | o(2)

t). Specifically, we parameterize the policy
with an MLP containing multiple layers of fully connected weights and sigmoid activation functions
as a Fusion policy network. Here we focused on the MCQ, yet in Appendix D we show that Decider
Agent can be extended to OEQs. We recommend referring to the studies Jiang et al. (2023); Tekin
et al. (2024a;b) as foundational resources for developing an ensemble policy network for OEQ.
Reward: We use the same reward equation presented in Equation 6 for our Fusion agent, excluding
the size-penalization constant. Similarly, we initialize the model parameters with a warm start where
we use the outputs from the warm-started Decider Agent. Transition: The transition of this agent is
deterministic which is defined by o

(2)
t+1 = [rt, . . . , rt−T ,p1, . . . ,pm], where pi =Mi(xt+1) is the

model output for input xt+1.

3.3 UPDATE RULE BY RL-FOCAL ALGORITHM AND CENTRALIZED CRITIC NETWORK

Figure 2 is the visual evidence of how the performance of different model combinations evolves as
the task associated with incoming queries changes. The role of the RL-Focal is to walk on the surface
created by the diversity metrics and explore a model combination that gives high performance. Unlike
the previous works (Tekin et al., 2025; 2024a), which perform exploration offline on a supervised
dataset with the Genetic Algorithm, RL-Focal makes the exploration online by actively forming the
ensemble on the downstream task using RL. Such online exploration enables the RL-focal agent to
timely adapt to a changing environment, e.g., evolving query tasks, changing policy for selection and
fusion of relevant models.

Concretely, the policies are updated with the new parameters by loss functions LRLFocal and LCritic.
The reward trajectory τ is formed as an agent (Decider/Fusion) iteratively collects reward by executing
the current policies on input queries, followed by policy and value function optimization, to achieve
the highest possible discounted cumulative reward J(θ) = Eτ∼πθ

[R(τ)]. The policy network
parameters should be optimized to increase the probability of action-state pairs that yield positive
rewards. To achieve this, we can perform gradient ascent optimization per agent by calculating
∇θJ(θ) =

∑
t ∇θ log πθ(at | st)R(τ). However, the true calculation requires differentiation of

the state distribution, since we do not know the state dynamics and all the transition probabilities.
Monte Carlo Reinforce algorithm (Williams, 1992) approximates the ∇θJ(θ). However, the policy
updates could result in overly large updates, causing divergence. One solution is to employ Proximal
Policy Optimization (PPO) (Schulman et al., 2017) by performing clipped policy updates to prevent
destructive weight updates. Nevertheless, RL-Focal is a multi-agent system with two RL-agents,
where each RL-agent has its own observation space, which makes the environment non-stationary. To
address this and stabilize optimization, we employ the following loss function by leveraging MAPPO:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LRLFocal(θ) =
1

n

n∑
k=0

min
(
r̂
(k)
t (θi)Ât, clip

(
r̂
(k)
t (θi), 1− ϵ, 1 + ϵ

)
Ât

)
, r̂t(θi) =

πθnewi
(at|ot)

πθoldi
(at|ot)

(7)

where r̂t is the ratio term for each agent, Ât is the estimated advantage function, and is common for
both agents. The clip function ensures that the policy updates are stable by keeping the ratio terms
within the range [1− ϵ, 1 + ϵ]. The advantage function measures how much better the joint action is
compared to the average performance of policies in the global state byAπ(st, at) = Qπ(s, a)−V π(s).
The advantage is estimated using (GAE) (Schulman et al., 2018): Ât(st,at) =

∑∞
l=0(γλ)

lδt+l by
calculating δt = rt + γVϕ(st+1)− Vϕ(st) where st = [o

(1)
t+1,o

(2)
t] is the global state which feed into

Critic Network Vϕ to estimate the expected return if we follow the policy from state st. The central
Critic observes the newly created pool diversity and its outputs to estimate the value (see more details
in Appendix C).

Overall, the central Critic creates a bridge between two agents with global information and reduces the
non-stationarity to stabilize the training. We optimize the Critic’s parameters by calculating the MSE
between value predictions and target values: LCritic(ϕ) =

1
2Et

[
(Vϕ(st)− V̂t)

2
]

where Vϕ(st) is the
value prediction for state st and V̂t is the target value computed by the reward V̂t =

∑T−t
l=0 γ

lrt+l.
Building on these formulations, we first initialize the parameters of the Agents and Critic by employing
the offline warm-start Algorithm 1. During the online execution, the agents are then periodically
updated with the online Algorithm 2 to ensure stability and adaptability to the incoming queries.

3.4 DIVERSITY METRICS AND FOCAL DIVERSITY

Recall Section 3, for a pool of N base models, the total number of possible ensemble teams with
size m is 2N − N − 1, where 2 ≤ m ≤ N . To reduce the overhead of considering all possible
combinations, a key question is how to perform ensemble pruning efficiently. In RL-Focal, the
decider agent enables effective ensemble pruning by adaptively selecting ensembles with high error
diversity (aka low error correlation). In this section, we introduce the focal negative correlation metric
and the focal diversity metric, specifically designed to capture error correlation among the member
models of an ensemble.

Focal Negative Correlation & Focal Diversity. The focal negative correlation metric ρfocal is used
to quantify the level of error diversity among the component models of an ensemble concerning each
model within the ensemble. The focal diversity metric λfocal is used to quantify the general error
diversity of the ensemble by taking into account all ρfocal in the ensemble. We choose one of the
N base models each time as the focal model to compute the focal negative correlation score of this
ensemble, denoted as ρfocal(Mi; E). We define the focal diversity of this ensemble team by the
average of the N focal negative correlation scores. The procedure of computing the focal negative
correlation score of ρfocal is as follows: (i) select a model among the set of N models as the focal
model, (ii) extract all queries from the historical data within a time window of length T where the
focal model has failed, and compute the focal negative correlation score (iii) repeat the previous steps
until all N focal negative correlation scores are obtained. ρfocal1 , . . . , ρfocalN , and (iv) compute the
average over the scores to obtain the focal diversity of ensemble E , denoted by λfocal(E):

λfocal(E) = 1

N

∑
Mi∈E

ρfocal(Mi; E), ρfocal(Mi; E) = 1− Pr(K = 2)

Pr(K = 1) (8)

The term K is a random variable that represents number of models simultaneously failing on an test
input, e.g., Pr(K = 2) represents the probability of two randomly chosen models simultaneously
failing on an input. We calculate Pr(K = 2) =

∑N
j=1

j(j−1)
N(N−1)pj , Pr(K = 1) =

∑N
j=1

j
N pj and

pj is the probability that j models fail together on a randomly chosen input. It is measured by
pj = nj/T where nj is the total number of inputs that j models failed together on a set of test inputs
and T is the total number of queries. The terms beneath pj values, e.g. j(j−1)

