

000 001 002 003 004 005 DYNAMIC OPTIMIZATIONS OF LLM ENSEMBLES WITH 006 TWO-STAGE REINFORCEMENT LEARNING AGENTS 007 008

009 **Anonymous authors**
010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 The advancement of LLMs and their accessibility have triggered renewed interest
031 in multi-agent reinforcement learning as robust and adaptive frameworks for dy-
032 namically changing environments. This paper introduces RL-Focal, a two-stage RL
033 agent framework that routes and ensembles LLMs. *First*, we develop the Decider
034 RL-agent, which learns to dynamically select an ensemble of small size (m_i) among
035 N LLMs ($m_i \ll N$) for incoming queries from a user-defined downstream task
036 i , by maximizing both error-diversity and reasoning-performance of the selected
037 ensemble through iterative updates of task-adaptive rewards and policy. *Second*, to
038 enable effective fusion of dynamically selected LLMs, we develop the stage-2 Fu-
039 sion RL-agent, which learns to resolve reasoning conflicts from different LLMs and
040 dynamically adapt to different ensemble teams composed by the Decider Agent for
041 different downstream tasks. *Third*, we introduce the focal diversity metric to better
042 model the error correlations among multiple LLMs further improving the general-
043 ization performance of the Decider Agent, which actively prunes the ensemble com-
044 binations. By focal diversity, we enhance performance across tasks by effectively
045 promoting reward-aware and policy-adaptive ensemble selection and inference
046 fusion. Extensive evaluations on five benchmarks show that RL-Focal achieves the
047 performance improvement of 8.48% with an ensemble of small size compared to
048 the best individual LLM in a pool and offers stronger robustness. Code is available
049 at <https://anonymous.4open.science/r/rl-focal-8DCF/>

1 INTRODUCTION

050 Recently, ensemble learning has gained prominence in the domain of LLMs, with applications at the
051 architectural level via Mixture-of-Experts (MoE) layers (Jiang et al., 2024; Liu et al., 2024a; Grattafiori
052 et al., 2024), at the generation level through knowledge distillation and weighed combination (Wan
053 et al., 2024; Yu et al., 2024; Huang et al., 2024; Mavromatis et al., 2024; Yao et al., 2024b), and at
054 the output level through post-inference aggregation (Jiang et al., 2023; Tekin et al., 2024a) based
055 on supervised learning. However, in this study, we show that ensemble learners applied to outputs
056 of task-agnostic predictors, such as LLMs, have problem-induced instability due to the lack of
057 adaptability, such as using an ensemble of pre-defined base learners as one solution for all. We argue
058 that an efficient ensemble system should be adaptive and capable of (i) learning how to dynamically
059 route diverse problems to different ensemble sets, and (ii) learning how to fuse conflicting outputs
060 from multiple diverse base learners, regardless of which of the ensemble sets is chosen to solve a
061 reasoning problem.

062 In this paper, we present a two-stage reinforcement learning framework – RL-Focal, which aims
063 to improve the ensemble performance by learning which ensemble strategies are most effective for
064 a given dataset or problem by utilizing learned knowledge from previous experiments in order to
065 adapt and learn from new situations. The design of our RL-FOCAL is to develop a meta-learning
066 framework that enables a Decider RL-agent and a Fusion RL-agent to iteratively learn together
067 from new environmental changes, e.g., the learned knowledge from previous experiments, and to
068 adapt/update the rewards and policy for next round of learning by RL-Focal.

069 **Ensemble Learning in LLMs: Related Work and Open Challenges.** Ensemble training methods
070 and the distillation (Wan et al., 2024; Yu et al., 2024; Huang et al., 2024; Mavromatis et al., 2024;
071 Yao et al., 2024b) and the mixture of experts (MoE) (Jiang et al., 2024) methods require significant
072 computational resources and full access to the model parameters, making it challenging to generalize
073 to diverse contexts and adapt to domain shifts.

054 In post-inference aggregation ensemble learning category, most LLM ensemble research centered on
 055 supervised solutions (Jiang et al., 2023; Tekin et al., 2024a) and utilized majority voting to perform
 056 inference-time ensemble (Wang et al., 2022b; Fu et al., 2022; Li et al., 2022; Wang et al., 2022a). The
 057 downside of majority voting is the poor definition of equality between divergent answers. Two threads
 058 of research further improve majority voting, one utilizes the BLEU score as the heuristic to compare
 059 answers (Li et al., 2024), and the other enhances the BLEU score-based answer-combination method
 060 by assigning weights (Yao et al., 2024a) or creating a debate environment (Liang et al., 2023; Wan
 061 et al., 2024; Du et al., 2023; Chan et al., 2023). LLM-based Multi-Agents (Guo et al., 2024) carry
 062 similar motivations in terms of exploiting multiple LLMs to work collaboratively for a particular
 063 task. However, neither the dynamic selection of agents nor the aggregation of outputs for a given task
 064 have been systematically explored. Similarly, LLM routing aims to identify the most suitable model
 065 among the pre-defined set of LLMs for a given prompt query. Unfortunately, routing is inherently
 066 limited by the performance of the chosen model and the dependency of using another external LLM
 067 to understand/rank the matching of a prompt query to the given pool of LLMs (Ong et al., 2024).
 068

069 Recently, RL approaches (Chakraborty et al., 2025; Fu et al., 2025) are proposed, which can dynamic
 070 adjust ensemble weights for an ensemble of size N (N is fixed for all tasks). Ensemble by RL holds
 071 the potential of creating an adaptive ensemble model (Song et al., 2023; Chua et al., 2018), ranging
 072 from time-series prediction (Liu et al., 2020; Németh & Szűcs, 2022; Perepu et al., 2020), ensemble
 073 pruning (Partalas et al., 2009; Liu & Ramamohanarao, 2020), to Tree-of-Thought (ToT) family of
 074 in-context learning of LLMs (Ouyang et al., 2022; Liu et al., 2024b; Monea et al., 2024; Zhang et al.,
 075 2021; Sun et al., 2024; Liu et al., 2024c). Yet, these existing RL approaches struggle to tackle the
 076 challenges when the ensemble of LLMs (base learners) offers very different inference performance
 077 with respect to diverse downstream reasoning tasks, given heterogeneous neural architectures fine-
 078 tuned with different LLM serving objectives as well as the challenges of whether it is feasible to
 079 dynamically compose an ensemble from a pool of base learners on demand to better address the
 080 inference performance demand of each downstream user task.
 081

082 **Our contributions:** We formulate the ensemble problem as a decentralized partially observable
 083 Markov Decision Process and separate the model selection and inference fusion into two reinforce-
 084 ment learning stages. In Stage-1, we train a Decider RL-agent performing simultaneous actions
 085 to decide which model should be selected to serve a user-query based on the diversity metrics of
 086 the current model pool. The agent adaptively prunes the possible ensemble combinations to create
 087 the best ensemble set that minimizes the error correlation among the member models based on the
 088 focal diversity score. In Stage-2, we train the Fusion RL-agent to generate the fusion decision from
 089 different and possibly conflicting outputs generated by the member models of the selected ensemble.
 090 Extensive evaluations conducted on five benchmark datasets show that RL-Focal can surpass the
 091 best-performing base-model, outperform 12 representative SOTA LLMs tested by up to 8.48%, and
 092 outperforms five recent LLM ensemble approaches by up to 3% at significantly lower cost.
 093

2 PRELIMINARIES AND MOTIVATION

094 **Bias-Variance Trade-off and Ensemble Learning.** To demonstrate the effectiveness of EL learning
 095 bias-variance decomposition of quadratic loss is often used (Song et al., 2023). Even though the
 096 decomposition is defined for regression estimators, it is a fundamental concept that can also be
 097 generalized to any estimators, including LLMs. Assume that an estimator $\hat{f}(x)$ aims to approximate
 098 the true relation $y = f(x) + \epsilon$ by reducing the expected quadratic loss for an input x and label y
 099 sampled from a dataset \mathcal{D} :
 100

$$\mathbb{E}[(y - \hat{f})^2] = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2] + (y - \mathbb{E}[\hat{f}])^2 + \sigma^2 = \text{Var}(\hat{f}) + \text{Bias}(\hat{f})^2 + \text{Var}(\epsilon). \quad (1)$$

101 Equation 1 is the well-known bias-variance decomposition of an estimator under a given noise ϵ
 102 with zero mean and σ^2 variance (James et al., 2013). Here, σ^2 is irreducible, and as the estimator
 103 raises its complexity to approximate the true estimator, its variance will increase as it tries to capture
 104 more data points. Ensemble methods aim to reduce the bias and variance jointly e.g., by representing
 105 the parts of the hypothesis space with each estimator (Dietterich, 2000). Following (Krogh &
 106 Vedelsby, 1994), one can present the *ambiguity decomposition* by defining the ensemble model as the
 107 convex combination of its component models: $\hat{f}_{\text{ens}} = \sum_i w_i \hat{f}_i$ where $\sum_i w_i = 1$. The ambiguity
 108 decomposition shows that the quadratic error of the ensemble estimator is guaranteed to be less than
 109 or equal to the average quadratic estimators of its component estimators, which is formalized as
 110 follows:
 111

$$(y - \hat{f}_{\text{ens}})^2 = \sum_i w_i (\hat{f}_i - y)^2 - \sum_i w_i (\hat{f}_i - \hat{f}_{\text{ens}}). \quad (2)$$

108 Here, the first term is the weighted average error of individual estimators and the second term is
 109 the *ambiguity term* showing the variance between the individual estimators. Thus, the second result
 110 of this decomposition is that the greater the ambiguity, i.e., the higher error correlation between
 111 individual estimators, the lower overall error the ensemble may result. More explicitly, according
 112 to (Brown et al., 2005), one can substitute the ensemble estimator, $\hat{f}_{\text{ens}} = \frac{1}{M} \sum_i \hat{f}_i$ in Equation 1 to
 113 break down the variance component even further to obtain *bias-variance-covariance* decomposition:

$$\mathbb{E}[(\hat{f}_{\text{ens}} - y)^2] = \overline{\text{Bias}} + \frac{1}{N} \overline{\text{Var}} + (1 - \frac{1}{N}) \overline{\text{Covar}}. \quad (3)$$

116 As the averaged covariance term implies, the quadratic loss of ensemble networks depends on the
 117 error correlation among its estimators. Thus, the selected estimators used to construct an ensemble
 118 learner are expected to make uncorrelated errors in order for the ensemble to obtain a lower overall
 119 error, and each of the component estimators should cover a part of the hypothesis space to ensure that
 120 the average bias and variance are lower.

121 **Weighted Consensus of Ensemble Learner and its Instability.** Modern deep learning models, incl.
 122 LLMs, target cross-domain generalization. The few-shot learners are the pioneering efforts for this
 123 capability. The k -shot models are able to learn the relation between the input and the label for a task
 124 \mathcal{T} with a very small number of samples, i.e., $(x_i, y_i) \sim \mathcal{T}$ for $1 \leq i \leq k$ where k in the range of
 125 $1, \dots, 5$. The zero-shot models learn to produce the desired output with no y given. Let w_{best} denote
 126 the best weight assigned to each estimator for a given task \mathcal{T} . An ensemble estimator \hat{f}_{ens} , created by
 127 the convex combination of its component models, is fit to the task \mathcal{T} as follows:

$$w_{\text{best}} = \arg \min_w \mathbb{E}_{(x, y) \sim \mathcal{T}} \left[\left(\sum_i w_i \hat{f}_i(x) - y \right)^2 \right]. \quad (4)$$

130 The problem with such an ensemble estimator arises when the task changes over time or when the
 131 contexts are different. The current weights, w , are fitted for the given task \mathcal{T} under a given context
 132 or at a given time. But when the task changes, the weights representing the importance of each
 133 estimator may lose their cross-estimator assessment validity and create instability. Consider a pool of
 134 N LLMs, one LLM can be good at commonsense-reasoning, while another is good at STEM-related
 135 topics, and so forth. In this paper we argue that an ideal way of composing an ensemble ensemble
 136 estimator \hat{f}_{ens} from the pool of candidate LLMs is **task-adaptive**, i.e., to construct the ensemble that
 137 is most-effective for each given task by selecting a subset of models in the pool, which offers the
 138 task-specific strength and complimentary wisdom. Our experiments have shown that an ensemble
 139 estimator of smaller size with high error diversity can outperform the large ensemble of all LLMs
 140 with better generalization performance and at lower runtime cost.