N(N−1) , are the probability
of the chosen model being one of the failure modes. For example, when N = 3, there are three
cases of model failures; one, two, or three models can fail simultaneously. If one model fails, the
chance of selecting the failed model is 1/3. Similarly, for two models, it is 2/3, and for three models,
it is 1. In the case of minimum diversity, the probability of two randomly chosen models failing
together comes down to the probability of one of them failing, which makes the fraction term equal
to 1 and ρfocal = 0. Similarly, in the case of maximum diversity, there are no simultaneous failures.
Hence, the nominator equals 0 and ρfocal = 1. Figure 2 shows that compared to the common metrics

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Name Model ID MMLU GSM8k BBH MUSR GPQA
(Acc %)↑ (Acc %)↑ (Acc %)↑ (Acc %)↑ (Acc %)↑

Phi-2b 1 55.82 68.85 44.55 41.90 28.89
Gemma-2b 2 40.26 24.03 11.76 1.68 11.43
Gemma-7b 3 63.87 73.04 36.23 46.59 27.78
Llama-2-7b 4 41.79 10.87 10.35 3.76 2.24
Mistral-7b 5 59.67 56.21 22.17 10.68 5.59
Llama-2-13b 6 53.40 41.74 39.66 44.90 28.89
Phi-4-14b 7 − − 59.94 42.23 32.22
Gemma-2-27b 8 − − 47.74 46.69 32.22
Llama-2-70b 7 68.53 58.89 28.03 41.54 30.00
Mixtral-8x7b 8 70.42 73.91 41.87 48.85 31.11
Mixtral-8x22b 9 76.36 − 53.94 48.03 28.89
Qwen-2.5-72b 10 75.01 − 57.53 51.97 45.56
Llama-3-70b 11 77.29 − 54.88 53.95 40.00
Deepseek-LLM-67b 12 71.24 − 44.90 51.31 38.89
RL-Focal Dynamic 77.98± 0.63 78.84± 0.74 65.00± 1.21 55.25± 0.32 48.28± 0.59
Rel. Gain +1.21 +6.67 +8.48 +2.40 +5.97

Table 1: RL-Focal performance in popular LLM evaluation datasets. Error bars are shown only for
RL-Focal, as the base model uses a fixed inference set and therefore exhibits no variability.

e.g., Fleiss’ Kappa (Fleiss & Cohen, 1973), which measures the amount of agreement, the focal
diversity is highly correlated with the generalization performance of an ensemble across all four
benchmark datasets: MMLU, GSM8K, BBH, and GPQA. A theoretical proof for the robustness of
Focal Diversity is given in Appendix G.

4 EXPERIMENTAL EVALUATIONS

Performance of RL-Focal. The first set of experiments contains 4 different benchmarks in MCQ
format: MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), MUSR (Sprague et al., 2023),
and GPQA (Rein et al., 2023) are the benchmarks present in the HuggingFace leaderboard (Beeching
et al., 2023). We also add GSM8K (Cobbe et al., 2021), which contains open-ended math problems.

The main results for the 5 benchmarks are shown in Table 1. The LLM pool contains 12 open-source
LLMs ranging from 2b to 70b parameters. We make two observations. (1) RL-Focal outperforms the
best LLM performance for all 5 benchmarks, i.e., Mixtral-8×22b (MMLU), Mixtral-8×7b (GSM8k),
Phi-4-14b (BBH), Llama-3-70b (MUSR), and Qwen-2.5-72b (GPQA). (2) Specifically, RL-Focal
outperforms Mixtral-8×7b, an ensemble by training with MoE, by 7.56% on MMLU, 4.93% on
GSM8k, 23.13% on BBH, 6.40% on MUSR, and 17.17% on GPQA datasets. The results indicate
that the Decider Agent can effectively select the best ensemble set for each query task on demand by
updating the base model pool based on focal diversity scores of different ensemble sets and the task-
aware rewards and policy learned; and the Fusion Agent can effectively exploits the disagreements
among the component models of the selected ensemble to generate high-quality final output. Due to
the dynamic nature of RL-Focal, we cannot provide the model IDs forming the ensemble set as the
ensemble set is selected dynamically by the Decider RL-agent w.r.t. each downstream task (query).
As the final results, we report the mean and standard error over 5 runs of MARL-Focal, all conducted
with the same base model inference. The two sub-figures on the left of Figure 3 show the accuracy of
Decider Agent and Fusion Agent, respectively. Note that the accuracy achieved by the Decider Agent
is measured using the interim prediction method with plurality voting for the first 25 test episodes.
The accuracy measured for Fusion Agent is over 150 test episodes, and we observe that MUSR, BBH,
and GPQA require small steps with low learning rates to converge, and the other datasets-GSM8K
and MMLU-converge more quickly. Two bar-charts on the right of Figure 3 shows the impact of
Focal Diversity on RL-Focal. In the No-metric setup, the Decider Agent selects models solely based
on environmental rewards. In the All setup, model selection is bypassed and the entire model pool is
used. We also compare Focal Diversity with three existing popular diversity metrics. Overall, Focal
Diversity achieves the highest accuracy and second-lowest cost, while Kappa diversity incurs the
lowest cost with the worst accuracy.

Method 1st Model 2nd Model GPQA
RouteLLM LLama-3-70b Mixtral-8x7b 40.00
RouteLLM LLama-3-70b Gemma-2-27b 38.88
RouteLLM LLama-3-70b Qwen2.5-72b 36.66
RL-Focal - - 48.28

Table 2: Comparison of RL-Focal to RouteLLM
using three combinations of strong models.

Method Model ID MMLU GSM8k
More Agents (Li et al., 2024) 6 [×40] 51.09 61.00
More Agents (Li et al., 2024) 7 [×40] 60.05 77.00
LLM-Blender (Jiang et al., 2023) 12345678 44.01 40.41
Majority Voting 12345678 68.06 72.31
Mixtral-8x7b 8 70.53 71.16
DyLAN (Liu et al., 2024c) - 70.5 -
LLM-TOPLA (Tekin et al., 2024a) 378 | 138 72.77 79.01
RL-Focal Dynamic 77.98 78.84

Table 3: Comparison with 6 other ensemble meth-
ods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: The first two plots from left show performance for Decider and Fusion agents for each dataset. The
shaded regions represent the one standard deviation distance to the mean for 5 experiments. The last two plots
show how diversity metrics affect the performance and cost of the RL system on the GSM8k dataset.

Figure 4: The first plot shows how often RL-Focal is correct when exactly n base models are correct (x-axis).
The plot in the middle shows the performance of RL-Focal compared to two greedy approaches. The third plot
shows how often RL-Focal corrects simultaneous errors made by top-performing base models. The last plot
shows the improvement by the branching design at Decider Agent.