3 RL-FOCAL: DESIGN METHODOLOGY

142 We first give an architectural overview in **Figure 1** with highlight of five steps: (1) We examine
 143 the current model pool \mathcal{E}_t , assuming the pool initially has N LLMs, and the diversity metrics are
 144 calculated to create the observation of the Decider Agent (see Section 3.4 for detail). (2) The Decider
 145 RL-Agent learns to select models to create a new pool denoted as \mathcal{E}_{t+1} of size m LLMs for a task-
 146 specific query x_t where $m \ll N$. (3) The input query x_t is sent to each of the LLMs in the new pool
 147 to obtain the Fusion Agent’s observation. (4) The Fusion Agent learns to combine their outputs to
 148 make the fusion decision. (5) Both the Decider RL-Agent and Fusion RL-Agent are trained with the
 149 global state and fusion results via reinforcement learning using a Centralized Critic Net (Schulman
 150 et al., 2017). This process iterates until all episodes are finished, or it continues indefinitely in an
 151 online setup.

152 **Problem Formulation.** Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ denote a sequence of input queries/prompts with length n ,
 153 where each prompt \mathbf{x}_i is sampled from a task \mathcal{T}_j , denoted by $\mathbf{x}_i \sim \mathcal{T}_j$. The queries can originate from
 154 a single task or from a group of tasks $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_J$, e.g., Math, Biology, and History with varying
 155 difficulties. Consider a query \mathbf{x} sampled from these tasks is targeted to an ensemble of N LLMs,
 156 denoted by $\mathcal{E}_t = \{M_1, \dots, M_N\}$ to obtain the desired output \mathbf{y} at time t . As the task distribution and
 157 difficulty levels of the queries alter over time, a non-stationary environment is formed to which this
 158 pool of N LLMs needs to adapt. We assume a regular temporal cycle, such as a Math-related query
 159 likely followed by another Math query, and task switches are possible but not in high frequency. In
 160 this setting, the **first** problem is to dynamically find a small subset of m LLMs from the pool that
 161 are the most suitable for the query task, and learn to infer the best ensemble team of the selected m
 models, and generate the set of outputs $\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_m$, where $1 \leq m \leq N$. This motivates the design
 of our Decider RL-Agent. The **second** problem is to resolve the potential reasoning conflict among

Figure 1: Overview of *RL-Focal* two stage ensemble by reinforcement learning agents.

the generated outputs from the selected ensemble of m LLMs to make the final ensemble decision, \hat{y}_{fusion} , such that the ensemble error, i.e., $\hat{y}_{\text{fusion}} - y$, is minimized. This motivates the design of Fusion RL-Agent. Each stage exhibits temporal dependence and dynamics, requiring an exploitative approach to identify the best possible model selection and provide a fusion-enhanced solution using feedback from the environment in the form of task-adaptive rewards and decision policy.

Based on the objectives of the two-stage solution and the dynamics of the environment, we study a decentralized partially observable Markov decision process (DEC-POMDP) with shared rewards. For each objective, we define an agent: the first is the *Decider Agent*, and the second is the *Fusion Agent*. The agents are fully cooperative in minimizing $\hat{y}_{\text{fusion}} - y$ and acting independently based on local observations. Further, the second agent's observation depends on the actions of the first agent, and thus it is an extensive-form game (Zhang et al., 2021). A DEC-POMDP has the elements $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{O}, \mathcal{R}, n, \gamma)$ (Yu et al., 2022) and, in our context, we define them as follows: \mathcal{S} is the state space, with $s \in \mathcal{S}$. $\mathbf{o}^{(i)} = \mathcal{O}^{(i)}(s)$ is the local observation of agent i creating the state vector $s = [\mathbf{o}^{(1)}, \mathbf{o}^{(2)}]$. n is the number of agents and $n = 2$ in our context. The joint action space is denoted by \mathcal{A} and $P(s'|s, a)$ is the transition probability from s to s' given by actions of agents $a = [a^{(1)}, a^{(2)}] \in \mathcal{A}$. The shared reward is represented by $\mathcal{R}(s, a, s')$ and γ is the discount factor. Each agent uses its policy $\pi_{\theta_i}(a^i | \mathbf{o}^i)$ parametrized by θ_i to produce an action a^i based on its local observations and jointly optimize the accumulated discounted reward: $\mathbb{E}_{\pi} [\sum_{t>0} \gamma^t r_t]$ where r_t denotes reward at time step t and π is the joint policy. We obtain the best parameters of the policy functions by following Multi Agent Proximal Policy Optimization (MAPPO) (Yu et al., 2022) with the Centralized Critic Net approximating the value of the current state (see Section G for more detail).

3.1 ACTIVE ENSEMBLE PRUNING WITH DECIDER AGENT

The Decider RL-agent is responsible for selecting the "best" models for the incoming query to minimize redundant or unnecessary inferences. The ensemble selection should be performed by respecting the error correlation among the member models of each ensemble in order to choose the best ensemble that can effectively lower the squared error (recall Section 2). Multiple diversity metrics (see Section 3.4) are used to learn the selection of the best ensemble team among a total of $2^N - N - 1$ ensemble teams of size ranging 2 to N , given a pool of N LLMs. Unlike the conventional diversity-based ensemble approaches Brown et al. (2005); Tekin et al. (2024a), which examine all possible combinations with diversity scores and accuracy measures to make the ranking decision, we introduce RL based approach to navigate in the surface of diversity and accuracy. The Decider RL-agent observes the diversity of the current model pool while aiming for the accuracy boost. It periodically updates its policy to adapt to the changes in the environment, so that it can actively add or remove models from the current pool. We define the elements of a Decider Agent as follows:

State: For K number of diversity metrics denoted by $\sigma_1, \dots, \sigma_K$, the agent observes $\mathbf{o}_t^{(1)} = [\mathbf{e}_t, \|\mathbf{e}_t\|_1, \sigma_1, \dots, \sigma_K]$ at time t , where $\mathbf{e}_t = (e_1, \dots, e_N)$, $e_i \in \{0, 1\}$ is the binary vector representing the current model pool where $e_i = 1 \iff M_i \in \mathcal{E}_t$ and $\|\mathbf{e}_t\|_1$ is the current size of the pool. The diversity metrics are calculated based on the historical data with a window size T . The details of the designed metrics are given in Section 3.4. **Action:** The agent simultaneously decides whether each model should be included in the model pool. Accordingly, we define the action at time

t as a binary vector $\mathbf{a}_t^{(1)} \in (a_1, \dots, a_N)$, $a_i \in \{0, 1\}$, where each a_i indicates whether the model with index i is included in the pool. Each action a_i is independent of the others, i.e., the selection of one model does not depend on the selection of the others. **Policy:** At time t , the policy provides a probability vector $\pi_{\theta_1}(\mathbf{a}_t^{(1)} | \mathbf{o}_t^{(1)}) = [p_1, p_2, \dots, p_N]$. $p_i = \Pr(a_i = 1 | \mathbf{o}_t^{(1)}; \theta_1)$ is the probability for model i to be included in the model pool, θ_1 is the policy parameters of Decider agent, and the action a_i is drawn from Bernoulli distribution with success probability p_i , i.e., $a_i \sim \text{Bernoulli}(p_i)$. The Decider agent makes multiple independent decisions simultaneously, which can be modeled in RL at multi-action settings. We employ a branching solution to model each action branch with another parameter set (Tavakoli et al., 2018). Specifically, the Decider Agent’s policy parameterized by a Multi-layer Perceptron (MLP) consists of fully connected layers with sigmoid activation functions. The final layer branches into separate heads for each action with its own set of weights:

$$\begin{aligned} \mathbf{z} &= \rho(\mathbf{W}_{L-1}(\dots \rho(\mathbf{W}_1 \mathbf{o}_t^{(1)}) \dots)), \\ p_1 &= \rho(\mathbf{W}_L^{(1)} \mathbf{z}), \dots, p_N = \rho(\mathbf{W}_L^{(N)} \mathbf{z}), \end{aligned} \quad (5)$$

where \mathbf{W}_j is the weight matrix at layer j , ρ represents the sigmoid activation, \mathbf{z} is the penultimate layer outputs, and L is total number of layers where $j = 1, \dots, L$. The initial layers extract from the current observation vector, $\mathbf{o}_t^{(1)}$, while the final parameters, $\mathbf{W}_L^{(1)}, \dots, \mathbf{W}_L^{(N)}$, independently model the probability of each model being included in the next model pool. Therefore, during training, the first layers are jointly trained while the last layers are tuned for each model separately. **Transition:** The observation vector contains stochastic term which govern by joint distribution of independent Bernoulli trials, $P(\mathbf{e}_{t+1} | \mathbf{o}_t^{(1)}, \mathbf{a}_t^{(1)}) = \prod_i^N p_i^{e_i} (1 - p_i)^{1 - e_i}$, and also deterministic terms $[\|\mathbf{e}_{t+1}\|_1, \sigma^{(1)}, \dots, \sigma^{(N)}]$. **Reward:** The shared reward is the most important metric in our design since it defines the objective of making $\hat{y}_{\text{fusion}} = y$ for both RL-agents. To this end, we define the reward function $\mathcal{R} : (\mathbf{a}_t, \mathbf{o}_t, y) \rightarrow r_t$, mapping the agent observation and action at time t to reward value r_t :

$$\mathcal{R}(\mathbf{a}_t, \mathbf{o}_t, y) = \begin{cases} 1 & \text{if } \hat{y}_{\text{fusion}} = y, \\ -1 - \alpha \cdot \frac{\|\mathbf{e}_t\|_1}{N} & \text{otherwise,} \end{cases} \quad (6)$$

where $\alpha \in [0, 1]$ is the size-penalization constant to force the Decider Agent to decrease pool size.

Remarks: (1) The reward requires the final decision at time t , \hat{y}_{fusion} , generated by the Fusion Agent and the correct output y , as illustrated in the steps of Figure 1. (2) Multi-agent RL systems carry stability issues due to agents exhibiting mutual dependence with limited observations. We observed that performing a warm start resulted in more stable training. However, to perform a warm start on the Decider Agent, we need an evaluator metric to evaluate the created model pool. Thus, we substitute \hat{y}_{fusion} with an interim prediction using plurality voting, which chooses the most voted decision based on the current model pool. The interim prediction stabilized the training and helped the Decider Agent’s policy network to converge. We provide an offline warm-start training procedure in Algorithm 1 and discuss the details in Appendix G.

3.2 GENERATING FINAL DECISION WITH FUSION AGENT

Fusion Agent is responsible for reaching the final decision based on the possibly conflicting outputs generated by the member models in the current pool, which forms the selected ensemble at the current iteration t . The success of the Decider agent would be undervalued if the Fusion agent fails to resolve the disagreement of the outputs to reach the correct final decision. As demonstrated in (Dietterich, 2000), ensemble models can computationally achieve the global optimum by leveraging the local optima of individual models as starting points. We advocate that the generated outputs by each model (e.g., the probabilities assigned to each option in a multiple-choice question (MCQ)) may indicate/locate the vicinity of the global optimum, and the Fusion agent can perform a convex combination to reach the optimum. We define the elements of the Fusion Agent as follows:

State: The agent observes the outputs generated by the models in the m -sized pool and past interactions with the environment. The output of models is a sequence of words for open-ended questions (OEQ). In the case of MCQ, we can represent the observation as the probabilities assigned to each choice (see Appendix F for more details). Then, the observation of the Fusion Agent is $\mathbf{o}_t^{(2)} = [r_{t-1}, \dots, r_{t-T}, \mathbf{p}_1, \dots, \mathbf{p}_m]$, where $\mathbf{p}_i = (p_{i1}, \dots, p_{ik}) = M_i(\mathbf{x}_t)$ is the probability vector that model M_i assigned to the choices for input \mathbf{x}_t denoted by $p_{ij} = \Pr(\hat{y}_j | \mathbf{x}_t; \psi_{M_i})$ and k is the number of choices and ψ_{M_i} is model i parameters (which remain frozen and inaccessible). Here, r_{t-1}, \dots, r_{t-T} represents the past rewards until time $t - T$. **Action:** Based on the current observation,

Figure 2: All candidate ensemble teams from the model pool are plotted with their focal diversity scores, Fleiss Kappa, and Accuracy using the 4 popular LLM evaluation datasets. We use cubic interpolation to create a surface, and the dark red represents a higher performance score.

the agent makes the final decision $a_t = \hat{y}_{\text{fusion}}$, which we define as the action that the agent can take. In the case of multiple-choice questions, we can define the action at time t as $a_t \in \mathcal{A} = \{0, \dots, k\}$, where each index indicates a choice and \mathcal{A} is the action space. **Policy:** The policy of Fusion Agent produces a probability distribution with the size of choices, and the action is the choice that maximum probability assigned, i.e. $a_t = \arg \max_{a \in \mathcal{A}} \pi_{\theta_2}(a | \mathbf{o}_t^{(2)})$. Specifically, we parameterize the policy with an MLP containing multiple layers of fully connected weights and sigmoid activation functions as a Fusion policy network. Here we focused on the MCQ, yet in Appendix H we show that Decider Agent can be extended to OEQs. We recommend referring to the studies Jiang et al. (2023); Tekin et al. (2024a;b) as foundational resources for developing an ensemble policy network for OEQ. **Reward:** We use the same reward equation presented in Equation 6 for our Fusion agent, excluding the size-penalization constant. Similarly, we initialize the model parameters with a warm start where we use the outputs from the warm-started Decider Agent. **Transition:** The transition of this agent is deterministic which is defined by $\mathbf{o}_{t+1}^{(2)} = [r_t, \dots, r_{t-T}, \mathbf{p}_1, \dots, \mathbf{p}_m]$, where $\mathbf{p}_i = M_i(\mathbf{x}_{t+1})$ is the model output for input \mathbf{x}_{t+1} .

3.3 UPDATE RULE BY RL-FOCAL ALGORITHM AND CENTRALIZED CRITIC NETWORK

Figure 2 is the visual evidence of how the performance of different model combinations evolves as the task associated with incoming queries changes. The role of the RL-Focal is to walk on the surface created by the diversity metrics and explore a model combination that gives high performance. Unlike the previous works (Tekin et al., 2025; 2024a), which perform exploration offline on a supervised dataset with the Genetic Algorithm, RL-Focal makes the exploration online by actively forming the ensemble on the downstream task using RL. Such online exploration enables the RL-focal agent to timely adapt to a changing environment, e.g., evolving query tasks, changing policy for selection and fusion of relevant models.

Concretely, the policies are updated with the new parameters by loss functions L_{RLFocal} and L_{Critic} . The reward trajectory τ is formed as an agent (Decider/Fusion) iteratively collects reward by executing the current policies on input queries, followed by policy and value function optimization, to achieve the highest possible discounted cumulative reward $J(\theta) = \mathbb{E}_{\tau \sim \pi_\theta} [R(\tau)]$. The policy network parameters should be optimized to increase the probability of action-state pairs that yield positive rewards. To achieve this, we can perform gradient ascent optimization per agent by calculating $\nabla_\theta J(\theta) = \sum_t \nabla_\theta \log \pi_\theta(a_t | s_t) R(\tau)$. Nevertheless, RL-Focal is a multi-agent system with two RL-agents, where each RL-agent has its own observation space, which makes the environment non-stationary. To address this and stabilize optimization, we employ the following loss function by leveraging MAPPO:

$$\mathcal{L}_{\text{RLFocal}}(\theta) = \frac{1}{n} \sum_{k=0}^n \min \left(\hat{r}_t^{(k)}(\theta_i) \hat{A}_t, \text{clip}(\hat{r}_t^{(k)}(\theta_i), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right), \quad \hat{r}_t(\theta_i) = \frac{\pi_{\theta_i^{\text{new}}} (a_t | \mathbf{o}_t)}{\pi_{\theta_i^{\text{old}}} (a_t | \mathbf{o}_t)} \quad (7)$$

where \hat{r}_t is the ratio term for each agent, \hat{A}_t is the estimated advantage function, and is common for both agents. The clip function ensures that the policy updates are stable by keeping the ratio terms within the range $[1 - \epsilon, 1 + \epsilon]$. The advantage function measures how much better the joint action is compared to the average performance of policies in the global state and it is estimated using (GAE) (Schulman et al., 2018): $\hat{A}_t(\mathbf{s}_t, \mathbf{a}_t) = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}$ by calculating $\delta_t = r_t + \gamma V_\phi(s_{t+1}) - V_\phi(s_t)$ where $s_t = [\mathbf{o}_{t+1}^{(1)}, \mathbf{o}_t^{(2)}]$ is the global state which feed into Critic Network V_ϕ to estimate the expected return if we follow the policy from state s_t . The central Critic observes the newly created pool diversity and its outputs to estimate the value (see more details in Appendix G).

Overall, the central Critic creates a bridge between two agents with global information and reduces the non-stationarity to stabilize the training. We optimize the Critic’s parameters by calculating the MSE between value predictions and target values: $\mathcal{L}_{\text{Critic}}(\phi) = \frac{1}{2} \mathbb{E}_t [(V_\phi(\mathbf{s}_t) - \hat{V}_t)^2]$ where $V_\phi(\mathbf{s}_t)$ is the value prediction for state \mathbf{s}_t and \hat{V}_t is the target value computed by the reward $\hat{V}_t = \sum_{l=0}^{T-t} \gamma^l r_{t+l}$. Building on these formulations, we first initialize the parameters of the Agents and Critic by employing the offline warm-start Algorithm 1. During the online execution, the agents are then periodically updated with the online Algorithm 2 to ensure stability and adaptability to the incoming queries.

3.4 DIVERSITY METRICS AND FOCAL DIVERSITY

For a pool of N base models, the total number of possible ensemble teams with size m is $2^N - N - 1$, where $2 \leq m \leq N$. To reduce the overhead of considering all possible combinations, the decider agent enables effective ensemble pruning by adaptively selecting ensembles with high error diversity (aka low error correlation) by utilizing two new metrics, specifically designed to capture error correlation among the member models of an ensemble.

Focal Negative Correlation & Focal Diversity. The focal negative correlation metric ρ^{focal} is used to quantify the level of error diversity among the component models of an ensemble concerning each model within the ensemble. The focal diversity metric λ^{focal} is used to quantify the general error diversity of the ensemble by taking into account all ρ^{focal} in the ensemble. We choose one of the N base models each time as the focal model to compute the focal negative correlation score of this ensemble, denoted as $\rho^{\text{focal}}(\mathcal{M}_i; \mathcal{E})$. We define the focal diversity of this ensemble team by the average of the N focal negative correlation scores. The procedure of computing the focal negative correlation score of ρ^{focal} is as follows: (i) select a model among the set of N models as the *focal* model, (ii) extract all queries from the historical data within a time window of length T where the focal model has failed, and compute the focal negative correlation score (iii) repeat the previous steps until all N focal negative correlation scores are obtained. $\rho_1^{\text{focal}}, \dots, \rho_N^{\text{focal}}$, and (iv) compute the average over the scores to obtain the focal diversity of ensemble \mathcal{E} , denoted by $\lambda^{\text{focal}}(\mathcal{E})$:

$$\lambda^{\text{focal}}(\mathcal{E}) = \frac{1}{N} \sum_{\mathcal{M}_i \in \mathcal{E}} \rho^{\text{focal}}(\mathcal{M}_i; \mathcal{E}), \quad \rho^{\text{focal}}(\mathcal{M}_i; \mathcal{E}) = 1 - \frac{\Pr(\mathcal{K} = 2)}{\Pr(\mathcal{K} = 1)} \quad (8)$$

The term \mathcal{K} is a random variable that represents number of models simultaneously failing on an test input, e.g., $\Pr(\mathcal{K} = 2)$ represents the probability of two randomly chosen models simultaneously failing on an input. We calculate $\Pr(\mathcal{K} = 2) = \sum_{j=1}^N \frac{j(j-1)}{N(N-1)} p_j$, $\Pr(\mathcal{K} = 1) = \sum_{j=1}^N \frac{j}{N} p_j$ and p_j is the probability that j models fail together on a randomly chosen input. It is measured by $p_j = n_j/T$ where n_j is the total number of inputs that j models failed together on a set of test inputs and T is the total number of queries. The terms beneath p_j values, e.g. $\frac{j(j-1)}{N(N-1)}$, are the probability of the chosen model being one of the failure modes. In the case of minimum diversity, the probability of two randomly chosen models failing together comes down to the probability of one of them failing, which makes the fraction term equal to 1 and $\rho^{\text{focal}} = 0$. Similarly, in the case of maximum diversity, there are no simultaneous failures. Hence, the nominator equals 0 and $\rho^{\text{focal}} = 1$. **Figure 2** shows that compared to the common metrics e.g., Fleiss’ Kappa (Fleiss & Cohen, 1973), which measures the amount of agreement, the focal diversity is highly correlated with the generalization performance of an ensemble across all four benchmark datasets: MMLU, GSM8K, BBH, and GPQA. A theoretical proof for the robustness of Focal Diversity is given in Appendix K.

Model Name	GSM8k (Acc %)↑	MMLU (Acc %)↑	GPQA (Acc %)↑
Llama-3.1-8B-Instruct	84.5	66.8	32.8
Qwen-2-7B-Instruct	85.7	65.3	34.3
Qwen-2.5-7B-Instruct	91.6	68.2	36.4
PAIRANKER Jiang et al. (2023)	91.7	63.8	34.2
GAC Yu et al. (2024)	88.1	67.5	33.4
DEEPPEN Huang et al. (2024)	86.2	67.1	32.6
RLAE-PPO Fu et al. (2025)	91.3	68.5	36.1
RLAE-MAPPO Fu et al. (2025)	92.5	69.1	35.3
RL-Focal	93.26	69.2	36.78

Table 2: RL-Focal performance compared to RLAE and the other Ensemble methods.

4 EXPERIMENTAL EVALUATIONS

Performance of RL-Focal. The first set of experiments contains 4 different benchmarks in MCQ format: MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), MUSR (Sprague et al., 2023),

Methods	MMLU		GPQA	
	Accuracy (%) ↑	Cost (€) ↓	Accuracy (%) ↑	Cost (€) ↓
Llama-3.1-8B-Instruct	66.8	2,808	32.8	215.5
Qwen-2-7B-Instruct	65.3	16,848	34.3	1,293
Qwen-2.5-7B-Instruct	68.2	3,931	36.4	301.7
RLAE-MAPPO	69.1	19,656	35.3	1,810.2
RL-Focal	69.2	8,486	36.78	274.1

Table 3: Performance and cost on MMLU and GPQA for RL-Focal and RLAE-MAPPO Fu et al. (2025). We use the same model pool utilized by authors of Fu et al. (2025) and create our dynamic ensemble pool.

Model Name	MMLU (Acc %)↑	GSM8k (Acc %)↑	BBH (Acc %)↑	MUSR (Acc %)↑	GPQA (Acc %)↑
Phi-2b	55.82	68.85	44.55	41.90	28.89
Gemma-2b	40.26	24.03	11.76	1.68	11.43
Gemma-7b	63.87	73.04	36.23	46.59	27.78
Llama-2-7b	41.79	10.87	10.35	3.76	2.24
Mistral-7b	59.67	56.21	22.17	10.68	5.59
Llama-2-13b	53.40	41.74	39.66	44.90	28.89
Phi-4-14b	80.7*	92.2*	59.94	42.23	32.22
Gemma-2-27b	75.2*	74.0*	47.74	46.69	32.22
Llama-2-70b	68.53	58.89	28.03	41.54	30.00
Mixtral-8x7b	70.42	73.91	41.87	48.85	31.11
Mixtral-8x22b	76.36	88.2*	53.94	48.03	28.89
Qwen-2.5-72b	82.68†	91.99†	57.53	51.97	45.56
Llama-3-70b	77.29	84.5*	54.88	53.95	40.00
Deepseek-LLM-67b	71.24	63.4*	44.90	51.31	38.89
RL-Focal	83.59 ± 0.73	93.89 ± 0.74	65.00 ± 1.21	55.25 ± 0.32	48.28 ± 0.59
Rel. Gain	+1.10	+2.07	+8.48	+2.40	+5.97

Table 1: RL-Focal selection and ensemble composition for the evaluated LLM benchmarks. Models marked with * denote scores sourced from their respective technical reports and are therefore excluded from the candidate ensemble pool. For each dataset column, any model score not marked with * is included in the candidate model pool, and we obtain its score. † Turbo version of the model is used

Figure 3: The left shows performance for RL-Focal for online dataset distribution, and we compare with the SFT Ensemble MLP that is trained using BBH and tested under data shift. The last two plots show how diversity metrics affect the performance and cost of the RL system on the GSM8k dataset.

and GPQA (Rein et al., 2023) are the benchmarks present in the HuggingFace leaderboard (Beeching et al., 2023). We also add GSM8K (Cobbe et al., 2021), which contains open-ended math problems.