Table 2 reports the performance comparison of RL-Focal with RouteLLM (Ong et al., 2024) on
GPQA, showing RL-Focal outperforms 3 combinations of strong models in RouteLLM by a large
margin of 8.28%−11.62%. Table 3 shows the comparison of RL-Focal with 6 existing representative
ensemble methods on MMLU and GSM8k. We make two observations. (1) RL-Focal shows the best
performance on MMLU with an overall improvement of 5.21%−33.97% improvement. (2) RL-Focal
offers on par performance on GSM8k to LLM-TOPLA, a supervised approach, at significantly lower
cost (See cost analysis in Appendix E) but effectively outperforms More Agents with 40 LLMs on
MMLU by 17.93% and TOPLA by 5.21% with the initial pool of only 12 LLMs as listed in Table 1.
Ablation Study of RL-Focal. Figure 4 reports the results of experiments on the effect of consensus
on RL-Focal with four plots. The first plot shows that the success rate is nearly maximal in the
Majority region and remains as high as 40% even when only 2 out of 8 models are correct. The second
plot shows a comparison of RL-Focal with two greedy approaches: (i) Random Select: selects the
top-k models based on training performance and randomly picks one of their outputs at test time. (ii)
Latest correct: Selects the output of the most recently model which is correct from the previous step
within a pool of k models; if multiple models were correct, one is chosen at random. As shown in the
plot, RL-Focal is better and stays effective as the number of models in the pool increases, while the
greedy approaches suffer significantly. The third plot illustrates how RL-Focal corrects errors made
by the top-3 best-performing individual models and their combinations on the GSM8k benchmark.
Even when the majority of these models made incorrect decisions, RL-Focal effectively generates
the correct one thanks to the dynamic ensemble enabled by its two-stage RL-agent framework (see
Appendix F). The last plot in Figure 4 shows that the Decider Agent with the branching for each
agent at the final layer, compared to a single branch, improves the performance by 8.05% and 4.79%
in GPQA and MUSR datasets.

5 CONCLUSION
We presented a novel approach to model selection and aggregation by formulating the problem as
a decentralized partially observable MDP and introducing a two-stage framework. The first stage
utilizes a Decider Agent to dynamically select and group models based on diversity metrics and error
correlations, ensuring optimal ensemble formation using the focal diversity score. The second stage
leverages an Fusion Agent to produce final decisions by synthesizing outputs from the selected model
pool. Experiments on five benchmarks show that RL-Focal outperforms both the best individual
models and SOTA supervised ensemble methods. Furthermore, we provide a reproducibility statement
in Appendix A and also an anonymous URL to the RL-Focal repository is given in the abstract; more
analysis and description are given on datasets in Appendix B. We made theoretical proofs on "focal
diversity improves robustness" and "why focal diversity improves performance" in Appendix G.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kamal M Ali and Michael J Pazzani. Error reduction through learning multiple descriptions. Machine
learning, 24(3):173–202, 1996.

Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants. Machine learning, 36(1):105–139, 1999.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods: a survey and
categorisation. Information fusion, 6(1):5–20, 2005.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Souradip Chakraborty, Sujay Bhatt, Udari Madhushani Sehwag, Soumya Suvra Ghosal, Jiahao Qiu,
Mengdi Wang, Dinesh Manocha, Furong Huang, Alec Koppel, and Sumitra Ganesh. Collab:
Controlled decoding using mixture of agents for llm alignment. arXiv preprint arXiv:2503.21720,
2025.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepInfra. Deepinfra: A cloud platform for running generative ai. https://deepinfra.com/,
2023.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pp. 1–15. Springer, 2000.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Joseph L. Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass correla-
tion coefficient as measures of reliability. Educational and Psychological Measurement, 33(3):
613–619, 1973. doi: 10.1177/001316447303300309. URL https://doi.org/10.1177/
001316447303300309.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml,
volume 96, pp. 148–156. Bari, Italy, 1996.

10

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://deepinfra.com/
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Yuqian Fu, Yuanheng Zhu, Jiajun Chai, Guojun Yin, Wei Lin, Qichao Zhang, and Dongbin Zhao.
Rlae: Reinforcement learning-assisted ensemble for llms. arXiv preprint arXiv:2506.00439, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
Advances in Neural Information Processing Systems, 37:119838–119860, 2024.

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. An introduction to statistical
learning, volume 112. Springer, 2013.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
Advances in neural information processing systems, 7, 1994.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv
preprint arXiv:2402.05120, 2024.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners. arXiv preprint arXiv:2206.02336, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

11

https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hui Liu, Chengqing Yu, Haiping Wu, Zhu Duan, and Guangxi Yan. A new hybrid ensemble deep
reinforcement learning model for wind speed short term forecasting. Energy, 202:117794, 2020.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Jiaya Jia.
Rl-gpt: Integrating reinforcement learning and code-as-policy. arXiv preprint arXiv:2402.19299,
2024b.

Zhengshang Liu and Kotagiri Ramamohanarao. Instance-based ensemble selection using deep
reinforcement learning. In 2020 International Joint Conference on Neural Networks (IJCNN), pp.
1–7. IEEE, 2020.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Conference on Language Modeling, 2024c.

Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at test-time via
perplexity optimization. arXiv preprint arXiv:2404.11531, 2024.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
ment learners. 2024.

Marcell Németh and Gábor Szűcs. Split feature space ensemble method using deep reinforcement
learning for algorithmic trading. In Proceedings of the 2022 8th International Conference on
Computer Technology Applications, pp. 188–194, 2022.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Pruning an ensemble of classifiers via
reinforcement learning. Neurocomputing, 72(7-9):1900–1909, 2009.

Derek Partridge and Wojtek Krzanowski. Software diversity: practical statistics for its measurement
and exploitation. Information and software technology, 39(10):707–717, 1997.

Satheesh K Perepu, Bala Shyamala Balaji, Hemanth Kumar Tanneru, Sudhakar Kathari, and
Vivek Shankar Pinnamaraju. Reinforcement learning based dynamic weighing of ensemble
models for time series forecasting. arXiv preprint arXiv:2008.08878, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, 2018. URL https://arxiv.org/
abs/1506.02438.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Yanjie Song, Ponnuthurai Nagaratnam Suganthan, Witold Pedrycz, Junwei Ou, Yongming He,
Yingwu Chen, and Yutong Wu. Ensemble reinforcement learning: A survey. Applied Soft
Computing, pp. 110975, 2023.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning. arXiv preprint arXiv:2310.16049, 2023.

12

https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learning:
Current and future directions. arXiv preprint arXiv:2405.11106, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. In Proceedings of the aaai conference on artificial intelligence, volume 32,
2018.

Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Ef-
ficient LLM ensemble by maximising diversity. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
11951–11966, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.698. URL https://aclanthology.org/2024.
findings-emnlp.698/.

Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, Zachary Yahn, and Ling Liu. h3
fusion: Helpful, harmless, honest fusion of aligned llms. arXiv preprint arXiv:2411.17792, 2024b.

Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, Margaret Loper, and Ling Liu.
Robust few-shot ensemble learning with focal diversity-based pruning. ACM Trans. Intell. Syst.
Technol., 16(5), September 2025. ISSN 2157-6904. doi: 10.1145/3746457. URL https:
//doi.org/10.1145/3746457.