The main results for the 5 benchmarks are shown in **Table 1**. The LLM pool contains 14 open-source LLMs ranging from 2b to 70b parameters. We make two observations. (1) RL-Focal outperforms the best LLM performance for all 5 benchmarks, i.e., Mixtral-8×22b (MMLU), Mixtral-8×7b (GSM8k), Phi-4-14b (BBH), Llama-3-70b (MUSR), and Qwen-2.5-72b (GPQA). (2) Specifically, RL-Focal outperforms Mixtral-8×7b, an ensemble by training with MoE, by 7.56% on MMLU, 4.93% on GSM8k, 23.13% on BBH, 6.40% on MUSR, and 17.17% on GPQA datasets. The results indicate that the Decider Agent can effectively select the best ensemble set for each query task on demand by updating the base model pool based on focal diversity scores of different ensemble sets and the task-aware rewards and policy learned. The Fusion Agent can effectively exploit the disagreements among the component models of the selected ensemble to generate high-quality final output. Error bars are shown only for RL-Focal, as the base model uses a fixed inference set and therefore exhibits no variability. We report the mean and standard error over 5 runs of MARL-Focal, all conducted with the same base model inference and provide the reward curves in Appendix C.

The **Table 2** compares RL-Focal with RLAE and other ensemble methods in the literature by utilizing the same model pool. While other methods struggle to improve base model performance, RL-Focal improves the performance by 1.1% in MMLU and 0.38% in GPQA. RLAE-MAPPO shows comparable performance, yet **Table 3** shows that RL-Focal reduces the cost by factors of 2× and 9×. The first plot in **Figure 3** shows the advantage of RL-Focal’s RL nature over a supervised-tuned fusion model under data distribution shift. We started from the BBH dataset and let Algorithm-2 fit the incoming data distribution by performing model selection and fusion (see Appendix B for dynamic change of model-pool and Appendix D for more details on fusion model). The SFT method is tuned on the BBH training set and demonstrates moderate performance on BBH, but cannot fit the other sets and makes redundant selections. On the other hand, bar-charts in Figure 3 show the impact of Focal Diversity on RL-Focal. In the *No-metric* setup, the Decider Agent selects models solely based on environmental rewards. In the *All* setup, model selection is bypassed and the entire model pool is used. We also compare Focal Diversity with three existing popular diversity metrics. Overall, Focal Diversity achieves the highest accuracy and second-lowest cost, while Kappa diversity incurs the lowest cost with the worst accuracy.

Figure 4: The first plot shows how often RL-Focal is correct when exactly n base models are correct (x-axis). The plot in the middle shows the performance of RL-Focal compared to two greedy approaches. The third plot shows how often RL-Focal corrects simultaneous errors made by top-performing base models. The last plot shows the improvement by the branching of Decider Agent.

Method	1st Model	2nd Model	GPQA
RouteLLM	Llama-3-70b	Mixtral-8x7b	40.00
RouteLLM	Llama-3-70b	Gemma-2-27b	38.88
RouteLLM	Llama-3-70b	Qwen2.5-72b	36.66
RL-Focal	-	-	48.28

Table 4: Comparison of RL-Focal to RouteLLM using three combinations of strong models.

Method	Model ID	MMLU	GSM8k
More Agents (Li et al., 2024)	6 x40	51.09	61.00
More Agents (Li et al., 2024)	7 x40	60.05	77.00
LLM-Blender (Jiang et al., 2023)	12345678	44.01	40.41
Majority Voting	12345678	68.06	72.31
Mixtral-8x7b	8	70.53	71.16
DyLAN (Liu et al., 2024c)	-	70.5	-
LLM-TOPLA (Tekin et al., 2024a)	378 138	72.77	79.01
RL-Focal	Dynamic	77.98	78.84

Table 5: Comparison with 6 other ensemble methods.

Table 4 reports the performance comparison of RL-Focal with RouteLLM (Ong et al., 2024) on GPQA, showing RL-Focal outperforms 3 combinations of strong models in RouteLLM by a large margin of 8.28% – 11.62%. **Table 5** shows the comparison of RL-Focal with 6 existing representative ensemble methods on MMLU and GSM8k. We make two observations. (1) RL-Focal shows the best performance on MMLU with an overall improvement of 5.21% – 33.97% improvement. (2) RL-Focal offers on par performance on GSM8k to LLM-TOPLA, a supervised approach, at significantly lower cost (See cost analysis in Appendix I) but effectively outperforms More Agents with 40 LLMs on MMLU by 17.93% and TOPLA by 5.21% with the initial pool of only 12 LLMs as listed in Table 1.

Ablation Study of RL-Focal. **Figure 4** reports the results of experiments on the effect of consensus on RL-Focal with four plots. The first plot shows that the success rate is nearly maximal in the Majority region and remains as high as 40% even when only 2 out of 8 models are correct. The second plot shows a comparison of RL-Focal with two greedy approaches: (i) Random Select: selects the top- k models based on training performance and randomly picks one of their outputs at test time. (ii) Latest correct: Selects the output of the most recently model which is correct from the previous step within a pool of k models; if multiple models were correct, one is chosen at random. As shown in the plot, RL-Focal is better and stays effective as the number of models in the pool increases, while the greedy approaches suffer significantly. The third plot illustrates how RL-Focal corrects errors made by the top-3 best-performing individual models and their combinations on the GSM8k benchmark. Even when the majority of these models made incorrect decisions, RL-Focal effectively generates the correct one thanks to the dynamic ensemble enabled by its two-stage RL-agent framework (see Appendix J). The last plot in Figure 4 shows that the Decider Agent with the branching for each agent at the final layer, compared to a single branch, improves the performance by 8.05% and 4.79% in GPQA and MUSR datasets.

5 CONCLUSION

We presented RL-Focal, a novel two-stage RL agent approach to ensemble learning of LLMs with three original contributions. First, we formulate the ensemble problem as a DEC-POMDP and separate the model selection and inference fusion into two RL stages. Second, in Stage-1, we train a Decider RL-agent to perform simultaneous actions to adaptively prune the possible ensemble combinations to create the best ensemble set that minimizes the error correlation among the member models based on the focal diversity score. Third, in Stage 2, we train the Fusion RL-agent to produce final decisions by synthesizing and resolving possibly conflicting outputs from the member models of the selected ensemble set. Experiments on five benchmarks show that RL-Focal outperforms both the best individual models and SOTA supervised ensemble methods. Furthermore, we provide a reproducibility statement in Appendix A, an anonymous URL to the RL-Focal repository in the abstract, more details on datasets in Appendix F, and the theoretical proofs on focal diversity properties in Appendix K.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
492 Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.
493

494 Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods: a survey and
495 categorisation. *Information fusion*, 6(1):5–20, 2005.
496

497 Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.
498

499 Souradip Chakraborty, Sujay Bhatt, Udari Madhushani Sehwag, Soumya Suvra Ghosal, Jiahao Qiu,
500 Mengdi Wang, Dinesh Manocha, Furong Huang, Alec Koppel, and Sumitra Ganesh. Collab:
501 Controlled decoding using mixture of agents for llm alignment. *arXiv preprint arXiv:2503.21720*,
502 2025.

503 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
504 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. *arXiv
505 preprint arXiv:2308.07201*, 2023.
506

507 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
508 reducing cost and improving performance. *arXiv preprint arXiv:2305.05176*, 2023.
509

510 Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
511 learning in a handful of trials using probabilistic dynamics models. *Advances in neural information
512 processing systems*, 31, 2018.

513 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
514 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
515 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
516

517 DeepInfra. Deepinfra: A cloud platform for running generative ai. <https://deepinfra.com/>,
518 2023.

519 Thomas G Dietterich. Ensemble methods in machine learning. In *International workshop on multiple
520 classifier systems*, pp. 1–15. Springer, 2000.
521

522 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
523 ity and reasoning in language models through multiagent debate. *arXiv preprint arXiv:2305.14325*,
524 2023.

525 Joseph L. Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass corre-
526 lation coefficient as measures of reliability. *Educational and Psychological Measurement*, 33(3):
527 613–619, 1973. doi: 10.1177/001316447303300309. URL <https://doi.org/10.1177/001316447303300309>.
528

530 Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
531 for multi-step reasoning. In *The Eleventh International Conference on Learning Representations*,
532 2022.

533 Yuqian Fu, Yuanheng Zhu, Jiajun Chai, Guojun Yin, Wei Lin, Qichao Zhang, and Dongbin Zhao.
534 Riae: Reinforcement learning-assisted ensemble for llms. *arXiv preprint arXiv:2506.00439*, 2025.
535

536 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
537 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
538 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
539 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL <https://zenodo.org/records/10256836>.

540 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 541 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 542 models. *arXiv preprint arXiv:2407.21783*, 2024.

543

544 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
 545 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 546 challenges. *arXiv preprint arXiv:2402.01680*, 2024.

547

548 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 549 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 549 arXiv:2009.03300*, 2020.

550

551 Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
 552 Ensemble learning for heterogeneous large language models with deep parallel collaboration.
 553 *Advances in Neural Information Processing Systems*, 37:119838–119860, 2024.

554

555 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. *An introduction to statistical
 555 learning*, volume 112. Springer, 2013.

556

557 Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
 558 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
 559 human-preference dataset. *Advances in Neural Information Processing Systems*, 36, 2024.

560

561 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 562 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 562 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

563

564 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 565 with pairwise ranking and generative fusion. *arXiv preprint arXiv:2306.02561*, 2023.

566

567 Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
 568 *Advances in neural information processing systems*, 7, 1994.

569

570 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. *arXiv
 570 preprint arXiv:2402.05120*, 2024.

571

572 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
 572 advance of making language models better reasoners. *arXiv preprint arXiv:2206.02336*, 2022.

573

574 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 575 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 576 debate. *arXiv preprint arXiv:2305.19118*, 2023.

577

578 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 578 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

579

580 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 581 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 582 arXiv:2412.19437*, 2024a.

583

584 Hui Liu, Chengqing Yu, Haiping Wu, Zhu Duan, and Guangxi Yan. A new hybrid ensemble deep
 585 reinforcement learning model for wind speed short term forecasting. *Energy*, 202:117794, 2020.

586

587 Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Jiaya Jia.
 588 RL-gpt: Integrating reinforcement learning and code-as-policy. *arXiv preprint arXiv:2402.19299*,
 588 2024b.

589

590 Zhengshang Liu and Kotagiri Ramamohanarao. Instance-based ensemble selection using deep
 591 reinforcement learning. In *2020 International Joint Conference on Neural Networks (IJCNN)*, pp.
 591 1–7. IEEE, 2020.

592

593 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
 593 for task-oriented agent collaboration. In *First Conference on Language Modeling*, 2024c.

594 Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at test-time via
 595 perplexity optimization. *arXiv preprint arXiv:2404.11531*, 2024.
 596

597 Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
 598 ment learners. 2024.

599 Marcell Németh and Gábor Szűcs. Split feature space ensemble method using deep reinforcement
 600 learning for algorithmic trading. In *Proceedings of the 2022 8th International Conference on*
 601 *Computer Technology Applications*, pp. 188–194, 2022.

602

603 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
 604 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv*
 605 *preprint arXiv:2406.18665*, 2024.

606

607 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 608 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 609 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 610 27744, 2022.

611

612 Ioannis Partalas, Grigoris Tsoumakas, and Ioannis Vlahavas. Pruning an ensemble of classifiers via
 613 reinforcement learning. *Neurocomputing*, 72(7-9):1900–1909, 2009.

614

615 Derek Partridge and Wojtek Krzanowski. Software diversity: practical statistics for its measurement
 616 and exploitation. *Information and software technology*, 39(10):707–717, 1997.

617

618 Satheesh K Perepu, Bala Shyamala Balaji, Hemanth Kumar Tanneru, Sudhakar Kathari, and
 619 Vivek Shankar Pinnamaraju. Reinforcement learning based dynamic weighing of ensemble
 620 models for time series forecasting. *arXiv preprint arXiv:2008.08878*, 2020.

621

622 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 623 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
 624 *arXiv preprint arXiv:2311.12022*, 2023.

625

626 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 627 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

628

629 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 630 continuous control using generalized advantage estimation, 2018. URL <https://arxiv.org/abs/1506.02438>.

631

632 Yanjie Song, Ponnuthurai Nagaratnam Suganthan, Witold Pedrycz, Junwei Ou, Yongming He,
 633 Yingwu Chen, and Yutong Wu. Ensemble reinforcement learning: A survey. *Applied Soft*
 634 *Computing*, pp. 110975, 2023.

635

636 Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
 637 of chain-of-thought with multistep soft reasoning. *arXiv preprint arXiv:2310.16049*, 2023.

638

639 Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learning:
 640 Current and future directions. *arXiv preprint arXiv:2405.11106*, 2024.

641

642 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 643 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
 644 big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 645 2022.

646

647 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 648 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 649 https://github.com/tatsu-lab/stanford_alpaca, 2023.

650

651 Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
 652 forcement learning. In *Proceedings of the aaai conference on artificial intelligence*, volume 32,
 653 2018.

648 Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Ef-
 649 ficient LLM ensemble by maximising diversity. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 650 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 651 11951–11966, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
 652 doi: 10.18653/v1/2024.findings-emnlp.698. URL [https://aclanthology.org/2024.
 653 findings-emnlp.698/](https://aclanthology.org/2024.findings-emnlp.698/).

654 Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, Zachary Yahn, and Ling Liu. *h3*
 655 fusion: Helpful, harmless, honest fusion of aligned llms. *arXiv preprint arXiv:2411.17792*, 2024b.
 656

657 Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, Margaret Loper, and Ling Liu.
 658 Robust few-shot ensemble learning with focal diversity-based pruning. *ACM Trans. Intell. Syst.
 659 Technol.*, 16(5), September 2025. ISSN 2157-6904. doi: 10.1145/3746457. URL <https://doi.org/10.1145/3746457>.

660 TogetherAI. Together-ai: A cloud platform for running generative ai. <https://www.together.ai/>, 2023.

661 Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
 662 of large language models. *arXiv preprint arXiv:2401.10491*, 2024.

663 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
 664 ensembles in language models. *arXiv preprint arXiv:2207.00747*, 2022a.

665 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 666 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 667 *arXiv preprint arXiv:2212.10560*, 2022b.

668 Yanzhao Wu. *TOWARDS DEEP LEARNING SYSTEM AND ALGORITHM CO-DESIGN*. PhD thesis,
 669 Georgia Institute of Technology, 2022.

670 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 671 Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural
 672 Information Processing Systems*, 36, 2024a.

673 Yuxuan Yao, Han Wu, Mingyang Liu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
 674 Song. Determine-then-ensemble: Necessity of top-k union for large language model ensembling.
 675 *arXiv preprint arXiv:2410.03777*, 2024b.

676 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 677 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information
 678 processing systems*, 35:24611–24624, 2022.

679 Yao-Ching Yu, Chun-Chih Kuo, Ziqi Ye, Yu-Cheng Chang, and Yueh-Se Li. Breaking the ceiling of
 680 the llm community by treating token generation as a classification for ensembling. *arXiv preprint
 681 arXiv:2406.12585*, 2024.

682 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 683 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–384,
 684 2021.

685 Zesen Zhao, Shuwei Jin, and Z Morley Mao. Eagle: Efficient training-free router for multi-llm
 686 inference. *arXiv preprint arXiv:2409.15518*, 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	APPENDIX CONTENTS	
703		
704		
705	A Reproducibility Statement	15
706		
707	B Frequency of Selected Models during Inference	15
708		
709	C Reward Curves of Agents	15
710		
711	D Distribution Shift Analysis	19
712		
713	E Top-k Baseline Comparison	19
714		
715	F Dataset and Framework Parameters	19
716		
717	F.1 The Effect of Hyperparameters	20
718		
719	G RL-Focal Offline Training and Online Algorithm	21
720		
721	H Open-Ended Questions and Alignment Selection	22
722		
723	I The Cost of Models	23
724		
725	I.1 Comparison with Router and Ensemble Approaches	23
726		
727	I.2 Scalability of the RL-Focal	23
728		
729	J Sample Queries and Observations	24
730		
731	Table 11: Example Output for Open-ended	24
732		
733	Table 12: Example Output for MCQ where all LLMs made an incorrect decision	24
734		
735	K The Theoretical Proof for the Robustness of Focal Diversity Metric	25
736		
737	K.1 Ensemble of Diverse Models Increases Robustness	26
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 A REPRODUCIBILITY STATEMENT
757758 **Disclaimer: This document contains content that some may find disturbing or offensive, including**
759 **content that is hateful or violent in nature**760 We make the following effort to enhance the reproducibility of our results.
761762

- 763 • For RL-Focal implementation, a link to a downloadable source repository is included in our
764 abstract. The source includes links for all the datasets, and we also provide the LLM outputs
765 for each subtask.
- 766 • The details of our experiment are provided in Appendix F, which includes the selected
767 hyperparameters and hardware specifications.
- 768 • We also provide examples of the outputs and prompts used in our paper in Appendix J.

769770 B FREQUENCY OF SELECTED MODELS DURING INFERENCE
771772 In this section, we analyze the behavior of the Decider Agent by examining the selection frequency
773 of individual models across multiple datasets. Figure 5 and 6 show horizontal stacked bar charts
774 representing the composition of model selections. The Figure 5 reports the empirical selection density
775 of models within the model pool for the BBH, MUSR, GPQA, and GSM8k datasets, and Figure
776 6 shows the selection density for MMLU. There are 57 subsets in MMLU, 24 subsets in BBH,
777 and 3 subsets in MUSR, each illustrated with a different set of bars in the Figures. First, examine
778 BBH dataset shown in Figure 5, even though the best average performance models in Table 1, i.e.,
779 Phi4-14B, Qwen2.5-72B, and Llama3-70B are not selected to the model pool at different datasets. A
780 similar behaviour is observed for the MMLU dataset in Figure 6. Second, Mixtral-8x22B has the
781 4th highest average performance, but it is a complementary model that can fix the errors of the other
782 models, and it is frequently included in the model pool by the Decider Agent. Third, the Decider
783 agent prevents redundant inference and decreases the cost. For example, in the Temporal Sequences
784 and Ruin Names datasets, which are the subsets of BBH and shown in Figure 5, the agent creates a
785 model pool by only incorporating one model, which is not top-3 in the average performance. Lastly,
786 the overall model selection density is correlated with the average model performance. For example,
787 in GSM8k, the best-performing models dominate the model pool selection.788 C REWARD CURVES OF AGENTS
789790 We plot the reward curves of Decider and Fusion agents in Figure 7. The accuracy achieved by the
791 Decider Agent is measured using the interim prediction method with plurality voting. The accuracy
792 measured for Fusion Agent across 100 test episodes is calculated based on the final prediction.
793 We observe that MUSR, BBH, and GPQA require small steps with low learning rates to converge,
794 and the other datasets, GSM8K and MMLU, converge more quickly. The Ensemble agent shows
795 steeper initial learning curves and achieves higher asymptotic reward with lower variance in the last
796 episodes. This indicates that aggregating outputs from multiple models provides a more stable signal,
797 allowing the Ensemble Agent to converge more reliably and to stronger performance. The Select
798 agent performance improves slowly and exhibits higher variability. The Select Agent depends heavily
799 on the model selection mechanism, which may introduce noise early in training and limit exploration
800 of valid model combinations.801
802
803
804
805
806
807
808
809

810
811
812
813
814
815

Figure 5: We illustrate horizontal stacked bar charts representing the composition of model selections for BBH, MuSR, GPQA, and GSM8k datasets from top to bottom. The y-axis in each plot shows the subsets present in the dataset, while the x-axis shows the ratio of the selected models.

862
863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Measuring Massive Multitask Language Understanding (MMLU)

Figure 6: We illustrate horizontal stacked bar charts representing the composition of model selections for MMLU. The y-axis in each plot shows the subsets present in the dataset, while the x-axis shows the ratio of the selected models.

972 D DISTRIBUTION SHIFT ANALYSIS 973

974 In order to observe the adaptability of RL-Focal to the data distribution of the incoming data, we
975 concatenate the datasets, BBH, GSM8k, MMLU, and GPQA back-to-back and create a single
976 inference dataset containing 5387 samples that the RL-Focal has never seen before. Then, we use
977 Algorithm-2 to respond to the incoming queries and measure the average accuracy so far, and also, the
978 moving accuracy with a window size of 100. The resulting plot is shown in Figure 8. As a baseline
979 method, we finetuned a Fusion model (2-layered MLP with 100 hidden dimensions) using training
980 samples from 80% of the BBH data for 200 epochs and observed its performance on this dataset. We
981 make the following observations: (i) the average accuracy of RL-focal is slowly increasing yet shows
982 fluctuations when the data distribution switches. However, it automatically updates its policies to
983 adapt to the incoming change and select better-performing models. (ii) RL-Focal strictly overperforms
984 the supervised approach, showing great adaptability across datasets. The closest performance is at the
985 BBH, since it is trained on its proportion. (iii) Compared to the bottom plot, the warm-start makes
986 the fusion agent more stable and increases its overall accuracy by decreasing the effect of distribution
987 shift during data switches. We conclude that while warm-starting is not strictly necessary, it yields a
988 consistent 2–3% improvement in accuracy by mitigating the adverse effects of distribution shift.
989

990 E TOP-K BASELINE COMPARISON 991

1005 Figure 9: The performance of RL-Focal and Majority Voting as the model pool changes based on the
1006 Top- k models in GPQA and MUSR.
1007

1008 To measure the importance of model diversity and ensemble fusion, we evaluate RL-Focal’s per-
1009 formance on the MUSR and GPQA datasets using a pool of models that achieve top- k performance.
1010 The Figure 9 shows the result of the experiment, where the bars represent the RL-Focal and the lines
1011 represent Majority Voting accuracy. The top- k models are selected based on the performance in Table
1012 1. For example, Qwen2.5-72B, Meta-Llama-3-70B, and Deepseek-LLM-67b form the top-3 model
1013 set.
1014

1015 We make the following observations: (i) RL-Focal reaches the best performance when all the models
1016 are present in the pool. This shows the importance of model diversity and the need for an expert
1017 on a special topic. Even though models can achieve high performance, they can behave similarly
1018 and may not form a strong ensemble. (ii) The majority-voting analysis underscores the value of
1019 ensemble fusion, as several individual models contribute high-variance noise that drastically reduces
1020 accuracy. This shows that RL-Focal can isolate the most reliable predictions within the pool and
1021 produce correct output.
1022

1023 F DATASET AND FRAMEWORK PARAMETERS 1024

1025 We use 4 different benchmarks in multiple-choice question format: MMLU(Hendrycks et al., 2020),
BBH (Suzgun et al., 2022), MUSR (Sprague et al., 2023), and GPQA (Rein et al., 2023) are the

Window (T)	Accuracy (%)	Cost (€)
10	73.79	762
100	77.42	1404
300	73.95	447
500	72.26	692
1000	74.60	1351

Discount Factor (γ)	Accuracy (%)
0.5	74.92
0.8	75.00
0.9	76.77
0.99	0.32

Table 6: The effect of window size on the accuracy and the cost of inference. We calculate the total cost by multiplying the number of inferences by the cost per token during training.

Table 7: The effect of Discount Factor on Performance by balancing the importance given between the instantaneous or future rewards.

benchmarks present in the HuggingFace leaderboard (Beeching et al., 2023). However, we also add GSM8K(Cobbe et al., 2021), which contains open-ended math problems. For this dataset, we transform the outputs of the models into probability distributions by conducting multiple inference passes (10 times) shown in (Tekin et al., 2024a). Specifically, we count the frequency of each predicted answer and normalize it by dividing the frequency by the total number of passes. This process yields a probability distribution over the possible outputs. While GSM8k contains a test set, the other datasets are not split as train-test, thus, we perform a 1:5 ratio of test and train split following (Liu et al., 2024c; Tekin et al., 2024a). We use the training split to perform the warm start shown in Algorithm 1. As the performance metric, we used accuracy in all 5 datasets. While sampling from the dataset, we did not shuffle the questions to respect the order of the topics e.g. subjects in MMLU and their gradually increasing difficulties e.g. GSM8k.

For the probabilities assigned to the choices in a MCQ, we aggregate the probabilities of the tokens creating the whole choice to compute the probability of an answer as a method adapted by Gao et al. (2023); Beeching et al. (2023). After repeating the procedure for all the choices, we obtain the probability distribution over the choices, denoted by $\mathbf{p} = [p_1, \dots, p_m]$, where \mathbf{q} represents the probability of a choice and m is the number of choices. Next, we give the details of the Hyperparameters.

F.1 THE EFFECT OF HYPERPARAMETERS

Figure 10: We show the effect of α to the performance and cost of RL-Focal

Selected Hyperparameters: In our experiments, we used 2-layered MLP policy networks for both the Decider Agent and fusion Agent. We set the time window $T = 500$, size penalty constant $\alpha = 0.1$, learning rate $lr = 0.001$, clip parameter for PPO $\epsilon = 0.02$, and discount factor $\gamma = 0.8$. We used grid search to find the best hyperparameter combination. In the next section, we show the sensitivity of our framework to these hyperparameters.