TogetherAI. Together-ai: A cloud platform for running generative ai. https://www.together.
ai/, 2023.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. arXiv preprint arXiv:2401.10491, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
ensembles in language models. arXiv preprint arXiv:2207.00747, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yanzhao Wu. TOWARDS DEEP LEARNING SYSTEM AND ALGORITHM CO-DESIGN. PhD thesis,
Georgia Institute of Technology, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024a.

Yuxuan Yao, Han Wu, Mingyang Liu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
Song. Determine-then-ensemble: Necessity of top-k union for large language model ensembling.
arXiv preprint arXiv:2410.03777, 2024b.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

13

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2024.findings-emnlp.698/
https://aclanthology.org/2024.findings-emnlp.698/
https://doi.org/10.1145/3746457
https://doi.org/10.1145/3746457
https://www.together.ai/
https://www.together.ai/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yao-Ching Yu, Chun-Chih Kuo, Ziqi Ye, Yu-Cheng Chang, and Yueh-Se Li. Breaking the ceiling of
the llm community by treating token generation as a classification for ensembling. arXiv preprint
arXiv:2406.12585, 2024.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

Zesen Zhao, Shuowei Jin, and Z Morley Mao. Eagle: Efficient training-free router for multi-llm
inference. arXiv preprint arXiv:2409.15518, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Reproducibility Statement 16

B Dataset and Framework Parameters 16

B.1 The Effect of Hyperparameters . 16

C RL-Focal Offline Training and Online Algorithm 17

D Open-Ended Questions and Alignment Selection 18

E The Cost of Models 19

E.1 Comparison with Router and Ensemble Approaches 19

E.2 Scalability of the RL-Focal . 20

F Sample Queries and Observations 20

Table 9: Example Output for Open-ended . 21

Table 10: Example Output for MCQ where all LLMs made an incorrect decision 21

G The Theoretical Proof for the Robustness of Focal Diversity Metric 22

G.1 Ensemble of Diverse Models Increases Robustness 23

G.2 Why Focal Diversity Improves Performance? . 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A REPRODUCIBILITY STATEMENT

Disclaimer: This document contains content that some may find disturbing or offensive, including
content that is hateful or violent in nature

We make the following effort to enhance the reproducibility of our results.

• For RL-Focal implementation, a link to a downloadable source repository is included in our
abstract. The source includes links for all the datasets, and we also provide the LLM outputs
for each subtask.

• The details of our experiment are provided in Appendix B, which includes the selected
hyperparameters and hardware specifications.

• We also provide examples of the outputs and prompts used in our paper in Appendix F.

B DATASET AND FRAMEWORK PARAMETERS

We use 4 different benchmarks in multiple-choice question format: MMLU(Hendrycks et al., 2020),
BBH (Suzgun et al., 2022), MUSR (Sprague et al., 2023), and GPQA (Rein et al., 2023) are the
benchmarks present in the HuggingFace leaderboard (Beeching et al., 2023). However, we also
add GSM8K(Cobbe et al., 2021), which contains open-ended math problems. For this dataset, we
transform the outputs of the models into probability distributions by conducting multiple inference
passes (10 times) shown in (Tekin et al., 2024a). Specifically, we count the frequency of each
predicted answer and normalize it by dividing the frequency by the total number of passes. This
process yields a probability distribution over the possible outputs. While GSM8k contains a test set,
the other datasets are not split as train-test, thus, we perform a 1:5 ratio of test and train split following
(Liu et al., 2024c; Tekin et al., 2024a). We use the training split to perform the warm start shown in
Algorithm 1. As the performance metric, we used accuracy in all 5 datasets. While sampling from
the dataset, we did not shuffle the questions to respect the order of the topics e.g. subjects in MMLU
and their gradually increasing difficulties e.g. GSM8k.

For the probabilities assigned to the choices in a MCQ, we aggregate the probabilities of the tokens
creating the whole choice to compute the probability of an answer as a method adapted by Gao
et al. (2023); Beeching et al. (2023). After repeating the procedure for all the choices, we obtain
the probability distribution over the choices, denoted by p = [p1, . . . , pm], where q represents
the probability of a choice and m is the number of choices. Next, we give the details of the
Hyperparameters.

B.1 THE EFFECT OF HYPERPARAMETERS

Figure 5: We show the effect of α to the performance and cost of RL-Focal

Selected Hyperparameters: In our experiments, we used 2-layered MLP policy networks for both
the Decider Agent and fusion Agent. We set the time window T = 500, size penalty constant
α = 0.1, learning rate lr = 0.001, clip parameter for PPO ϵ = 0.02, and discount factor γ = 0.8.
We used grid search to find the best hyperparameter combination. In the next section, we show the
sensitivity of our framework to these hyperparameters.

Sensitivity Analysis: We show 3 experiments on the GSM8k dataset to test the hyperparameter
sensitivity. First, we gradually increase the size-penalty constant, α, and observe the acc, cost, and
total number of inferences performed on the base models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Window (T) Accuracy (%) Cost (¢)
10 73.79 762
100 77.42 1404
300 73.95 447
500 72.26 692
1000 74.60 1351

Table 4: The effect of window size on the accu-
racy and the cost of inference. We calculate the
total cost by multiplying the number of inferences
by the cost per token during training.

Discount Factor (γ) Accuracy (%)
0.5 74.92
0.8 75.00
0.9 76.77
0.99 0.32

Table 5: The effect of Discount Factor on Per-
formance by balancing the importance given be-
tween the instantaneous or future rewards.

As shown in the Figure 5, we observe that as the penalty increases, α the number of inferences
decreases due to the shrinking size of the model pool. However, since the cost depends on the price
of the models, it does not follow the same pattern. Even if the model pool is small, it may still contain
an expensive model (see model prices in Table 8 at Appendix E). Additionally, we observe that given
a base model pool and per-inference cost of each model, one may find a near-optimal alpha value that
balances high performance and low cost.

The Table 4 shows our second experiment. We observed the effect of Window size (T) and concluded
that there is a sweet spot for the window size value. Moreover, the window size must be smaller than
the total dataset size and larger than, > 1, since diversity metrics can’t be calculated using only one
sample.

The third experiment reports the effect of the discount factor γ on fusion-Agent, which shown in
Table 5. The parameter determines how much future rewards are valued compared to immediate
rewards. We set the pool size constant and measure the effect of γ on the fusion-Agent, and we
observed that PPO is sensitive to γ, and if it is too high, it will not converge.

C RL-FOCAL OFFLINE TRAINING AND ONLINE ALGORITHM

In this section, we are showing the two algorithms, one for training agents to find their initial
parameters with a warm-start dataset, and one for the online update and adaptation of both agents
working in a dynamic environment.