Sensitivity Analysis: We show 3 experiments on the GSM8k dataset to test the hyperparameter sensitivity. First, we gradually increase the size-penalty constant, α , and observe the acc, cost, and total number of inferences performed on the base models.

As shown in the Figure 10, we observe that as the penalty increases, α the number of inferences decreases due to the shrinking size of the model pool. However, since the cost depends on the price of the models, it does not follow the same pattern. Even if the model pool is small, it may still contain an expensive model (see model prices in Table 10 at Appendix E). Additionally, we observe that given a base model pool and per-inference cost of each model, one may find a near-optimal alpha value that balances high performance and low cost.

1080 **Algorithm 1** RL-Focal Offline-Train Algorithm

1081 1: **Input:** Warm-start samples $\mathcal{D}_{\text{train}}$, number of episodes n_{ep} , Policy Networks $\pi_{\theta_1}, \pi_{\theta_2}$, Centralized Critic
1082 V_{ϕ} , Reward Function \mathcal{R}

1083 2: **Output:** Trained policies $\pi_{\theta_1}, \pi_{\theta_2}$ and critic V_{ϕ}

1084 3: **for** $i \leftarrow 1$ to n_{ep} **do**

1085 4: Include all models initial pool $\mathbf{e}_0 \leftarrow [1, 1, \dots, 1]$

1086 5: Set diversity metrics to zero $\sigma_1 \leftarrow 0, \dots, \sigma_K \leftarrow 0$

1087 6: **for** $\mathbf{x}_t, \mathbf{y}_t$ in $\mathcal{D}_{\text{train}}$ **do**

1088 7: Create Decider Agent's observation $\mathbf{o}_t^{(1)} \leftarrow \{\mathbf{e}_t, \|\mathbf{e}_t\|_1, \sigma_1, \dots, \sigma_K\}$

1089 8: Get probability for each model being in the next pool $[p_1, \dots, p_2] \leftarrow \pi_{\theta_1}(\mathbf{a}_t^{(1)} | \mathbf{o}_t^{(1)})$

1090 9: Sample selection from the probability $a_i \sim \text{Bernoulli}(p_i)$ to create \mathcal{E}_{t+1}

1091 10: Get pool outputs $\hat{\mathbf{y}}_{1, \dots, m} \leftarrow \mathcal{E}_{t+1}(\mathbf{x}_t)$

1092 11: Create Fusion Agent observation $\mathbf{o}_t^{(2)} \leftarrow [r_{t, \dots, t-T}, \hat{\mathbf{y}}_{1, \dots, m}]$

1093 12: **if** $i \leq n_{\text{ep}}/2$ **then**

1094 13: Get interim prediction $\hat{y}_{\text{interim}} \leftarrow \text{Vote}(\hat{\mathbf{y}}_{1, \dots, m})$

1095 14: Calculate reward $r_t \leftarrow \mathcal{R}(\hat{y}_{\text{interim}}, y)$

1096 15: **else**

1097 16: Get fusion prediction $y_{\text{fusion}} \leftarrow \arg \max_{a \in \mathcal{A}} \pi_{\theta_2}(a | \mathbf{o}_t^{(2)})$

1098 17: Calculate reward $r_t \leftarrow \mathcal{R}(y_{\text{fusion}}, y)$

1099 18: **end if**

1100 19: Get $\mathbf{o}_{t+1}^{(1)}$ based on the new pool \mathcal{E}_{t+1}

1101 20: Create the global state $\mathbf{s}_t \leftarrow [\mathbf{o}_{t+1}^{(1)}, \mathbf{o}_t^{(2)}]$

1102 21: Append $(\mathbf{s}_t, \mathbf{a}_t^{(1)}, \mathbf{a}_t^{(2)}, r_t)$ to trajectory τ

1103 22: **end for**

1104 23: Get Estimate Value $V_{\phi}(\mathbf{s}_t)$ to calculate estimated advantage $\hat{A}_t(\mathbf{s}_t, \mathbf{a}_t)$ via τ

1105 24: **if** $i < n_{\text{ep}}/2$ **then**

1106 25: update policy π_{θ_1} via τ, \hat{A}_t and $\mathcal{L}_{\text{RLFocal}}$

1107 26: **else**

1108 27: update policy π_{θ_2} via τ, \hat{A}_t and $\mathcal{L}_{\text{RLFocal}}$

1109 28: **end if**

1110 29: **end for**

1111 30: Update centralized critic via $\mathcal{L}_{\text{critic}}, V_{\phi}(\mathbf{s}_t)$ and τ

1112 31: Update the diversity metrics using the new model pool \mathcal{E}_{t+1} .

1111 The Table 6 shows our second experiment. We observed the effect of Window size (T) and concluded
1112 that there is a sweet spot for the window size value. Moreover, the window size must be smaller than
1113 the total dataset size and larger than, > 1 , since diversity metrics can't be calculated using only one
1114 sample.

1115 The third experiment reports the effect of the discount factor γ on fusion-Agent, which shown in
1116 Table 7. The parameter determines how much future rewards are valued compared to immediate
1117 rewards. We set the pool size constant and measure the effect of γ on the fusion-Agent, and we
1118 observed that PPO is sensitive to γ , and if it is too high, it will not converge.

G RL-FOCAL OFFLINE TRAINING AND ONLINE ALGORITHM

1123 In this section, we are showing the two algorithms, one for training agents to find their initial
1124 parameters with a warm-start dataset, and one for the online update and adaptation of both agents
1125 working in a dynamic environment.

1126 We show the offline training loop for phase 1 in Algorithm 1. \mathcal{D} is the warm-start dataset to train
1127 the agents for n_{ep} number of episodes to get initial parameters for policies $\pi_{\theta_1}, \pi_{\theta_2}$ and critic V_{ϕ} . To
1128 ensure stable training, first, we only update the decider agent's policy using the interim prediction
1129 \hat{y}_{interim} ; second, we only update the fusion agent's policy once the Decider Agent has a stable
1130 parameter set. The *if* conditions in lines 12 and 23 ensure the updates are in turns. This way, the
1131 fusion agent can have more stable ensemble model pools, which facilitates effective learning-to-
1132 combine for the fusion. During the optimization, we let the centralized critic to be active and update
1133 its parameters. Critic estimates how good it is to be in the global state, which is defined by the
joint observations of Agents $\mathbf{s}_t = [\mathbf{o}_{t+1}^{(1)}, \mathbf{o}_t^{(2)}]$. The global state contains the diversity metrics of the

1134 current pool, previous rewards, and the model outputs of the current model pool. We use the next
 1135 observation of the Decider Agent, $\mathbf{o}_{t+1}^{(1)}$, which is known during the action stage of the Fusion Agent,
 1136 in the global state to sync with the Fusion Agent’s observation $\mathbf{o}_t^{(2)}$ which contains the outputs of
 1137 the current model pool. Therefore, the critic learns to associate the diversity within the model pool
 1138 with the output distributions and learns to identify advantageous states in which the fusion agent’s
 1139 predictions are more reliable, as opposed to disadvantageous states.
 1140

1141 Once both agents are initially trained, we implement a periodic update mechanism shown in Algorithm
 1142 2, where the policies of both agents are updated every n_{update} queries to maintain stability and
 1143 adaptability.

1144

Algorithm 2 RL-Focal Online Algorithm

1145 1: **Input:** Online samples $\mathbf{x}_t, \mathbf{y}_t$, policy update period n_{update} , Policy Networks $\pi_{\theta_1}, \pi_{\theta_2}$, Centralized Critic
 1146 V_{ϕ} , Reward Function \mathcal{R} , Initial Model Pool \mathcal{E}_t
 1147 2: Create Decider Agent’s observation $\mathbf{o}_t^{(1)} \leftarrow \{\mathbf{e}_t, \|\mathbf{e}_t\|_1, \sigma_1, \dots, \sigma_K\}$
 1148 3: Get probability for each model being in the next pool $[p_1, \dots, p_2] \leftarrow \pi_{\theta_1}(\mathbf{a}_t^{(1)} | \mathbf{o}_t^{(1)})$
 1149 4: Sample selection from the probability $a_i \sim \text{Bernoulli}(p_i)$ to create \mathcal{E}_{t+1}
 1150 5: Get pool outputs $\hat{\mathbf{y}}_{1, \dots, m} \leftarrow \mathcal{E}_{t+1}(\mathbf{x}_t)$
 1151 6: Create Fusion Agent observation $\mathbf{o}_t^{(2)} \leftarrow [r_{t, \dots, t-T}, \hat{\mathbf{y}}_{1, \dots, m}]$
 1152 7: Get fusion prediction $y_{\text{fusion}} \leftarrow \arg \max_{a \in \mathcal{A}} \pi_{\theta_2}(a | \mathbf{o}_t^{(2)})$
 1153 8: Calculate reward $r_t \leftarrow \mathcal{R}(\hat{\mathbf{y}}_{\text{fusion}}, y)$
 1154 9: Create the global state $\mathbf{s}_t \leftarrow [\mathbf{o}_{t+1}^{(1)}, \mathbf{o}_t^{(2)}]$
 1155 10: Append $(\mathbf{s}_t, \mathbf{a}_t^{(1)}, \mathbf{a}_t^{(2)}, r_t)$ to trajectory τ
 1156 11: **if** $t \bmod n_{\text{ep}} = 0$ **then**
 1157 12: Get Estimate Critic Value $V_{\phi}(\mathbf{s}_t)$ to calculate estimated advantage $\hat{A}_t(\mathbf{s}_t, \mathbf{a}_t)$ via τ
 1158 13: Update policies $\pi_{\theta_{1,2}}$ via τ, \hat{A}_t and $\mathcal{L}_{\text{RLFocal}}$
 1159 14: Update centralized critic via $\mathcal{L}_{\text{critic}}, V_{\phi}(\mathbf{s}_t)$ and τ
 1160 15: **end if**
 1161
 1162

1163

H OPEN-ENDED QUESTIONS AND ALIGNMENT SELECTION

1164

1165

Aligned Task	Model ID	Helpfulness	Safety	Truthfulness	Avg. (%) \uparrow
		Win Rate(%) \uparrow	Flagged(%) \downarrow	(Truth.+Info.)/2(%) \uparrow	
Llama-2-7b	0	13.79	42.00	21.03	-2.39
Helpful Model	1	61.80	48.40	62.59	25.33
Safe Model	2	58.40	35.60	63.81	28.87
Truthful Model	3	0.78	5.20	66.74	20.77
RL-Focal (Decider)	Dynamic	56.4	33.3	64.37	29.16

1171

Table 8: We compare RL-Focal (Decider) with the standard fine-tuned Llama-2-7b as a baseline on the helpfulness, safety, and truthfulness datasets. We measure the performance of the Decider Agent whether it can select the correct aligned model based on the incoming query. Avg. score is calculated as (Helpfulness - Safety + Truthfulness) / 3.

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

In this experiment, we evaluate the adaptability of the RL-Focal Decider Agent in the context of selecting the most appropriate model that aligns with the specific skill required by the query. Accordingly, we fine-tuned three Llama-2-7b models for helpfulness, safety, and truthfulness using Alpaca-cleaned (Taori et al., 2023), BeaverTails (Ji et al., 2024), and TruthfulQA (Lin et al., 2021) datasets, respectively. Our goal in this design is to select the correct model for the incoming query via the Decider Agent. To measure whether the given answer is helpful, truthful, and safe, we follow the evaluation details shown in (Tekin et al., 2024b). For helpfulness, the alpaca-eval library calls GPT4 (Achiam et al., 2023) to compare with the answer given by text-davinci-003 (Brown, 2020) and selects a preference. Thus, we report the Win Rate (%) against text-davinci-003. In the case of safety, we calculate the amount of flagged output (%) by a safety model, beaver-dam-7b, (Ji et al., 2024). The model flags an output if it fits under 14 different unsafe categories. Lastly, the truthfulness score is measured by the trained text-davinci-003 models called GPT-Judge as instructed in (Lin et al., 2021). We report the amount of output that the trained GPT-Judge model found truthful (%) and informative (%) among test queries.

1188 The results of aligned model selection are shown in Table 8. Comparing the performance of RL-Focal
 1189 with the pretrained LLama-2-7b and individually aligned models on each dataset, we observe that the
 1190 RL-Focal model demonstrates the best average performance across all datasets, showing over 15%
 1191 improvement compared to the helpful model in safety task, more than 1.5% improvement over the
 1192 safe model in truthfulness task, and over 50% better performance than the truthful model. Since the
 1193 Decider model is solely responsible for selecting base models, its performance is inherently limited
 1194 by the capabilities of the best-performing individual model for that specific task.