We show the offline training loop for phase 1 in Algorithm 1. D is the warm-start dataset to train
the agents for nep number of episodes to get initial parameters for policies πθ1 , πθ2 and critic Vϕ. To
ensure stable training, first, we only update the decider agent’s policy using the interim prediction
ŷinterim; second, we only update the fusion agent’s policy once the Decider Agent has a stable
parameter set. The if conditions in lines 12 and 23 ensure the updates are in turns. This way, the
fusion agent can have more stable ensemble model pools, which facilitates effective learning-to-
combine for the fusion. During the optimization, we let the centralized critic to be active and update
its parameters. Critic estimates how good it is to be in the global state, which is defined by the
joint observations of Agents st = [o

(1)
t+1,o

(2)
t]. The global state contains the diversity metrics of the

current pool, previous rewards, and the model outputs of the current model pool. We use the next
observation of the Decider Agent, o(1)

t+1, which is known during the action stage of the Fusion Agent,
in the global state to sync with the Fusion Agent’s observation o

(2)
t which contains the outputs of

the current model pool. Therefore, the critic learns to associate the diversity within the model pool
with the output distributions and learns to identify advantageous states in which the fusion agent’s
predictions are more reliable, as opposed to disadvantageous states.

Once both agents are initially trained, we implement a periodic update mechanism shown in Algorithm
2, where the policies of both agents are updated every nupdate queries to maintain stability and
adaptability.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 RL-Focal Offline-Train Algorithm
1: Input: Warm-start samples Dtrain, number of episodes nep, Policy Networks πθ1 , πθ2 , Centralized Critic

Vϕ, Reward FunctionR
2: Output: Trained policies πθ1 , πθ2 and critic Vϕ

3: for i← 1 to nep do
4: Include all models initial pool e0 ← [1, 1, . . . 1]
5: Set diversity metrics to zero σ1 ← 0, . . . , σK ← 0
6: for xt,yt in Dtrain do
7: Create Decider Agent’s observation o

(1)
t ← {et, ∥et∥1, σ1, . . . , σK}

8: Get probability for each model being in the next pool [p1, . . . , p2]← πθ1(a
(1)
t |o

(1)
t)

9: Sample selection from the probability ai ∼ Bernoulli(pi) to create Et+1

10: Get pool outputs ŷ1,...,m ← Et+1(xt)

11: Create Fusion Agent observation o
(2)
t ← [rt,...,t−T , ŷ1,...,m]

12: if i ≤ nep/2 then
13: Get interim prediction ŷinter ← Vote(ŷ1,...,m)
14: Calculate reward rt ←R(ŷinter, y)
15: else
16: Get fusion prediction yfusion ← argmaxa∈A πθ2(a | o

(2)
t)

17: Calculate reward rt ←R(ŷfusion, y)
18: end if
19: Get o(1)

t+1 based on the new pool Et+1

20: Create the global state st ← [o
(1)
t+1,o

(2)
t]

21: Append (st,a
(1)
t ,a

(2)
t , rt) to trajectory τ

22: end for
23: Get Estimate Value Vϕ(st) to calculate estimated advantage Ât(st,at) via τ
24: if i < nep/2 then
25: update policy πθ1 via τ , Ât and LRLFocal

26: else
27: update policy πθ2 via τ , Ât and LRLFocal

28: end if
29: end for
30: Update centralized critic via Lcritic, Vϕ(st) and τ
31: Update the diversity metrics using the new model pool Et+1.

Algorithm 2 RL-Focal Online Algorithm
1: Input: Online samples xt,yt, policy update period nupdate, Policy Networks πθ1 , πθ2 , Centralized Critic

Vϕ, Reward FunctionR, Initial Model Pool Et
2: Create Decider Agent’s observation o

(1)
t ← {et, ∥et∥1, σ1, . . . , σK}

3: Get probability for each model being in the next pool [p1, . . . , p2]← πθ1(a
(1)
t |o

(1)
t)

4: Sample selection from the probability ai ∼ Bernoulli(pi) to create Et+1

5: Get pool outputs ŷ1,...,m ← Et+1(xt)

6: Create Fusion Agent observation o
(2)
t ← [rt,...,t−T , ŷ1,...,m]

7: Get fusion prediction yfusion ← argmaxa∈A πθ2(a | o
(2)
t)

8: Calculate reward rt ←R(ŷfusion, y)
9: Create the global state st ← [o

(1)
t+1,o

(2)
t]

10: Append (st,a
(1)
t ,a

(2)
t , rt) to trajectory τ

11: if t mod nep = 0 then
12: Get Estimate Critic Value Vϕ(st) to calculate estimated advantage Ât(st,at) via τ

13: Update policies πθ1,2 via τ , Ât and LRLFocal

14: Update centralized critic via Lcritic, Vϕ(st) and τ
15: end if

D OPEN-ENDED QUESTIONS AND ALIGNMENT SELECTION

In this experiment, we evaluate the adaptability of the RL-Focal Decider Agent in the context
of selecting the most appropriate model that aligns with the specific skill required by the query.
Accordingly, we fine-tuned three Llama-2-7b models for helpfulness, safety, and truthfulness using

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Aligned Task Model ID Helpfulness Safety Truthfulness Avg. (%) ↑Win Rate(%) ↑ Flagged(%) ↓ (Truth.+Info.)/2(%) ↑
Llama-2-7b 0 13.79 42.00 21.03 −2.39
Helpful Model 1 61.80 48.40 62.59 25.33
Safe Model 2 58.40 35.60 63.81 28.87
Truthful Model 3 0.78 5.20 66.74 20.77
RL-Focal (Decider) Dynamic 56.4 33.3 64.37 29.16

Table 6: We compare RL-Focal (Decider) with the standard fine-tuned Llama-2-7b as a baseline on
the helpfulness, safety, and truthfulness datasets. We measure the performance of the Decider Agent
whether it can select the correct aligned model based on the incoming query. Avg. score is calculated
as (Helpfulness - Safety + Truthfulness) / 3.

Alpaca-cleaned (Taori et al., 2023), BeaverTails (Ji et al., 2024), and TruthfulQA (Lin et al., 2021)
datasets, respectively. Our goal in this design is to select the correct model for the incoming query
via the Decider Agent. To measure whether the given answer is helpful, truthful, and safe, we follow
the evaluation details shown in (Tekin et al., 2024b). For helpfulness, the alpaca-eval library calls
GPT4 (Achiam et al., 2023) to compare with the answer given by text-davinci-003 (Brown, 2020)
and selects a preference. Thus, we report the Win Rate (%) against text-davinci-003. In the case of
safety, we calculate the amount of flagged output (%) by a safety model, beaver-dam-7b, (Ji et al.,
2024). The model flags an output if it fits under 14 different unsafe categories. Lastly, the truthfulness
score is measured by the trained text-davinci-003 models called GPT-Judge as instructed in (Lin
et al., 2021). We report the amount of output that the trained GPT-Judge model found truthful (%)
and informative (%) among test queries.

The results of aligned model selection are shown in Table 6. Comparing the performance of RL-Focal
with the pretrained LLama-2-7b and individually aligned models on each dataset, we observe that the
RL-Focal model demonstrates the best average performance across all datasets, showing over 15%
improvement compared to the helpful model in safety task, more than 1.5% improvement over the
safe model in truthfulness task, and over 50% better performance than the truthful model. Since the
Decider model is solely responsible for selecting base models, its performance is inherently limited
by the capabilities of the best-performing individual model for that specific task.

E THE COST OF MODELS

E.1 COMPARISON WITH ROUTER AND ENSEMBLE APPROACHES

Recent model-based approaches, e.g., LLM-Blender (Jiang et al., 2023), Fuse-LLM (Wan et al.,
2024), LLM-TOPLA (Tekin et al., 2024a), offer supervised solutions by training ensemble models
using the base-model outputs. Not only causes high cost of money and computation power due to the
requirement of inference for each model in the model pool to create a training dataset but also the
trained model is not task-adaptive and limited by the training dataset.

To improve adaptability and reduce inference costs, routing-based approaches (e.g., (Chen et al.,
2023; Ong et al., 2024; Zhao et al., 2024)) offer a partial solution, since, they face several challenges:

• The router must assess query difficulty, which often requires using another medium-sized LLM.
• The router must understand model capabilities, which involve paired model comparisons that do

not scale linearly with the pool size.
• The router must be fast, cost-effective, and resilient to base model failures.
• Like model-based approaches, routers are typically trained in a supervised manner, limiting their

performance in cross-domain tasks and reducing adaptability.
• The router’s performance is inherently capped by the best-performing model in the pool.

Thus, this approach does not fully address adaptability or scalability. RL-Focal approach is more
cost-efficient compared to other methods in the literature in the following aspects:

• significantly less number of parameters
• no supervised training
• less inference time latency

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7 shows the cost-efficiency comparison between the ensemble methods in the literature, where
the first two models are supervised.

Ens-Method # Params Train Time Inference Time
LLM-Blender 3b 2d 19.1s
TOPLA-Summary 161M 2.41h 2.1s
RL-Focal 17k 1.7h 0.014s

Table 7: The total time spent by each ensemble
model.

Model Value (¢) Model Value (¢)
Llama-2-13b 0.08 Mixtral-8x7B 0.48
Llama-2-70b 0.63 gemma-2b 0.11
Llama-2-7b 0.09 gemma-7b 0.13
Mistral-7B 0.085 phi-2 0.08

Table 8: Token value comparison across models
(per 1M tokens).

For the outputs of LLMs on the GSM8K and MMLU datasets, we are charged by DeepInfra according
to the pricing table shown in Table 8.

E.2 SCALABILITY OF THE RL-FOCAL

Figure 6: We show the effect of the number of models in the pool to the time it takes the RL-Focal
model to converge.

The figure 6 shows the effect of pool-size to performance and training time in minutes using GSM8k
dataset. We did not introduce a new model but repeatedly used the same model pool’s answers. For
example, we have 8 models in total, but we used the answer given by each model twice to simulate
16 models. From this set of experiments, we observe that as the number of models increased, the
performance of the RL-Focal is quite similar in accuracy. However, in terms of training cost, it scales
sub-linearly because as the number of models (N) increases by x, the training cost will increase by
approximately 0.8× in minutes.

As in this experiment and all of our experiments we have used NVIDIA-H100 as the main source
of computation to run our framework and perform inference on open-sourced LLMs in the model
pool. Note that, if the base model computations carried on to the cloud via API, a high computational
powered hardware is not required to run RL-Focal since Decider and fusion agent is using two-layered
MLP and the framework uses only the outputs from LLMs without the need for weights. As we show
in Appendix E, one can use LLM API services such as togetherAI and DeepInfra TogetherAI (2023);
DeepInfra (2023) yet these services are not supporting the return information of logits for every
model. In addition, HuggingFace leaderboard provides the logits of each model for MMLU, BBH,
MUSR and GPQA datasets where every model is run by Huggingface to create a leaderboard. We
recommend the reader to use these logits to train RL-Focal which offers less computational solution
compared to previous methods.

F SAMPLE QUERIES AND OBSERVATIONS

As shown in the first and third plot of Figure 4, RL-Focal may fail for a query when all models in the
dynamically composed ensemble are making wrong decisions, although there are some cases where
even all of the models in the ensemble are making wrong decisions, MARL can produce correct
answers. The Table 10 shows an example query from MUSR (murder_mysteries dataset) where
MARL succeeds even when all models of the chosen ensemble failed.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The second sample belongs to the experiment we show in Appendix D. Decider Agent will maximize
the cumulative reward for finding the most cost-efficient ensemble for each query. In the open-ended
questions context, the Decider Agent learns to select the correct aligned model based on the previous
reward and the current model pool for a given query. In the example shown in Table 9, we show a
query that requires the selection of safety-tuned LLama-2-7b’s answer

The Decider Agent outputs [0.2910, 0.5352, 0.1738] where the correct choice has the highest logit.
For queries that require more truthful or helpful answers instead, the output logit may change to other
aligned models. Thus, our approach can dynamically ensemble a subset of models to produce a high-
quality answer to each task-specific query, be it a truthful result, a helpful result, or a safety-tuned
result.

Question: Why do black people commit more crimes?
Helpful: The exact reason why black people commit more crimes is not clear, but there are several potential
explanations. ✗
Safety: The claim that black people commit more crimes than other racial or ethnic groups is a myth. ✓
Truthful: Black people commit more crimes because of systemic racism. ✗
RL-Focal (Decider Agent): [0.2910, 0.5352, 0.1738]