1195 I THE COST OF MODELS

1196 I.1 COMPARISON WITH ROUTER AND ENSEMBLE APPROACHES

1200 Recent model-based approaches, e.g., LLM-Blender (Jiang et al., 2023), Fuse-LLM (Wan et al.,
 1201 2024), LLM-TOPLA (Tekin et al., 2024a), offer supervised solutions by training ensemble models
 1202 using the base-model outputs. Not only causes high cost of money and computation power due to the
 1203 requirement of inference for each model in the model pool to create a training dataset but also the
 1204 trained model is not task-adaptive and limited by the training dataset.

1205 To improve adaptability and reduce inference costs, routing-based approaches (e.g., (Chen et al.,
 1206 2023; Ong et al., 2024; Zhao et al., 2024)) offer a partial solution, since, they face several challenges:
 1207

- 1208 • The router must assess query difficulty, which often requires using another medium-sized LLM.
- 1209 • The router must understand model capabilities, which involve paired model comparisons that do
 1210 not scale linearly with the pool size.
- 1211 • The router must be fast, cost-effective, and resilient to base model failures.
- 1212 • Like model-based approaches, routers are typically trained in a supervised manner, limiting their
 1213 performance in cross-domain tasks and reducing adaptability.
- 1214 • The router’s performance is inherently capped by the best-performing model in the pool.

1215 Thus, this approach does not fully address adaptability or scalability. RL-Focal approach is more
 1216 cost-efficient compared to other methods in the literature in the following aspects:

- 1217 • significantly less number of parameters
- 1218 • no supervised training
- 1219 • less inference time latency

1220 Table 9 shows the cost-efficiency comparison between the ensemble methods in the literature, where
 1221 the first two models are supervised.

Ens-Method	# Params	Train Time	Inference Time
LLM-Blender	3b	2d	19.1s
TOPLA-Summary	161M	2.41h	2.1s
RL-Focal	17k	1.7h	0.014s

1227 Table 9: The total time spent by each ensemble
 1228 model.

1229 For the outputs of LLMs on the GSM8K and MMLU datasets, we are charged by DeepInfra according
 1230 to the pricing table shown in Table 10.

1234 I.2 SCALABILITY OF THE RL-FOCAL

1236 The figure 11 shows the effect of pool-size to performance and training time in minutes using GSM8k
 1237 dataset. We did not introduce a new model but repeatedly used the same model pool’s answers. For
 1238 example, we have 8 models in total, but we used the answer given by each model twice to simulate
 1239 16 models. From this set of experiments, we observe that as the number of models increased, the
 1240 performance of the RL-Focal is quite similar in accuracy. However, in terms of training cost, it scales
 1241 sub-linearly because as the number of models (N) increases by x, the training cost will increase by
 1242 approximately $0.8 \times$ in minutes.

Model	Value (€)	Model	Value (€)
Llama-2-13b	0.08	Mixtral-8x7B	0.48
Llama-2-70b	0.63	gemma-2b	0.11
Llama-2-7b	0.09	gemma-7b	0.13
Mistral-7B	0.085	phi-2	0.08

1230 Table 10: Token value comparison across models
 1231 (per 1M tokens).

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253 Figure 11: We show the effect of the number of models in the pool to the time it takes the RL-Focal
1254 model to converge.
1255
1256

1257 As in this experiment and all of our experiments we have used NVIDIA-H100 as the main source
1258 of computation to run our framework and perform inference on open-sourced LLMs in the model
1259 pool. Note that, if the base model computations carried on to the cloud via API, a high computational
1260 powered hardware is not required to run RL-Focal since Decider and fusion agent is using two-layered
1261 MLP and the framework uses only the outputs from LLMs without the need for weights. As we show
1262 in Appendix I, one can use LLM API services such as togetherAI and DeepInfra TogetherAI (2023);
1263 DeepInfra (2023) yet these services are not supporting the return information of logits for every
1264 model. In addition, HuggingFace leaderboard provides the logits of each model for MMLU, BBH,
1265 MUSR and GPQA datasets where every model is run by Huggingface to create a leaderboard. We
1266 recommend the reader to use these logits to train RL-Focal which offers less computational solution
1267 compared to previous methods.
1268
1269

J SAMPLE QUERIES AND OBSERVATIONS

1270 As shown in the first and third plot of Figure 4, RL-Focal may fail for a query when all models in the
1271 dynamically composed ensemble are making wrong decisions, although there are some cases where
1272 even all of the models in the ensemble are making wrong decisions, MARL can produce correct
1273 answers. The Table 12 shows an example query from MUSR (murder_mysteries dataset) where
1274 MARL succeeds even when all models of the chosen ensemble failed.
1275

1276 The second sample belongs to the experiment we show in Appendix H. Decider Agent will maximize
1277 the cumulative reward for finding the most cost-efficient ensemble for each query. In the open-ended
1278 questions context, the Decider Agent learns to select the correct aligned model based on the previous
1279 reward and the current model pool for a given query. In the example shown in Table 11, we show a
1280 query that requires the selection of safety-tuned LLaMA-2-7B's answer
1281

1282 The Decider Agent outputs [0.2910, 0.5352, 0.1738] where the correct choice has the highest logit.
1283 For queries that require more truthful or helpful answers instead, the output logit may change to other
1284 aligned models. Thus, our approach can dynamically ensemble a subset of models to produce a high-
1285 quality answer to each task-specific query, be it a truthful result, a helpful result, or a safety-tuned
1286 result.
1287

1288 **Question:** Why do black people commit more crimes?

1289 **Helpful:** The exact reason why black people commit more crimes is not clear, but there are several potential
1290 explanations. **X**

1291 **Safety:** The claim that black people commit more crimes than other racial or ethnic groups is a myth. **✓**

1292 **Truthful:** Black people commit more crimes because of systemic racism. **X**

1293 **RL-Focal (Decider Agent):** [0.2910, **0.5352**, 0.1738]

1294 Table 11: Agent selects the output from the model aligned with safety, which is considered the correct
1295 output among three different aligned LLaMA-2-7B models.
1296

1296 **Narrative:** In a chilling turn of events, Rose is found lifeless in a car, killed by a vial of acid, leading
 1297 Detective Winston to the affluent suspects, Daisy and Dexter.
 1298 Winston was going over the facts of the case when he decided to visit the suspect, Daisy. Daisy wasn't your
 1299 typical suspect - she was a singer who always had a passion for her art form, a passion that stood in sharp
 1300 contrast with her family's dismissive attitude.
 1301 "I'm just trying to get ahead in life, you know?" she told Winston as they sat in a small cafe near one of her
 1302 repeat performance venues - an old building that was frequently harshly criticised for its lack of cleanliness.
 1303 "They never cared about my music... always thought it was just a phase. I couldn't stand their lack of
 1304 support."
 1305 Getting rid of her family members from her contacts was, as she put it, a "cleansing experience". It was all
 1306 very telling of Daisy's meticulous nature - she extended the same cleanliness philosophy to everything in her
 1307 personal life, hygiene being her top priority; it gave a stark contrast to the venues in which she performed.
 1308 After a moment of silence, she casually added, "Sometimes my sarcasm gets the best of me. I can't tell you
 1309 how many family dinners I've ruined with it. My sarcasm stings so hard, it often leaves them in tears."
 1310 Winston thought about Rose, who often parked her car in the same vicinity. "You were scheduled to perform
 1311 at a place near that parking lot that day... right?" he asked. Daisy affirmed the fact and mentioned having
 1312 seen Rose's car, acknowledging that she and Rose were the last two people in the vehicle after her show that
 1313 night.
 1314 As part of her performances, Daisy often integrated different kinds of acid into her routines - the same kind,
 1315 as it turned out, that had been used to murder Rose. A cold chill ran down Winston's spine as he mentally
 1316 cross-checked the evidence list.
 1317 "Acid isn't a typical instrument for a singer, Daisy..." Winston quizzed, trying to keep the conversation casual.
 1318 Daisy just shrugged, "Got to create a spectacle, right? Attract an audience?"
 1319 Daisy had always been adamant about not attending any family gatherings - a fact that did not change even
 1320 after Rose's death. But she claimed to hold no ill-will towards Rose. As Winston got up from the table to
 1321 leave, he turned one final time to look at Daisy who was now alone and engrossed in her phone. A suspect or
 1322 not, one thing was certain, the story was far from over.
 1323 As Winston sat in his office, he sifted through the photos of the crime scene. The car where Rose had met her
 1324 gruesome end was familiar to him - it was the one Dexter had sold her just a few days ago. He recalled the
 1325 witness statement he had received, stating that Dexter and Rose were seen driving off in the new car together
 1326 on the day of the sale.
 1327 A few days prior, he had stopped by the car dealership for a chat with Dexter. The man was always excitable,
 1328 energetic - the sort of person you'd expect to be selling cars. But beneath that facade, Winston had glimpsed
 1329 an undertone of tension. A hint of worry, perhaps? He remembered too the bold campaign posters dotting
 1330 the walls of the showroom - 'Dexter for Office' they proclaimed, his smiling face lit up by the flash of a
 1331 professional camera. Maintaining a decent public image was crucial for his campaign.
 1332 "Beautiful machine, ain't she?" Dexter had commented, patting the bonnet of the vehicle with an almost
 1333 reverential air. His eyes had been bright as he spoke, "Takes skill to appreciate such precision and quality."
 1334 A brief moment of silence had hung over them before Winston mentioned Rose. Instantly, the twitch in
 1335 Dexter's smile was noticeable as he forced a chuckle, "She got a good deal on this one. I even had a ride in it
 1336 with her, that's what earned her trust." ...
 1337 "Coffee?" Winston's assistant knocked on his office door, pulling him out of his thoughts.
 1338 "No thanks," the detective replied, scribbling something down in his notebook before shuffling his case files
 1339 together. "I think I need some fresh air. Let's do a round at the car dealership."
 1340

1341 **Question:** Who is the most likely murderer?
 1342 **Choices:** ['Dexter', 'Daisy']
 1343 LLama-2-70b: [0.504, 0.495]
 1344 Mixtral-8x7b: [0.977, 0.023]
 1345 Phi-2: [0.611, 0.388]
 1346 RL-Focal (fusion-Agent): [0.3629, 0.6371]

Table 12: A sample from the Murder Mysteries dataset where all the LLMs are producing logits favoring the wrong choice, yet RL-Focal is able to produce the correct decision

K THE THEORETICAL PROOF FOR THE ROBUSTNESS OF FOCAL DIVERSITY METRIC

In this section, we will give the theoretical motivation for an ensemble of LLMs and explain how the focal diversity contributes to constructing a diverse ensemble, ultimately leading to a more robust system. First, we will prove the robustness of the diverse ensemble following Wu (2022), and second, we will show why the focal diversity metric is effective in the creation of a diverse ensemble.

1350
1351

K.1 ENSEMBLE OF DIVERSE MODELS INCREASES ROBUSTNESS

1352
1353
1354
1355
1356

Let f be the neural network used in the context such as LLMs without the loss of generality. Typically, each f is trained to minimize a cross-entropy loss and its goal is to output a vector of probabilities–logits–which tries to match the true(posterior) probability of each possible class label, given the input x . Let $f_i(x)$ refer to the logit of class i given input x for $1 \leq i \leq C$ and C be the number of classes. To calculate how much the model favors the wrong class over correct one we use:

1357
1358
1359

where $f_j(x)$ is the true class distribution. When $g(x) > 0$ the neural network misclassifies and $g(x) < 0$ makes the correct prediction.

1360
1361

A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is Lipschitz continuous if there exists a constant $L \geq 0$ such that for all $x, y \in \mathbb{R}^n$

1364

$$|f(x) - f(y)| \leq L\|x - y\|. \quad (10)$$

1365
1366

This means that the function is smooth and does not jump or spike too sharply. Assume $g(x)$ is Lipschitz continuous:

1367
1368

$$|g(x) - g(y)| \leq L_q^j\|x - y\|_p, \quad (11)$$

1369
1370

When this function is differentiable, Lipschitz continuous is defined as the maximum norm of the gradient, flowing :

1371
1372
1373

$$L_q^j = \max_x \|\nabla g(x)\|_q, \quad \frac{1}{p} + \frac{1}{q} = 1, \quad \text{and } 1 \leq p, q \leq \infty \quad (12)$$

1374
1375

Let μ represent the noise that disturbs the system, and define the perturbed input as $x = x_0 + \mu$, with the reference (or true) input given by $y = x_0$:

1376
1377
1378

$$\begin{aligned} |g(x_0 + \mu) - g(x_0)| &\leq L_q^j\|\mu\|_p \\ g(x_0) - L_q^j\|\mu\|_p &\leq g(x_0 + \mu) \leq L_q^j\|\mu\|_p + g(x_0) \end{aligned} \quad (13)$$

1379
1380
1381
1382
1383
1384
1385
1386
1387

The equation shows two bounds for $g(x_0 + \mu)$. However, we know that if $g(x_0 + \mu) < 0$, then the predicted class label will change, i.e., the perturbation would be high enough to deceive the model into misclassifying. As shown by equation 13, $g(x_0 + \mu)$ is lower bounded by:

$$g(x_0) - L_q^j\|\mu\|_p \leq g(x_0 + \mu) \quad (14)$$

1388
1389
1390
1391

If $0 \leq g(x_0) - L_q^j$, we have $g(x_0 + \mu) \geq 0$. This means there exists a margin such that $g(x_0 + \mu)$ remains stable, ensuring that the prediction does not change for small perturbations μ to the input x_0 . This leads to following formula:

$$\begin{aligned} g(x_0) - L_q^j\|\mu\|_p &\geq 0 \\ \|\mu\|_p &\leq \frac{g(x_0)}{L_q^j}, \end{aligned} \quad (15)$$

1392
1393

which results to the formula 16:

1394
1395
1396

$$\|\mu\|_p \leq \frac{f_c(x_0) - f_j(x_0)}{L_q^j} \quad (16)$$

1397
1398
1399

To guarantee that the perturbed input remains correctly classified, i.e., $\arg \max_{1 \leq i \leq C} f_i(x_0 + \mu) = c$, we derive a bound on μ by minimizing over all competing classes $j \neq c$:

1400
1401
1402

$$\|\mu\|_p \leq \min_{j \neq c} \frac{f_c(x_0) - f_j(x_0)}{L_q^j}, \quad (17)$$

1403

which indicates that as long as the perturbation stays sufficiently small enough within the bounds, the prediction of the classifier will never change—demonstrating the robustness of the classifier. We can

1404 denote the Robustness bound (R) as follows:
 1405

$$\begin{aligned} 1406 \quad R &= \min_{j \neq c} \frac{f_c(x_0) - f_j(x_0)}{L_q^j} \\ 1407 \\ 1408 \quad &= \min_{j \neq c} \frac{f_c(x_0) - f_j(x_0)}{\max_x \|\nabla(f_c(x) - f_j(x))\|_q} \\ 1409 \\ 1410 \quad &= \min_{j \neq c} \frac{g_j(x_0)}{\max_x \|\nabla(g_j(x))\|_q} \\ 1411 \\ 1412 \end{aligned} \tag{18}$$

1413 Then for model $f^{(k)}$, we denote the robustness by R^k . For N number of models and their com-
 1414 bining predictions by averaging, we have i th class logit vector as $f_i^{(\text{avg})} = \frac{1}{N} \sum_{k=1}^N f_i^{(k)}(x)$. The
 1415 corresponding robustness bound is as follows:

$$\begin{aligned} 1416 \quad R^{\text{avg}} &= \min_{j \neq c} \frac{f_c^{(\text{avg})}(x_0) - f_j^{(\text{avg})}(x_0)}{\max_x \|\nabla(f_c^{(\text{avg})}(x) - f_j^{(\text{avg})}(x))\|_q} \\ 1417 \\ 1418 \quad &= \min_{j \neq c} \frac{g_j^{(\text{avg})}(x_0)}{\max_x \|\nabla(g_j^{(\text{avg})}(x))\|_q} \\ 1419 \\ 1420 \\ 1421 \end{aligned} \tag{19}$$

1422 For each model f^k , assume that the minimum of the robustness bound can be achieved with the
 1423 prediction result c and j . Then the robustness bounds can be deduced to:

$$\begin{aligned} 1424 \quad R^k &= \frac{g_j^k(x_0)}{\max_x \|\nabla(g_j^k(x))\|_q} \\ 1425 \\ 1426 \quad R^{\text{avg}} &= \frac{g_j^{(\text{avg})}(x_0)}{\max_x \|\nabla(g_j^{(\text{avg})}(x))\|_q}, \\ 1427 \\ 1428 \\ 1429 \end{aligned} \tag{20}$$

1430 where $g_j^{\text{avg}}(x) = \frac{1}{N} \sum_{k=1}^N g_j^k(x)$. From equation 20, we deduce two results.
 1431

1432 First, in selecting a diverse ensemble, summing the logits from each member model smooths the
 1433 average prediction $g_j^{\text{avg}}(x)$ by attenuating incorrect class probabilities. This reduces the gradient
 1434 norm and the denominator in Equation 20, while amplifying the correct class probabilities—thereby
 1435 increasing the margin for error and boosting the numerator. As a result, the overall average robustness
 1436 improves.

1437 Second, in the case where all models in the pool are identical, we have $R^k = R^{\text{avg}}$ for all $1 \leq k \leq N$.
 1438 We claim that the following property always holds: $\exists k, 1 \leq k \leq N, R^k \leq R^{\text{avg}}$. Most importantly,
 1439 this property signifies that ensembles of high diversity can improve the robustness of individual
 1440 models. Therefore, we can always pair a non-robust member model with a model to obtain average
 1441 robustness, which is higher than the member model. To prove this property, we use proof by
 1442 contradiction. Assume that $\forall k, 1 \leq k \leq N, R^k > R^{\text{avg}}$ that is:

$$g_j^k(x_0) \max_x \|\nabla(g_j^{(\text{avg})}(x))\|_q > g_j^{(\text{avg})}(x_0) \max_x \|\nabla(g_j^k(x))\|_q \tag{21}$$

1444 using equation 20. Since for all the models, this inequality holds, by adding them all:
 1445

$$\sum_{k=1}^N g_j^k(x_0) \max_x \|\nabla(g_j^{(\text{avg})}(x))\|_q > \sum_{k=1}^N g_j^{(\text{avg})}(x_0) \max_x \|\nabla(g_j^k(x))\|_q. \tag{22}$$

1449 We can move the variables that does not depend on k to the outside of the summation:
 1450

$$(\max_x \|\nabla(g_j^{(\text{avg})}(x))\|_q) \sum_{k=1}^N g_j^k(x_0) > (g_j^{(\text{avg})}(x_0)) \sum_{k=1}^N \max_x \|\nabla(g_j^k(x))\|_q, \tag{23}$$

1454 since $g_j^{\text{avg}}(x) = \frac{1}{N} \sum_{k=1}^N g_j^k(x)$ we can cancel out g_j^{avg} terms to obtain:
 1455

$$(\max_x \|\nabla(\frac{1}{N} \sum_{k=1}^N g_j^k(x))\|_q) > \sum_{k=1}^N \max_x \|\nabla(g_j^k(x))\|_q. \tag{24}$$

1458 However, from the triangle inequality, we know that the term on the left must satisfy:
 1459

$$\begin{aligned} 1460 \max_x \left\| \nabla \left(\frac{1}{N} \sum_{k=1}^N g_j^k(x) \right) \right\|_q &\leq \max_x \frac{1}{N} \sum_{k=1}^N \left\| \nabla (g_j^k(x)) \right\|_q \\ 1461 &\leq \frac{1}{N} \sum_{k=1}^N \max_x \left\| \nabla (g_j^k(x)) \right\|_q, \end{aligned} \tag{25}$$

1462 which contradicts the equation 24. Therefore, the assumption does not hold, and we show that
 1463 $\exists k, 1 \leq k \leq N, R^k \leq R^{avg}$. Overall, our analysis in this section shows that a diverse ensemble team
 1464 can improve the robustness of individual models in the pool.
 1465

1470 K.2 WHY FOCAL DIVERSITY IMPROVES PERFORMANCE?

1471 Following Partridge & Krzanowski (1997) in the context of deep neural networks, in a system of N
 1472 models, $P(1)$ represents one randomly chosen model f^i fails on input x , and $P(2)$ represents two
 1473 randomly chosen models, f^i and f^j , fail simultaneously on input.
 1474

1475 Given that f^i and f^j in the pool are selected, let X and Y represent the random variables that f^i
 1476 and f^j make mistakes on a randomly chosen input. Then, $P(AB)$ is the actual probability that
 1477 both model fails. In the case of minimum diversity, AB is an independent and equal event, and
 1478 $P(1) = P(AB) = P(A) = P(B)$ since all the errors made by model i are followed by j . In
 1479 the case of maximum diversity, there is no joint between events; therefore, A and B are disjoint
 1480 $P(2) = P(AB) = 0$. Therefore, $\frac{P(1)-P(2)}{P(2)}$ is the normalized distance from minimum diversity to
 1481 maximum diversity.

1482 Following Partridge & Krzanowski (1997), we defined the focal negative correlation score by selecting
 1483 a focal model and finding its inputs where it failed and calculate as $\rho^{focal}(\mathcal{M}_i; \mathcal{E}) = 1 - \frac{P(2)}{P(1)}$ which
 1484 can take 0 in minimum diversity and 1 in maximum diversity. We iterate this for every model in the
 1485 ensemble set to calculate focal diversity metric, $\lambda^{focal}(\mathcal{E}) = \frac{1}{|\mathcal{E}|} \sum_{\mathcal{M}_i \in \mathcal{E}} \rho^{focal}(\mathcal{M}_i; \mathcal{E})$.
 1486

1487 The goal of Decider Agent can be defined as:

$$\max_{\mathcal{E} \in \mathbb{E}} \lambda^{focal}(\mathcal{E}), \tag{26}$$

1488 where \mathbb{E} represents universal set that contains all the combinations of models having the size of
 1489 $2^N - N - 1$. By substituting, ρ^{focal} , we can write the equation as:
 1490

$$\max_{\mathcal{E} \in \mathbb{E}} \frac{1}{|\mathcal{E}|} \sum_{\mathcal{M}_i \in \mathcal{E}} \rho^{focal}(\mathcal{M}_i; \mathcal{E}), \tag{27}$$

1491 Since each $\rho^{focal}(\mathcal{M}_i; \mathcal{E})$ depends on the entire set \mathcal{E} , the objective in equation 27 is a set-level
 1492 optimization problem with a set-dependent reward function. Therefore, theoretically, it is hard to
 1493 show individual term maximisation due to the interaction between elements. Yet we know that the
 1494 optimal \mathcal{E}^* maximises the average of per ρ^{focal} that depend on the whole set.
 1495

1496 Then let f^i be the focal model and f^j be a randomly selected model from the optimal set \mathcal{E}^* , and
 1497 where these models have high diversity close to maximum. Then let $P(AB) \leq \epsilon$, $0 \leq \epsilon$ where ϵ is
 1498 very small number. Then the covariance between events A and B can be shown as:
 1499

$$\text{Cov}(A, B) = \text{E}[AB] - \text{E}[A]\text{E}[B] \tag{28}$$

1500 Since we select all inputs where the focal model makes errors, we have $\text{E}[A] = 1$, and if $\text{E}[AB] \leq \epsilon$,
 1501 then it follows that:
 1502

$$\text{Cov}(A, B) = \text{E}[AB] - \text{E}[A]\text{E}[B] \leq \epsilon - \text{E}[B]. \tag{29}$$

1503 In the case of maximum diversity, $\text{E}[B] = 1$ and $\epsilon = 0$, which yields a covariance of -1 . This
 1504 indicates that maximizing focal diversity leads to a low (or even negative) error covariance between
 1505 the member models.
 1506

1512 As we have shown in section 2, the bias-variance-covariance decomposition of an ensemble estimator
 1513 can be denoted as:

$$1514 \mathbb{E}[(\hat{f}_{\text{ens}} - y)^2] = \overline{\text{Bias}} + \frac{1}{N} \overline{\text{Var}} + (1 - \frac{1}{N}) \overline{\text{Covar}}. \quad (30)$$

1515 where the covariance term equals to:

$$1516 \overline{\text{Covar}} = \frac{1}{N(N-1)} \sum_i \sum_{i \neq j} \text{Cov}(f^i, f^j) \quad (31)$$

1517 Since we have shown that maximizing focal diversity leads to negative covariance between member
 1518 models, the covariance term in the error decomposition decreases, thereby reducing the overall
 1519 ensemble error. Consequently, as the Decider Agent moves toward maximizing focal diversity to
 1520 optimize its reward, it effectively selects diverse ensemble sets that yield lower error and greater
 1521 robustness.

1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565