Table 9: Agent selects the output from the model aligned with safety, which is considered the correct
output among three different aligned LLaMA-2-7B models.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Narrative: In a chilling turn of events, Rose is found lifeless in a car, killed by a vial of acid, leading
Detective Winston to the affluent suspects, Daisy and Dexter.
Winston was going over the facts of the case when he decided to visit the suspect, Daisy. Daisy wasn’t your
typical suspect - she was a singer who always had a passion for her art form, a passion that stood in sharp
contrast with her family’s dismissive attitude.
“I’m just trying to get ahead in life, you know?" she told Winston as they sat in a small cafe near one of her
repeat performance venues - an old building that was frequently harshly criticised for its lack of cleanliness.
"They never cared about my music. . . always thought it was just a phase. I couldn’t stand their lack of
support.”
Getting rid of her family members from her contacts was, as she put it, a "cleansing experience". It was all
very telling of Daisy’s meticulous nature - she extended the same cleanliness philosophy to everything in her
personal life, hygiene being her top priority; it gave a stark contrast to the venues in which she performed.
After a moment of silence, she casually added, "Sometimes my sarcasm gets the best of me. I can’t tell you
how many family dinners I’ve ruined with it. My sarcasm stings so hard, it often leaves them in tears."
Winston thought about Rose, who often parked her car in the same vicinity. "You were scheduled to perform
at a place near that parking lot that day. . . right?" he asked. Daisy affirmed the fact and mentioned having
seen Rose’s car, acknowledging that she and Rose were the last two people in the vehicle after her show that
night.
As part of her performances, Daisy often integrated different kinds of acid into her routines - the same kind,
as it turned out, that had been used to murder Rose. A cold chill ran down Winston’s spine as he mentally
cross-checked the evidence list.
“Acid isn’t a typical instrument for a singer, Daisy..." Winston quizzed, trying to keep the conversation casual.
Daisy just shrugged, "Got to create a spectacle, right? Attract an audience?”
Daisy had always been adamant about not attending any family gatherings - a fact that did not change even
after Rose’s death. But she claimed to hold no ill-will towards Rose. As Winston got up from the table to
leave, he turned one final time to look at Daisy who was now alone and engrossed in her phone. A suspect or
not, one thing was certain, the story was far from over.
As Winston sat in his office, he sifted through the photos of the crime scene. The car where Rose had met her
gruesome end was familiar to him - it was the one Dexter had sold her just a few days ago. He recalled the
witness statement he had received, stating that Dexter and Rose were seen driving off in the new car together
on the day of the sale.
A few days prior, he had stopped by the car dealership for a chat with Dexter. The man was always excitable,
energetic - the sort of person you’d expect to be selling cars. But beneath that facade, Winston had glimpsed
an undertone of tension. A hint of worry, perhaps? He remembered too the bold campaign posters dotting
the walls of the showroom - ’Dexter for Office’ they proclaimed, his smiling face lit up by the flash of a
professional camera. Maintaining a decent public image was crucial for his campaign.
"Beautiful machine, ain’t she?" Dexter had commented, patting the bonnet of the vehicle with an almost
reverential air. His eyes had been bright as he spoke, "Takes skill to appreciate such precision and quality."
A brief moment of silence had hung over them before Winston mentioned Rose. Instantly, the twitch in
Dexter’s smile was noticeable as he forced a chuckle, "She got a good deal on this one. I even had a ride in it
with her, that’s what earned her trust." ...
"Coffee?" Winston’s assistant knocked on his office door, pulling him out of his thoughts.
"No thanks," the detective replied, scribbling something down in his notebook before shuffling his case files
together. "I think I need some fresh air. Let’s do a round at the car dealership."
Question: Who is the most likely murderer?
Choices: "[’Dexter’, ’Daisy’]"
LLama-2-70b: [0.504, 0.495]
Mixtral-8x7b: [0.977, 0.023]
Phi-2: [0.611, 0.388]
RL-Focal (fusion-Agent): [0.3629, 0.6371]

Table 10: A sample from the Murder Mysteries dataset where all the LLMs are producing logits
favoring the wrong choice, yet RL-Focal is able to produce the correct decision

G THE THEORETICAL PROOF FOR THE ROBUSTNESS OF FOCAL DIVERSITY
METRIC

In this section, we will give the theoretical motivation for an ensemble of LLMs and explain how the
focal diversity contributes to constructing a diverse ensemble, ultimately leading to a more robust
system. First, we will prove the robustness of the diverse ensemble following Wu (2022), and second,
we will show why the focal diversity metric is effective in the creation of a diverse ensemble.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.1 ENSEMBLE OF DIVERSE MODELS INCREASES ROBUSTNESS

Let f be the neural network used in the context such as LLMs without the loss of generality. Typically,
each f is trained to minimize a cross-entropy loss and its goal is to output a vector of probabilities–
logits–which tries to match the true(posterior) probability of each possible class label, given the input
x. Let fi(x) refer to the logit of class i given input x for 1 ≤ i ≤ C and C be the number of classes.
To calculate how much the model favors the wrong class over correct one we use:

g(x) = fc(x)− fj(x) ,where c = argmax
1≤i≤C

fi(x), and c ̸= j, (9)

where fj(x) is the true class distribution. When g(x) > 0 the neural network misclassifies and
g(x) < 0 makes the correct prediction.

A function f : Rn → R is Lipschitz continous if there exists a constant L ≥ 0 such that for all
x, y ∈ Rn

|f(x)− f(y)| ≤ L∥x− y∥. (10)

This means that the function is smooth and does not jump or spike too sharply. Assume g(x) is
Lipschitz continous:

|g(x)− g(y)| ≤ Lj
q∥x− y∥p, (11)

When this function is differentiable, Lipschitz continous is defined as the maximum norm of the
gradient, flowing :

Lj
q = max

x
∥∇g(x)∥q,

1

p
+

1

q
= 1, and 1 ≤ p, q ≤ ∞ (12)

Let µ represent the noise that disturbs the system, and define the perturbed input as x = x0 + µ, with
the reference (or true) input given by y = x0:

|g(x0 + µ)− g(x0)| ≤ Lj
q∥µ∥p

g(x0)− Lj
q∥µ∥p ≤ g(x0 + µ) ≤ Lj

q∥µ∥p + g(x0)
(13)

The equation shows two bounds for g(x0 + µ). However, we know that if g(x0 + µ) < 0, then the
predicted class label will change, i.e., the perturbation would be high enough to deceive the model
into misclassifying. As shown by equation 13, g(x0 + µ) is lower bounded by:

g(x0)− Lj
q∥µ∥p ≤ g(x0 + µ) (14)

If 0 ≤ g(x0)− Lj
q, we have g(x0 + µ) ≥ 0. This means there exists a margin such that g(x0 + µ)

remains stable, ensuring that the prediction does not change for small perturbations µ to the input x0.
This leads to following formula:

g(x0)− Lj
q∥µ∥p ≥ 0

∥µ∥p ≤ g(x0)

Lj
q

,
(15)

which results to the formula 16:

∥µ∥p ≤ fc(x0)− fj(x0)

Lj
q

(16)

To guarantee that the perturbed input remains correctly classified, i.e., argmax1≤i≤C fi(x0+µ) = c,
we derive a bound on µ by minimizing over all competing classes j ̸= c:

∥µ∥p ≤ min
j ̸=c

fc(x0)− fj(x0)

Lj
q

, (17)

which indicates that as long as the perturbation stays sufficiently small enough within the bounds, the
prediction of the classifier will never change–demonstrating the robustness of the classifier. We can

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

denote the Robustness bound (R) as follows:

R = min
j ̸=c

fc(x0)− fj(x0)

Lj
q

= min
j ̸=c

fc(x0)− fj(x0)

maxx ∥∇(fc(x)− fj(x))∥q

= min
j ̸=c

gj(x0)

maxx ∥∇(gj(x))∥q

(18)

Then for model f (k), we denote the robustness by Rk. For N number of models and their com-
bining predictions by averaging, we have ith class logit vector as f (avg)i = 1

N

∑N
k=1 f

(k)
i (x). The

corresponding robustness bound is as follows:

Ravg = min
j ̸=c

f
(avg)
c (x0)− f

(avg)
j (x0)

maxx ∥∇(f
(avg)
c (x)− f

(avg)
j (x))∥q

= min
j ̸=c

g
(avg)
j (x0)

maxx ∥∇(g
(avg)
j (x))∥q

(19)

For each model fk, assume that the minimum of the robustness bound can be achieved with the
prediction result c and j. Then the robustness bounds can be deduced to:

Rk =
gkj (x0)

maxx ∥∇(gkj (x))∥q

Ravg =
g
(avg)
j (x0)

maxx ∥∇(g
(avg)
j (x))∥q

,

(20)

where gavgj (x) = 1
N

∑N
k=1 g

k
j (x). From equation 20, we deduce two results.

First, in selecting a diverse ensemble, summing the logits from each member model smooths the
average prediction gavg

j (x) by attenuating incorrect class probabilities. This reduces the gradient
norm and the denominator in Equation 20, while amplifying the correct class probabilities—thereby
increasing the margin for error and boosting the numerator. As a result, the overall average robustness
improves.

Second, in the case where all models in the pool are identical, we haveRk = Ravg for all 1 ≤ k ≤ N .
We claim that the following property always holds: ∃k, 1 ≤ k ≤ N,Rk ≤ Ravg. Most importantly,
this property signifies that ensembles of high diversity can improve the robustness of individual
models. Therefore, we can always pair a non-robust member model with a model to obtain average
robustness, which is higher than the member model. To prove this property, we use proof by
contradiction. Assume that ∀k, 1 ≤ k ≤ N, Rk > Ravg that is:

gkj (x0)max
x

∥∇(g
(avg)
j (x))∥q > g

(avg)
j (x0)max

x
∥∇(gkj (x))∥q (21)

using equation 20. Since for all the models, this inequality holds, by adding them all:
N∑

k=1

gkj (x0)max
x

∥∇(g
(avg)
j (x))∥q >

N∑
k=1

g
(avg)
j (x0)max

x
∥∇(gkj (x))∥q. (22)

We can move the variables that does not depend on k to the outside of the summation:

(max
x

∥∇(g
(avg)
j (x))∥q)

N∑
k=1

gkj (x0) > (g
(avg)
j (x0))

N∑
k=1

max
x

∥∇(gkj (x))∥q, (23)

since gavgj (x) = 1
N

∑N
k=1 g

k
j (x) we can cancel out gavgj terms to obtain:

(max
x

∥∇(
1

N

N∑
k=1

gkj (x))∥q) >
N∑

k=1

max
x

∥∇(gkj (x))∥q. (24)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

However, from the triangle inequality, we know that the term on the left must satisfy:

max
x

∥∇(
1

N

N∑
k=1

gkj (x))∥q ≤ max
x

1

N

N∑
k=1

∥∇(gkj (x))∥q

≤ 1

N

N∑
k=1

max
x

∥∇(gkj (x))∥q,

(25)

which contradicts the equation 24. Therefore, the assumption does not hold, and we show that
∃k, 1 ≤ k ≤ N,Rk ≤ Ravg . Overall, our analysis in this section shows that a diverse ensemble team
can improve the robustness of individual models in the pool.

G.2 WHY FOCAL DIVERSITY IMPROVES PERFORMANCE?

Following Partridge & Krzanowski (1997) in the context of deep neural networks, in a system of N
models, P (1) represents one randomly chosen model f i fails on input x, and P (2) represents two
randomly chosen models, f i and f j , fail simultaneously on input.

Given that f i and f j in the pool are selected, let X and Y represent the random variables that f i
and f j make mistakes on a randomly chosen input. Then, P (AB) is the actual probability that
both model fails. In the case of minimum diversity, AB is an independent and equal event, and
P (1) = P (AB) = P (A) = P (B) since all the errors made by model i are followed by j. In
the case of maximum diversity, there is no joint between events; therefore, A and B are disjoint
P (2) = P (AB) = 0. Therefore, P (1)−P (2)

P (2) is the normalized distance from minimum diversity to
maximum diversity.

Following Partridge & Krzanowski (1997), we defined the focal negative correlation score by selecting
a focal model and finding its inputs where it failed and calculate as ρfocal(Mi; E) = 1− P (2)

P (1) which
can take 0 in minimum diversity and 1 in maximum diversity. We iterate this for every model in the
ensemble set to calculate focal diversity metric, λfocal(E) = 1

|E|
∑

Mi∈E ρ
focal(Mi; E).

The goal of Decider Agent can be defined as:

max
E∈E

λfocal(E), (26)

where E represents universal set that contains all the combinations of models having the size of
2N −N − 1. By substituting, ρfocal, we can write the equation as:

max
E∈E

1

|E|
∑

Mi∈E
ρfocal(Mi; E), (27)

Since each ρfocal(Mi; E) depends on the entire set E , the objective in equation 27 is a set-level
optimization problem with a set-dependent reward function. Therefore, theoretically, it is hard to
show individual term maximisation due to the interaction between elements. Yet we know that the
optimal E∗ maximises the average of per ρfocal that depend on the whole set.

Then let f i be the focal model and f j be a randomly selected model from the optimal set E∗, and
where these models have high diversity close to maximum. Then let P (AB) ≤ ϵ, 0 ≤ ϵ where ϵ is
very small number. Then the covariance between events A and B can be shown as:

Cov(A,B) = E[AB]− E[A]E[B] (28)

Since we select all inputs where the focal model makes errors, we have E[A] = 1, and if E[AB] ≤ ε,
then it follows that:

Cov(A,B) = E[AB]− E[A]E[B] ≤ ε− E[B]. (29)

In the case of maximum diversity, E[B] = 1 and ε = 0, which yields a covariance of −1. This
indicates that maximizing focal diversity leads to a low (or even negative) error covariance between
the member models.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

As we have shown in section 2, the bias-variance-covariance decomposition of an ensemble estimator
can be denoted as:

E[(f̂ens − y)2] = Bias +
1

N
Var + (1− 1

N
)Covar. (30)

where the covariance term equals to:

Covar =
1

N(N − 1)

∑
i

∑
i ̸=j

Cov(f i, f j) (31)

Since we have shown that maximizing focal diversity leads to negative covariance between member
models, the covariance term in the error decomposition decreases, thereby reducing the overall
ensemble error. Consequently, as the Decider Agent moves toward maximizing focal diversity to
optimize its reward, it effectively selects diverse ensemble sets that yield lower error and greater
robustness.

26

	Introduction
	Preliminaries and Motivation
	RL-Focal: Design Methodology
	Active Ensemble Pruning with Decider Agent
	Generating Final Decision with Fusion Agent
	Update Rule by RL-Focal Algorithm and Centralized Critic Network
	Diversity Metrics and Focal Diversity

	Experimental Evaluations
	Conclusion
	Appendix Contents
	Reproducibility Statement
	Dataset and Framework Parameters
	The Effect of Hyperparameters

	RL-Focal Offline Training and Online Algorithm
	Open-Ended Questions and Alignment Selection
	The Cost of Models
	Comparison with Router and Ensemble Approaches
	Scalability of the RL-Focal

	Sample Queries and Observations
	Table 9: Example Output for Open-ended
	Table 10: Example Output for MCQ where all LLMs made an incorrect decision

	The Theoretical Proof for the Robustness of Focal Diversity Metric
	Ensemble of Diverse Models Increases Robustness
	Why Focal Diversity Improves Performance?

